| /****************************************************************************** |
| * |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved. |
| * Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, |
| * USA |
| * |
| * The full GNU General Public License is included in this distribution |
| * in the file called COPYING. |
| * |
| * Contact Information: |
| * Intel Linux Wireless <ilw@linux.intel.com> |
| * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| * |
| * BSD LICENSE |
| * |
| * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved. |
| * Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * * Neither the name Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| *****************************************************************************/ |
| #include <linux/firmware.h> |
| #include "iwl-trans.h" |
| #include "iwl-csr.h" |
| #include "mvm.h" |
| #include "iwl-eeprom-parse.h" |
| #include "iwl-eeprom-read.h" |
| #include "iwl-nvm-parse.h" |
| |
| /* Default NVM size to read */ |
| #define IWL_NVM_DEFAULT_CHUNK_SIZE (2*1024) |
| #define IWL_MAX_NVM_SECTION_SIZE 0x1b58 |
| #define IWL_MAX_NVM_8000A_SECTION_SIZE 0xffc |
| #define IWL_MAX_NVM_8000B_SECTION_SIZE 0x1ffc |
| |
| #define NVM_WRITE_OPCODE 1 |
| #define NVM_READ_OPCODE 0 |
| |
| /* load nvm chunk response */ |
| enum { |
| READ_NVM_CHUNK_SUCCEED = 0, |
| READ_NVM_CHUNK_NOT_VALID_ADDRESS = 1 |
| }; |
| |
| /* |
| * prepare the NVM host command w/ the pointers to the nvm buffer |
| * and send it to fw |
| */ |
| static int iwl_nvm_write_chunk(struct iwl_mvm *mvm, u16 section, |
| u16 offset, u16 length, const u8 *data) |
| { |
| struct iwl_nvm_access_cmd nvm_access_cmd = { |
| .offset = cpu_to_le16(offset), |
| .length = cpu_to_le16(length), |
| .type = cpu_to_le16(section), |
| .op_code = NVM_WRITE_OPCODE, |
| }; |
| struct iwl_host_cmd cmd = { |
| .id = NVM_ACCESS_CMD, |
| .len = { sizeof(struct iwl_nvm_access_cmd), length }, |
| .flags = CMD_SEND_IN_RFKILL, |
| .data = { &nvm_access_cmd, data }, |
| /* data may come from vmalloc, so use _DUP */ |
| .dataflags = { 0, IWL_HCMD_DFL_DUP }, |
| }; |
| |
| return iwl_mvm_send_cmd(mvm, &cmd); |
| } |
| |
| static int iwl_nvm_read_chunk(struct iwl_mvm *mvm, u16 section, |
| u16 offset, u16 length, u8 *data) |
| { |
| struct iwl_nvm_access_cmd nvm_access_cmd = { |
| .offset = cpu_to_le16(offset), |
| .length = cpu_to_le16(length), |
| .type = cpu_to_le16(section), |
| .op_code = NVM_READ_OPCODE, |
| }; |
| struct iwl_nvm_access_resp *nvm_resp; |
| struct iwl_rx_packet *pkt; |
| struct iwl_host_cmd cmd = { |
| .id = NVM_ACCESS_CMD, |
| .flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL, |
| .data = { &nvm_access_cmd, }, |
| }; |
| int ret, bytes_read, offset_read; |
| u8 *resp_data; |
| |
| cmd.len[0] = sizeof(struct iwl_nvm_access_cmd); |
| |
| ret = iwl_mvm_send_cmd(mvm, &cmd); |
| if (ret) |
| return ret; |
| |
| pkt = cmd.resp_pkt; |
| if (pkt->hdr.flags & IWL_CMD_FAILED_MSK) { |
| IWL_ERR(mvm, "Bad return from NVM_ACCES_COMMAND (0x%08X)\n", |
| pkt->hdr.flags); |
| ret = -EIO; |
| goto exit; |
| } |
| |
| /* Extract NVM response */ |
