| /* |
| * Performance events core code: |
| * |
| * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> |
| * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar |
| * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> |
| * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> |
| * |
| * For licensing details see kernel-base/COPYING |
| */ |
| |
| #include <linux/fs.h> |
| #include <linux/mm.h> |
| #include <linux/cpu.h> |
| #include <linux/smp.h> |
| #include <linux/file.h> |
| #include <linux/poll.h> |
| #include <linux/slab.h> |
| #include <linux/hash.h> |
| #include <linux/sysfs.h> |
| #include <linux/dcache.h> |
| #include <linux/percpu.h> |
| #include <linux/ptrace.h> |
| #include <linux/vmstat.h> |
| #include <linux/vmalloc.h> |
| #include <linux/hardirq.h> |
| #include <linux/rculist.h> |
| #include <linux/uaccess.h> |
| #include <linux/syscalls.h> |
| #include <linux/anon_inodes.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/perf_event.h> |
| #include <linux/ftrace_event.h> |
| #include <linux/hw_breakpoint.h> |
| |
| #include <asm/irq_regs.h> |
| |
| /* |
| * Each CPU has a list of per CPU events: |
| */ |
| static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); |
| |
| int perf_max_events __read_mostly = 1; |
| static int perf_reserved_percpu __read_mostly; |
| static int perf_overcommit __read_mostly = 1; |
| |
| static atomic_t nr_events __read_mostly; |
| static atomic_t nr_mmap_events __read_mostly; |
| static atomic_t nr_comm_events __read_mostly; |
| static atomic_t nr_task_events __read_mostly; |
| |
| /* |
| * perf event paranoia level: |
| * -1 - not paranoid at all |
| * 0 - disallow raw tracepoint access for unpriv |
| * 1 - disallow cpu events for unpriv |
| * 2 - disallow kernel profiling for unpriv |
| */ |
| int sysctl_perf_event_paranoid __read_mostly = 1; |
| |
| int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */ |
| |
| /* |
| * max perf event sample rate |
| */ |
| int sysctl_perf_event_sample_rate __read_mostly = 100000; |
| |
| static atomic64_t perf_event_id; |
| |
| /* |
| * Lock for (sysadmin-configurable) event reservations: |
| */ |
| static DEFINE_SPINLOCK(perf_resource_lock); |
| |
| /* |
| * Architecture provided APIs - weak aliases: |
| */ |
| extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event) |
| { |
| return NULL; |
| } |
| |
| void __weak hw_perf_disable(void) { barrier(); } |
| void __weak hw_perf_enable(void) { barrier(); } |
| |
| int __weak |
| hw_perf_group_sched_in(struct perf_event *group_leader, |
| struct perf_cpu_context *cpuctx, |
| struct perf_event_context *ctx) |
| { |
| return 0; |
| } |
| |
| void __weak perf_event_print_debug(void) { } |
| |
| static DEFINE_PER_CPU(int, perf_disable_count); |
| |
| void perf_disable(void) |
| { |
| if (!__get_cpu_var(perf_disable_count)++) |
| hw_perf_disable(); |
| } |
| |
| void perf_enable(void) |
| { |
| if (!--__get_cpu_var(perf_disable_count)) |
| hw_perf_enable(); |
| } |
| |
| static void get_ctx(struct perf_event_context *ctx) |
| { |
| WARN_ON(!atomic_inc_not_zero(&ctx->refcount)); |
| } |
| |
| static void free_ctx(struct rcu_head *head) |
| { |
| struct perf_event_context *ctx; |
| |
| ctx = container_of(head, struct perf_event_context, rcu_head); |
| kfree(ctx); |
| } |
| |
| static void put_ctx(struct perf_event_context *ctx) |
| { |
| if (atomic_dec_and_test(&ctx->refcount)) { |
| if (ctx->parent_ctx) |
| put_ctx(ctx->parent_ctx); |
| if (ctx->task) |
| put_task_struct(ctx->task); |
| call_rcu(&ctx->rcu_head, free_ctx); |
| } |
| } |
| |
| static void unclone_ctx(struct perf_event_context *ctx) |
| { |
| if (ctx->parent_ctx) { |
| put_ctx(ctx->parent_ctx); |
| ctx->parent_ctx = NULL; |
| } |
| } |
| |
| /* |
| * If we inherit events we want to return the parent event id |
| * to userspace. |
| */ |
| static u64 primary_event_id(struct perf_event *event) |
| { |
| u64 id = event->id; |
| |
| if (event->parent) |
| id = event->parent->id; |
| |
| return id; |
| } |
| |
| /* |
| * Get the perf_event_context for a task and lock it. |
| * This has to cope with with the fact that until it is locked, |
| * the context could get moved to another task. |
| */ |
| static struct perf_event_context * |
| perf_lock_task_context(struct task_struct *task, unsigned long *flags) |
| { |
| struct perf_event_context *ctx; |
| |
| rcu_read_lock(); |
| retry: |
| ctx = rcu_dereference(task->perf_event_ctxp); |
| if (ctx) { |
| /* |
| * If this context is a clone of another, it might |
| * get swapped for another underneath us by |
| * perf_event_task_sched_out, though the |
| * rcu_read_lock() protects us from any context |
| * getting freed. Lock the context and check if it |
| * got swapped before we could get the lock, and retry |
| * if so. If we locked the right context, then it |
| * can't get swapped on us any more. |
| */ |
| raw_spin_lock_irqsave(&ctx->lock, *flags); |
| if (ctx != rcu_dereference(task->perf_event_ctxp)) { |
| raw_spin_unlock_irqrestore(&ctx->lock, *flags); |
| goto retry; |
| } |
| |
| if (!atomic_inc_not_zero(&ctx->refcount)) { |
| raw_spin_unlock_irqrestore(&ctx->lock, *flags); |
| ctx = NULL; |
| } |
| } |
| rcu_read_unlock(); |
| return ctx; |
| } |
| |
| /* |
| * Get the context for a task and increment its pin_count so it |
| * can't get swapped to another task. This also increments its |
| * reference count so that the context can't get freed. |
| */ |
| static struct perf_event_context *perf_pin_task_context(struct task_struct *task) |
| { |
| struct perf_event_context *ctx; |
| unsigned long flags; |
| |
| ctx = perf_lock_task_context(task, &flags); |
| if (ctx) { |
| ++ctx->pin_count; |
| raw_spin_unlock_irqrestore(&ctx->lock, flags); |
| } |
| return ctx; |
| } |
| |
| static void perf_unpin_context(struct perf_event_context *ctx) |
| { |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&ctx->lock, flags); |
| --ctx->pin_count; |
| raw_spin_unlock_irqrestore(&ctx->lock, flags); |
| put_ctx(ctx); |
| } |
| |
| static inline u64 perf_clock(void) |
| { |
| return cpu_clock(raw_smp_processor_id()); |
| } |
| |
| /* |
| * Update the record of the current time in a context. |
| */ |
| static void update_context_time(struct perf_event_context *ctx) |
| { |
| u64 now = perf_clock(); |
| |
| ctx->time += now - ctx->timestamp; |
| ctx->timestamp = now; |
| } |
| |
| /* |
| * Update the total_time_enabled and total_time_running fields for a event. |
| */ |
| static void update_event_times(struct perf_event *event) |
| { |
| struct perf_event_context *ctx = event->ctx; |
| u64 run_end; |
| |
| if (event->state < PERF_EVENT_STATE_INACTIVE || |
| event->group_leader->state < PERF_EVENT_STATE_INACTIVE) |
| return; |
| |
| if (ctx->is_active) |
| run_end = ctx->time; |
| else |
| run_end = event->tstamp_stopped; |
| |
| event->total_time_enabled = run_end - event->tstamp_enabled; |
| |
| if (event->state == PERF_EVENT_STATE_INACTIVE) |
| run_end = event->tstamp_stopped; |
| else |
| run_end = ctx->time; |
| |
| event->total_time_running = run_end - event->tstamp_running; |
| } |
| |
| static struct list_head * |
| ctx_group_list(struct perf_event *event, struct perf_event_context *ctx) |
| { |
| if (event->attr.pinned) |
| return &ctx->pinned_groups; |
| else |
| return &ctx->flexible_groups; |
| } |
| |
| /* |
| * Add a event from the lists for its context. |
| * Must be called with ctx->mutex and ctx->lock held. |
| */ |
| static void |
| list_add_event(struct perf_event *event, struct perf_event_context *ctx) |
| { |
| struct perf_event *group_leader = event->group_leader; |
| |
| /* |
| * Depending on whether it is a standalone or sibling event, |
| * add it straight to the context's event list, or to the group |
| * leader's sibling list: |
| */ |
| if (group_leader == event) { |
| struct list_head *list; |
| |
| if (is_software_event(event)) |
| event->group_flags |= PERF_GROUP_SOFTWARE; |
| |
| list = ctx_group_list(event, ctx); |
| list_add_tail(&event->group_entry, list); |
