| /* |
| ** |
| ** PCI Lower Bus Adapter (LBA) manager |
| ** |
| ** (c) Copyright 1999,2000 Grant Grundler |
| ** (c) Copyright 1999,2000 Hewlett-Packard Company |
| ** |
| ** This program is free software; you can redistribute it and/or modify |
| ** it under the terms of the GNU General Public License as published by |
| ** the Free Software Foundation; either version 2 of the License, or |
| ** (at your option) any later version. |
| ** |
| ** |
| ** This module primarily provides access to PCI bus (config/IOport |
| ** spaces) on platforms with an SBA/LBA chipset. A/B/C/J/L/N-class |
| ** with 4 digit model numbers - eg C3000 (and A400...sigh). |
| ** |
| ** LBA driver isn't as simple as the Dino driver because: |
| ** (a) this chip has substantial bug fixes between revisions |
| ** (Only one Dino bug has a software workaround :^( ) |
| ** (b) has more options which we don't (yet) support (DMA hints, OLARD) |
| ** (c) IRQ support lives in the I/O SAPIC driver (not with PCI driver) |
| ** (d) play nicely with both PAT and "Legacy" PA-RISC firmware (PDC). |
| ** (dino only deals with "Legacy" PDC) |
| ** |
| ** LBA driver passes the I/O SAPIC HPA to the I/O SAPIC driver. |
| ** (I/O SAPIC is integratd in the LBA chip). |
| ** |
| ** FIXME: Add support to SBA and LBA drivers for DMA hint sets |
| ** FIXME: Add support for PCI card hot-plug (OLARD). |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/spinlock.h> |
| #include <linux/init.h> /* for __init and __devinit */ |
| #include <linux/pci.h> |
| #include <linux/ioport.h> |
| #include <linux/slab.h> |
| #include <linux/smp_lock.h> |
| |
| #include <asm/byteorder.h> |
| #include <asm/pdc.h> |
| #include <asm/pdcpat.h> |
| #include <asm/page.h> |
| #include <asm/system.h> |
| |
| #include <asm/ropes.h> |
| #include <asm/hardware.h> /* for register_parisc_driver() stuff */ |
| #include <asm/parisc-device.h> |
| #include <asm/io.h> /* read/write stuff */ |
| |
| #undef DEBUG_LBA /* general stuff */ |
| #undef DEBUG_LBA_PORT /* debug I/O Port access */ |
| #undef DEBUG_LBA_CFG /* debug Config Space Access (ie PCI Bus walk) */ |
| #undef DEBUG_LBA_PAT /* debug PCI Resource Mgt code - PDC PAT only */ |
| |
| #undef FBB_SUPPORT /* Fast Back-Back xfers - NOT READY YET */ |
| |
| |
| #ifdef DEBUG_LBA |
| #define DBG(x...) printk(x) |
| #else |
| #define DBG(x...) |
| #endif |
| |
| #ifdef DEBUG_LBA_PORT |
| #define DBG_PORT(x...) printk(x) |
| #else |
| #define DBG_PORT(x...) |
| #endif |
| |
| #ifdef DEBUG_LBA_CFG |
| #define DBG_CFG(x...) printk(x) |
| #else |
| #define DBG_CFG(x...) |
| #endif |
| |
| #ifdef DEBUG_LBA_PAT |
| #define DBG_PAT(x...) printk(x) |
| #else |
| #define DBG_PAT(x...) |
| #endif |
| |
| |
| /* |
| ** Config accessor functions only pass in the 8-bit bus number and not |
| ** the 8-bit "PCI Segment" number. Each LBA will be assigned a PCI bus |
| ** number based on what firmware wrote into the scratch register. |
| ** |
| ** The "secondary" bus number is set to this before calling |
| ** pci_register_ops(). If any PPB's are present, the scan will |
| ** discover them and update the "secondary" and "subordinate" |
| ** fields in the pci_bus structure. |
| ** |
| ** Changes in the configuration *may* result in a different |
| ** bus number for each LBA depending on what firmware does. |
| */ |
| |
| #define MODULE_NAME "LBA" |
| |
| /* non-postable I/O port space, densely packed */ |
| #define LBA_PORT_BASE (PCI_F_EXTEND | 0xfee00000UL) |
| static void __iomem *astro_iop_base __read_mostly; |
| |
| static u32 lba_t32; |
| |
| /* lba flags */ |
| #define LBA_FLAG_SKIP_PROBE 0x10 |
| |
| #define LBA_SKIP_PROBE(d) ((d)->flags & LBA_FLAG_SKIP_PROBE) |
| |
| |
| /* Looks nice and keeps the compiler happy */ |
| #define LBA_DEV(d) ((struct lba_device *) (d)) |
| |
| |
| /* |
| ** Only allow 8 subsidiary busses per LBA |
| ** Problem is the PCI bus numbering is globally shared. |
| */ |
| #define LBA_MAX_NUM_BUSES 8 |
| |
| /************************************ |
| * LBA register read and write support |
| * |
| * BE WARNED: register writes are posted. |
| * (ie follow writes which must reach HW with a read) |
| */ |
| #define READ_U8(addr) __raw_readb(addr) |
| #define READ_U16(addr) __raw_readw(addr) |
| #define READ_U32(addr) __raw_readl(addr) |
| #define WRITE_U8(value, addr) __raw_writeb(value, addr) |
| #define WRITE_U16(value, addr) __raw_writew(value, addr) |
| #define WRITE_U32(value, addr) __raw_writel(value, addr) |
| |
| #define READ_REG8(addr) readb(addr) |
| #define READ_REG16(addr) readw(addr) |
| #define READ_REG32(addr) readl(addr) |
| #define READ_REG64(addr) readq(addr) |
| #define WRITE_REG8(value, addr) writeb(value, addr) |
| #define WRITE_REG16(value, addr) writew(value, addr) |
| #define WRITE_REG32(value, addr) writel(value, addr) |
| |
| |
| #define LBA_CFG_TOK(bus,dfn) ((u32) ((bus)<<16 | (dfn)<<8)) |
| #define LBA_CFG_BUS(tok) ((u8) ((tok)>>16)) |
| #define LBA_CFG_DEV(tok) ((u8) ((tok)>>11) & 0x1f) |
| #define LBA_CFG_FUNC(tok) ((u8) ((tok)>>8 ) & 0x7) |
| |
| |
| /* |
| ** Extract LBA (Rope) number from HPA |
| ** REVISIT: 16 ropes for Stretch/Ike? |
| */ |
| #define ROPES_PER_IOC 8 |
| #define LBA_NUM(x) ((((unsigned long) x) >> 13) & (ROPES_PER_IOC-1)) |
| |
| |
| static void |
| lba_dump_res(struct resource *r, int d) |
| { |
| int i; |
| |
| if (NULL == r) |
| return; |
| |
| printk(KERN_DEBUG "(%p)", r->parent); |
| for (i = d; i ; --i) printk(" "); |
| printk(KERN_DEBUG "%p [%lx,%lx]/%lx\n", r, r->start, r->end, r->flags); |
| lba_dump_res(r->child, d+2); |
| lba_dump_res(r->sibling, d); |
| } |
| |
| |
| /* |
| ** LBA rev 2.0, 2.1, 2.2, and 3.0 bus walks require a complex |
| ** workaround for cfg cycles: |
| ** -- preserve LBA state |
| ** -- prevent any DMA from occurring |
| ** -- turn on smart mode |
| ** -- probe with config writes before doing config reads |
| ** -- check ERROR_STATUS |
| ** -- clear ERROR_STATUS |
| ** -- restore LBA state |
| ** |
| ** The workaround is only used for device discovery. |
| */ |
| |
| static int lba_device_present(u8 bus, u8 dfn, struct lba_device *d) |
| { |
| u8 first_bus = d->hba.hba_bus->secondary; |
| u8 last_sub_bus = d->hba.hba_bus->subordinate; |
| |
| if ((bus < first_bus) || |
| (bus > last_sub_bus) || |
| ((bus - first_bus) >= LBA_MAX_NUM_BUSES)) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| |
| |
| #define LBA_CFG_SETUP(d, tok) { \ |
| /* Save contents of error config register. */ \ |
