blob: 3f1c18b28e8af5fc414c13ebeb29ccbf04cd63a5 [file] [log] [blame]
/*
* arch/sh/kernel/setup.c
*
* This file handles the architecture-dependent parts of initialization
*
* Copyright (C) 1999 Niibe Yutaka
* Copyright (C) 2002 - 2010 Paul Mundt
*/
#include <linux/screen_info.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/initrd.h>
#include <linux/bootmem.h>
#include <linux/console.h>
#include <linux/root_dev.h>
#include <linux/utsname.h>
#include <linux/nodemask.h>
#include <linux/cpu.h>
#include <linux/pfn.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/kexec.h>
#include <linux/module.h>
#include <linux/smp.h>
#include <linux/err.h>
#include <linux/crash_dump.h>
#include <linux/mmzone.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/memblock.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/page.h>
#include <asm/elf.h>
#include <asm/sections.h>
#include <asm/irq.h>
#include <asm/setup.h>
#include <asm/clock.h>
#include <asm/smp.h>
#include <asm/mmu_context.h>
#include <asm/mmzone.h>
#include <asm/sparsemem.h>
/*
* Initialize loops_per_jiffy as 10000000 (1000MIPS).
* This value will be used at the very early stage of serial setup.
* The bigger value means no problem.
*/
struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
[0] = {
.type = CPU_SH_NONE,
.family = CPU_FAMILY_UNKNOWN,
.loops_per_jiffy = 10000000,
.phys_bits = MAX_PHYSMEM_BITS,
},
};
EXPORT_SYMBOL(cpu_data);
/*
* The machine vector. First entry in .machvec.init, or clobbered by
* sh_mv= on the command line, prior to .machvec.init teardown.
*/
struct sh_machine_vector sh_mv = { .mv_name = "generic", };
EXPORT_SYMBOL(sh_mv);
#ifdef CONFIG_VT
struct screen_info screen_info;
#endif
extern int root_mountflags;
#define RAMDISK_IMAGE_START_MASK 0x07FF
#define RAMDISK_PROMPT_FLAG 0x8000
#define RAMDISK_LOAD_FLAG 0x4000
static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
static struct resource code_resource = {
.name = "Kernel code",
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
};
static struct resource data_resource = {
.name = "Kernel data",
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
};
static struct resource bss_resource = {
.name = "Kernel bss",
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
};
unsigned long memory_start;
EXPORT_SYMBOL(memory_start);
unsigned long memory_end = 0;
EXPORT_SYMBOL(memory_end);
unsigned long memory_limit = 0;
static struct resource mem_resources[MAX_NUMNODES];
int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
static int __init early_parse_mem(char *p)
{
if (!p)
return 1;
memory_limit = PAGE_ALIGN(memparse(p, &p));
pr_notice("Memory limited to %ldMB\n", memory_limit >> 20);
return 0;
}
early_param("mem", early_parse_mem);
void __init check_for_initrd(void)
{
#ifdef CONFIG_BLK_DEV_INITRD
unsigned long start, end;
/*
* Check for the rare cases where boot loaders adhere to the boot
* ABI.
*/
if (!LOADER_TYPE || !INITRD_START || !INITRD_SIZE)
goto disable;
start = INITRD_START + __MEMORY_START;
end = start + INITRD_SIZE;
if (unlikely(end <= start))
goto disable;
if (unlikely(start & ~PAGE_MASK)) {
pr_err("initrd must be page aligned\n");
goto disable;
}
if (unlikely(start < __MEMORY_START)) {
pr_err("initrd start (%08lx) < __MEMORY_START(%x)\n",
start, __MEMORY_START);
goto disable;
}
if (unlikely(end > memblock_end_of_DRAM())) {
pr_err("initrd extends beyond end of memory "
"(0x%08lx > 0x%08lx)\ndisabling initrd\n",
end, (unsigned long)memblock_end_of_DRAM());
goto disable;
}
/*
* If we got this far in spite of the boot loader's best efforts
* to the contrary, assume we actually have a valid initrd and
* fix up the root dev.
