| /* |
| * mm/rmap.c - physical to virtual reverse mappings |
| * |
| * Copyright 2001, Rik van Riel <riel@conectiva.com.br> |
| * Released under the General Public License (GPL). |
| * |
| * Simple, low overhead reverse mapping scheme. |
| * Please try to keep this thing as modular as possible. |
| * |
| * Provides methods for unmapping each kind of mapped page: |
| * the anon methods track anonymous pages, and |
| * the file methods track pages belonging to an inode. |
| * |
| * Original design by Rik van Riel <riel@conectiva.com.br> 2001 |
| * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 |
| * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 |
| * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004 |
| */ |
| |
| /* |
| * Lock ordering in mm: |
| * |
| * inode->i_sem (while writing or truncating, not reading or faulting) |
| * inode->i_alloc_sem |
| * |
| * When a page fault occurs in writing from user to file, down_read |
| * of mmap_sem nests within i_sem; in sys_msync, i_sem nests within |
| * down_read of mmap_sem; i_sem and down_write of mmap_sem are never |
| * taken together; in truncation, i_sem is taken outermost. |
| * |
| * mm->mmap_sem |
| * page->flags PG_locked (lock_page) |
| * mapping->i_mmap_lock |
| * anon_vma->lock |
| * mm->page_table_lock |
| * zone->lru_lock (in mark_page_accessed) |
| * swap_lock (in swap_duplicate, swap_info_get) |
| * mmlist_lock (in mmput, drain_mmlist and others) |
| * mapping->private_lock (in __set_page_dirty_buffers) |
| * inode_lock (in set_page_dirty's __mark_inode_dirty) |
| * sb_lock (within inode_lock in fs/fs-writeback.c) |
| * mapping->tree_lock (widely used, in set_page_dirty, |
| * in arch-dependent flush_dcache_mmap_lock, |
| * within inode_lock in __sync_single_inode) |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/pagemap.h> |
| #include <linux/swap.h> |
| #include <linux/swapops.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/rmap.h> |
| #include <linux/rcupdate.h> |
| |
| #include <asm/tlbflush.h> |
| |
| //#define RMAP_DEBUG /* can be enabled only for debugging */ |
| |
| kmem_cache_t *anon_vma_cachep; |
| |
| static inline void validate_anon_vma(struct vm_area_struct *find_vma) |
| { |
| #ifdef RMAP_DEBUG |
| struct anon_vma *anon_vma = find_vma->anon_vma; |
| struct vm_area_struct *vma; |
| unsigned int mapcount = 0; |
| int found = 0; |
| |
| list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { |
| mapcount++; |
| BUG_ON(mapcount > 100000); |
| if (vma == find_vma) |
| found = 1; |
| } |
| BUG_ON(!found); |
| #endif |
| } |
| |
| /* This must be called under the mmap_sem. */ |
| int anon_vma_prepare(struct vm_area_struct *vma) |
| { |
| struct anon_vma *anon_vma = vma->anon_vma; |
| |
| might_sleep(); |
| if (unlikely(!anon_vma)) { |
| struct mm_struct *mm = vma->vm_mm; |
| struct anon_vma *allocated, *locked; |
| |
| anon_vma = find_mergeable_anon_vma(vma); |
| if (anon_vma) { |
| allocated = NULL; |
| locked = anon_vma; |
| spin_lock(&locked->lock); |
| } else { |
| anon_vma = anon_vma_alloc(); |
| if (unlikely(!anon_vma)) |
| return -ENOMEM; |
| allocated = anon_vma; |
| locked = NULL; |
| } |
| |
| /* page_table_lock to protect against threads */ |
| spin_lock(&mm->page_table_lock); |
| if (likely(!vma->anon_vma)) { |
| vma->anon_vma = anon_vma; |
| list_add(&vma->anon_vma_node, &anon_vma->head); |
| allocated = NULL; |
| } |
| spin_unlock(&mm->page_table_lock); |
| |