| error_config = READ_REG32(d->hba.base_addr + LBA_ERROR_CONFIG); \ |
| \ |
| /* Save contents of status control register. */ \ |
| status_control = READ_REG32(d->hba.base_addr + LBA_STAT_CTL); \ |
| \ |
| /* For LBA rev 2.0, 2.1, 2.2, and 3.0, we must disable DMA \ |
| ** arbitration for full bus walks. \ |
| */ \ |
| /* Save contents of arb mask register. */ \ |
| arb_mask = READ_REG32(d->hba.base_addr + LBA_ARB_MASK); \ |
| \ |
| /* \ |
| * Turn off all device arbitration bits (i.e. everything \ |
| * except arbitration enable bit). \ |
| */ \ |
| WRITE_REG32(0x1, d->hba.base_addr + LBA_ARB_MASK); \ |
| \ |
| /* \ |
| * Set the smart mode bit so that master aborts don't cause \ |
| * LBA to go into PCI fatal mode (required). \ |
| */ \ |
| WRITE_REG32(error_config | LBA_SMART_MODE, d->hba.base_addr + LBA_ERROR_CONFIG); \ |
| } |
| |
| |
| #define LBA_CFG_PROBE(d, tok) { \ |
| /* \ |
| * Setup Vendor ID write and read back the address register \ |
| * to make sure that LBA is the bus master. \ |
| */ \ |
| WRITE_REG32(tok | PCI_VENDOR_ID, (d)->hba.base_addr + LBA_PCI_CFG_ADDR);\ |
| /* \ |
| * Read address register to ensure that LBA is the bus master, \ |
| * which implies that DMA traffic has stopped when DMA arb is off. \ |
| */ \ |
| lba_t32 = READ_REG32((d)->hba.base_addr + LBA_PCI_CFG_ADDR); \ |
| /* \ |
| * Generate a cfg write cycle (will have no affect on \ |
| * Vendor ID register since read-only). \ |
| */ \ |
| WRITE_REG32(~0, (d)->hba.base_addr + LBA_PCI_CFG_DATA); \ |
| /* \ |
| * Make sure write has completed before proceeding further, \ |
| * i.e. before setting clear enable. \ |
| */ \ |
| lba_t32 = READ_REG32((d)->hba.base_addr + LBA_PCI_CFG_ADDR); \ |
| } |
| |
| |
| /* |
| * HPREVISIT: |
| * -- Can't tell if config cycle got the error. |
| * |
| * OV bit is broken until rev 4.0, so can't use OV bit and |
| * LBA_ERROR_LOG_ADDR to tell if error belongs to config cycle. |
| * |
| * As of rev 4.0, no longer need the error check. |
| * |
| * -- Even if we could tell, we still want to return -1 |
| * for **ANY** error (not just master abort). |
| * |
| * -- Only clear non-fatal errors (we don't want to bring |
| * LBA out of pci-fatal mode). |
| * |
| * Actually, there is still a race in which |
| * we could be clearing a fatal error. We will |
| * live with this during our initial bus walk |
| * until rev 4.0 (no driver activity during |
| * initial bus walk). The initial bus walk |
| * has race conditions concerning the use of |
| * smart mode as well. |
| */ |
| |
| #define LBA_MASTER_ABORT_ERROR 0xc |
| #define LBA_FATAL_ERROR 0x10 |
| |
| #define LBA_CFG_MASTER_ABORT_CHECK(d, base, tok, error) { \ |
| u32 error_status = 0; \ |
| /* \ |
| * Set clear enable (CE) bit. Unset by HW when new \ |
| * errors are logged -- LBA HW ERS section 14.3.3). \ |
| */ \ |
| WRITE_REG32(status_control | CLEAR_ERRLOG_ENABLE, base + LBA_STAT_CTL); \ |
| error_status = READ_REG32(base + LBA_ERROR_STATUS); \ |
| if ((error_status & 0x1f) != 0) { \ |
| /* \ |
| * Fail the config read request. \ |
| */ \ |
| error = 1; \ |
| if ((error_status & LBA_FATAL_ERROR) == 0) { \ |
| /* \ |
| * Clear error status (if fatal bit not set) by setting \ |
| * clear error log bit (CL). \ |
| */ \ |
| WRITE_REG32(status_control | CLEAR_ERRLOG, base + LBA_STAT_CTL); \ |
| } \ |
| } \ |
| } |
| |
| #define LBA_CFG_TR4_ADDR_SETUP(d, addr) \ |
| WRITE_REG32(((addr) & ~3), (d)->hba.base_addr + LBA_PCI_CFG_ADDR); |
| |
| #define LBA_CFG_ADDR_SETUP(d, addr) { \ |
| WRITE_REG32(((addr) & ~3), (d)->hba.base_addr + LBA_PCI_CFG_ADDR); \ |
| /* \ |
| * Read address register to ensure that LBA is the bus master, \ |
| * which implies that DMA traffic has stopped when DMA arb is off. \ |
| */ \ |
| lba_t32 = READ_REG32((d)->hba.base_addr + LBA_PCI_CFG_ADDR); \ |
| } |
| |
| |
| #define LBA_CFG_RESTORE(d, base) { \ |
| /* \ |
| * Restore status control register (turn off clear enable). \ |
| */ \ |
| WRITE_REG32(status_control, base + LBA_STAT_CTL); \ |
| /* \ |
| * Restore error config register (turn off smart mode). \ |
| */ \ |
| WRITE_REG32(error_config, base + LBA_ERROR_CONFIG); \ |
| /* \ |
| * Restore arb mask register (reenables DMA arbitration). \ |
| */ \ |
| WRITE_REG32(arb_mask, base + LBA_ARB_MASK); \ |
| } |
| |
| |
| |
| static unsigned int |
| lba_rd_cfg(struct lba_device *d, u32 tok, u8 reg, u32 size) |
| { |
| u32 data = ~0U; |
| int error = 0; |
| u32 arb_mask = 0; /* used by LBA_CFG_SETUP/RESTORE */ |
| u32 error_config = 0; /* used by LBA_CFG_SETUP/RESTORE */ |
| u32 status_control = 0; /* used by LBA_CFG_SETUP/RESTORE */ |
| |
| LBA_CFG_SETUP(d, tok); |
| LBA_CFG_PROBE(d, tok); |
| LBA_CFG_MASTER_ABORT_CHECK(d, d->hba.base_addr, tok, error); |
| if (!error) { |
| void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA; |
| |
| LBA_CFG_ADDR_SETUP(d, tok | reg); |
| switch (size) { |
| case 1: data = (u32) READ_REG8(data_reg + (reg & 3)); break; |
| case 2: data = (u32) READ_REG16(data_reg+ (reg & 2)); break; |
| case 4: data = READ_REG32(data_reg); break; |
| } |
| } |
| LBA_CFG_RESTORE(d, d->hba.base_addr); |
| return(data); |
| } |
| |
| |
| static int elroy_cfg_read(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 *data) |
| { |
| struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge)); |
| u32 local_bus = (bus->parent == NULL) ? 0 : bus->secondary; |
| u32 tok = LBA_CFG_TOK(local_bus, devfn); |
| void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA; |
| |
| if ((pos > 255) || (devfn > 255)) |
| return -EINVAL; |
| |
| /* FIXME: B2K/C3600 workaround is always use old method... */ |
| /* if (!LBA_SKIP_PROBE(d)) */ { |
| /* original - Generate config cycle on broken elroy |
| with risk we will miss PCI bus errors. */ |
| *data = lba_rd_cfg(d, tok, pos, size); |
| DBG_CFG("%s(%x+%2x) -> 0x%x (a)\n", __FUNCTION__, tok, pos, *data); |
| return 0; |
| } |
| |
| if (LBA_SKIP_PROBE(d) && !lba_device_present(bus->secondary, devfn, d)) { |
| DBG_CFG("%s(%x+%2x) -> -1 (b)\n", __FUNCTION__, tok, pos); |
| /* either don't want to look or know device isn't present. */ |
| *data = ~0U; |
| return(0); |
| } |
| |
| /* Basic Algorithm |
| ** Should only get here on fully working LBA rev. |
| ** This is how simple the code should have been. |
| */ |
| LBA_CFG_ADDR_SETUP(d, tok | pos); |
| switch(size) { |
| case 1: *data = READ_REG8 (data_reg + (pos & 3)); break; |
| case 2: *data = READ_REG16(data_reg + (pos & 2)); break; |
