| /* |
| * PowerNV setup code. |
| * |
| * Copyright 2011 IBM Corp. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #undef DEBUG |
| |
| #include <linux/cpu.h> |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/tty.h> |
| #include <linux/reboot.h> |
| #include <linux/init.h> |
| #include <linux/console.h> |
| #include <linux/delay.h> |
| #include <linux/irq.h> |
| #include <linux/seq_file.h> |
| #include <linux/of.h> |
| #include <linux/of_fdt.h> |
| #include <linux/interrupt.h> |
| #include <linux/bug.h> |
| #include <linux/pci.h> |
| #include <linux/cpufreq.h> |
| |
| #include <asm/machdep.h> |
| #include <asm/firmware.h> |
| #include <asm/xics.h> |
| #include <asm/rtas.h> |
| #include <asm/opal.h> |
| #include <asm/kexec.h> |
| #include <asm/smp.h> |
| #include <asm/cputhreads.h> |
| #include <asm/cpuidle.h> |
| #include <asm/code-patching.h> |
| |
| #include "powernv.h" |
| #include "subcore.h" |
| |
| static void __init pnv_setup_arch(void) |
| { |
| set_arch_panic_timeout(10, ARCH_PANIC_TIMEOUT); |
| |
| /* Initialize SMP */ |
| pnv_smp_init(); |
| |
| /* Setup PCI */ |
| pnv_pci_init(); |
| |
| /* Setup RTC and NVRAM callbacks */ |
| if (firmware_has_feature(FW_FEATURE_OPAL)) |
| opal_nvram_init(); |
| |
| /* Enable NAP mode */ |
| powersave_nap = 1; |
| |
| /* XXX PMCS */ |
| } |
| |
| static void __init pnv_init_early(void) |
| { |
| /* |
| * Initialize the LPC bus now so that legacy serial |
| * ports can be found on it |
| */ |
| opal_lpc_init(); |
| |
| #ifdef CONFIG_HVC_OPAL |
| if (firmware_has_feature(FW_FEATURE_OPAL)) |
| hvc_opal_init_early(); |
| else |
| #endif |
| add_preferred_console("hvc", 0, NULL); |
| } |
| |
| static void __init pnv_init_IRQ(void) |
| { |
| xics_init(); |
| |
| WARN_ON(!ppc_md.get_irq); |
| } |
| |
| static void pnv_show_cpuinfo(struct seq_file *m) |
| { |
| struct device_node *root; |
| const char *model = ""; |
| |
| root = of_find_node_by_path("/"); |
| if (root) |
| model = of_get_property(root, "model", NULL); |
| seq_printf(m, "machine\t\t: PowerNV %s\n", model); |
| if (firmware_has_feature(FW_FEATURE_OPALv3)) |
| seq_printf(m, "firmware\t: OPAL v3\n"); |
| else if (firmware_has_feature(FW_FEATURE_OPALv2)) |
| seq_printf(m, "firmware\t: OPAL v2\n"); |
| else if (firmware_has_feature(FW_FEATURE_OPAL)) |
| seq_printf(m, "firmware\t: OPAL v1\n"); |
| else |
| seq_printf(m, "firmware\t: BML\n"); |
| of_node_put(root); |
| } |
| |
| static void pnv_prepare_going_down(void) |
| { |
| /* |
| * Disable all notifiers from OPAL, we can't |
| * service interrupts anymore anyway |
| */ |
| opal_notifier_disable(); |
| |
| /* Soft disable interrupts */ |
| local_irq_disable(); |
| |
| /* |
| * Return secondary CPUs to firwmare if a flash update |
| * is pending otherwise we will get all sort of error |
| * messages about CPU being stuck etc.. This will also |
| * have the side effect of hard disabling interrupts so |
| * past this point, the kernel is effectively dead. |
| */ |
| opal_flash_term_callback(); |
| } |
| |
| static void __noreturn pnv_restart(char *cmd) |
| { |
| long rc = OPAL_BUSY; |
| |
| pnv_prepare_going_down(); |
| |
| while (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) { |
| rc = opal_cec_reboot(); |
| if (rc == OPAL_BUSY_EVENT) |
| opal_poll_events(NULL); |
| else |
| mdelay(10); |
| } |
| for (;;) |