| nvm_resp = (void *)pkt->data; |
| ret = le16_to_cpu(nvm_resp->status); |
| bytes_read = le16_to_cpu(nvm_resp->length); |
| offset_read = le16_to_cpu(nvm_resp->offset); |
| resp_data = nvm_resp->data; |
| if (ret) { |
| if ((offset != 0) && |
| (ret == READ_NVM_CHUNK_NOT_VALID_ADDRESS)) { |
| /* |
| * meaning of NOT_VALID_ADDRESS: |
| * driver try to read chunk from address that is |
| * multiple of 2K and got an error since addr is empty. |
| * meaning of (offset != 0): driver already |
| * read valid data from another chunk so this case |
| * is not an error. |
| */ |
| IWL_DEBUG_EEPROM(mvm->trans->dev, |
| "NVM access command failed on offset 0x%x since that section size is multiple 2K\n", |
| offset); |
| ret = 0; |
| } else { |
| IWL_DEBUG_EEPROM(mvm->trans->dev, |
| "NVM access command failed with status %d (device: %s)\n", |
| ret, mvm->cfg->name); |
| ret = -EIO; |
| } |
| goto exit; |
| } |
| |
| if (offset_read != offset) { |
| IWL_ERR(mvm, "NVM ACCESS response with invalid offset %d\n", |
| offset_read); |
| ret = -EINVAL; |
| goto exit; |
| } |
| |
| /* Write data to NVM */ |
| memcpy(data + offset, resp_data, bytes_read); |
| ret = bytes_read; |
| |
| exit: |
| iwl_free_resp(&cmd); |
| return ret; |
| } |
| |
| static int iwl_nvm_write_section(struct iwl_mvm *mvm, u16 section, |
| const u8 *data, u16 length) |
| { |
| int offset = 0; |
| |
| /* copy data in chunks of 2k (and remainder if any) */ |
| |
| while (offset < length) { |
| int chunk_size, ret; |
| |
| chunk_size = min(IWL_NVM_DEFAULT_CHUNK_SIZE, |
| length - offset); |
| |
| ret = iwl_nvm_write_chunk(mvm, section, offset, |
| chunk_size, data + offset); |
| if (ret < 0) |
| return ret; |
| |
| offset += chunk_size; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Reads an NVM section completely. |
| * NICs prior to 7000 family doesn't have a real NVM, but just read |
| * section 0 which is the EEPROM. Because the EEPROM reading is unlimited |
| * by uCode, we need to manually check in this case that we don't |
| * overflow and try to read more than the EEPROM size. |
| * For 7000 family NICs, we supply the maximal size we can read, and |
| * the uCode fills the response with as much data as we can, |
| * without overflowing, so no check is needed. |
| */ |
| static int iwl_nvm_read_section(struct iwl_mvm *mvm, u16 section, |
| u8 *data, u32 size_read) |
| { |
| u16 length, offset = 0; |
| int ret; |
| |
| /* Set nvm section read length */ |
| length = IWL_NVM_DEFAULT_CHUNK_SIZE; |
| |
| ret = length; |
| |
| /* Read the NVM until exhausted (reading less than requested) */ |
| while (ret == length) { |
| /* Check no memory assumptions fail and cause an overflow */ |
| if ((size_read + offset + length) > |
| mvm->cfg->base_params->eeprom_size) { |
| IWL_ERR(mvm, "EEPROM size is too small for NVM\n"); |
| return -ENOBUFS; |
| } |
| |
| ret = iwl_nvm_read_chunk(mvm, section, offset, length, data); |
| if (ret < 0) { |
| IWL_DEBUG_EEPROM(mvm->trans->dev, |
| "Cannot read NVM from section %d offset %d, length %d\n", |
| section, offset, length); |
| return ret; |
| } |
| offset += ret; |