| if (locked) |
| spin_unlock(&locked->lock); |
| if (unlikely(allocated)) |
| anon_vma_free(allocated); |
| } |
| return 0; |
| } |
| |
| void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next) |
| { |
| BUG_ON(vma->anon_vma != next->anon_vma); |
| list_del(&next->anon_vma_node); |
| } |
| |
| void __anon_vma_link(struct vm_area_struct *vma) |
| { |
| struct anon_vma *anon_vma = vma->anon_vma; |
| |
| if (anon_vma) { |
| list_add(&vma->anon_vma_node, &anon_vma->head); |
| validate_anon_vma(vma); |
| } |
| } |
| |
| void anon_vma_link(struct vm_area_struct *vma) |
| { |
| struct anon_vma *anon_vma = vma->anon_vma; |
| |
| if (anon_vma) { |
| spin_lock(&anon_vma->lock); |
| list_add(&vma->anon_vma_node, &anon_vma->head); |
| validate_anon_vma(vma); |
| spin_unlock(&anon_vma->lock); |
| } |
| } |
| |
| void anon_vma_unlink(struct vm_area_struct *vma) |
| { |
| struct anon_vma *anon_vma = vma->anon_vma; |
| int empty; |
| |
| if (!anon_vma) |
| return; |
| |
| spin_lock(&anon_vma->lock); |
| validate_anon_vma(vma); |
| list_del(&vma->anon_vma_node); |
| |
| /* We must garbage collect the anon_vma if it's empty */ |
| empty = list_empty(&anon_vma->head); |
| spin_unlock(&anon_vma->lock); |
| |
| if (empty) |
| anon_vma_free(anon_vma); |
| } |
| |
| static void anon_vma_ctor(void *data, kmem_cache_t *cachep, unsigned long flags) |
| { |
| if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == |
| SLAB_CTOR_CONSTRUCTOR) { |
| struct anon_vma *anon_vma = data; |
| |
| spin_lock_init(&anon_vma->lock); |
| INIT_LIST_HEAD(&anon_vma->head); |
| } |
| } |
| |
| void __init anon_vma_init(void) |
| { |
| anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), |
| 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL); |
| } |
| |
| /* |
| * Getting a lock on a stable anon_vma from a page off the LRU is |
| * tricky: page_lock_anon_vma rely on RCU to guard against the races. |
| */ |
| static struct anon_vma *page_lock_anon_vma(struct page *page) |
| { |
| struct anon_vma *anon_vma = NULL; |
| unsigned long anon_mapping; |
| |
| rcu_read_lock(); |
| anon_mapping = (unsigned long) page->mapping; |
| if (!(anon_mapping & PAGE_MAPPING_ANON)) |
| goto out; |
| if (!page_mapped(page)) |
| goto out; |
| |
| anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); |
| spin_lock(&anon_vma->lock); |
| out: |
| rcu_read_unlock(); |
| return anon_vma; |
| } |
| |
| /* |
| * At what user virtual address is page expected in vma? |
| */ |
| static inline unsigned long |
| vma_address(struct page *page, struct vm_area_struct *vma) |
| { |
| pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); |
| unsigned long address; |
| |
| address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); |
| if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { |
| /* page should be within any vma from prio_tree_next */ |
| BUG_ON(!PageAnon(page)); |
| return -EFAULT; |
| } |
| return address; |
| } |
| |
| /* |
| * At what user virtual address is page expected in vma? checking that the |
| * page matches the vma: currently only used by unuse_process, on anon pages. |
| */ |
| unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) |
| { |
| if (PageAnon(page)) { |
| if ((void *)vma->anon_vma != |
| (void *)page->mapping - PAGE_MAPPING_ANON) |
| return -EFAULT; |
| } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { |
| if (vma->vm_file->f_mapping != page->mapping) |
| return -EFAULT; |
| } else |