| case 4: *data = READ_REG32(data_reg); break; |
| } |
| DBG_CFG("%s(%x+%2x) -> 0x%x (c)\n", __FUNCTION__, tok, pos, *data); |
| return 0; |
| } |
| |
| |
| static void |
| lba_wr_cfg(struct lba_device *d, u32 tok, u8 reg, u32 data, u32 size) |
| { |
| int error = 0; |
| u32 arb_mask = 0; |
| u32 error_config = 0; |
| u32 status_control = 0; |
| void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA; |
| |
| LBA_CFG_SETUP(d, tok); |
| LBA_CFG_ADDR_SETUP(d, tok | reg); |
| switch (size) { |
| case 1: WRITE_REG8 (data, data_reg + (reg & 3)); break; |
| case 2: WRITE_REG16(data, data_reg + (reg & 2)); break; |
| case 4: WRITE_REG32(data, data_reg); break; |
| } |
| LBA_CFG_MASTER_ABORT_CHECK(d, d->hba.base_addr, tok, error); |
| LBA_CFG_RESTORE(d, d->hba.base_addr); |
| } |
| |
| |
| /* |
| * LBA 4.0 config write code implements non-postable semantics |
| * by doing a read of CONFIG ADDR after the write. |
| */ |
| |
| static int elroy_cfg_write(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 data) |
| { |
| struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge)); |
| u32 local_bus = (bus->parent == NULL) ? 0 : bus->secondary; |
| u32 tok = LBA_CFG_TOK(local_bus,devfn); |
| |
| if ((pos > 255) || (devfn > 255)) |
| return -EINVAL; |
| |
| if (!LBA_SKIP_PROBE(d)) { |
| /* Original Workaround */ |
| lba_wr_cfg(d, tok, pos, (u32) data, size); |
| DBG_CFG("%s(%x+%2x) = 0x%x (a)\n", __FUNCTION__, tok, pos,data); |
| return 0; |
| } |
| |
| if (LBA_SKIP_PROBE(d) && (!lba_device_present(bus->secondary, devfn, d))) { |
| DBG_CFG("%s(%x+%2x) = 0x%x (b)\n", __FUNCTION__, tok, pos,data); |
| return 1; /* New Workaround */ |
| } |
| |
| DBG_CFG("%s(%x+%2x) = 0x%x (c)\n", __FUNCTION__, tok, pos, data); |
| |
| /* Basic Algorithm */ |
| LBA_CFG_ADDR_SETUP(d, tok | pos); |
| switch(size) { |
| case 1: WRITE_REG8 (data, d->hba.base_addr + LBA_PCI_CFG_DATA + (pos & 3)); |
| break; |
| case 2: WRITE_REG16(data, d->hba.base_addr + LBA_PCI_CFG_DATA + (pos & 2)); |
| break; |
| case 4: WRITE_REG32(data, d->hba.base_addr + LBA_PCI_CFG_DATA); |
| break; |
| } |
| /* flush posted write */ |
| lba_t32 = READ_REG32(d->hba.base_addr + LBA_PCI_CFG_ADDR); |
| return 0; |
| } |
| |
| |
| static struct pci_ops elroy_cfg_ops = { |
| .read = elroy_cfg_read, |
| .write = elroy_cfg_write, |
| }; |
| |
| /* |
| * The mercury_cfg_ops are slightly misnamed; they're also used for Elroy |
| * TR4.0 as no additional bugs were found in this areea between Elroy and |
| * Mercury |
| */ |
| |
| static int mercury_cfg_read(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 *data) |
| { |
| struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge)); |
| u32 local_bus = (bus->parent == NULL) ? 0 : bus->secondary; |
| u32 tok = LBA_CFG_TOK(local_bus, devfn); |
| void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA; |
| |
| if ((pos > 255) || (devfn > 255)) |
| return -EINVAL; |
| |
| LBA_CFG_TR4_ADDR_SETUP(d, tok | pos); |
| switch(size) { |
| case 1: |
| *data = READ_REG8(data_reg + (pos & 3)); |
| break; |
| case 2: |
| *data = READ_REG16(data_reg + (pos & 2)); |
| break; |
| case 4: |
| *data = READ_REG32(data_reg); break; |
| break; |
| } |
| |
| DBG_CFG("mercury_cfg_read(%x+%2x) -> 0x%x\n", tok, pos, *data); |
| return 0; |
| } |
| |
| /* |
| * LBA 4.0 config write code implements non-postable semantics |
| * by doing a read of CONFIG ADDR after the write. |
| */ |
| |
| static int mercury_cfg_write(struct pci_bus *bus, unsigned int devfn, int pos, int size, u32 data) |
| { |
| struct lba_device *d = LBA_DEV(parisc_walk_tree(bus->bridge)); |
| void __iomem *data_reg = d->hba.base_addr + LBA_PCI_CFG_DATA; |
| u32 local_bus = (bus->parent == NULL) ? 0 : bus->secondary; |
| u32 tok = LBA_CFG_TOK(local_bus,devfn); |
| |
| if ((pos > 255) || (devfn > 255)) |
| return -EINVAL; |
| |
| DBG_CFG("%s(%x+%2x) <- 0x%x (c)\n", __FUNCTION__, tok, pos, data); |
| |
| LBA_CFG_TR4_ADDR_SETUP(d, tok | pos); |
| switch(size) { |
| case 1: |
| WRITE_REG8 (data, data_reg + (pos & 3)); |
| break; |
| case 2: |
| WRITE_REG16(data, data_reg + (pos & 2)); |
| break; |
| case 4: |
| WRITE_REG32(data, data_reg); |
| break; |
| } |
| |
| /* flush posted write */ |
| lba_t32 = READ_U32(d->hba.base_addr + LBA_PCI_CFG_ADDR); |
| return 0; |
| } |
| |
| static struct pci_ops mercury_cfg_ops = { |
| .read = mercury_cfg_read, |
| .write = mercury_cfg_write, |
| }; |
| |
| |
| static void |
| lba_bios_init(void) |
| { |
| DBG(MODULE_NAME ": lba_bios_init\n"); |
| } |
| |
| |
| #ifdef CONFIG_64BIT |
| |
| /* |
| ** Determine if a device is already configured. |
| ** If so, reserve it resources. |
| ** |
| ** Read PCI cfg command register and see if I/O or MMIO is enabled. |
| ** PAT has to enable the devices it's using. |
| ** |
| ** Note: resources are fixed up before we try to claim them. |
| */ |
| static void |
| lba_claim_dev_resources(struct pci_dev *dev) |
| { |
| u16 cmd; |
| int i, srch_flags; |
| |
| (void) pci_read_config_word(dev, PCI_COMMAND, &cmd); |
| |
| srch_flags = (cmd & PCI_COMMAND_IO) ? IORESOURCE_IO : 0; |
| if (cmd & PCI_COMMAND_MEMORY) |
| srch_flags |= IORESOURCE_MEM; |
| |
| if (!srch_flags) |
| return; |
| |
| for (i = 0; i <= PCI_ROM_RESOURCE; i++) { |
| if (dev->resource[i].flags & srch_flags) { |
| pci_claim_resource(dev, i); |
| DBG(" claimed %s %d [%lx,%lx]/%lx\n", |
| pci_name(dev), i, |
| dev->resource[i].start, |
| dev->resource[i].end, |
| dev->resource[i].flags |
| ); |
| } |
| } |
| } |
| |
| |
| /* |
| * truncate_pat_collision: Deal with overlaps or outright collisions |
| * between PAT PDC reported ranges. |
| * |
| * Broken PA8800 firmware will report lmmio range that |
| * overlaps with CPU HPA. Just truncate the lmmio range. |
| * |
| * BEWARE: conflicts with this lmmio range may be an |
| * elmmio range which is pointing down another rope. |
| * |
| * FIXME: only deals with one collision per range...theoretically we |
| * could have several. Supporting more than one collision will get messy. |
| */ |
| static unsigned long |
| truncate_pat_collision(struct resource *root, struct resource *new) |
| { |
| unsigned long start = new->start; |
| unsigned long end = new->end; |
| struct resource *tmp = root->child; |
| |
| if (end <= start || start < root->start || !tmp) |
| return 0; |
| |
| /* find first overlap */ |
| while (tmp && tmp->end < start) |
| tmp = tmp->sibling; |
| |
| /* no entries overlap */ |
| if (!tmp) return 0; |
| |