| } else { |
| if (group_leader->group_flags & PERF_GROUP_SOFTWARE && |
| !is_software_event(event)) |
| group_leader->group_flags &= ~PERF_GROUP_SOFTWARE; |
| |
| list_add_tail(&event->group_entry, &group_leader->sibling_list); |
| group_leader->nr_siblings++; |
| } |
| |
| list_add_rcu(&event->event_entry, &ctx->event_list); |
| ctx->nr_events++; |
| if (event->attr.inherit_stat) |
| ctx->nr_stat++; |
| } |
| |
| /* |
| * Remove a event from the lists for its context. |
| * Must be called with ctx->mutex and ctx->lock held. |
| */ |
| static void |
| list_del_event(struct perf_event *event, struct perf_event_context *ctx) |
| { |
| struct perf_event *sibling, *tmp; |
| |
| if (list_empty(&event->group_entry)) |
| return; |
| ctx->nr_events--; |
| if (event->attr.inherit_stat) |
| ctx->nr_stat--; |
| |
| list_del_init(&event->group_entry); |
| list_del_rcu(&event->event_entry); |
| |
| if (event->group_leader != event) |
| event->group_leader->nr_siblings--; |
| |
| update_event_times(event); |
| |
| /* |
| * If event was in error state, then keep it |
| * that way, otherwise bogus counts will be |
| * returned on read(). The only way to get out |
| * of error state is by explicit re-enabling |
| * of the event |
| */ |
| if (event->state > PERF_EVENT_STATE_OFF) |
| event->state = PERF_EVENT_STATE_OFF; |
| |
| /* |
| * If this was a group event with sibling events then |
| * upgrade the siblings to singleton events by adding them |
| * to the context list directly: |
| */ |
| list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) { |
| struct list_head *list; |
| |
| list = ctx_group_list(event, ctx); |
| list_move_tail(&sibling->group_entry, list); |
| sibling->group_leader = sibling; |
| |
| /* Inherit group flags from the previous leader */ |
| sibling->group_flags = event->group_flags; |
| } |
| } |
| |
| static void |
| event_sched_out(struct perf_event *event, |
| struct perf_cpu_context *cpuctx, |
| struct perf_event_context *ctx) |
| { |
| if (event->state != PERF_EVENT_STATE_ACTIVE) |
| return; |
| |
| event->state = PERF_EVENT_STATE_INACTIVE; |
| if (event->pending_disable) { |
| event->pending_disable = 0; |
| event->state = PERF_EVENT_STATE_OFF; |
| } |
| event->tstamp_stopped = ctx->time; |
| event->pmu->disable(event); |
| event->oncpu = -1; |
| |
| if (!is_software_event(event)) |
| cpuctx->active_oncpu--; |
| ctx->nr_active--; |
| if (event->attr.exclusive || !cpuctx->active_oncpu) |
| cpuctx->exclusive = 0; |
| } |
| |
| static void |
| group_sched_out(struct perf_event *group_event, |
| struct perf_cpu_context *cpuctx, |
| struct perf_event_context *ctx) |
| { |
| struct perf_event *event; |
| |
| if (group_event->state != PERF_EVENT_STATE_ACTIVE) |
| return; |
| |
| event_sched_out(group_event, cpuctx, ctx); |
| |
| /* |
| * Schedule out siblings (if any): |
| */ |
| list_for_each_entry(event, &group_event->sibling_list, group_entry) |
| event_sched_out(event, cpuctx, ctx); |
| |
| if (group_event->attr.exclusive) |
| cpuctx->exclusive = 0; |
| } |
| |
| /* |
| * Cross CPU call to remove a performance event |
| * |
| * We disable the event on the hardware level first. After that we |
| * remove it from the context list. |
| */ |
| static void __perf_event_remove_from_context(void *info) |
| { |
| struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
| struct perf_event *event = info; |
| struct perf_event_context *ctx = event->ctx; |
| |
| /* |
| * If this is a task context, we need to check whether it is |
| * the current task context of this cpu. If not it has been |
| * scheduled out before the smp call arrived. |
| */ |
| if (ctx->task && cpuctx->task_ctx != ctx) |
| return; |
| |
| raw_spin_lock(&ctx->lock); |
| /* |
| * Protect the list operation against NMI by disabling the |
| * events on a global level. |
| */ |
| perf_disable(); |
| |
| event_sched_out(event, cpuctx, ctx); |
| |
| list_del_event(event, ctx); |
| |
| if (!ctx->task) { |
| /* |
| * Allow more per task events with respect to the |
| * reservation: |
| */ |
| cpuctx->max_pertask = |
| min(perf_max_events - ctx->nr_events, |
| perf_max_events - perf_reserved_percpu); |
| } |
| |
| perf_enable(); |
| raw_spin_unlock(&ctx->lock); |
| } |
| |
| |
| /* |
| * Remove the event from a task's (or a CPU's) list of events. |
| * |
| * Must be called with ctx->mutex held. |
| * |
| * CPU events are removed with a smp call. For task events we only |
| * call when the task is on a CPU. |
| * |
| * If event->ctx is a cloned context, callers must make sure that |
| * every task struct that event->ctx->task could possibly point to |
| * remains valid. This is OK when called from perf_release since |
| * that only calls us on the top-level context, which can't be a clone. |
| * When called from perf_event_exit_task, it's OK because the |
| * context has been detached from its task. |
| */ |
| static void perf_event_remove_from_context(struct perf_event *event) |
| { |
| struct perf_event_context *ctx = event->ctx; |
| struct task_struct *task = ctx->task; |
| |
| if (!task) { |
| /* |
| * Per cpu events are removed via an smp call and |
| * the removal is always successful. |
| */ |
| smp_call_function_single(event->cpu, |
| __perf_event_remove_from_context, |
| event, 1); |
| return; |
| } |
| |
| retry: |
| task_oncpu_function_call(task, __perf_event_remove_from_context, |
| event); |
| |
| raw_spin_lock_irq(&ctx->lock); |
| /* |
| * If the context is active we need to retry the smp call. |
| */ |
| if (ctx->nr_active && !list_empty(&event->group_entry)) { |
| raw_spin_unlock_irq(&ctx->lock); |
| goto retry; |
| } |
| |
| /* |
| * The lock prevents that this context is scheduled in so we |
| * can remove the event safely, if the call above did not |
| * succeed. |
| */ |
| if (!list_empty(&event->group_entry)) |
| list_del_event(event, ctx); |
| raw_spin_unlock_irq(&ctx->lock); |
| } |
| |
| /* |
| * Update total_time_enabled and total_time_running for all events in a group. |
| */ |
| static void update_group_times(struct perf_event *leader) |
| { |
| struct perf_event *event; |
| |
| update_event_times(leader); |
| list_for_each_entry(event, &leader->sibling_list, group_entry) |
| update_event_times(event); |
| } |
| |
| /* |
| * Cross CPU call to disable a performance event |
| */ |
| static void __perf_event_disable(void *info) |
| { |
| struct perf_event *event = info; |
| struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
| struct perf_event_context *ctx = event->ctx; |
| |
| /* |
| * If this is a per-task event, need to check whether this |
| * event's task is the current task on this cpu. |
| */ |
| if (ctx->task && cpuctx->task_ctx != ctx) |
| return; |
| |
| raw_spin_lock(&ctx->lock); |
| |
| /* |
| * If the event is on, turn it off. |
| * If it is in error state, leave it in error state. |
| */ |
| if (event->state >= PERF_EVENT_STATE_INACTIVE) { |
| update_context_time(ctx); |
| update_group_times(event); |
| if (event == event->group_leader) |
| group_sched_out(event, cpuctx, ctx); |
| else |
| event_sched_out(event, cpuctx, ctx); |
| event->state = PERF_EVENT_STATE_OFF; |
| } |
| |
| raw_spin_unlock(&ctx->lock); |
| } |
| |
| /* |
| * Disable a event. |
| * |
| * If event->ctx is a cloned context, callers must make sure that |
| * every task struct that event->ctx->task could possibly point to |
| * remains valid. This condition is satisifed when called through |
| * perf_event_for_each_child or perf_event_for_each because they |
| * hold the top-level event's child_mutex, so any descendant that |
| * goes to exit will block in sync_child_event. |
| * When called from perf_pending_event it's OK because event->ctx |
| * is the current context on this CPU and preemption is disabled, |
| * hence we can't get into perf_event_task_sched_out for this context. |
| */ |
| void perf_event_disable(struct perf_event *event) |
| { |
| struct perf_event_context *ctx = event->ctx; |
| struct task_struct *task = ctx->task; |
| |
| if (!task) { |