| } |
| |
| IWL_DEBUG_EEPROM(mvm->trans->dev, |
| "NVM section %d read completed\n", section); |
| return offset; |
| } |
| |
| static struct iwl_nvm_data * |
| iwl_parse_nvm_sections(struct iwl_mvm *mvm) |
| { |
| struct iwl_nvm_section *sections = mvm->nvm_sections; |
| const __le16 *hw, *sw, *calib, *regulatory, *mac_override; |
| |
| /* Checking for required sections */ |
| if (mvm->trans->cfg->device_family != IWL_DEVICE_FAMILY_8000) { |
| if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data || |
| !mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data) { |
| IWL_ERR(mvm, "Can't parse empty OTP/NVM sections\n"); |
| return NULL; |
| } |
| } else { |
| /* SW and REGULATORY sections are mandatory */ |
| if (!mvm->nvm_sections[NVM_SECTION_TYPE_SW].data || |
| !mvm->nvm_sections[NVM_SECTION_TYPE_REGULATORY].data) { |
| IWL_ERR(mvm, |
| "Can't parse empty family 8000 OTP/NVM sections\n"); |
| return NULL; |
| } |
| /* MAC_OVERRIDE or at least HW section must exist */ |
| if (!mvm->nvm_sections[mvm->cfg->nvm_hw_section_num].data && |
| !mvm->nvm_sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data) { |
| IWL_ERR(mvm, |
| "Can't parse mac_address, empty sections\n"); |
| return NULL; |
| } |
| } |
| |
| if (WARN_ON(!mvm->cfg)) |
| return NULL; |
| |
| hw = (const __le16 *)sections[mvm->cfg->nvm_hw_section_num].data; |
| sw = (const __le16 *)sections[NVM_SECTION_TYPE_SW].data; |
| calib = (const __le16 *)sections[NVM_SECTION_TYPE_CALIBRATION].data; |
| regulatory = (const __le16 *)sections[NVM_SECTION_TYPE_REGULATORY].data; |
| mac_override = |
| (const __le16 *)sections[NVM_SECTION_TYPE_MAC_OVERRIDE].data; |
| |
| return iwl_parse_nvm_data(mvm->trans->dev, mvm->cfg, hw, sw, calib, |
| regulatory, mac_override, |
| mvm->fw->valid_tx_ant, |
| mvm->fw->valid_rx_ant); |
| } |
| |
| #define MAX_NVM_FILE_LEN 16384 |
| |
| /* |
| * Reads external NVM from a file into mvm->nvm_sections |
| * |
| * HOW TO CREATE THE NVM FILE FORMAT: |
| * ------------------------------ |
| * 1. create hex file, format: |
| * 3800 -> header |
| * 0000 -> header |
| * 5a40 -> data |
| * |
| * rev - 6 bit (word1) |
| * len - 10 bit (word1) |
| * id - 4 bit (word2) |
| * rsv - 12 bit (word2) |
| * |
| * 2. flip 8bits with 8 bits per line to get the right NVM file format |
| * |
| * 3. create binary file from the hex file |
| * |
| * 4. save as "iNVM_xxx.bin" under /lib/firmware |
| */ |
| static int iwl_mvm_read_external_nvm(struct iwl_mvm *mvm) |
| { |
| int ret, section_size; |
| u16 section_id; |
| const struct firmware *fw_entry; |
| const struct { |
| __le16 word1; |
| __le16 word2; |
| u8 data[]; |
| } *file_sec; |
| const u8 *eof, *temp; |
| int max_section_size; |
| const __le32 *dword_buff; |
| |
| #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF)) |
| #define NVM_WORD2_ID(x) (x >> 12) |
| #define NVM_WORD2_LEN_FAMILY_8000(x) (2 * ((x & 0xFF) << 8 | x >> 8)) |
| #define NVM_WORD1_ID_FAMILY_8000(x) (x >> 4) |
| #define NVM_HEADER_0 (0x2A504C54) |
| #define NVM_HEADER_1 (0x4E564D2A) |
| #define NVM_HEADER_SIZE (4 * sizeof(u32)) |
| |
| IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from external NVM\n"); |
| |
| /* Maximal size depends on HW family and step */ |
| if (mvm->trans->cfg->device_family != IWL_DEVICE_FAMILY_8000) |
| max_section_size = IWL_MAX_NVM_SECTION_SIZE; |
| else if (CSR_HW_REV_STEP(mvm->trans->hw_rev) == SILICON_A_STEP) |
| max_section_size = IWL_MAX_NVM_8000A_SECTION_SIZE; |
| else /* Family 8000 B-step or C-step */ |
| max_section_size = IWL_MAX_NVM_8000B_SECTION_SIZE; |
| |
| /* |
| * Obtain NVM image via request_firmware. Since we already used |
| * request_firmware_nowait() for the firmware binary load and only |
| * get here after that we assume the NVM request can be satisfied |
| * synchronously. |
| */ |
| ret = request_firmware(&fw_entry, mvm->nvm_file_name, |
| mvm->trans->dev); |
| if (ret) { |
| IWL_ERR(mvm, "ERROR: %s isn't available %d\n", |
| mvm->nvm_file_name, ret); |
| return ret; |
| } |
| |
| IWL_INFO(mvm, "Loaded NVM file %s (%zu bytes)\n", |
| mvm->nvm_file_name, fw_entry->size); |
| |
| if (fw_entry->size > MAX_NVM_FILE_LEN) { |
| IWL_ERR(mvm, "NVM file too large\n"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| eof = fw_entry->data + fw_entry->size; |
| dword_buff = (__le32 *)fw_entry->data; |
| |
| /* some NVM file will contain a header. |
| * The header is identified by 2 dwords header as follow: |
| * dword[0] = 0x2A504C54 |
| * dword[1] = 0x4E564D2A |
| * |
| * This header must be skipped when providing the NVM data to the FW. |
| */ |
| if (fw_entry->size > NVM_HEADER_SIZE && |
| dword_buff[0] == cpu_to_le32(NVM_HEADER_0) && |
| dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) { |
| file_sec = (void *)(fw_entry->data + NVM_HEADER_SIZE); |
| IWL_INFO(mvm, "NVM Version %08X\n", le32_to_cpu(dword_buff[2])); |
| IWL_INFO(mvm, "NVM Manufacturing date %08X\n", |
| le32_to_cpu(dword_buff[3])); |
| } else { |
| file_sec = (void *)fw_entry->data; |
| } |
| |
| while (true) { |
| if (file_sec->data > eof) { |
| IWL_ERR(mvm, |
| "ERROR - NVM file too short for section header\n"); |
| ret = -EINVAL; |
| break; |
| } |
| |
| /* check for EOF marker */ |
| if (!file_sec->word1 && !file_sec->word2) { |
| ret = 0; |
| break; |
| } |
| |
| if (mvm->trans->cfg->device_family != IWL_DEVICE_FAMILY_8000) { |
| section_size = |
| 2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1)); |
| section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2)); |
| } else { |
| section_size = 2 * NVM_WORD2_LEN_FAMILY_8000( |
| le16_to_cpu(file_sec->word2)); |
| section_id = NVM_WORD1_ID_FAMILY_8000( |
| le16_to_cpu(file_sec->word1)); |
| } |
| |
| if (section_size > max_section_size) { |
| IWL_ERR(mvm, "ERROR - section too large (%d)\n", |
| section_size); |
| ret = -EINVAL; |
| break; |
| } |
| |
| if (!section_size) { |
| IWL_ERR(mvm, "ERROR - section empty\n"); |
| ret = -EINVAL; |
| break; |
| } |
| |
| if (file_sec->data + section_size > eof) { |
| IWL_ERR(mvm, |
| "ERROR - NVM file too short for section (%d bytes)\n", |
| section_size); |
| ret = -EINVAL; |
| break; |
| } |
| |
| if (WARN(section_id >= NVM_MAX_NUM_SECTIONS, |
| "Invalid NVM section ID %d\n", section_id)) { |