| return -EFAULT; |
| return vma_address(page, vma); |
| } |
| |
| /* |
| * Check that @page is mapped at @address into @mm. |
| * |
| * On success returns with mapped pte and locked mm->page_table_lock. |
| */ |
| pte_t *page_check_address(struct page *page, struct mm_struct *mm, |
| unsigned long address) |
| { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| |
| /* |
| * We need the page_table_lock to protect us from page faults, |
| * munmap, fork, etc... |
| */ |
| spin_lock(&mm->page_table_lock); |
| pgd = pgd_offset(mm, address); |
| if (likely(pgd_present(*pgd))) { |
| pud = pud_offset(pgd, address); |
| if (likely(pud_present(*pud))) { |
| pmd = pmd_offset(pud, address); |
| if (likely(pmd_present(*pmd))) { |
| pte = pte_offset_map(pmd, address); |
| if (likely(pte_present(*pte) && |
| page_to_pfn(page) == pte_pfn(*pte))) |
| return pte; |
| pte_unmap(pte); |
| } |
| } |
| } |
| spin_unlock(&mm->page_table_lock); |
| return ERR_PTR(-ENOENT); |
| } |
| |
| /* |
| * Subfunctions of page_referenced: page_referenced_one called |
| * repeatedly from either page_referenced_anon or page_referenced_file. |
| */ |
| static int page_referenced_one(struct page *page, |
| struct vm_area_struct *vma, unsigned int *mapcount, int ignore_token) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| unsigned long address; |
| pte_t *pte; |
| int referenced = 0; |
| |
| address = vma_address(page, vma); |
| if (address == -EFAULT) |
| goto out; |
| |
| pte = page_check_address(page, mm, address); |
| if (!IS_ERR(pte)) { |
| if (ptep_clear_flush_young(vma, address, pte)) |
| referenced++; |
| |
| /* Pretend the page is referenced if the task has the |
| swap token and is in the middle of a page fault. */ |
| if (mm != current->mm && !ignore_token && |
| has_swap_token(mm) && |
| rwsem_is_locked(&mm->mmap_sem)) |
| referenced++; |
| |
| (*mapcount)--; |
| pte_unmap(pte); |
| spin_unlock(&mm->page_table_lock); |
| } |
| out: |
| return referenced; |
| } |
| |
| static int page_referenced_anon(struct page *page, int ignore_token) |
| { |
| unsigned int mapcount; |
| struct anon_vma *anon_vma; |
| struct vm_area_struct *vma; |
| int referenced = 0; |
| |
| anon_vma = page_lock_anon_vma(page); |
| if (!anon_vma) |
| return referenced; |
| |
| mapcount = page_mapcount(page); |
| list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { |
| referenced += page_referenced_one(page, vma, &mapcount, |
| ignore_token); |
| if (!mapcount) |
| break; |
| } |
| spin_unlock(&anon_vma->lock); |
| return referenced; |
| } |
| |
| /** |
| * page_referenced_file - referenced check for object-based rmap |
| * @page: the page we're checking references on. |
| * |
| * For an object-based mapped page, find all the places it is mapped and |
| * check/clear the referenced flag. This is done by following the page->mapping |
| * pointer, then walking the chain of vmas it holds. It returns the number |
| * of references it found. |
| * |
| * This function is only called from page_referenced for object-based pages. |
| */ |
| static int page_referenced_file(struct page *page, int ignore_token) |
| { |
| unsigned int mapcount; |
| struct address_space *mapping = page->mapping; |
| pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); |
| struct vm_area_struct *vma; |
| struct prio_tree_iter iter; |
| int referenced = 0; |
| |
| /* |
| * The caller's checks on page->mapping and !PageAnon have made |