| /* |
| * Disable the event on the cpu that it's on |
| */ |
| smp_call_function_single(event->cpu, __perf_event_disable, |
| event, 1); |
| return; |
| } |
| |
| retry: |
| task_oncpu_function_call(task, __perf_event_disable, event); |
| |
| raw_spin_lock_irq(&ctx->lock); |
| /* |
| * If the event is still active, we need to retry the cross-call. |
| */ |
| if (event->state == PERF_EVENT_STATE_ACTIVE) { |
| raw_spin_unlock_irq(&ctx->lock); |
| goto retry; |
| } |
| |
| /* |
| * Since we have the lock this context can't be scheduled |
| * in, so we can change the state safely. |
| */ |
| if (event->state == PERF_EVENT_STATE_INACTIVE) { |
| update_group_times(event); |
| event->state = PERF_EVENT_STATE_OFF; |
| } |
| |
| raw_spin_unlock_irq(&ctx->lock); |
| } |
| |
| static int |
| event_sched_in(struct perf_event *event, |
| struct perf_cpu_context *cpuctx, |
| struct perf_event_context *ctx) |
| { |
| if (event->state <= PERF_EVENT_STATE_OFF) |
| return 0; |
| |
| event->state = PERF_EVENT_STATE_ACTIVE; |
| event->oncpu = smp_processor_id(); |
| /* |
| * The new state must be visible before we turn it on in the hardware: |
| */ |
| smp_wmb(); |
| |
| if (event->pmu->enable(event)) { |
| event->state = PERF_EVENT_STATE_INACTIVE; |
| event->oncpu = -1; |
| return -EAGAIN; |
| } |
| |
| event->tstamp_running += ctx->time - event->tstamp_stopped; |
| |
| if (!is_software_event(event)) |
| cpuctx->active_oncpu++; |
| ctx->nr_active++; |
| |
| if (event->attr.exclusive) |
| cpuctx->exclusive = 1; |
| |
| return 0; |
| } |
| |
| static int |
| group_sched_in(struct perf_event *group_event, |
| struct perf_cpu_context *cpuctx, |
| struct perf_event_context *ctx) |
| { |
| struct perf_event *event, *partial_group; |
| int ret; |
| |
| if (group_event->state == PERF_EVENT_STATE_OFF) |
| return 0; |
| |
| ret = hw_perf_group_sched_in(group_event, cpuctx, ctx); |
| if (ret) |
| return ret < 0 ? ret : 0; |
| |
| if (event_sched_in(group_event, cpuctx, ctx)) |
| return -EAGAIN; |
| |
| /* |
| * Schedule in siblings as one group (if any): |
| */ |
| list_for_each_entry(event, &group_event->sibling_list, group_entry) { |
| if (event_sched_in(event, cpuctx, ctx)) { |
| partial_group = event; |
| goto group_error; |
| } |
| } |
| |
| return 0; |
| |
| group_error: |
| /* |
| * Groups can be scheduled in as one unit only, so undo any |
| * partial group before returning: |
| */ |
| list_for_each_entry(event, &group_event->sibling_list, group_entry) { |
| if (event == partial_group) |
| break; |
| event_sched_out(event, cpuctx, ctx); |
| } |
| event_sched_out(group_event, cpuctx, ctx); |
| |
| return -EAGAIN; |
| } |
| |
| /* |
| * Work out whether we can put this event group on the CPU now. |
| */ |
| static int group_can_go_on(struct perf_event *event, |
| struct perf_cpu_context *cpuctx, |
| int can_add_hw) |
| { |
| /* |
| * Groups consisting entirely of software events can always go on. |
| */ |
| if (event->group_flags & PERF_GROUP_SOFTWARE) |
| return 1; |
| /* |
| * If an exclusive group is already on, no other hardware |
| * events can go on. |
| */ |
| if (cpuctx->exclusive) |
| return 0; |
| /* |
| * If this group is exclusive and there are already |
| * events on the CPU, it can't go on. |
| */ |
| if (event->attr.exclusive && cpuctx->active_oncpu) |
| return 0; |
| /* |
| * Otherwise, try to add it if all previous groups were able |
| * to go on. |
| */ |
| return can_add_hw; |
| } |
| |
| static void add_event_to_ctx(struct perf_event *event, |
| struct perf_event_context *ctx) |
| { |
| list_add_event(event, ctx); |
| event->tstamp_enabled = ctx->time; |
| event->tstamp_running = ctx->time; |
| event->tstamp_stopped = ctx->time; |
| } |
| |
| /* |
| * Cross CPU call to install and enable a performance event |
| * |
| * Must be called with ctx->mutex held |
| */ |
| static void __perf_install_in_context(void *info) |
| { |
| struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
| struct perf_event *event = info; |
| struct perf_event_context *ctx = event->ctx; |
| struct perf_event *leader = event->group_leader; |
| int err; |
| |
| /* |
| * If this is a task context, we need to check whether it is |
| * the current task context of this cpu. If not it has been |
| * scheduled out before the smp call arrived. |
| * Or possibly this is the right context but it isn't |
| * on this cpu because it had no events. |
| */ |
| if (ctx->task && cpuctx->task_ctx != ctx) { |
| if (cpuctx->task_ctx || ctx->task != current) |
| return; |
| cpuctx->task_ctx = ctx; |
| } |
| |
| raw_spin_lock(&ctx->lock); |
| ctx->is_active = 1; |
| update_context_time(ctx); |
| |
| /* |
| * Protect the list operation against NMI by disabling the |
| * events on a global level. NOP for non NMI based events. |
| */ |
| perf_disable(); |
| |
| add_event_to_ctx(event, ctx); |
| |
| if (event->cpu != -1 && event->cpu != smp_processor_id()) |
| goto unlock; |
| |
| /* |
| * Don't put the event on if it is disabled or if |
| * it is in a group and the group isn't on. |
| */ |
| if (event->state != PERF_EVENT_STATE_INACTIVE || |
| (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)) |
| goto unlock; |
| |
| /* |
| * An exclusive event can't go on if there are already active |
| * hardware events, and no hardware event can go on if there |
| * is already an exclusive event on. |
| */ |
| if (!group_can_go_on(event, cpuctx, 1)) |
| err = -EEXIST; |
| else |
| err = event_sched_in(event, cpuctx, ctx); |
| |
| if (err) { |
| /* |
| * This event couldn't go on. If it is in a group |
| * then we have to pull the whole group off. |
| * If the event group is pinned then put it in error state. |
| */ |
| if (leader != event) |
| group_sched_out(leader, cpuctx, ctx); |
| if (leader->attr.pinned) { |
| update_group_times(leader); |
| leader->state = PERF_EVENT_STATE_ERROR; |
| } |
| } |
| |
| if (!err && !ctx->task && cpuctx->max_pertask) |
| cpuctx->max_pertask--; |
| |
| unlock: |
| perf_enable(); |
| |
| raw_spin_unlock(&ctx->lock); |
| } |
| |
| /* |
| * Attach a performance event to a context |
| * |
| * First we add the event to the list with the hardware enable bit |
| * in event->hw_config cleared. |
| * |
| * If the event is attached to a task which is on a CPU we use a smp |
| * call to enable it in the task context. The task might have been |
| * scheduled away, but we check this in the smp call again. |
| * |
| * Must be called with ctx->mutex held. |
| */ |
| static void |
| perf_install_in_context(struct perf_event_context *ctx, |
| struct perf_event *event, |
| int cpu) |
| { |
| struct task_struct *task = ctx->task; |
| |
| if (!task) { |
| /* |
| * Per cpu events are installed via an smp call and |
| * the install is always successful. |
| */ |
| smp_call_function_single(cpu, __perf_install_in_context, |
| event, 1); |
| return; |
| } |
| |
| retry: |
| task_oncpu_function_call(task, __perf_install_in_context, |
| event); |
| |
| raw_spin_lock_irq(&ctx->lock); |
| /* |
| * we need to retry the smp call. |
| */ |
| if (ctx->is_active && list_empty(&event->group_entry)) { |
| raw_spin_unlock_irq(&ctx->lock); |
| goto retry; |
| } |
| |
| /* |
| * The lock prevents that this context is scheduled in so we |
| * can add the event safely, if it the call above did not |
| * succeed. |
| */ |
| if (list_empty(&event->group_entry)) |
| add_event_to_ctx(event, ctx); |
| raw_spin_unlock_irq(&ctx->lock); |
| } |
| |
| /* |
| * Put a event into inactive state and update time fields. |
| * Enabling the leader of a group effectively enables all |
| * the group members that aren't explicitly disabled, so we |
| * have to update their ->tstamp_enabled also. |
| * Note: this works for group members as well as group leaders |
| * since the non-leader members' sibling_lists will be empty. |
| */ |
| static void __perf_event_mark_enabled(struct perf_event *event, |
| struct perf_event_context *ctx) |
| { |
| struct perf_event *sub; |
| |
| event->state = PERF_EVENT_STATE_INACTIVE; |