| /* found one that starts behind the new one |
| ** Don't need to do anything. |
| */ |
| if (tmp->start >= end) return 0; |
| |
| if (tmp->start <= start) { |
| /* "front" of new one overlaps */ |
| new->start = tmp->end + 1; |
| |
| if (tmp->end >= end) { |
| /* AACCKK! totally overlaps! drop this range. */ |
| return 1; |
| } |
| } |
| |
| if (tmp->end < end ) { |
| /* "end" of new one overlaps */ |
| new->end = tmp->start - 1; |
| } |
| |
| printk(KERN_WARNING "LBA: Truncating lmmio_space [%lx/%lx] " |
| "to [%lx,%lx]\n", |
| start, end, |
| new->start, new->end ); |
| |
| return 0; /* truncation successful */ |
| } |
| |
| #else |
| #define lba_claim_dev_resources(dev) do { } while (0) |
| #define truncate_pat_collision(r,n) (0) |
| #endif |
| |
| /* |
| ** The algorithm is generic code. |
| ** But it needs to access local data structures to get the IRQ base. |
| ** Could make this a "pci_fixup_irq(bus, region)" but not sure |
| ** it's worth it. |
| ** |
| ** Called by do_pci_scan_bus() immediately after each PCI bus is walked. |
| ** Resources aren't allocated until recursive buswalk below HBA is completed. |
| */ |
| static void |
| lba_fixup_bus(struct pci_bus *bus) |
| { |
| struct list_head *ln; |
| #ifdef FBB_SUPPORT |
| u16 status; |
| #endif |
| struct lba_device *ldev = LBA_DEV(parisc_walk_tree(bus->bridge)); |
| int lba_portbase = HBA_PORT_BASE(ldev->hba.hba_num); |
| |
| DBG("lba_fixup_bus(0x%p) bus %d platform_data 0x%p\n", |
| bus, bus->secondary, bus->bridge->platform_data); |
| |
| /* |
| ** Properly Setup MMIO resources for this bus. |
| ** pci_alloc_primary_bus() mangles this. |
| */ |
| if (bus->self) { |
| /* PCI-PCI Bridge */ |
| pci_read_bridge_bases(bus); |
| } else { |
| /* Host-PCI Bridge */ |
| int err, i; |
| |
| DBG("lba_fixup_bus() %s [%lx/%lx]/%lx\n", |
| ldev->hba.io_space.name, |
| ldev->hba.io_space.start, ldev->hba.io_space.end, |
| ldev->hba.io_space.flags); |
| DBG("lba_fixup_bus() %s [%lx/%lx]/%lx\n", |
| ldev->hba.lmmio_space.name, |
| ldev->hba.lmmio_space.start, ldev->hba.lmmio_space.end, |
| ldev->hba.lmmio_space.flags); |
| |
| err = request_resource(&ioport_resource, &(ldev->hba.io_space)); |
| if (err < 0) { |
| lba_dump_res(&ioport_resource, 2); |
| BUG(); |
| } |
| /* advertize Host bridge resources to PCI bus */ |
| bus->resource[0] = &(ldev->hba.io_space); |
| i = 1; |
| |
| if (ldev->hba.elmmio_space.start) { |
| err = request_resource(&iomem_resource, |
| &(ldev->hba.elmmio_space)); |
| if (err < 0) { |
| |
| printk("FAILED: lba_fixup_bus() request for " |
| "elmmio_space [%lx/%lx]\n", |
| ldev->hba.elmmio_space.start, |
| ldev->hba.elmmio_space.end); |
| |
| /* lba_dump_res(&iomem_resource, 2); */ |
| /* BUG(); */ |
| } else |
| bus->resource[i++] = &(ldev->hba.elmmio_space); |
| } |
| |
| |
| /* Overlaps with elmmio can (and should) fail here. |
| * We will prune (or ignore) the distributed range. |
| * |
| * FIXME: SBA code should register all elmmio ranges first. |
| * that would take care of elmmio ranges routed |
| * to a different rope (already discovered) from |
| * getting registered *after* LBA code has already |
| * registered it's distributed lmmio range. |
| */ |
| if (truncate_pat_collision(&iomem_resource, |
| &(ldev->hba.lmmio_space))) { |
| |
| printk(KERN_WARNING "LBA: lmmio_space [%lx/%lx] duplicate!\n", |
| ldev->hba.lmmio_space.start, |
| ldev->hba.lmmio_space.end); |
| } else { |
| err = request_resource(&iomem_resource, &(ldev->hba.lmmio_space)); |
| if (err < 0) { |
| printk(KERN_ERR "FAILED: lba_fixup_bus() request for " |
| "lmmio_space [%lx/%lx]\n", |
| ldev->hba.lmmio_space.start, |
| ldev->hba.lmmio_space.end); |
| } else |
| bus->resource[i++] = &(ldev->hba.lmmio_space); |
| } |
| |
| #ifdef CONFIG_64BIT |
| /* GMMIO is distributed range. Every LBA/Rope gets part it. */ |
| if (ldev->hba.gmmio_space.flags) { |
| err = request_resource(&iomem_resource, &(ldev->hba.gmmio_space)); |
| if (err < 0) { |
| printk("FAILED: lba_fixup_bus() request for " |
| "gmmio_space [%lx/%lx]\n", |
| ldev->hba.gmmio_space.start, |
| ldev->hba.gmmio_space.end); |
| lba_dump_res(&iomem_resource, 2); |
| BUG(); |
| } |
| bus->resource[i++] = &(ldev->hba.gmmio_space); |
| } |
| #endif |
| |
| } |
| |
| list_for_each(ln, &bus->devices) { |
| int i; |
| struct pci_dev *dev = pci_dev_b(ln); |
| |
| DBG("lba_fixup_bus() %s\n", pci_name(dev)); |
| |
| /* Virtualize Device/Bridge Resources. */ |
| for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) { |
| struct resource *res = &dev->resource[i]; |
| |
| /* If resource not allocated - skip it */ |
| if (!res->start) |
| continue; |
| |
| if (res->flags & IORESOURCE_IO) { |
| DBG("lba_fixup_bus() I/O Ports [%lx/%lx] -> ", |
| res->start, res->end); |
| res->start |= lba_portbase; |
| res->end |= lba_portbase; |
| DBG("[%lx/%lx]\n", res->start, res->end); |
| } else if (res->flags & IORESOURCE_MEM) { |
| /* |
| ** Convert PCI (IO_VIEW) addresses to |
| ** processor (PA_VIEW) addresses |
| */ |
| DBG("lba_fixup_bus() MMIO [%lx/%lx] -> ", |
| res->start, res->end); |
| res->start = PCI_HOST_ADDR(HBA_DATA(ldev), res->start); |
| res->end = PCI_HOST_ADDR(HBA_DATA(ldev), res->end); |
| DBG("[%lx/%lx]\n", res->start, res->end); |
| } else { |
| DBG("lba_fixup_bus() WTF? 0x%lx [%lx/%lx] XXX", |
| res->flags, res->start, res->end); |
| } |
| } |
| |
| #ifdef FBB_SUPPORT |
| /* |
| ** If one device does not support FBB transfers, |
| ** No one on the bus can be allowed to use them. |
| */ |
| (void) pci_read_config_word(dev, PCI_STATUS, &status); |
| bus->bridge_ctl &= ~(status & PCI_STATUS_FAST_BACK); |
| #endif |
| |
| if (is_pdc_pat()) { |
| /* Claim resources for PDC's devices */ |
| lba_claim_dev_resources(dev); |
| } |
| |
| /* |
| ** P2PB's have no IRQs. ignore them. |
| */ |
| if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) |
| continue; |
| |
| /* Adjust INTERRUPT_LINE for this dev */ |
| iosapic_fixup_irq(ldev->iosapic_obj, dev); |
| } |
| |
| #ifdef FBB_SUPPORT |
| /* FIXME/REVISIT - finish figuring out to set FBB on both |
| ** pci_setup_bridge() clobbers PCI_BRIDGE_CONTROL. |
| ** Can't fixup here anyway....garr... |
| */ |
| if (fbb_enable) { |
| if (bus->self) { |
| u8 control; |
| /* enable on PPB */ |
| (void) pci_read_config_byte(bus->self, PCI_BRIDGE_CONTROL, &control); |
| (void) pci_write_config_byte(bus->self, PCI_BRIDGE_CONTROL, control | PCI_STATUS_FAST_BACK); |
| |
| } else { |
| /* enable on LBA */ |