| opal_poll_events(NULL); |
| } |
| |
| static void __noreturn pnv_power_off(void) |
| { |
| long rc = OPAL_BUSY; |
| |
| pnv_prepare_going_down(); |
| |
| while (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) { |
| rc = opal_cec_power_down(0); |
| if (rc == OPAL_BUSY_EVENT) |
| opal_poll_events(NULL); |
| else |
| mdelay(10); |
| } |
| for (;;) |
| opal_poll_events(NULL); |
| } |
| |
| static void __noreturn pnv_halt(void) |
| { |
| pnv_power_off(); |
| } |
| |
| static void pnv_progress(char *s, unsigned short hex) |
| { |
| } |
| |
| static int pnv_dma_set_mask(struct device *dev, u64 dma_mask) |
| { |
| if (dev_is_pci(dev)) |
| return pnv_pci_dma_set_mask(to_pci_dev(dev), dma_mask); |
| return __dma_set_mask(dev, dma_mask); |
| } |
| |
| static u64 pnv_dma_get_required_mask(struct device *dev) |
| { |
| if (dev_is_pci(dev)) |
| return pnv_pci_dma_get_required_mask(to_pci_dev(dev)); |
| |
| return __dma_get_required_mask(dev); |
| } |
| |
| static void pnv_shutdown(void) |
| { |
| /* Let the PCI code clear up IODA tables */ |
| pnv_pci_shutdown(); |
| |
| /* |
| * Stop OPAL activity: Unregister all OPAL interrupts so they |
| * don't fire up while we kexec and make sure all potentially |
| * DMA'ing ops are complete (such as dump retrieval). |
| */ |
| opal_shutdown(); |
| } |
| |
| #ifdef CONFIG_KEXEC |
| static void pnv_kexec_wait_secondaries_down(void) |
| { |
| int my_cpu, i, notified = -1; |
| |
| my_cpu = get_cpu(); |
| |
| for_each_online_cpu(i) { |
| uint8_t status; |
| int64_t rc; |
| |
| if (i == my_cpu) |
| continue; |
| |
| for (;;) { |
| rc = opal_query_cpu_status(get_hard_smp_processor_id(i), |
| &status); |
| if (rc != OPAL_SUCCESS || status != OPAL_THREAD_STARTED) |
| break; |
| barrier(); |
| if (i != notified) { |
| printk(KERN_INFO "kexec: waiting for cpu %d " |
| "(physical %d) to enter OPAL\n", |
| i, paca[i].hw_cpu_id); |
| notified = i; |
| } |
| } |
| } |
| } |
| |
| static void pnv_kexec_cpu_down(int crash_shutdown, int secondary) |
| { |
| xics_kexec_teardown_cpu(secondary); |
| |
| /* On OPAL v3, we return all CPUs to firmware */ |
| |
| if (!firmware_has_feature(FW_FEATURE_OPALv3)) |
| return; |
| |
| if (secondary) { |
| /* Return secondary CPUs to firmware on OPAL v3 */ |
| mb(); |
| get_paca()->kexec_state = KEXEC_STATE_REAL_MODE; |
| mb(); |
| |
| /* Return the CPU to OPAL */ |
| opal_return_cpu(); |
| } else if (crash_shutdown) { |
| /* |
| * On crash, we don't wait for secondaries to go |
| * down as they might be unreachable or hung, so |
| * instead we just wait a bit and move on. |
| */ |
| mdelay(1); |
| } else { |
| /* Primary waits for the secondaries to have reached OPAL */ |
| pnv_kexec_wait_secondaries_down(); |
| } |
| } |
| #endif /* CONFIG_KEXEC */ |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE |
| static unsigned long pnv_memory_block_size(void) |
| { |
| return 256UL * 1024 * 1024; |
| } |
| #endif |
| |
| static void __init pnv_setup_machdep_opal(void) |
| { |
| ppc_md.get_boot_time = opal_get_boot_time; |
| ppc_md.restart = pnv_restart; |
| pm_power_off = pnv_power_off; |
| ppc_md.halt = pnv_halt; |
| ppc_md.machine_check_exception = opal_machine_check; |
| ppc_md.mce_check_early_recovery = opal_mce_check_early_recovery; |
| ppc_md.hmi_exception_early = opal_hmi_exception_early; |
| ppc_md.handle_hmi_exception = opal_handle_hmi_exception; |