| event->tstamp_enabled = ctx->time - event->total_time_enabled; |
| list_for_each_entry(sub, &event->sibling_list, group_entry) |
| if (sub->state >= PERF_EVENT_STATE_INACTIVE) |
| sub->tstamp_enabled = |
| ctx->time - sub->total_time_enabled; |
| } |
| |
| /* |
| * Cross CPU call to enable a performance event |
| */ |
| static void __perf_event_enable(void *info) |
| { |
| struct perf_event *event = info; |
| struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
| struct perf_event_context *ctx = event->ctx; |
| struct perf_event *leader = event->group_leader; |
| int err; |
| |
| /* |
| * If this is a per-task event, need to check whether this |
| * event's task is the current task on this cpu. |
| */ |
| if (ctx->task && cpuctx->task_ctx != ctx) { |
| if (cpuctx->task_ctx || ctx->task != current) |
| return; |
| cpuctx->task_ctx = ctx; |
| } |
| |
| raw_spin_lock(&ctx->lock); |
| ctx->is_active = 1; |
| update_context_time(ctx); |
| |
| if (event->state >= PERF_EVENT_STATE_INACTIVE) |
| goto unlock; |
| __perf_event_mark_enabled(event, ctx); |
| |
| if (event->cpu != -1 && event->cpu != smp_processor_id()) |
| goto unlock; |
| |
| /* |
| * If the event is in a group and isn't the group leader, |
| * then don't put it on unless the group is on. |
| */ |
| if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) |
| goto unlock; |
| |
| if (!group_can_go_on(event, cpuctx, 1)) { |
| err = -EEXIST; |
| } else { |
| perf_disable(); |
| if (event == leader) |
| err = group_sched_in(event, cpuctx, ctx); |
| else |
| err = event_sched_in(event, cpuctx, ctx); |
| perf_enable(); |
| } |
| |
| if (err) { |
| /* |
| * If this event can't go on and it's part of a |
| * group, then the whole group has to come off. |
| */ |
| if (leader != event) |
| group_sched_out(leader, cpuctx, ctx); |
| if (leader->attr.pinned) { |
| update_group_times(leader); |
| leader->state = PERF_EVENT_STATE_ERROR; |
| } |
| } |
| |
| unlock: |
| raw_spin_unlock(&ctx->lock); |
| } |
| |
| /* |
| * Enable a event. |
| * |
| * If event->ctx is a cloned context, callers must make sure that |
| * every task struct that event->ctx->task could possibly point to |
| * remains valid. This condition is satisfied when called through |
| * perf_event_for_each_child or perf_event_for_each as described |
| * for perf_event_disable. |
| */ |
| void perf_event_enable(struct perf_event *event) |
| { |
| struct perf_event_context *ctx = event->ctx; |
| struct task_struct *task = ctx->task; |
| |
| if (!task) { |
| /* |
| * Enable the event on the cpu that it's on |
| */ |
| smp_call_function_single(event->cpu, __perf_event_enable, |
| event, 1); |
| return; |
| } |
| |
| raw_spin_lock_irq(&ctx->lock); |
| if (event->state >= PERF_EVENT_STATE_INACTIVE) |
| goto out; |
| |
| /* |
| * If the event is in error state, clear that first. |
| * That way, if we see the event in error state below, we |
| * know that it has gone back into error state, as distinct |
| * from the task having been scheduled away before the |
| * cross-call arrived. |
| */ |
| if (event->state == PERF_EVENT_STATE_ERROR) |
| event->state = PERF_EVENT_STATE_OFF; |
| |
| retry: |
| raw_spin_unlock_irq(&ctx->lock); |
| task_oncpu_function_call(task, __perf_event_enable, event); |
| |
| raw_spin_lock_irq(&ctx->lock); |
| |
| /* |
| * If the context is active and the event is still off, |
| * we need to retry the cross-call. |
| */ |
| if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) |
| goto retry; |
| |
| /* |
| * Since we have the lock this context can't be scheduled |
| * in, so we can change the state safely. |
| */ |
| if (event->state == PERF_EVENT_STATE_OFF) |
| __perf_event_mark_enabled(event, ctx); |
| |
| out: |
| raw_spin_unlock_irq(&ctx->lock); |
| } |
| |
| static int perf_event_refresh(struct perf_event *event, int refresh) |
| { |
| /* |
| * not supported on inherited events |
| */ |
| if (event->attr.inherit) |
| return -EINVAL; |
| |
| atomic_add(refresh, &event->event_limit); |
| perf_event_enable(event); |
| |
| return 0; |
| } |
| |
| enum event_type_t { |
| EVENT_FLEXIBLE = 0x1, |
| EVENT_PINNED = 0x2, |
| EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED, |
| }; |
| |
| static void ctx_sched_out(struct perf_event_context *ctx, |
| struct perf_cpu_context *cpuctx, |
| enum event_type_t event_type) |
| { |
| struct perf_event *event; |
| |
| raw_spin_lock(&ctx->lock); |
| ctx->is_active = 0; |
| if (likely(!ctx->nr_events)) |
| goto out; |
| update_context_time(ctx); |
| |
| perf_disable(); |
| if (!ctx->nr_active) |
| goto out_enable; |
| |
| if (event_type & EVENT_PINNED) |
| list_for_each_entry(event, &ctx->pinned_groups, group_entry) |
| group_sched_out(event, cpuctx, ctx); |
| |
| if (event_type & EVENT_FLEXIBLE) |
| list_for_each_entry(event, &ctx->flexible_groups, group_entry) |
| group_sched_out(event, cpuctx, ctx); |
| |
| out_enable: |
| perf_enable(); |
| out: |
| raw_spin_unlock(&ctx->lock); |
| } |
| |
| /* |
| * Test whether two contexts are equivalent, i.e. whether they |
| * have both been cloned from the same version of the same context |
| * and they both have the same number of enabled events. |
| * If the number of enabled events is the same, then the set |
| * of enabled events should be the same, because these are both |
| * inherited contexts, therefore we can't access individual events |
| * in them directly with an fd; we can only enable/disable all |
| * events via prctl, or enable/disable all events in a family |
| * via ioctl, which will have the same effect on both contexts. |
| */ |
| static int context_equiv(struct perf_event_context *ctx1, |
| struct perf_event_context *ctx2) |
| { |
| return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx |
| && ctx1->parent_gen == ctx2->parent_gen |
| && !ctx1->pin_count && !ctx2->pin_count; |
| } |
| |
| static void __perf_event_sync_stat(struct perf_event *event, |
| struct perf_event *next_event) |
| { |
| u64 value; |
| |
| if (!event->attr.inherit_stat) |
| return; |
| |
| /* |
| * Update the event value, we cannot use perf_event_read() |
| * because we're in the middle of a context switch and have IRQs |
| * disabled, which upsets smp_call_function_single(), however |
| * we know the event must be on the current CPU, therefore we |
| * don't need to use it. |
| */ |
| switch (event->state) { |
| case PERF_EVENT_STATE_ACTIVE: |
| event->pmu->read(event); |
| /* fall-through */ |
| |
| case PERF_EVENT_STATE_INACTIVE: |
| update_event_times(event); |
| break; |
| |
| default: |
| break; |
| } |
| |
| /* |
| * In order to keep per-task stats reliable we need to flip the event |
| * values when we flip the contexts. |
| */ |
| value = atomic64_read(&next_event->count); |
| value = atomic64_xchg(&event->count, value); |
| atomic64_set(&next_event->count, value); |
| |
| swap(event->total_time_enabled, next_event->total_time_enabled); |
| swap(event->total_time_running, next_event->total_time_running); |
| |
| /* |
| * Since we swizzled the values, update the user visible data too. |
| */ |
| perf_event_update_userpage(event); |
| perf_event_update_userpage(next_event); |
| } |
| |
| #define list_next_entry(pos, member) \ |
| list_entry(pos->member.next, typeof(*pos), member) |
| |
| static void perf_event_sync_stat(struct perf_event_context *ctx, |
| struct perf_event_context *next_ctx) |
| { |
| struct perf_event *event, *next_event; |
| |
| if (!ctx->nr_stat) |
| return; |
| |
| update_context_time(ctx); |
| |
| event = list_first_entry(&ctx->event_list, |
| struct perf_event, event_entry); |
| |
| next_event = list_first_entry(&next_ctx->event_list, |
| struct perf_event, event_entry); |
| |
| while (&event->event_entry != &ctx->event_list && |
| &next_event->event_entry != &next_ctx->event_list) { |
| |
| __perf_event_sync_stat(event, next_event); |
| |
| event = list_next_entry(event, event_entry); |
| next_event = list_next_entry(next_event, event_entry); |
| } |
| } |
| |
| /* |