*/
ROOT_DEV = Root_RAM0;
/*
* Address sanitization
*/
initrd_start = (unsigned long)__va(start);
initrd_end = initrd_start + INITRD_SIZE;
memblock_reserve(__pa(initrd_start), INITRD_SIZE);
return;
disable:
pr_info("initrd disabled\n");
initrd_start = initrd_end = 0;
#endif
}
void calibrate_delay(void)
{
struct clk *clk = clk_get(NULL, "cpu_clk");
if (IS_ERR(clk))
panic("Need a sane CPU clock definition!");
loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ;
printk(KERN_INFO "Calibrating delay loop (skipped)... "
"%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n",
loops_per_jiffy/(500000/HZ),
(loops_per_jiffy/(5000/HZ)) % 100,
loops_per_jiffy);
}
void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
unsigned long end_pfn)
{
struct resource *res = &mem_resources[nid];
unsigned long start, end;
WARN_ON(res->name); /* max one active range per node for now */
start = start_pfn << PAGE_SHIFT;
end = end_pfn << PAGE_SHIFT;
res->name = "System RAM";
res->start = start;
res->end = end - 1;
res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
if (request_resource(&iomem_resource, res)) {
pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
start_pfn, end_pfn);
return;
}
/*
* We don't know which RAM region contains kernel data or
* the reserved crashkernel region, so try it repeatedly
* and let the resource manager test it.
*/
request_resource(res, &code_resource);
request_resource(res, &data_resource);
request_resource(res, &bss_resource);
#ifdef CONFIG_KEXEC
request_resource(res, &crashk_res);
#endif
/*
* Also make sure that there is a PMB mapping that covers this
* range before we attempt to activate it, to avoid reset by MMU.
* We can hit this path with NUMA or memory hot-add.
*/
pmb_bolt_mapping((unsigned long)__va(start), start, end - start,
PAGE_KERNEL);
memblock_set_node(PFN_PHYS(start_pfn), PFN_PHYS(end_pfn - start_pfn),
&memblock.memory, nid);
}
void __init __weak plat_early_device_setup(void)
{
}
void __init setup_arch(char **cmdline_p)
{
enable_mmu();
ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
printk(KERN_NOTICE "Boot params:\n"
"... MOUNT_ROOT_RDONLY - %08lx\n"
"... RAMDISK_FLAGS - %08lx\n"
"... ORIG_ROOT_DEV - %08lx\n"
"... LOADER_TYPE - %08lx\n"
"... INITRD_START - %08lx\n"
"... INITRD_SIZE - %08lx\n",
MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
ORIG_ROOT_DEV, LOADER_TYPE,
INITRD_START, INITRD_SIZE);
#ifdef CONFIG_BLK_DEV_RAM
rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
#endif
if (!MOUNT_ROOT_RDONLY)
root_mountflags &= ~MS_RDONLY;
init_mm.start_code = (unsigned long) _text;
init_mm.end_code = (unsigned long) _etext;
init_mm.end_data = (unsigned long) _edata;
init_mm.brk = (unsigned long) _end;
code_resource.start = virt_to_phys(_text);
code_resource.end = virt_to_phys(_etext)-1;
data_resource.start = virt_to_phys(_etext);
data_resource.end = virt_to_phys(_edata)-1;
bss_resource.start = virt_to_phys(__bss_start);
bss_resource.end = virt_to_phys(__bss_stop)-1;
#ifdef CONFIG_CMDLINE_OVERWRITE
strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
#else
strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
#ifdef CONFIG_CMDLINE_EXTEND
strlcat(command_line, " ", sizeof(command_line));
strlcat(command_line, CONFIG_CMDLINE, sizeof(command_line));
#endif
#endif
/* Save unparsed command line copy for /proc/cmdline */
memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
*cmdline_p = command_line;
parse_early_param();
plat_early_device_setup();
sh_mv_setup();
/* Let earlyprintk output early console messages */
early_platform_driver_probe("earlyprintk", 1, 1);
paging_init();
#ifdef CONFIG_DUMMY_CONSOLE
conswitchp = &dummy_con;
#endif
/* Perform the machine specific initialisation */
if (likely(sh_mv.mv_setup))
sh_mv.mv_setup(cmdline_p);
plat_smp_setup();
}
/* processor boot mode configuration */
int generic_mode_pins(void)
{
pr_warning("generic_mode_pins(): missing mode pin configuration\n");
return 0;
}
int test_mode_pin(int pin)
{
return sh_mv.mv_mode_pins() & pin;
}