| } |
| |
| #ifdef CONFIG_PPC_POWERNV_RTAS |
| static void __init pnv_setup_machdep_rtas(void) |
| { |
| if (rtas_token("get-time-of-day") != RTAS_UNKNOWN_SERVICE) { |
| ppc_md.get_boot_time = rtas_get_boot_time; |
| ppc_md.get_rtc_time = rtas_get_rtc_time; |
| ppc_md.set_rtc_time = rtas_set_rtc_time; |
| } |
| ppc_md.restart = rtas_restart; |
| pm_power_off = rtas_power_off; |
| ppc_md.halt = rtas_halt; |
| } |
| #endif /* CONFIG_PPC_POWERNV_RTAS */ |
| |
| static u32 supported_cpuidle_states; |
| |
| int pnv_save_sprs_for_winkle(void) |
| { |
| int cpu; |
| int rc; |
| |
| /* |
| * hid0, hid1, hid4, hid5, hmeer and lpcr values are symmetric accross |
| * all cpus at boot. Get these reg values of current cpu and use the |
| * same accross all cpus. |
| */ |
| uint64_t lpcr_val = mfspr(SPRN_LPCR) & ~(u64)LPCR_PECE1; |
| uint64_t hid0_val = mfspr(SPRN_HID0); |
| uint64_t hid1_val = mfspr(SPRN_HID1); |
| uint64_t hid4_val = mfspr(SPRN_HID4); |
| uint64_t hid5_val = mfspr(SPRN_HID5); |
| uint64_t hmeer_val = mfspr(SPRN_HMEER); |
| |
| for_each_possible_cpu(cpu) { |
| uint64_t pir = get_hard_smp_processor_id(cpu); |
| uint64_t hsprg0_val = (uint64_t)&paca[cpu]; |
| |
| /* |
| * HSPRG0 is used to store the cpu's pointer to paca. Hence last |
| * 3 bits are guaranteed to be 0. Program slw to restore HSPRG0 |
| * with 63rd bit set, so that when a thread wakes up at 0x100 we |
| * can use this bit to distinguish between fastsleep and |
| * deep winkle. |
| */ |
| hsprg0_val |= 1; |
| |
| rc = opal_slw_set_reg(pir, SPRN_HSPRG0, hsprg0_val); |
| if (rc != 0) |
| return rc; |
| |
| rc = opal_slw_set_reg(pir, SPRN_LPCR, lpcr_val); |
| if (rc != 0) |
| return rc; |
| |
| /* HIDs are per core registers */ |
| if (cpu_thread_in_core(cpu) == 0) { |
| |
| rc = opal_slw_set_reg(pir, SPRN_HMEER, hmeer_val); |
| if (rc != 0) |
| return rc; |
| |
| rc = opal_slw_set_reg(pir, SPRN_HID0, hid0_val); |
| if (rc != 0) |
| return rc; |
| |
| rc = opal_slw_set_reg(pir, SPRN_HID1, hid1_val); |
| if (rc != 0) |
| return rc; |
| |
| rc = opal_slw_set_reg(pir, SPRN_HID4, hid4_val); |
| if (rc != 0) |
| return rc; |
| |
| rc = opal_slw_set_reg(pir, SPRN_HID5, hid5_val); |
| if (rc != 0) |
| return rc; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void pnv_alloc_idle_core_states(void) |
| { |
| int i, j; |
| int nr_cores = cpu_nr_cores(); |
| u32 *core_idle_state; |
| |
| /* |
| * core_idle_state - First 8 bits track the idle state of each thread |
| * of the core. The 8th bit is the lock bit. Initially all thread bits |
| * are set. They are cleared when the thread enters deep idle state |
| * like sleep and winkle. Initially the lock bit is cleared. |
| * The lock bit has 2 purposes |
| * a. While the first thread is restoring core state, it prevents |
| * other threads in the core from switching to process context. |
| * b. While the last thread in the core is saving the core state, it |
| * prevents a different thread from waking up. |
| */ |
| for (i = 0; i < nr_cores; i++) { |
| int first_cpu = i * threads_per_core; |
| int node = cpu_to_node(first_cpu); |
| |
| core_idle_state = kmalloc_node(sizeof(u32), GFP_KERNEL, node); |
| *core_idle_state = PNV_CORE_IDLE_THREAD_BITS; |
| |
| for (j = 0; j < threads_per_core; j++) { |
| int cpu = first_cpu + j; |
| |