| * Called from scheduler to remove the events of the current task, |
| * with interrupts disabled. |
| * |
| * We stop each event and update the event value in event->count. |
| * |
| * This does not protect us against NMI, but disable() |
| * sets the disabled bit in the control field of event _before_ |
| * accessing the event control register. If a NMI hits, then it will |
| * not restart the event. |
| */ |
| void perf_event_task_sched_out(struct task_struct *task, |
| struct task_struct *next) |
| { |
| struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
| struct perf_event_context *ctx = task->perf_event_ctxp; |
| struct perf_event_context *next_ctx; |
| struct perf_event_context *parent; |
| int do_switch = 1; |
| |
| perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0); |
| |
| if (likely(!ctx || !cpuctx->task_ctx)) |
| return; |
| |
| rcu_read_lock(); |
| parent = rcu_dereference(ctx->parent_ctx); |
| next_ctx = next->perf_event_ctxp; |
| if (parent && next_ctx && |
| rcu_dereference(next_ctx->parent_ctx) == parent) { |
| /* |
| * Looks like the two contexts are clones, so we might be |
| * able to optimize the context switch. We lock both |
| * contexts and check that they are clones under the |
| * lock (including re-checking that neither has been |
| * uncloned in the meantime). It doesn't matter which |
| * order we take the locks because no other cpu could |
| * be trying to lock both of these tasks. |
| */ |
| raw_spin_lock(&ctx->lock); |
| raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING); |
| if (context_equiv(ctx, next_ctx)) { |
| /* |
| * XXX do we need a memory barrier of sorts |
| * wrt to rcu_dereference() of perf_event_ctxp |
| */ |
| task->perf_event_ctxp = next_ctx; |
| next->perf_event_ctxp = ctx; |
| ctx->task = next; |
| next_ctx->task = task; |
| do_switch = 0; |
| |
| perf_event_sync_stat(ctx, next_ctx); |
| } |
| raw_spin_unlock(&next_ctx->lock); |
| raw_spin_unlock(&ctx->lock); |
| } |
| rcu_read_unlock(); |
| |
| if (do_switch) { |
| ctx_sched_out(ctx, cpuctx, EVENT_ALL); |
| cpuctx->task_ctx = NULL; |
| } |
| } |
| |
| static void task_ctx_sched_out(struct perf_event_context *ctx, |
| enum event_type_t event_type) |
| { |
| struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
| |
| if (!cpuctx->task_ctx) |
| return; |
| |
| if (WARN_ON_ONCE(ctx != cpuctx->task_ctx)) |
| return; |
| |
| ctx_sched_out(ctx, cpuctx, event_type); |
| cpuctx->task_ctx = NULL; |
| } |
| |
| /* |
| * Called with IRQs disabled |
| */ |
| static void __perf_event_task_sched_out(struct perf_event_context *ctx) |
| { |
| task_ctx_sched_out(ctx, EVENT_ALL); |
| } |
| |
| /* |
| * Called with IRQs disabled |
| */ |
| static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx, |
| enum event_type_t event_type) |
| { |
| ctx_sched_out(&cpuctx->ctx, cpuctx, event_type); |
| } |
| |
| static void |
| ctx_pinned_sched_in(struct perf_event_context *ctx, |
| struct perf_cpu_context *cpuctx) |
| { |
| struct perf_event *event; |
| |
| list_for_each_entry(event, &ctx->pinned_groups, group_entry) { |
| if (event->state <= PERF_EVENT_STATE_OFF) |
| continue; |
| if (event->cpu != -1 && event->cpu != smp_processor_id()) |
| continue; |
| |
| if (group_can_go_on(event, cpuctx, 1)) |
| group_sched_in(event, cpuctx, ctx); |
| |
| /* |
| * If this pinned group hasn't been scheduled, |
| * put it in error state. |
| */ |
| if (event->state == PERF_EVENT_STATE_INACTIVE) { |
| update_group_times(event); |
| event->state = PERF_EVENT_STATE_ERROR; |
| } |
| } |
| } |
| |
| static void |
| ctx_flexible_sched_in(struct perf_event_context *ctx, |
| struct perf_cpu_context *cpuctx) |
| { |
| struct perf_event *event; |
| int can_add_hw = 1; |
| |
| list_for_each_entry(event, &ctx->flexible_groups, group_entry) { |
| /* Ignore events in OFF or ERROR state */ |
| if (event->state <= PERF_EVENT_STATE_OFF) |
| continue; |
| /* |
| * Listen to the 'cpu' scheduling filter constraint |
| * of events: |
| */ |
| if (event->cpu != -1 && event->cpu != smp_processor_id()) |
| continue; |
| |
| if (group_can_go_on(event, cpuctx, can_add_hw)) |
| if (group_sched_in(event, cpuctx, ctx)) |
| can_add_hw = 0; |
| } |
| } |
| |
| static void |
| ctx_sched_in(struct perf_event_context *ctx, |
| struct perf_cpu_context *cpuctx, |
| enum event_type_t event_type) |
| { |
| raw_spin_lock(&ctx->lock); |
| ctx->is_active = 1; |
| if (likely(!ctx->nr_events)) |
| goto out; |
| |
| ctx->timestamp = perf_clock(); |
| |
| perf_disable(); |
| |
| /* |
| * First go through the list and put on any pinned groups |
| * in order to give them the best chance of going on. |
| */ |
| if (event_type & EVENT_PINNED) |
| ctx_pinned_sched_in(ctx, cpuctx); |
| |
| /* Then walk through the lower prio flexible groups */ |
| if (event_type & EVENT_FLEXIBLE) |
| ctx_flexible_sched_in(ctx, cpuctx); |
| |
| perf_enable(); |
| out: |
| raw_spin_unlock(&ctx->lock); |
| } |
| |
| static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx, |
| enum event_type_t event_type) |
| { |
| struct perf_event_context *ctx = &cpuctx->ctx; |
| |
| ctx_sched_in(ctx, cpuctx, event_type); |
| } |
| |
| static void task_ctx_sched_in(struct task_struct *task, |
| enum event_type_t event_type) |
| { |
| struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
| struct perf_event_context *ctx = task->perf_event_ctxp; |
| |
| if (likely(!ctx)) |
| return; |
| if (cpuctx->task_ctx == ctx) |
| return; |
| ctx_sched_in(ctx, cpuctx, event_type); |
| cpuctx->task_ctx = ctx; |
| } |
| /* |
| * Called from scheduler to add the events of the current task |
| * with interrupts disabled. |
| * |
| * We restore the event value and then enable it. |
| * |
| * This does not protect us against NMI, but enable() |
| * sets the enabled bit in the control field of event _before_ |
| * accessing the event control register. If a NMI hits, then it will |
| * keep the event running. |
| */ |
| void perf_event_task_sched_in(struct task_struct *task) |
| { |
| struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
| struct perf_event_context *ctx = task->perf_event_ctxp; |
| |
| if (likely(!ctx)) |
| return; |
| |
| if (cpuctx->task_ctx == ctx) |
| return; |
| |
| perf_disable(); |
| |
| /* |
| * We want to keep the following priority order: |
| * cpu pinned (that don't need to move), task pinned, |
| * cpu flexible, task flexible. |
| */ |
| cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); |
| |
| ctx_sched_in(ctx, cpuctx, EVENT_PINNED); |
| cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE); |
| ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE); |
| |
| cpuctx->task_ctx = ctx; |
| |
| perf_enable(); |
| } |
| |
| #define MAX_INTERRUPTS (~0ULL) |
| |
| static void perf_log_throttle(struct perf_event *event, int enable); |
| |
| static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count) |
| { |
| u64 frequency = event->attr.sample_freq; |
| u64 sec = NSEC_PER_SEC; |
| u64 divisor, dividend; |
| |
| int count_fls, nsec_fls, frequency_fls, sec_fls; |
| |
| count_fls = fls64(count); |
| nsec_fls = fls64(nsec); |
| frequency_fls = fls64(frequency); |
| sec_fls = 30; |
| |
| /* |
| * We got @count in @nsec, with a target of sample_freq HZ |
| * the target period becomes: |
| * |
| * @count * 10^9 |
| * period = ------------------- |
| * @nsec * sample_freq |
| * |
| */ |
| |
| /* |
| * Reduce accuracy by one bit such that @a and @b converge |
| * to a similar magnitude. |
| */ |
| #define REDUCE_FLS(a, b) \ |
| do { \ |
| if (a##_fls > b##_fls) { \ |
| a >>= 1; \ |
| a##_fls--; \ |
| } else { \ |
| b >>= 1; \ |
| b##_fls--; \ |
| } \ |
| } while (0) |
| |
| /* |
| * Reduce accuracy until either term fits in a u64, then proceed with |
| * the other, so that finally we can do a u64/u64 division. |
| */ |
| while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) { |
| REDUCE_FLS(nsec, frequency); |
| REDUCE_FLS(sec, count); |
| } |
| |
| if (count_fls + sec_fls > 64) { |
| divisor = nsec * frequency; |
| |
| while (count_fls + sec_fls > 64) { |