| * sure that this is a file page: the check for page->mapping |
| * excludes the case just before it gets set on an anon page. |
| */ |
| BUG_ON(PageAnon(page)); |
| |
| /* |
| * The page lock not only makes sure that page->mapping cannot |
| * suddenly be NULLified by truncation, it makes sure that the |
| * structure at mapping cannot be freed and reused yet, |
| * so we can safely take mapping->i_mmap_lock. |
| */ |
| BUG_ON(!PageLocked(page)); |
| |
| spin_lock(&mapping->i_mmap_lock); |
| |
| /* |
| * i_mmap_lock does not stabilize mapcount at all, but mapcount |
| * is more likely to be accurate if we note it after spinning. |
| */ |
| mapcount = page_mapcount(page); |
| |
| vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { |
| if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE)) |
| == (VM_LOCKED|VM_MAYSHARE)) { |
| referenced++; |
| break; |
| } |
| referenced += page_referenced_one(page, vma, &mapcount, |
| ignore_token); |
| if (!mapcount) |
| break; |
| } |
| |
| spin_unlock(&mapping->i_mmap_lock); |
| return referenced; |
| } |
| |
| /** |
| * page_referenced - test if the page was referenced |
| * @page: the page to test |
| * @is_locked: caller holds lock on the page |
| * |
| * Quick test_and_clear_referenced for all mappings to a page, |
| * returns the number of ptes which referenced the page. |
| */ |
| int page_referenced(struct page *page, int is_locked, int ignore_token) |
| { |
| int referenced = 0; |
| |
| if (!swap_token_default_timeout) |
| ignore_token = 1; |
| |
| if (page_test_and_clear_young(page)) |
| referenced++; |
| |
| if (TestClearPageReferenced(page)) |
| referenced++; |
| |
| if (page_mapped(page) && page->mapping) { |
| if (PageAnon(page)) |
| referenced += page_referenced_anon(page, ignore_token); |
| else if (is_locked) |
| referenced += page_referenced_file(page, ignore_token); |
| else if (TestSetPageLocked(page)) |
| referenced++; |
| else { |
| if (page->mapping) |
| referenced += page_referenced_file(page, |
| ignore_token); |
| unlock_page(page); |
| } |
| } |
| return referenced; |
| } |
| |
| /** |
| * page_add_anon_rmap - add pte mapping to an anonymous page |
| * @page: the page to add the mapping to |
| * @vma: the vm area in which the mapping is added |
| * @address: the user virtual address mapped |
| * |
| * The caller needs to hold the mm->page_table_lock. |
| */ |
| void page_add_anon_rmap(struct page *page, |
| struct vm_area_struct *vma, unsigned long address) |
| { |
| if (atomic_inc_and_test(&page->_mapcount)) { |
| struct anon_vma *anon_vma = vma->anon_vma; |
| |
| BUG_ON(!anon_vma); |
| anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
| page->mapping = (struct address_space *) anon_vma; |
| |
| page->index = linear_page_index(vma, address); |
| |
| inc_page_state(nr_mapped); |
| } |
| /* else checking page index and mapping is racy */ |
| } |
| |
| /** |
| * page_add_file_rmap - add pte mapping to a file page |
| * @page: the page to add the mapping to |
| * |
| * The caller needs to hold the mm->page_table_lock. |
| */ |
| void page_add_file_rmap(struct page *page) |
| { |
| BUG_ON(PageAnon(page)); |
| BUG_ON(!pfn_valid(page_to_pfn(page))); |
| |
| if (atomic_inc_and_test(&page->_mapcount)) |
| inc_page_state(nr_mapped); |
| } |
| |
| /** |
| * page_remove_rmap - take down pte mapping from a page |
| * @page: page to remove mapping from |
| * |
| * Caller needs to hold the mm->page_table_lock. |
| */ |