| paca[cpu].core_idle_state_ptr = core_idle_state; |
| paca[cpu].thread_idle_state = PNV_THREAD_RUNNING; |
| paca[cpu].thread_mask = 1 << j; |
| } |
| } |
| |
| update_subcore_sibling_mask(); |
| |
| if (supported_cpuidle_states & OPAL_PM_WINKLE_ENABLED) |
| pnv_save_sprs_for_winkle(); |
| } |
| |
| u32 pnv_get_supported_cpuidle_states(void) |
| { |
| return supported_cpuidle_states; |
| } |
| EXPORT_SYMBOL_GPL(pnv_get_supported_cpuidle_states); |
| |
| static int __init pnv_init_idle_states(void) |
| { |
| struct device_node *power_mgt; |
| int dt_idle_states; |
| const __be32 *idle_state_flags; |
| u32 len_flags, flags; |
| int i; |
| |
| supported_cpuidle_states = 0; |
| |
| if (cpuidle_disable != IDLE_NO_OVERRIDE) |
| return 0; |
| |
| if (!firmware_has_feature(FW_FEATURE_OPALv3)) |
| return 0; |
| |
| power_mgt = of_find_node_by_path("/ibm,opal/power-mgt"); |
| if (!power_mgt) { |
| pr_warn("opal: PowerMgmt Node not found\n"); |
| return 0; |
| } |
| |
| idle_state_flags = of_get_property(power_mgt, |
| "ibm,cpu-idle-state-flags", &len_flags); |
| if (!idle_state_flags) { |
| pr_warn("DT-PowerMgmt: missing ibm,cpu-idle-state-flags\n"); |
| return 0; |
| } |
| |
| dt_idle_states = len_flags / sizeof(u32); |
| |
| for (i = 0; i < dt_idle_states; i++) { |
| flags = be32_to_cpu(idle_state_flags[i]); |
| supported_cpuidle_states |= flags; |
| } |
| if (!(supported_cpuidle_states & OPAL_PM_SLEEP_ENABLED_ER1)) { |
| patch_instruction( |
| (unsigned int *)pnv_fastsleep_workaround_at_entry, |
| PPC_INST_NOP); |
| patch_instruction( |
| (unsigned int *)pnv_fastsleep_workaround_at_exit, |
| PPC_INST_NOP); |
| } |
| pnv_alloc_idle_core_states(); |
| return 0; |
| } |
| |
| subsys_initcall(pnv_init_idle_states); |
| |
| static int __init pnv_probe(void) |
| { |
| unsigned long root = of_get_flat_dt_root(); |
| |
| if (!of_flat_dt_is_compatible(root, "ibm,powernv")) |
| return 0; |
| |
| hpte_init_native(); |
| |
| if (firmware_has_feature(FW_FEATURE_OPAL)) |
| pnv_setup_machdep_opal(); |
| #ifdef CONFIG_PPC_POWERNV_RTAS |
| else if (rtas.base) |
| pnv_setup_machdep_rtas(); |
| #endif /* CONFIG_PPC_POWERNV_RTAS */ |
| |
| pr_debug("PowerNV detected !\n"); |
| |
| return 1; |
| } |
| |
| /* |
| * Returns the cpu frequency for 'cpu' in Hz. This is used by |
| * /proc/cpuinfo |
| */ |
| static unsigned long pnv_get_proc_freq(unsigned int cpu) |
| { |
| unsigned long ret_freq; |
| |
| ret_freq = cpufreq_quick_get(cpu) * 1000ul; |
| |
| /* |
| * If the backend cpufreq driver does not exist, |
| * then fallback to old way of reporting the clockrate. |
| */ |
| if (!ret_freq) |
| ret_freq = ppc_proc_freq; |
| return ret_freq; |
| } |
| |
| define_machine(powernv) { |
| .name = "PowerNV", |
| .probe = pnv_probe, |
| .init_early = pnv_init_early, |
| .setup_arch = pnv_setup_arch, |
| .init_IRQ = pnv_init_IRQ, |
| .show_cpuinfo = pnv_show_cpuinfo, |
| .get_proc_freq = pnv_get_proc_freq, |
| .progress = pnv_progress, |
| .machine_shutdown = pnv_shutdown, |
| .power_save = power7_idle, |
| .calibrate_decr = generic_calibrate_decr, |
| .dma_set_mask = pnv_dma_set_mask, |
| .dma_get_required_mask = pnv_dma_get_required_mask, |
| #ifdef CONFIG_KEXEC |
| .kexec_cpu_down = pnv_kexec_cpu_down, |
| #endif |
| #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE |
| .memory_block_size = pnv_memory_block_size, |
| #endif |
| }; |