| REDUCE_FLS(count, sec); |
| divisor >>= 1; |
| } |
| |
| dividend = count * sec; |
| } else { |
| dividend = count * sec; |
| |
| while (nsec_fls + frequency_fls > 64) { |
| REDUCE_FLS(nsec, frequency); |
| dividend >>= 1; |
| } |
| |
| divisor = nsec * frequency; |
| } |
| |
| return div64_u64(dividend, divisor); |
| } |
| |
| static void perf_event_stop(struct perf_event *event) |
| { |
| if (!event->pmu->stop) |
| return event->pmu->disable(event); |
| |
| return event->pmu->stop(event); |
| } |
| |
| static int perf_event_start(struct perf_event *event) |
| { |
| if (!event->pmu->start) |
| return event->pmu->enable(event); |
| |
| return event->pmu->start(event); |
| } |
| |
| static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| u64 period, sample_period; |
| s64 delta; |
| |
| period = perf_calculate_period(event, nsec, count); |
| |
| delta = (s64)(period - hwc->sample_period); |
| delta = (delta + 7) / 8; /* low pass filter */ |
| |
| sample_period = hwc->sample_period + delta; |
| |
| if (!sample_period) |
| sample_period = 1; |
| |
| hwc->sample_period = sample_period; |
| |
| if (atomic64_read(&hwc->period_left) > 8*sample_period) { |
| perf_disable(); |
| perf_event_stop(event); |
| atomic64_set(&hwc->period_left, 0); |
| perf_event_start(event); |
| perf_enable(); |
| } |
| } |
| |
| static void perf_ctx_adjust_freq(struct perf_event_context *ctx) |
| { |
| struct perf_event *event; |
| struct hw_perf_event *hwc; |
| u64 interrupts, now; |
| s64 delta; |
| |
| raw_spin_lock(&ctx->lock); |
| list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { |
| if (event->state != PERF_EVENT_STATE_ACTIVE) |
| continue; |
| |
| if (event->cpu != -1 && event->cpu != smp_processor_id()) |
| continue; |
| |
| hwc = &event->hw; |
| |
| interrupts = hwc->interrupts; |
| hwc->interrupts = 0; |
| |
| /* |
| * unthrottle events on the tick |
| */ |
| if (interrupts == MAX_INTERRUPTS) { |
| perf_log_throttle(event, 1); |
| perf_disable(); |
| event->pmu->unthrottle(event); |
| perf_enable(); |
| } |
| |
| if (!event->attr.freq || !event->attr.sample_freq) |
| continue; |
| |
| perf_disable(); |
| event->pmu->read(event); |
| now = atomic64_read(&event->count); |
| delta = now - hwc->freq_count_stamp; |
| hwc->freq_count_stamp = now; |
| |
| if (delta > 0) |
| perf_adjust_period(event, TICK_NSEC, delta); |
| perf_enable(); |
| } |
| raw_spin_unlock(&ctx->lock); |
| } |
| |
| /* |
| * Round-robin a context's events: |
| */ |
| static void rotate_ctx(struct perf_event_context *ctx) |
| { |
| raw_spin_lock(&ctx->lock); |
| |
| /* Rotate the first entry last of non-pinned groups */ |
| list_rotate_left(&ctx->flexible_groups); |
| |
| raw_spin_unlock(&ctx->lock); |
| } |
| |
| void perf_event_task_tick(struct task_struct *curr) |
| { |
| struct perf_cpu_context *cpuctx; |
| struct perf_event_context *ctx; |
| int rotate = 0; |
| |
| if (!atomic_read(&nr_events)) |
| return; |
| |
| cpuctx = &__get_cpu_var(perf_cpu_context); |
| if (cpuctx->ctx.nr_events && |
| cpuctx->ctx.nr_events != cpuctx->ctx.nr_active) |
| rotate = 1; |
| |
| ctx = curr->perf_event_ctxp; |
| if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active) |
| rotate = 1; |
| |
| perf_ctx_adjust_freq(&cpuctx->ctx); |
| if (ctx) |
| perf_ctx_adjust_freq(ctx); |
| |
| if (!rotate) |
| return; |
| |
| perf_disable(); |
| cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE); |
| if (ctx) |
| task_ctx_sched_out(ctx, EVENT_FLEXIBLE); |
| |
| rotate_ctx(&cpuctx->ctx); |
| if (ctx) |
| rotate_ctx(ctx); |
| |
| cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE); |
| if (ctx) |
| task_ctx_sched_in(curr, EVENT_FLEXIBLE); |
| perf_enable(); |
| } |
| |
| static int event_enable_on_exec(struct perf_event *event, |
| struct perf_event_context *ctx) |
| { |
| if (!event->attr.enable_on_exec) |
| return 0; |
| |
| event->attr.enable_on_exec = 0; |
| if (event->state >= PERF_EVENT_STATE_INACTIVE) |
| return 0; |
| |
| __perf_event_mark_enabled(event, ctx); |
| |
| return 1; |
| } |
| |
| /* |
| * Enable all of a task's events that have been marked enable-on-exec. |
| * This expects task == current. |
| */ |
| static void perf_event_enable_on_exec(struct task_struct *task) |
| { |
| struct perf_event_context *ctx; |
| struct perf_event *event; |
| unsigned long flags; |
| int enabled = 0; |
| int ret; |
| |
| local_irq_save(flags); |
| ctx = task->perf_event_ctxp; |
| if (!ctx || !ctx->nr_events) |
| goto out; |
| |
| __perf_event_task_sched_out(ctx); |
| |
| raw_spin_lock(&ctx->lock); |
| |
| list_for_each_entry(event, &ctx->pinned_groups, group_entry) { |
| ret = event_enable_on_exec(event, ctx); |
| if (ret) |
| enabled = 1; |
| } |
| |
| list_for_each_entry(event, &ctx->flexible_groups, group_entry) { |
| ret = event_enable_on_exec(event, ctx); |
| if (ret) |
| enabled = 1; |
| } |
| |
| /* |
| * Unclone this context if we enabled any event. |
| */ |
| if (enabled) |
| unclone_ctx(ctx); |
| |
| raw_spin_unlock(&ctx->lock); |
| |
| perf_event_task_sched_in(task); |
| out: |
| local_irq_restore(flags); |
| } |
| |
| /* |
| * Cross CPU call to read the hardware event |
| */ |
| static void __perf_event_read(void *info) |
| { |
| struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
| struct perf_event *event = info; |
| struct perf_event_context *ctx = event->ctx; |
| |
| /* |
| * If this is a task context, we need to check whether it is |
| * the current task context of this cpu. If not it has been |
| * scheduled out before the smp call arrived. In that case |
| * event->count would have been updated to a recent sample |
| * when the event was scheduled out. |
| */ |
| if (ctx->task && cpuctx->task_ctx != ctx) |
| return; |
| |
| raw_spin_lock(&ctx->lock); |
| update_context_time(ctx); |
| update_event_times(event); |
| raw_spin_unlock(&ctx->lock); |
| |
| event->pmu->read(event); |
| } |
| |
| static u64 perf_event_read(struct perf_event *event) |
| { |
| /* |
| * If event is enabled and currently active on a CPU, update the |
| * value in the event structure: |
| */ |
| if (event->state == PERF_EVENT_STATE_ACTIVE) { |
| smp_call_function_single(event->oncpu, |
| __perf_event_read, event, 1); |
| } else if (event->state == PERF_EVENT_STATE_INACTIVE) { |
| struct perf_event_context *ctx = event->ctx; |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&ctx->lock, flags); |
| update_context_time(ctx); |
| update_event_times(event); |
| raw_spin_unlock_irqrestore(&ctx->lock, flags); |
| } |
| |
| return atomic64_read(&event->count); |
| } |
| |
| /* |
| * Initialize the perf_event context in a task_struct: |
| */ |
| static void |
| __perf_event_init_context(struct perf_event_context *ctx, |
| struct task_struct *task) |
| { |
| raw_spin_lock_init(&ctx->lock); |
| mutex_init(&ctx->mutex); |
| INIT_LIST_HEAD(&ctx->pinned_groups); |
| INIT_LIST_HEAD(&ctx->flexible_groups); |
| INIT_LIST_HEAD(&ctx->event_list); |
| atomic_set(&ctx->refcount, 1); |
| ctx->task = task; |
| } |
| |
| static struct perf_event_context *find_get_context(pid_t pid, int cpu) |
| { |
| struct perf_event_context *ctx; |
| struct perf_cpu_context *cpuctx; |
| struct task_struct *task; |
| unsigned long flags; |
| int err; |
| |
| if (pid == -1 && cpu != -1) { |
| /* Must be root to operate on a CPU event: */ |
| if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) |
| return ERR_PTR(-EACCES); |
| |
| if (cpu < 0 || cpu >= nr_cpumask_bits) |
| return ERR_PTR(-EINVAL); |
| |
| /* |
| * We could be clever and allow to attach a event to an |
| * offline CPU and activate it when the CPU comes up, but |
| * that's for later. |
| */ |
| if (!cpu_online(cpu)) |
| return ERR_PTR(-ENODEV); |
| |
| cpuctx = &per_cpu(perf_cpu_context, cpu); |
| ctx = &cpuctx->ctx; |
| get_ctx(ctx); |
| |
| return ctx; |
| } |
| |
| rcu_read_lock(); |
| if (!pid) |
| task = current; |
| else |
| task = find_task_by_vpid(pid); |
| if (task) |
| get_task_struct(task); |
| rcu_read_unlock(); |
| |
| if (!task) |