| } |
| fbb_enable = PCI_COMMAND_FAST_BACK; |
| } |
| |
| /* Lastly enable FBB/PERR/SERR on all devices too */ |
| list_for_each(ln, &bus->devices) { |
| (void) pci_read_config_word(dev, PCI_COMMAND, &status); |
| status |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR | fbb_enable; |
| (void) pci_write_config_word(dev, PCI_COMMAND, status); |
| } |
| #endif |
| } |
| |
| |
| struct pci_bios_ops lba_bios_ops = { |
| .init = lba_bios_init, |
| .fixup_bus = lba_fixup_bus, |
| }; |
| |
| |
| |
| |
| /******************************************************* |
| ** |
| ** LBA Sprockets "I/O Port" Space Accessor Functions |
| ** |
| ** This set of accessor functions is intended for use with |
| ** "legacy firmware" (ie Sprockets on Allegro/Forte boxes). |
| ** |
| ** Many PCI devices don't require use of I/O port space (eg Tulip, |
| ** NCR720) since they export the same registers to both MMIO and |
| ** I/O port space. In general I/O port space is slower than |
| ** MMIO since drivers are designed so PIO writes can be posted. |
| ** |
| ********************************************************/ |
| |
| #define LBA_PORT_IN(size, mask) \ |
| static u##size lba_astro_in##size (struct pci_hba_data *d, u16 addr) \ |
| { \ |
| u##size t; \ |
| t = READ_REG##size(astro_iop_base + addr); \ |
| DBG_PORT(" 0x%x\n", t); \ |
| return (t); \ |
| } |
| |
| LBA_PORT_IN( 8, 3) |
| LBA_PORT_IN(16, 2) |
| LBA_PORT_IN(32, 0) |
| |
| |
| |
| /* |
| ** BUG X4107: Ordering broken - DMA RD return can bypass PIO WR |
| ** |
| ** Fixed in Elroy 2.2. The READ_U32(..., LBA_FUNC_ID) below is |
| ** guarantee non-postable completion semantics - not avoid X4107. |
| ** The READ_U32 only guarantees the write data gets to elroy but |
| ** out to the PCI bus. We can't read stuff from I/O port space |
| ** since we don't know what has side-effects. Attempting to read |
| ** from configuration space would be suicidal given the number of |
| ** bugs in that elroy functionality. |
| ** |
| ** Description: |
| ** DMA read results can improperly pass PIO writes (X4107). The |
| ** result of this bug is that if a processor modifies a location in |
| ** memory after having issued PIO writes, the PIO writes are not |
| ** guaranteed to be completed before a PCI device is allowed to see |
| ** the modified data in a DMA read. |
| ** |
| ** Note that IKE bug X3719 in TR1 IKEs will result in the same |
| ** symptom. |
| ** |
| ** Workaround: |
| ** The workaround for this bug is to always follow a PIO write with |
| ** a PIO read to the same bus before starting DMA on that PCI bus. |
| ** |
| */ |
| #define LBA_PORT_OUT(size, mask) \ |
| static void lba_astro_out##size (struct pci_hba_data *d, u16 addr, u##size val) \ |
| { \ |
| DBG_PORT("%s(0x%p, 0x%x, 0x%x)\n", __FUNCTION__, d, addr, val); \ |
| WRITE_REG##size(val, astro_iop_base + addr); \ |
| if (LBA_DEV(d)->hw_rev < 3) \ |
| lba_t32 = READ_U32(d->base_addr + LBA_FUNC_ID); \ |
| } |
| |
| LBA_PORT_OUT( 8, 3) |
| LBA_PORT_OUT(16, 2) |
| LBA_PORT_OUT(32, 0) |
| |
| |
| static struct pci_port_ops lba_astro_port_ops = { |
| .inb = lba_astro_in8, |
| .inw = lba_astro_in16, |
| .inl = lba_astro_in32, |
| .outb = lba_astro_out8, |
| .outw = lba_astro_out16, |
| .outl = lba_astro_out32 |
| }; |
| |
| |
| #ifdef CONFIG_64BIT |
| #define PIOP_TO_GMMIO(lba, addr) \ |
| ((lba)->iop_base + (((addr)&0xFFFC)<<10) + ((addr)&3)) |
| |
| /******************************************************* |
| ** |
| ** LBA PAT "I/O Port" Space Accessor Functions |
| ** |
| ** This set of accessor functions is intended for use with |
| ** "PAT PDC" firmware (ie Prelude/Rhapsody/Piranha boxes). |
| ** |
| ** This uses the PIOP space located in the first 64MB of GMMIO. |
| ** Each rope gets a full 64*KB* (ie 4 bytes per page) this way. |
| ** bits 1:0 stay the same. bits 15:2 become 25:12. |
| ** Then add the base and we can generate an I/O Port cycle. |
| ********************************************************/ |
| #undef LBA_PORT_IN |
| #define LBA_PORT_IN(size, mask) \ |
| static u##size lba_pat_in##size (struct pci_hba_data *l, u16 addr) \ |
| { \ |
| u##size t; \ |
| DBG_PORT("%s(0x%p, 0x%x) ->", __FUNCTION__, l, addr); \ |
| t = READ_REG##size(PIOP_TO_GMMIO(LBA_DEV(l), addr)); \ |
| DBG_PORT(" 0x%x\n", t); \ |
| return (t); \ |
| } |
| |
| LBA_PORT_IN( 8, 3) |
| LBA_PORT_IN(16, 2) |
| LBA_PORT_IN(32, 0) |
| |
| |
| #undef LBA_PORT_OUT |
| #define LBA_PORT_OUT(size, mask) \ |
| static void lba_pat_out##size (struct pci_hba_data *l, u16 addr, u##size val) \ |
| { \ |
| void __iomem *where = PIOP_TO_GMMIO(LBA_DEV(l), addr); \ |
| DBG_PORT("%s(0x%p, 0x%x, 0x%x)\n", __FUNCTION__, l, addr, val); \ |
| WRITE_REG##size(val, where); \ |
| /* flush the I/O down to the elroy at least */ \ |
| lba_t32 = READ_U32(l->base_addr + LBA_FUNC_ID); \ |
| } |
| |
| LBA_PORT_OUT( 8, 3) |
| LBA_PORT_OUT(16, 2) |
| LBA_PORT_OUT(32, 0) |
| |
| |
| static struct pci_port_ops lba_pat_port_ops = { |
| .inb = lba_pat_in8, |
| .inw = lba_pat_in16, |
| .inl = lba_pat_in32, |
| .outb = lba_pat_out8, |
| .outw = lba_pat_out16, |
| .outl = lba_pat_out32 |
| }; |
| |
| |
| |
| /* |
| ** make range information from PDC available to PCI subsystem. |
| ** We make the PDC call here in order to get the PCI bus range |
| ** numbers. The rest will get forwarded in pcibios_fixup_bus(). |
| ** We don't have a struct pci_bus assigned to us yet. |
| */ |
| static void |
| lba_pat_resources(struct parisc_device *pa_dev, struct lba_device *lba_dev) |
| { |
| unsigned long bytecnt; |
| pdc_pat_cell_mod_maddr_block_t pa_pdc_cell; /* PA_VIEW */ |
| pdc_pat_cell_mod_maddr_block_t io_pdc_cell; /* IO_VIEW */ |
| long io_count; |
| long status; /* PDC return status */ |
| long pa_count; |
| int i; |
| |
| /* return cell module (IO view) */ |
| status = pdc_pat_cell_module(&bytecnt, pa_dev->pcell_loc, pa_dev->mod_index, |
| PA_VIEW, & pa_pdc_cell); |
| pa_count = pa_pdc_cell.mod[1]; |
| |
| status |= pdc_pat_cell_module(&bytecnt, pa_dev->pcell_loc, pa_dev->mod_index, |
| IO_VIEW, &io_pdc_cell); |
| io_count = io_pdc_cell.mod[1]; |
| |
| /* We've already done this once for device discovery...*/ |
| if (status != PDC_OK) { |
| panic("pdc_pat_cell_module() call failed for LBA!\n"); |
| } |
| |
| if (PAT_GET_ENTITY(pa_pdc_cell.mod_info) != PAT_ENTITY_LBA) { |
| panic("pdc_pat_cell_module() entity returned != PAT_ENTITY_LBA!\n"); |
| } |
| |
| /* |
| ** Inspect the resources PAT tells us about |
| */ |