| ret = -EINVAL; |
| break; |
| } |
| |
| temp = kmemdup(file_sec->data, section_size, GFP_KERNEL); |
| if (!temp) { |
| ret = -ENOMEM; |
| break; |
| } |
| mvm->nvm_sections[section_id].data = temp; |
| mvm->nvm_sections[section_id].length = section_size; |
| |
| /* advance to the next section */ |
| file_sec = (void *)(file_sec->data + section_size); |
| } |
| out: |
| release_firmware(fw_entry); |
| return ret; |
| } |
| |
| /* Loads the NVM data stored in mvm->nvm_sections into the NIC */ |
| int iwl_mvm_load_nvm_to_nic(struct iwl_mvm *mvm) |
| { |
| int i, ret = 0; |
| struct iwl_nvm_section *sections = mvm->nvm_sections; |
| |
| IWL_DEBUG_EEPROM(mvm->trans->dev, "'Write to NVM\n"); |
| |
| for (i = 0; i < ARRAY_SIZE(mvm->nvm_sections); i++) { |
| if (!mvm->nvm_sections[i].data || !mvm->nvm_sections[i].length) |
| continue; |
| ret = iwl_nvm_write_section(mvm, i, sections[i].data, |
| sections[i].length); |
| if (ret < 0) { |
| IWL_ERR(mvm, "iwl_mvm_send_cmd failed: %d\n", ret); |
| break; |
| } |
| } |
| return ret; |
| } |
| |
| int iwl_nvm_init(struct iwl_mvm *mvm, bool read_nvm_from_nic) |
| { |
| int ret, section; |
| u32 size_read = 0; |
| u8 *nvm_buffer, *temp; |
| |
| if (WARN_ON_ONCE(mvm->cfg->nvm_hw_section_num >= NVM_MAX_NUM_SECTIONS)) |
| return -EINVAL; |
| |
| /* load NVM values from nic */ |
| if (read_nvm_from_nic) { |
| /* Read From FW NVM */ |
| IWL_DEBUG_EEPROM(mvm->trans->dev, "Read from NVM\n"); |
| |
| nvm_buffer = kmalloc(mvm->cfg->base_params->eeprom_size, |
| GFP_KERNEL); |
| if (!nvm_buffer) |
| return -ENOMEM; |
| for (section = 0; section < NVM_MAX_NUM_SECTIONS; section++) { |
| /* we override the constness for initial read */ |
| ret = iwl_nvm_read_section(mvm, section, nvm_buffer, |
| size_read); |
| if (ret < 0) |
| continue; |
| size_read += ret; |
| temp = kmemdup(nvm_buffer, ret, GFP_KERNEL); |
| if (!temp) { |
| ret = -ENOMEM; |
| break; |
| } |
| mvm->nvm_sections[section].data = temp; |
| mvm->nvm_sections[section].length = ret; |
| |
| #ifdef CONFIG_IWLWIFI_DEBUGFS |
| switch (section) { |
| case NVM_SECTION_TYPE_SW: |
| mvm->nvm_sw_blob.data = temp; |
| mvm->nvm_sw_blob.size = ret; |
| break; |
| case NVM_SECTION_TYPE_CALIBRATION: |
| mvm->nvm_calib_blob.data = temp; |
| mvm->nvm_calib_blob.size = ret; |
| break; |
| case NVM_SECTION_TYPE_PRODUCTION: |
| mvm->nvm_prod_blob.data = temp; |
| mvm->nvm_prod_blob.size = ret; |
| break; |
| default: |
| if (section == mvm->cfg->nvm_hw_section_num) { |
| mvm->nvm_hw_blob.data = temp; |
| mvm->nvm_hw_blob.size = ret; |
| break; |
| } |
| } |
| #endif |
| } |
| if (!size_read) |
| IWL_ERR(mvm, "OTP is blank\n"); |
| kfree(nvm_buffer); |
| } |
| |
| /* load external NVM if configured */ |
| if (mvm->nvm_file_name) { |
| /* move to External NVM flow */ |
| ret = iwl_mvm_read_external_nvm(mvm); |
| if (ret) |
| return ret; |
| } |
| |
| /* parse the relevant nvm sections */ |
| mvm->nvm_data = iwl_parse_nvm_sections(mvm); |
| if (!mvm->nvm_data) |
| return -ENODATA; |
| IWL_DEBUG_EEPROM(mvm->trans->dev, "nvm version = %x\n", |
| mvm->nvm_data->nvm_version); |
| |
| return 0; |
| } |