| return ERR_PTR(-ESRCH); |
| |
| /* |
| * Can't attach events to a dying task. |
| */ |
| err = -ESRCH; |
| if (task->flags & PF_EXITING) |
| goto errout; |
| |
| /* Reuse ptrace permission checks for now. */ |
| err = -EACCES; |
| if (!ptrace_may_access(task, PTRACE_MODE_READ)) |
| goto errout; |
| |
| retry: |
| ctx = perf_lock_task_context(task, &flags); |
| if (ctx) { |
| unclone_ctx(ctx); |
| raw_spin_unlock_irqrestore(&ctx->lock, flags); |
| } |
| |
| if (!ctx) { |
| ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL); |
| err = -ENOMEM; |
| if (!ctx) |
| goto errout; |
| __perf_event_init_context(ctx, task); |
| get_ctx(ctx); |
| if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) { |
| /* |
| * We raced with some other task; use |
| * the context they set. |
| */ |
| kfree(ctx); |
| goto retry; |
| } |
| get_task_struct(task); |
| } |
| |
| put_task_struct(task); |
| return ctx; |
| |
| errout: |
| put_task_struct(task); |
| return ERR_PTR(err); |
| } |
| |
| static void perf_event_free_filter(struct perf_event *event); |
| |
| static void free_event_rcu(struct rcu_head *head) |
| { |
| struct perf_event *event; |
| |
| event = container_of(head, struct perf_event, rcu_head); |
| if (event->ns) |
| put_pid_ns(event->ns); |
| perf_event_free_filter(event); |
| kfree(event); |
| } |
| |
| static void perf_pending_sync(struct perf_event *event); |
| |
| static void free_event(struct perf_event *event) |
| { |
| perf_pending_sync(event); |
| |
| if (!event->parent) { |
| atomic_dec(&nr_events); |
| if (event->attr.mmap) |
| atomic_dec(&nr_mmap_events); |
| if (event->attr.comm) |
| atomic_dec(&nr_comm_events); |
| if (event->attr.task) |
| atomic_dec(&nr_task_events); |
| } |
| |
| if (event->output) { |
| fput(event->output->filp); |
| event->output = NULL; |
| } |
| |
| if (event->destroy) |
| event->destroy(event); |
| |
| put_ctx(event->ctx); |
| call_rcu(&event->rcu_head, free_event_rcu); |
| } |
| |
| int perf_event_release_kernel(struct perf_event *event) |
| { |
| struct perf_event_context *ctx = event->ctx; |
| |
| WARN_ON_ONCE(ctx->parent_ctx); |
| mutex_lock(&ctx->mutex); |
| perf_event_remove_from_context(event); |
| mutex_unlock(&ctx->mutex); |
| |
| mutex_lock(&event->owner->perf_event_mutex); |
| list_del_init(&event->owner_entry); |
| mutex_unlock(&event->owner->perf_event_mutex); |
| put_task_struct(event->owner); |
| |
| free_event(event); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(perf_event_release_kernel); |
| |
| /* |
| * Called when the last reference to the file is gone. |
| */ |
| static int perf_release(struct inode *inode, struct file *file) |
| { |
| struct perf_event *event = file->private_data; |
| |
| file->private_data = NULL; |
| |
| return perf_event_release_kernel(event); |
| } |
| |
| static int perf_event_read_size(struct perf_event *event) |
| { |
| int entry = sizeof(u64); /* value */ |
| int size = 0; |
| int nr = 1; |
| |
| if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) |
| size += sizeof(u64); |
| |
| if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) |
| size += sizeof(u64); |
| |
| if (event->attr.read_format & PERF_FORMAT_ID) |
| entry += sizeof(u64); |
| |
| if (event->attr.read_format & PERF_FORMAT_GROUP) { |
| nr += event->group_leader->nr_siblings; |
| size += sizeof(u64); |
| } |
| |
| size += entry * nr; |
| |
| return size; |
| } |
| |
| u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running) |
| { |
| struct perf_event *child; |
| u64 total = 0; |
| |
| *enabled = 0; |
| *running = 0; |
| |
| mutex_lock(&event->child_mutex); |
| total += perf_event_read(event); |
| *enabled += event->total_time_enabled + |
| atomic64_read(&event->child_total_time_enabled); |
| *running += event->total_time_running + |
| atomic64_read(&event->child_total_time_running); |
| |
| list_for_each_entry(child, &event->child_list, child_list) { |
| total += perf_event_read(child); |
| *enabled += child->total_time_enabled; |
| *running += child->total_time_running; |
| } |
| mutex_unlock(&event->child_mutex); |
| |
| return total; |
| } |
| EXPORT_SYMBOL_GPL(perf_event_read_value); |
| |
| static int perf_event_read_group(struct perf_event *event, |
| u64 read_format, char __user *buf) |
| { |
| struct perf_event *leader = event->group_leader, *sub; |
| int n = 0, size = 0, ret = -EFAULT; |
| struct perf_event_context *ctx = leader->ctx; |
| u64 values[5]; |
| u64 count, enabled, running; |
| |
| mutex_lock(&ctx->mutex); |
| count = perf_event_read_value(leader, &enabled, &running); |
| |
| values[n++] = 1 + leader->nr_siblings; |
| if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) |
| values[n++] = enabled; |
| if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) |
| values[n++] = running; |
| values[n++] = count; |
| if (read_format & PERF_FORMAT_ID) |
| values[n++] = primary_event_id(leader); |
| |
| size = n * sizeof(u64); |
| |
| if (copy_to_user(buf, values, size)) |
| goto unlock; |
| |
| ret = size; |
| |
| list_for_each_entry(sub, &leader->sibling_list, group_entry) { |
| n = 0; |
| |
| values[n++] = perf_event_read_value(sub, &enabled, &running); |
| if (read_format & PERF_FORMAT_ID) |
| values[n++] = primary_event_id(sub); |
| |
| size = n * sizeof(u64); |
| |
| if (copy_to_user(buf + ret, values, size)) { |
| ret = -EFAULT; |
| goto unlock; |
| } |
| |
| ret += size; |
| } |
| unlock: |
| mutex_unlock(&ctx->mutex); |
| |
| return ret; |
| } |
| |
| static int perf_event_read_one(struct perf_event *event, |
| u64 read_format, char __user *buf) |
| { |
| u64 enabled, running; |
| u64 values[4]; |
| int n = 0; |
| |
| values[n++] = perf_event_read_value(event, &enabled, &running); |
| if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) |
| values[n++] = enabled; |
| if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) |
| values[n++] = running; |
| if (read_format & PERF_FORMAT_ID) |
| values[n++] = primary_event_id(event); |
| |
| if (copy_to_user(buf, values, n * sizeof(u64))) |
| return -EFAULT; |
| |
| return n * sizeof(u64); |
| } |
| |
| /* |
| * Read the performance event - simple non blocking version for now |
| */ |
| static ssize_t |
| perf_read_hw(struct perf_event *event, char __user *buf, size_t count) |
| { |
| u64 read_format = event->attr.read_format; |
| int ret; |
| |
| /* |
| * Return end-of-file for a read on a event that is in |
| * error state (i.e. because it was pinned but it couldn't be |
| * scheduled on to the CPU at some point). |
| */ |
| if (event->state == PERF_EVENT_STATE_ERROR) |
| return 0; |
| |
| if (count < perf_event_read_size(event)) |
| return -ENOSPC; |
| |
| WARN_ON_ONCE(event->ctx->parent_ctx); |
| if (read_format & PERF_FORMAT_GROUP) |
| ret = perf_event_read_group(event, read_format, buf); |
| else |
| ret = perf_event_read_one(event, read_format, buf); |
| |
| return ret; |
| } |
| |
| static ssize_t |
| perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) |
| { |
| struct perf_event *event = file->private_data; |
| |
| return perf_read_hw(event, buf, count); |
| } |
| |
| static unsigned int perf_poll(struct file *file, poll_table *wait) |
| { |
| struct perf_event *event = file->private_data; |
| struct perf_mmap_data *data; |
| unsigned int events = POLL_HUP; |
| |
| rcu_read_lock(); |
| data = rcu_dereference(event->data); |
| if (data) |
| events = atomic_xchg(&data->poll, 0); |
| rcu_read_unlock(); |
| |
| poll_wait(file, &event->waitq, wait); |
| |
| return events; |
| } |
| |
| static void perf_event_reset(struct perf_event *event) |
| { |
| (void)perf_event_read(event); |
| atomic64_set(&event->count, 0); |
| perf_event_update_userpage(event); |
| } |
| |
| /* |
| * Holding the top-level event's child_mutex means that any |
| * descendant process that has inherited this event will block |
| * in sync_child_event if it goes to exit, thus satisfying the |
| * task existence requirements of perf_event_enable/disable. |
| */ |
| static void perf_event_for_each_child(struct perf_event *event, |