| for (i = 0; i < pa_count; i++) { |
| struct { |
| unsigned long type; |
| unsigned long start; |
| unsigned long end; /* aka finish */ |
| } *p, *io; |
| struct resource *r; |
| |
| p = (void *) &(pa_pdc_cell.mod[2+i*3]); |
| io = (void *) &(io_pdc_cell.mod[2+i*3]); |
| |
| /* Convert the PAT range data to PCI "struct resource" */ |
| switch(p->type & 0xff) { |
| case PAT_PBNUM: |
| lba_dev->hba.bus_num.start = p->start; |
| lba_dev->hba.bus_num.end = p->end; |
| break; |
| |
| case PAT_LMMIO: |
| /* used to fix up pre-initialized MEM BARs */ |
| if (!lba_dev->hba.lmmio_space.start) { |
| sprintf(lba_dev->hba.lmmio_name, |
| "PCI%02lx LMMIO", |
| lba_dev->hba.bus_num.start); |
| lba_dev->hba.lmmio_space_offset = p->start - |
| io->start; |
| r = &lba_dev->hba.lmmio_space; |
| r->name = lba_dev->hba.lmmio_name; |
| } else if (!lba_dev->hba.elmmio_space.start) { |
| sprintf(lba_dev->hba.elmmio_name, |
| "PCI%02lx ELMMIO", |
| lba_dev->hba.bus_num.start); |
| r = &lba_dev->hba.elmmio_space; |
| r->name = lba_dev->hba.elmmio_name; |
| } else { |
| printk(KERN_WARNING MODULE_NAME |
| " only supports 2 LMMIO resources!\n"); |
| break; |
| } |
| |
| r->start = p->start; |
| r->end = p->end; |
| r->flags = IORESOURCE_MEM; |
| r->parent = r->sibling = r->child = NULL; |
| break; |
| |
| case PAT_GMMIO: |
| /* MMIO space > 4GB phys addr; for 64-bit BAR */ |
| sprintf(lba_dev->hba.gmmio_name, "PCI%02lx GMMIO", |
| lba_dev->hba.bus_num.start); |
| r = &lba_dev->hba.gmmio_space; |
| r->name = lba_dev->hba.gmmio_name; |
| r->start = p->start; |
| r->end = p->end; |
| r->flags = IORESOURCE_MEM; |
| r->parent = r->sibling = r->child = NULL; |
| break; |
| |
| case PAT_NPIOP: |
| printk(KERN_WARNING MODULE_NAME |
| " range[%d] : ignoring NPIOP (0x%lx)\n", |
| i, p->start); |
| break; |
| |
| case PAT_PIOP: |
| /* |
| ** Postable I/O port space is per PCI host adapter. |
| ** base of 64MB PIOP region |
| */ |
| lba_dev->iop_base = ioremap_nocache(p->start, 64 * 1024 * 1024); |
| |
| sprintf(lba_dev->hba.io_name, "PCI%02lx Ports", |
| lba_dev->hba.bus_num.start); |
| r = &lba_dev->hba.io_space; |
| r->name = lba_dev->hba.io_name; |
| r->start = HBA_PORT_BASE(lba_dev->hba.hba_num); |
| r->end = r->start + HBA_PORT_SPACE_SIZE - 1; |
| r->flags = IORESOURCE_IO; |
| r->parent = r->sibling = r->child = NULL; |
| break; |
| |
| default: |
| printk(KERN_WARNING MODULE_NAME |
| " range[%d] : unknown pat range type (0x%lx)\n", |
| i, p->type & 0xff); |
| break; |
| } |
| } |
| } |
| #else |
| /* keep compiler from complaining about missing declarations */ |
| #define lba_pat_port_ops lba_astro_port_ops |
| #define lba_pat_resources(pa_dev, lba_dev) |
| #endif /* CONFIG_64BIT */ |
| |
| |
| extern void sba_distributed_lmmio(struct parisc_device *, struct resource *); |
| extern void sba_directed_lmmio(struct parisc_device *, struct resource *); |
| |
| |
| static void |
| lba_legacy_resources(struct parisc_device *pa_dev, struct lba_device *lba_dev) |
| { |
| struct resource *r; |
| int lba_num; |
| |
| lba_dev->hba.lmmio_space_offset = PCI_F_EXTEND; |
| |
| /* |
| ** With "legacy" firmware, the lowest byte of FW_SCRATCH |
| ** represents bus->secondary and the second byte represents |
| ** bus->subsidiary (i.e. highest PPB programmed by firmware). |
| ** PCI bus walk *should* end up with the same result. |
| ** FIXME: But we don't have sanity checks in PCI or LBA. |
| */ |
| lba_num = READ_REG32(lba_dev->hba.base_addr + LBA_FW_SCRATCH); |
| r = &(lba_dev->hba.bus_num); |
| r->name = "LBA PCI Busses"; |
| r->start = lba_num & 0xff; |
| r->end = (lba_num>>8) & 0xff; |
| |
| /* Set up local PCI Bus resources - we don't need them for |
| ** Legacy boxes but it's nice to see in /proc/iomem. |
| */ |
| r = &(lba_dev->hba.lmmio_space); |
| sprintf(lba_dev->hba.lmmio_name, "PCI%02lx LMMIO", |
| lba_dev->hba.bus_num.start); |
| r->name = lba_dev->hba.lmmio_name; |
| |
| #if 1 |
| /* We want the CPU -> IO routing of addresses. |
| * The SBA BASE/MASK registers control CPU -> IO routing. |
| * Ask SBA what is routed to this rope/LBA. |
| */ |
| sba_distributed_lmmio(pa_dev, r); |
| #else |
| /* |
| * The LBA BASE/MASK registers control IO -> System routing. |
| * |
| * The following code works but doesn't get us what we want. |
| * Well, only because firmware (v5.0) on C3000 doesn't program |
| * the LBA BASE/MASE registers to be the exact inverse of |
| * the corresponding SBA registers. Other Astro/Pluto |
| * based platform firmware may do it right. |
| * |
| * Should someone want to mess with MSI, they may need to |
| * reprogram LBA BASE/MASK registers. Thus preserve the code |
| * below until MSI is known to work on C3000/A500/N4000/RP3440. |
| * |
| * Using the code below, /proc/iomem shows: |
| * ... |
| * f0000000-f0ffffff : PCI00 LMMIO |
| * f05d0000-f05d0000 : lcd_data |
| * f05d0008-f05d0008 : lcd_cmd |
| * f1000000-f1ffffff : PCI01 LMMIO |
| * f4000000-f4ffffff : PCI02 LMMIO |
| * f4000000-f4001fff : sym53c8xx |
| * f4002000-f4003fff : sym53c8xx |
| * f4004000-f40043ff : sym53c8xx |
| * f4005000-f40053ff : sym53c8xx |
| * f4007000-f4007fff : ohci_hcd |
| * f4008000-f40083ff : tulip |
| * f6000000-f6ffffff : PCI03 LMMIO |
| * f8000000-fbffffff : PCI00 ELMMIO |
| * fa100000-fa4fffff : stifb mmio |
| * fb000000-fb1fffff : stifb fb |
| * |
| * But everything listed under PCI02 actually lives under PCI00. |
| * This is clearly wrong. |
| * |
| * Asking SBA how things are routed tells the correct story: |
| * LMMIO_BASE/MASK/ROUTE f4000001 fc000000 00000000 |
| * DIR0_BASE/MASK/ROUTE fa000001 fe000000 00000006 |
| * DIR1_BASE/MASK/ROUTE f9000001 ff000000 00000004 |
| * DIR2_BASE/MASK/ROUTE f0000000 fc000000 00000000 |
| * DIR3_BASE/MASK/ROUTE f0000000 fc000000 00000000 |
| * |
| * Which looks like this in /proc/iomem: |
| * f4000000-f47fffff : PCI00 LMMIO |
| * f4000000-f4001fff : sym53c8xx |
| * ...[deteled core devices - same as above]... |
| * f4008000-f40083ff : tulip |
| * f4800000-f4ffffff : PCI01 LMMIO |
| * f6000000-f67fffff : PCI02 LMMIO |
| * f7000000-f77fffff : PCI03 LMMIO |
| * f9000000-f9ffffff : PCI02 ELMMIO |
| * fa000000-fbffffff : PCI03 ELMMIO |
| * fa100000-fa4fffff : stifb mmio |
| * fb000000-fb1fffff : stifb fb |
| * |
| * ie all Built-in core are under now correctly under PCI00. |
| * The "PCI02 ELMMIO" directed range is for: |
| * +-[02]---03.0 3Dfx Interactive, Inc. Voodoo 2 |
| * |
| * All is well now. |
| */ |