| void page_remove_rmap(struct page *page) |
| { |
| if (atomic_add_negative(-1, &page->_mapcount)) { |
| BUG_ON(page_mapcount(page) < 0); |
| /* |
| * It would be tidy to reset the PageAnon mapping here, |
| * but that might overwrite a racing page_add_anon_rmap |
| * which increments mapcount after us but sets mapping |
| * before us: so leave the reset to free_hot_cold_page, |
| * and remember that it's only reliable while mapped. |
| * Leaving it set also helps swapoff to reinstate ptes |
| * faster for those pages still in swapcache. |
| */ |
| if (page_test_and_clear_dirty(page)) |
| set_page_dirty(page); |
| dec_page_state(nr_mapped); |
| } |
| } |
| |
| /* |
| * Subfunctions of try_to_unmap: try_to_unmap_one called |
| * repeatedly from either try_to_unmap_anon or try_to_unmap_file. |
| */ |
| static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| unsigned long address; |
| pte_t *pte; |
| pte_t pteval; |
| int ret = SWAP_AGAIN; |
| |
| address = vma_address(page, vma); |
| if (address == -EFAULT) |
| goto out; |
| |
| pte = page_check_address(page, mm, address); |
| if (IS_ERR(pte)) |
| goto out; |
| |
| /* |
| * If the page is mlock()d, we cannot swap it out. |
| * If it's recently referenced (perhaps page_referenced |
| * skipped over this mm) then we should reactivate it. |
| * |
| * Pages belonging to VM_RESERVED regions should not happen here. |
| */ |
| if ((vma->vm_flags & (VM_LOCKED|VM_RESERVED)) || |
| ptep_clear_flush_young(vma, address, pte)) { |
| ret = SWAP_FAIL; |
| goto out_unmap; |
| } |
| |
| /* Nuke the page table entry. */ |
| flush_cache_page(vma, address, page_to_pfn(page)); |
| pteval = ptep_clear_flush(vma, address, pte); |
| |
| /* Move the dirty bit to the physical page now the pte is gone. */ |
| if (pte_dirty(pteval)) |
| set_page_dirty(page); |
| |
| /* Update high watermark before we lower rss */ |
| update_hiwater_rss(mm); |
| |
| if (PageAnon(page)) { |
| swp_entry_t entry = { .val = page->private }; |
| /* |
| * Store the swap location in the pte. |
| * See handle_pte_fault() ... |
| */ |
| BUG_ON(!PageSwapCache(page)); |
| swap_duplicate(entry); |
| if (list_empty(&mm->mmlist)) { |
| spin_lock(&mmlist_lock); |
| list_add(&mm->mmlist, &init_mm.mmlist); |
| spin_unlock(&mmlist_lock); |
| } |
| set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); |
| BUG_ON(pte_file(*pte)); |
| dec_mm_counter(mm, anon_rss); |
| } else |
| dec_mm_counter(mm, file_rss); |
| |
| page_remove_rmap(page); |
| page_cache_release(page); |
| |
| out_unmap: |
| pte_unmap(pte); |
| spin_unlock(&mm->page_table_lock); |
| out: |
| return ret; |
| } |
| |
| /* |
| * objrmap doesn't work for nonlinear VMAs because the assumption that |
| * offset-into-file correlates with offset-into-virtual-addresses does not hold. |
| * Consequently, given a particular page and its ->index, we cannot locate the |
| * ptes which are mapping that page without an exhaustive linear search. |
| * |
| * So what this code does is a mini "virtual scan" of each nonlinear VMA which |
| * maps the file to which the target page belongs. The ->vm_private_data field |
| * holds the current cursor into that scan. Successive searches will circulate |
| * around the vma's virtual address space. |
| * |
| * So as more replacement pressure is applied to the pages in a nonlinear VMA, |
| * more scanning pressure is placed against them as well. Eventually pages |
| * will become fully unmapped and are eligible for eviction. |
| * |
| * For very sparsely populated VMAs this is a little inefficient - chances are |
| * there there won't be many ptes located within the scan cluster. In this case |
| * maybe we could scan further - to the end of the pte page, perhaps. |
| */ |
| #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) |
| #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) |
| |
| static void try_to_unmap_cluster(unsigned long cursor, |
| unsigned int *mapcount, struct vm_area_struct *vma) |
| { |
| struct mm_struct *mm = vma->vm_mm; |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte, *original_pte; |
| pte_t pteval; |
| struct page *page; |
| unsigned long address; |
| unsigned long end; |
| unsigned long pfn; |
| |
| /* |
| * We need the page_table_lock to protect us from page faults, |
| * munmap, fork, etc... |
| */ |
| spin_lock(&mm->page_table_lock); |
| |
| address = (vma->vm_start + cursor) & CLUSTER_MASK; |
| end = address + CLUSTER_SIZE; |
| if (address < vma->vm_start) |
| address = vma->vm_start; |
| if (end > vma->vm_end) |
| end = vma->vm_end; |
| |
| pgd = pgd_offset(mm, address); |
| if (!pgd_present(*pgd)) |
| goto out_unlock; |
| |
| pud = pud_offset(pgd, address); |
| if (!pud_present(*pud)) |
| goto out_unlock; |
| |
| pmd = pmd_offset(pud, address); |
| if (!pmd_present(*pmd)) |
| goto out_unlock; |
| |
| /* Update high watermark before we lower rss */ |
| update_hiwater_rss(mm); |
| |
| for (original_pte = pte = pte_offset_map(pmd, address); |
| address < end; pte++, address += PAGE_SIZE) { |
| |
| if (!pte_present(*pte)) |
| continue; |
| |
| pfn = pte_pfn(*pte); |
| if (unlikely(!pfn_valid(pfn))) { |
| print_bad_pte(vma, *pte, address); |
| continue; |
| } |
| |
| page = pfn_to_page(pfn); |
| BUG_ON(PageAnon(page)); |
| |
| if (ptep_clear_flush_young(vma, address, pte)) |
| continue; |
| |
| /* Nuke the page table entry. */ |
| flush_cache_page(vma, address, pfn); |
| pteval = ptep_clear_flush(vma, address, pte); |
| |
| /* If nonlinear, store the file page offset in the pte. */ |
| if (page->index != linear_page_index(vma, address)) |
| set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); |
| |
| /* Move the dirty bit to the physical page now the pte is gone. */ |
| if (pte_dirty(pteval)) |
| set_page_dirty(page); |
| |
| page_remove_rmap(page); |
| page_cache_release(page); |
| dec_mm_counter(mm, file_rss); |
| (*mapcount)--; |
| } |
| |
| pte_unmap(original_pte); |
| out_unlock: |
| spin_unlock(&mm->page_table_lock); |
| } |
| |
| static int try_to_unmap_anon(struct page *page) |
| { |
| struct anon_vma *anon_vma; |
| struct vm_area_struct *vma; |
| int ret = SWAP_AGAIN; |
| |
| anon_vma = page_lock_anon_vma(page); |
| if (!anon_vma) |
| return ret; |
| |
| list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { |
| ret = try_to_unmap_one(page, vma); |
| if (ret == SWAP_FAIL || !page_mapped(page)) |
| break; |
| } |
| spin_unlock(&anon_vma->lock); |
| return ret; |
| } |
| |
| /** |
| * try_to_unmap_file - unmap file page using the object-based rmap method |
| * @page: the page to unmap |
| * |
| * Find all the mappings of a page using the mapping pointer and the vma chains |
| * contained in the address_space struct it points to. |
| * |
| * This function is only called from try_to_unmap for object-based pages. |
| */ |
| static int try_to_unmap_file(struct page *page) |
| { |
| struct address_space *mapping = page->mapping; |
| pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); |
| struct vm_area_struct *vma; |
| struct prio_tree_iter iter; |
| int ret = SWAP_AGAIN; |
| unsigned long cursor; |
| unsigned long max_nl_cursor = 0; |
| unsigned long max_nl_size = 0; |
| unsigned int mapcount; |
| |
| spin_lock(&mapping->i_mmap_lock); |
| vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { |
| ret = try_to_unmap_one(page, vma); |
| if (ret == SWAP_FAIL || !page_mapped(page)) |
| goto out; |
| } |
| |
| if (list_empty(&mapping->i_mmap_nonlinear)) |
| goto out; |
| |
| list_for_each_entry(vma, &mapping->i_mmap_nonlinear, |
| shared.vm_set.list) { |
| if (vma->vm_flags & (VM_LOCKED|VM_RESERVED)) |
| continue; |
| cursor = (unsigned long) vma->vm_private_data; |
| if (cursor > max_nl_cursor) |
| max_nl_cursor = cursor; |
| cursor = vma->vm_end - vma->vm_start; |
| if (cursor > max_nl_size) |
| max_nl_size = cursor; |
| } |
| |
| if (max_nl_size == 0) { /* any nonlinears locked or reserved */ |
| ret = SWAP_FAIL; |
| goto out; |
| } |
| |
| /* |
| * We don't try to search for this page in the nonlinear vmas, |
| * and page_referenced wouldn't have found it anyway. Instead |
| * just walk the nonlinear vmas trying to age and unmap some. |
| * The mapcount of the page we came in with is irrelevant, |
| * but even so use it as a guide to how hard we should try? |
| */ |
| mapcount = page_mapcount(page); |
| if (!mapcount) |
| goto out; |
| cond_resched_lock(&mapping->i_mmap_lock); |
| |
| max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; |
| if (max_nl_cursor == 0) |
| max_nl_cursor = CLUSTER_SIZE; |
| |
| do { |
| list_for_each_entry(vma, &mapping->i_mmap_nonlinear, |
| shared.vm_set.list) { |
| if (vma->vm_flags & (VM_LOCKED|VM_RESERVED)) |
| continue; |
| cursor = (unsigned long) vma->vm_private_data; |
| while ( cursor < max_nl_cursor && |
| cursor < vma->vm_end - vma->vm_start) { |
| try_to_unmap_cluster(cursor, &mapcount, vma); |
| cursor += CLUSTER_SIZE; |
| vma->vm_private_data = (void *) cursor; |
| if ((int)mapcount <= 0) |
| goto out; |
| } |
| vma->vm_private_data = (void *) max_nl_cursor; |
| } |
| cond_resched_lock(&mapping->i_mmap_lock); |
| max_nl_cursor += CLUSTER_SIZE; |
| } while (max_nl_cursor <= max_nl_size); |
| |
| /* |
| * Don't loop forever (perhaps all the remaining pages are |
| * in locked vmas). Reset cursor on all unreserved nonlinear |
| * vmas, now forgetting on which ones it had fallen behind. |
| */ |
| list_for_each_entry(vma, &mapping->i_mmap_nonlinear, |
| shared.vm_set.list) { |
| if (!(vma->vm_flags & VM_RESERVED)) |
| vma->vm_private_data = NULL; |
| } |
| out: |
| spin_unlock(&mapping->i_mmap_lock); |
| return ret; |
| } |
| |
| /** |
| * try_to_unmap - try to remove all page table mappings to a page |
| * @page: the page to get unmapped |
| * |
| * Tries to remove all the page table entries which are mapping this |
| * page, used in the pageout path. Caller must hold the page lock. |
| * Return values are: |
| * |
| * SWAP_SUCCESS - we succeeded in removing all mappings |
| * SWAP_AGAIN - we missed a mapping, try again later |
| * SWAP_FAIL - the page is unswappable |
| */ |
| int try_to_unmap(struct page *page) |
| { |
| int ret; |
| |
| BUG_ON(!PageLocked(page)); |
| |
| if (PageAnon(page)) |
| ret = try_to_unmap_anon(page); |
| else |
| ret = try_to_unmap_file(page); |
| |
| if (!page_mapped(page)) |
| ret = SWAP_SUCCESS; |
| return ret; |
| } |
| |