| r->start = READ_REG32(lba_dev->hba.base_addr + LBA_LMMIO_BASE); |
| if (r->start & 1) { |
| unsigned long rsize; |
| |
| r->flags = IORESOURCE_MEM; |
| /* mmio_mask also clears Enable bit */ |
| r->start &= mmio_mask; |
| r->start = PCI_HOST_ADDR(HBA_DATA(lba_dev), r->start); |
| rsize = ~ READ_REG32(lba_dev->hba.base_addr + LBA_LMMIO_MASK); |
| |
| /* |
| ** Each rope only gets part of the distributed range. |
| ** Adjust "window" for this rope. |
| */ |
| rsize /= ROPES_PER_IOC; |
| r->start += (rsize + 1) * LBA_NUM(pa_dev->hpa.start); |
| r->end = r->start + rsize; |
| } else { |
| r->end = r->start = 0; /* Not enabled. */ |
| } |
| #endif |
| |
| /* |
| ** "Directed" ranges are used when the "distributed range" isn't |
| ** sufficient for all devices below a given LBA. Typically devices |
| ** like graphics cards or X25 may need a directed range when the |
| ** bus has multiple slots (ie multiple devices) or the device |
| ** needs more than the typical 4 or 8MB a distributed range offers. |
| ** |
| ** The main reason for ignoring it now frigging complications. |
| ** Directed ranges may overlap (and have precedence) over |
| ** distributed ranges. Or a distributed range assigned to a unused |
| ** rope may be used by a directed range on a different rope. |
| ** Support for graphics devices may require fixing this |
| ** since they may be assigned a directed range which overlaps |
| ** an existing (but unused portion of) distributed range. |
| */ |
| r = &(lba_dev->hba.elmmio_space); |
| sprintf(lba_dev->hba.elmmio_name, "PCI%02lx ELMMIO", |
| lba_dev->hba.bus_num.start); |
| r->name = lba_dev->hba.elmmio_name; |
| |
| #if 1 |
| /* See comment which precedes call to sba_directed_lmmio() */ |
| sba_directed_lmmio(pa_dev, r); |
| #else |
| r->start = READ_REG32(lba_dev->hba.base_addr + LBA_ELMMIO_BASE); |
| |
| if (r->start & 1) { |
| unsigned long rsize; |
| r->flags = IORESOURCE_MEM; |
| /* mmio_mask also clears Enable bit */ |
| r->start &= mmio_mask; |
| r->start = PCI_HOST_ADDR(HBA_DATA(lba_dev), r->start); |
| rsize = READ_REG32(lba_dev->hba.base_addr + LBA_ELMMIO_MASK); |
| r->end = r->start + ~rsize; |
| } |
| #endif |
| |
| r = &(lba_dev->hba.io_space); |
| sprintf(lba_dev->hba.io_name, "PCI%02lx Ports", |
| lba_dev->hba.bus_num.start); |
| r->name = lba_dev->hba.io_name; |
| r->flags = IORESOURCE_IO; |
| r->start = READ_REG32(lba_dev->hba.base_addr + LBA_IOS_BASE) & ~1L; |
| r->end = r->start + (READ_REG32(lba_dev->hba.base_addr + LBA_IOS_MASK) ^ (HBA_PORT_SPACE_SIZE - 1)); |
| |
| /* Virtualize the I/O Port space ranges */ |
| lba_num = HBA_PORT_BASE(lba_dev->hba.hba_num); |
| r->start |= lba_num; |
| r->end |= lba_num; |
| } |
| |
| |
| /************************************************************************** |
| ** |
| ** LBA initialization code (HW and SW) |
| ** |
| ** o identify LBA chip itself |
| ** o initialize LBA chip modes (HardFail) |
| ** o FIXME: initialize DMA hints for reasonable defaults |
| ** o enable configuration functions |
| ** o call pci_register_ops() to discover devs (fixup/fixup_bus get invoked) |
| ** |
| **************************************************************************/ |
| |
| static int __init |
| lba_hw_init(struct lba_device *d) |
| { |
| u32 stat; |
| u32 bus_reset; /* PDC_PAT_BUG */ |
| |
| #if 0 |
| printk(KERN_DEBUG "LBA %lx STAT_CTL %Lx ERROR_CFG %Lx STATUS %Lx DMA_CTL %Lx\n", |
| d->hba.base_addr, |
| READ_REG64(d->hba.base_addr + LBA_STAT_CTL), |
| READ_REG64(d->hba.base_addr + LBA_ERROR_CONFIG), |
| READ_REG64(d->hba.base_addr + LBA_ERROR_STATUS), |
| READ_REG64(d->hba.base_addr + LBA_DMA_CTL) ); |
| printk(KERN_DEBUG " ARB mask %Lx pri %Lx mode %Lx mtlt %Lx\n", |
| READ_REG64(d->hba.base_addr + LBA_ARB_MASK), |
| READ_REG64(d->hba.base_addr + LBA_ARB_PRI), |
| READ_REG64(d->hba.base_addr + LBA_ARB_MODE), |
| READ_REG64(d->hba.base_addr + LBA_ARB_MTLT) ); |
| printk(KERN_DEBUG " HINT cfg 0x%Lx\n", |
| READ_REG64(d->hba.base_addr + LBA_HINT_CFG)); |
| printk(KERN_DEBUG " HINT reg "); |
| { int i; |
| for (i=LBA_HINT_BASE; i< (14*8 + LBA_HINT_BASE); i+=8) |
| printk(" %Lx", READ_REG64(d->hba.base_addr + i)); |
| } |
| printk("\n"); |
| #endif /* DEBUG_LBA_PAT */ |
| |
| #ifdef CONFIG_64BIT |
| /* |
| * FIXME add support for PDC_PAT_IO "Get slot status" - OLAR support |
| * Only N-Class and up can really make use of Get slot status. |
| * maybe L-class too but I've never played with it there. |
| */ |
| #endif |
| |
| /* PDC_PAT_BUG: exhibited in rev 40.48 on L2000 */ |
| bus_reset = READ_REG32(d->hba.base_addr + LBA_STAT_CTL + 4) & 1; |
| if (bus_reset) { |
| printk(KERN_DEBUG "NOTICE: PCI bus reset still asserted! (clearing)\n"); |
| } |
| |
| stat = READ_REG32(d->hba.base_addr + LBA_ERROR_CONFIG); |
| if (stat & LBA_SMART_MODE) { |
| printk(KERN_DEBUG "NOTICE: LBA in SMART mode! (cleared)\n"); |
| stat &= ~LBA_SMART_MODE; |
| WRITE_REG32(stat, d->hba.base_addr + LBA_ERROR_CONFIG); |
| } |
| |
| /* Set HF mode as the default (vs. -1 mode). */ |
| stat = READ_REG32(d->hba.base_addr + LBA_STAT_CTL); |
| WRITE_REG32(stat | HF_ENABLE, d->hba.base_addr + LBA_STAT_CTL); |
| |
| /* |
| ** Writing a zero to STAT_CTL.rf (bit 0) will clear reset signal |
| ** if it's not already set. If we just cleared the PCI Bus Reset |
| ** signal, wait a bit for the PCI devices to recover and setup. |
| */ |
| if (bus_reset) |
| mdelay(pci_post_reset_delay); |
| |
| if (0 == READ_REG32(d->hba.base_addr + LBA_ARB_MASK)) { |
| /* |
| ** PDC_PAT_BUG: PDC rev 40.48 on L2000. |
| ** B2000/C3600/J6000 also have this problem? |
| ** |
| ** Elroys with hot pluggable slots don't get configured |
| ** correctly if the slot is empty. ARB_MASK is set to 0 |
| ** and we can't master transactions on the bus if it's |
| ** not at least one. 0x3 enables elroy and first slot. |
| */ |
| printk(KERN_DEBUG "NOTICE: Enabling PCI Arbitration\n"); |
| WRITE_REG32(0x3, d->hba.base_addr + LBA_ARB_MASK); |
| } |
| |
| /* |
| ** FIXME: Hint registers are programmed with default hint |
| ** values by firmware. Hints should be sane even if we |
| ** can't reprogram them the way drivers want. |
| */ |
| return 0; |
| } |
| |
| /* |
| * Unfortunately, when firmware numbers busses, it doesn't take into account |
| * Cardbus bridges. So we have to renumber the busses to suit ourselves. |
| * Elroy/Mercury don't actually know what bus number they're attached to; |
| * we use bus 0 to indicate the directly attached bus and any other bus |
| * number will be taken care of by the PCI-PCI bridge. |
| */ |
| static unsigned int lba_next_bus = 0; |
| |
| /* |
| * Determine if lba should claim this chip (return 0) or not (return 1). |
| * If so, initialize the chip and tell other partners in crime they |
| * have work to do. |
| */ |
| static int __init |
| lba_driver_probe(struct parisc_device *dev) |
| { |
| struct lba_device *lba_dev; |
| struct pci_bus *lba_bus; |
| struct pci_ops *cfg_ops; |
| u32 func_class; |
| void *tmp_obj; |
| char *version; |
| void __iomem *addr = ioremap_nocache(dev->hpa.start, 4096); |
| |
| /* Read HW Rev First */ |
| func_class = READ_REG32(addr + LBA_FCLASS); |
| |
| if (IS_ELROY(dev)) { |
| func_class &= 0xf; |
| switch (func_class) { |
| case 0: version = "TR1.0"; break; |
| case 1: version = "TR2.0"; break; |
| case 2: version = "TR2.1"; break; |
| case 3: version = "TR2.2"; break; |
| case 4: version = "TR3.0"; break; |
| case 5: version = "TR4.0"; break; |
| default: version = "TR4+"; |
| } |
| |
| printk(KERN_INFO "Elroy version %s (0x%x) found at 0x%lx\n", |
| version, func_class & 0xf, dev->hpa.start); |
| |
| if (func_class < 2) { |
| printk(KERN_WARNING "Can't support LBA older than " |
| "TR2.1 - continuing under adversity.\n"); |
| } |
| |
| #if 0 |
| /* Elroy TR4.0 should work with simple algorithm. |
| But it doesn't. Still missing something. *sigh* |
| */ |
| if (func_class > 4) { |
| cfg_ops = &mercury_cfg_ops; |
| } else |
| #endif |
| { |
| cfg_ops = &elroy_cfg_ops; |
| } |
| |
| } else if (IS_MERCURY(dev) || IS_QUICKSILVER(dev)) { |
| int major, minor; |
| |
| func_class &= 0xff; |
| major = func_class >> 4, minor = func_class & 0xf; |
| |
| /* We could use one printk for both Elroy and Mercury, |
| * but for the mask for func_class. |
| */ |
| printk(KERN_INFO "%s version TR%d.%d (0x%x) found at 0x%lx\n", |
| IS_MERCURY(dev) ? "Mercury" : "Quicksilver", major, |
| minor, func_class, dev->hpa.start); |
| |
| cfg_ops = &mercury_cfg_ops; |
| } else { |
| printk(KERN_ERR "Unknown LBA found at 0x%lx\n", dev->hpa.start); |
| return -ENODEV; |
| } |
| |
| /* Tell I/O SAPIC driver we have a IRQ handler/region. */ |
| tmp_obj = iosapic_register(dev->hpa.start + LBA_IOSAPIC_BASE); |
| |
| /* NOTE: PCI devices (e.g. 103c:1005 graphics card) which don't |
| ** have an IRT entry will get NULL back from iosapic code. |
| */ |
| |
| lba_dev = kzalloc(sizeof(struct lba_device), GFP_KERNEL); |
| if (!lba_dev) { |
| printk(KERN_ERR "lba_init_chip - couldn't alloc lba_device\n"); |
| return(1); |
| } |
| |
| |
| /* ---------- First : initialize data we already have --------- */ |
| |
| lba_dev->hw_rev = func_class; |
| lba_dev->hba.base_addr = addr; |
| lba_dev->hba.dev = dev; |
| lba_dev->iosapic_obj = tmp_obj; /* save interrupt handle */ |
| lba_dev->hba.iommu = sba_get_iommu(dev); /* get iommu data */ |
| parisc_set_drvdata(dev, lba_dev); |
| |
| /* ------------ Second : initialize common stuff ---------- */ |
| pci_bios = &lba_bios_ops; |
| pcibios_register_hba(HBA_DATA(lba_dev)); |
| spin_lock_init(&lba_dev->lba_lock); |
| |
| if (lba_hw_init(lba_dev)) |
| return(1); |
| |
| /* ---------- Third : setup I/O Port and MMIO resources --------- */ |
| |
| if (is_pdc_pat()) { |
| /* PDC PAT firmware uses PIOP region of GMMIO space. */ |
| pci_port = &lba_pat_port_ops; |
| /* Go ask PDC PAT what resources this LBA has */ |
| lba_pat_resources(dev, lba_dev); |
| } else { |
| if (!astro_iop_base) { |
| /* Sprockets PDC uses NPIOP region */ |
| astro_iop_base = ioremap_nocache(LBA_PORT_BASE, 64 * 1024); |
| pci_port = &lba_astro_port_ops; |
| } |
| |
| /* Poke the chip a bit for /proc output */ |
| lba_legacy_resources(dev, lba_dev); |
| } |
| |
| if (lba_dev->hba.bus_num.start < lba_next_bus) |
| lba_dev->hba.bus_num.start = lba_next_bus; |
| |
| dev->dev.platform_data = lba_dev; |
| lba_bus = lba_dev->hba.hba_bus = |
| pci_scan_bus_parented(&dev->dev, lba_dev->hba.bus_num.start, |
| cfg_ops, NULL); |
| if (lba_bus) { |
| lba_next_bus = lba_bus->subordinate + 1; |
| pci_bus_add_devices(lba_bus); |
| } |
| |
| /* This is in lieu of calling pci_assign_unassigned_resources() */ |
| if (is_pdc_pat()) { |
| /* assign resources to un-initialized devices */ |
| |
| DBG_PAT("LBA pci_bus_size_bridges()\n"); |
| pci_bus_size_bridges(lba_bus); |
| |
| DBG_PAT("LBA pci_bus_assign_resources()\n"); |
| pci_bus_assign_resources(lba_bus); |
| |
| #ifdef DEBUG_LBA_PAT |
| DBG_PAT("\nLBA PIOP resource tree\n"); |
| lba_dump_res(&lba_dev->hba.io_space, 2); |
| DBG_PAT("\nLBA LMMIO resource tree\n"); |
| lba_dump_res(&lba_dev->hba.lmmio_space, 2); |
| #endif |
| } |
| pci_enable_bridges(lba_bus); |
| |
| |
| /* |
| ** Once PCI register ops has walked the bus, access to config |
| ** space is restricted. Avoids master aborts on config cycles. |
| ** Early LBA revs go fatal on *any* master abort. |
| */ |
| if (cfg_ops == &elroy_cfg_ops) { |
| lba_dev->flags |= LBA_FLAG_SKIP_PROBE; |
| } |
| |
| /* Whew! Finally done! Tell services we got this one covered. */ |
| return 0; |
| } |
| |
| static struct parisc_device_id lba_tbl[] = { |
| { HPHW_BRIDGE, HVERSION_REV_ANY_ID, ELROY_HVERS, 0xa }, |
| { HPHW_BRIDGE, HVERSION_REV_ANY_ID, MERCURY_HVERS, 0xa }, |
| { HPHW_BRIDGE, HVERSION_REV_ANY_ID, QUICKSILVER_HVERS, 0xa }, |
| { 0, } |
| }; |
| |
| static struct parisc_driver lba_driver = { |
| .name = MODULE_NAME, |
| .id_table = lba_tbl, |
| .probe = lba_driver_probe, |
| }; |
| |
| /* |
| ** One time initialization to let the world know the LBA was found. |
| ** Must be called exactly once before pci_init(). |
| */ |
| void __init lba_init(void) |
| { |
| register_parisc_driver(&lba_driver); |
| } |
| |
| /* |
| ** Initialize the IBASE/IMASK registers for LBA (Elroy). |
| ** Only called from sba_iommu.c in order to route ranges (MMIO vs DMA). |
| ** sba_iommu is responsible for locking (none needed at init time). |
| */ |
| void lba_set_iregs(struct parisc_device *lba, u32 ibase, u32 imask) |
| { |
| void __iomem * base_addr = ioremap_nocache(lba->hpa.start, 4096); |
| |
| imask <<= 2; /* adjust for hints - 2 more bits */ |
| |
| /* Make sure we aren't trying to set bits that aren't writeable. */ |
| WARN_ON((ibase & 0x001fffff) != 0); |
| WARN_ON((imask & 0x001fffff) != 0); |
| |
| DBG("%s() ibase 0x%x imask 0x%x\n", __FUNCTION__, ibase, imask); |
| WRITE_REG32( imask, base_addr + LBA_IMASK); |
| WRITE_REG32( ibase, base_addr + LBA_IBASE); |
| iounmap(base_addr); |
| } |
| |