| void (*func)(struct perf_event *)) |
| { |
| struct perf_event *child; |
| |
| WARN_ON_ONCE(event->ctx->parent_ctx); |
| mutex_lock(&event->child_mutex); |
| func(event); |
| list_for_each_entry(child, &event->child_list, child_list) |
| func(child); |
| mutex_unlock(&event->child_mutex); |
| } |
| |
| static void perf_event_for_each(struct perf_event *event, |
| void (*func)(struct perf_event *)) |
| { |
| struct perf_event_context *ctx = event->ctx; |
| struct perf_event *sibling; |
| |
| WARN_ON_ONCE(ctx->parent_ctx); |
| mutex_lock(&ctx->mutex); |
| event = event->group_leader; |
| |
| perf_event_for_each_child(event, func); |
| func(event); |
| list_for_each_entry(sibling, &event->sibling_list, group_entry) |
| perf_event_for_each_child(event, func); |
| mutex_unlock(&ctx->mutex); |
| } |
| |
| static int perf_event_period(struct perf_event *event, u64 __user *arg) |
| { |
| struct perf_event_context *ctx = event->ctx; |
| unsigned long size; |
| int ret = 0; |
| u64 value; |
| |
| if (!event->attr.sample_period) |
| return -EINVAL; |
| |
| size = copy_from_user(&value, arg, sizeof(value)); |
| if (size != sizeof(value)) |
| return -EFAULT; |
| |
| if (!value) |
| return -EINVAL; |
| |
| raw_spin_lock_irq(&ctx->lock); |
| if (event->attr.freq) { |
| if (value > sysctl_perf_event_sample_rate) { |
| ret = -EINVAL; |
| goto unlock; |
| } |
| |
| event->attr.sample_freq = value; |
| } else { |
| event->attr.sample_period = value; |
| event->hw.sample_period = value; |
| } |
| unlock: |
| raw_spin_unlock_irq(&ctx->lock); |
| |
| return ret; |
| } |
| |
| static int perf_event_set_output(struct perf_event *event, int output_fd); |
| static int perf_event_set_filter(struct perf_event *event, void __user *arg); |
| |
| static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg) |
| { |
| struct perf_event *event = file->private_data; |
| void (*func)(struct perf_event *); |
| u32 flags = arg; |
| |
| switch (cmd) { |
| case PERF_EVENT_IOC_ENABLE: |
| func = perf_event_enable; |
| break; |
| case PERF_EVENT_IOC_DISABLE: |
| func = perf_event_disable; |
| break; |
| case PERF_EVENT_IOC_RESET: |
| func = perf_event_reset; |
| break; |
| |
| case PERF_EVENT_IOC_REFRESH: |
| return perf_event_refresh(event, arg); |
| |
| case PERF_EVENT_IOC_PERIOD: |
| return perf_event_period(event, (u64 __user *)arg); |
| |
| case PERF_EVENT_IOC_SET_OUTPUT: |
| return perf_event_set_output(event, arg); |
| |
| case PERF_EVENT_IOC_SET_FILTER: |
| return perf_event_set_filter(event, (void __user *)arg); |
| |
| default: |
| return -ENOTTY; |
| } |
| |
| if (flags & PERF_IOC_FLAG_GROUP) |
| perf_event_for_each(event, func); |
| else |
| perf_event_for_each_child(event, func); |
| |
| return 0; |
| } |
| |
| int perf_event_task_enable(void) |
| { |
| struct perf_event *event; |
| |
| mutex_lock(¤t->perf_event_mutex); |
| list_for_each_entry(event, ¤t->perf_event_list, owner_entry) |
| perf_event_for_each_child(event, perf_event_enable); |
| mutex_unlock(¤t->perf_event_mutex); |
| |
| return 0; |
| } |
| |
| int perf_event_task_disable(void) |
| { |
| struct perf_event *event; |
| |
| mutex_lock(¤t->perf_event_mutex); |
| list_for_each_entry(event, ¤t->perf_event_list, owner_entry) |
| perf_event_for_each_child(event, perf_event_disable); |
| mutex_unlock(¤t->perf_event_mutex); |
| |
| return 0; |
| } |
| |
| #ifndef PERF_EVENT_INDEX_OFFSET |
| # define PERF_EVENT_INDEX_OFFSET 0 |
| #endif |
| |
| static int perf_event_index(struct perf_event *event) |
| { |
| if (event->state != PERF_EVENT_STATE_ACTIVE) |
| return 0; |
| |
| return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET; |
| } |
| |
| /* |
| * Callers need to ensure there can be no nesting of this function, otherwise |
| * the seqlock logic goes bad. We can not serialize this because the arch |
| * code calls this from NMI context. |
| */ |
| void perf_event_update_userpage(struct perf_event *event) |
| { |
| struct perf_event_mmap_page *userpg; |
| struct perf_mmap_data *data; |
| |
| rcu_read_lock(); |
| data = rcu_dereference(event->data); |
| if (!data) |
| goto unlock; |
| |
| userpg = data->user_page; |
| |
| /* |
| * Disable preemption so as to not let the corresponding user-space |
| * spin too long if we get preempted. |
| */ |
| preempt_disable(); |
| ++userpg->lock; |
| barrier(); |
| userpg->index = perf_event_index(event); |
| userpg->offset = atomic64_read(&event->count); |
| if (event->state == PERF_EVENT_STATE_ACTIVE) |
| userpg->offset -= atomic64_read(&event->hw.prev_count); |
| |
| userpg->time_enabled = event->total_time_enabled + |
| atomic64_read(&event->child_total_time_enabled); |
| |
| userpg->time_running = event->total_time_running + |
| atomic64_read(&event->child_total_time_running); |
| |
| barrier(); |
| ++userpg->lock; |
| preempt_enable(); |
| unlock: |
| rcu_read_unlock(); |
| } |
| |
| static unsigned long perf_data_size(struct perf_mmap_data *data) |
| { |
| return data->nr_pages << (PAGE_SHIFT + data->data_order); |
| } |
| |
| #ifndef CONFIG_PERF_USE_VMALLOC |
| |
| /* |
| * Back perf_mmap() with regular GFP_KERNEL-0 pages. |
| */ |
| |
| static struct page * |
| perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff) |
| { |
| if (pgoff > data->nr_pages) |
| return NULL; |
| |
| if (pgoff == 0) |
| return virt_to_page(data->user_page); |
| |
| return virt_to_page(data->data_pages[pgoff - 1]); |
| } |
| |
| static struct perf_mmap_data * |
| perf_mmap_data_alloc(struct perf_event *event, int nr_pages) |
| { |
| struct perf_mmap_data *data; |
| unsigned long size; |
| int i; |
| |
| WARN_ON(atomic_read(&event->mmap_count)); |
| |
| size = sizeof(struct perf_mmap_data); |
| size += nr_pages * sizeof(void *); |
| |
| data = kzalloc(size, GFP_KERNEL); |
| if (!data) |
| goto fail; |
| |
| data->user_page = (void *)get_zeroed_page(GFP_KERNEL); |
| if (!data->user_page) |
| goto fail_user_page; |
| |
| for (i = 0; i < nr_pages; i++) { |
| data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL); |
| if (!data->data_pages[i]) |
| goto fail_data_pages; |
| } |
| |
| data->data_order = 0; |
| data->nr_pages = nr_pages; |
| |
| return data; |
| |
| fail_data_pages: |
| for (i--; i >= 0; i--) |
| free_page((unsigned long)data->data_pages[i]); |
| |
| free_page((unsigned long)data->user_page); |
| |
| fail_user_page: |
| kfree(data); |
| |
| fail: |
| return NULL; |
| } |
| |
| static void perf_mmap_free_page(unsigned long addr) |
| { |
| struct page *page = virt_to_page((void *)addr); |
| |
| page->mapping = NULL; |
| __free_page(page); |
| } |
| |
| static void perf_mmap_data_free(struct perf_mmap_data *data) |
| { |
| int i; |
| |
| perf_mmap_free_page((unsigned long)data->user_page); |
| for (i = 0; i < data->nr_pages; i++) |
| perf_mmap_free_page((unsigned long)data->data_pages[i]); |
| kfree(data); |
| } |
| |
| #else |
| |
| /* |
| * Back perf_mmap() with vmalloc memory. |
| * |
| * Required for architectures that have d-cache aliasing issues. |
| */ |
| |
| static struct page * |
| perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff) |
| { |
| if (pgoff > (1UL << data->data_order)) |
| return NULL; |
| |
| return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE); |
| } |
| |
| static void perf_mmap_unmark_page(void *addr) |
| { |
| struct page *page = vmalloc_to_page(addr); |
| |
| page->mapping = NULL; |
| } |
| |
| static void perf_mmap_data_free_work(struct work_struct *work) |
| { |
| struct perf_mmap_data *data; |
| void *base; |
| int i, nr; |
| |
| data = container_of(work, struct perf_mmap_data, work); |
| nr = 1 << data->data_order; |
| |
| base = data->user_page; |
| for (i = 0; i < nr + 1; i++) |
| perf_mmap_unmark_page(base + (i * PAGE_SIZE)); |
| |
| vfree(base); |
| kfree(data); |
| } |
| |
| static void perf_mmap_data_free(struct perf_mmap_data *data) |
| { |
| schedule_work(&data->work); |
| } |
| |
| static struct perf_mmap_data * |
| perf_mmap_data_alloc(struct perf_event *event, int nr_pages) |
| { |
| struct perf_mmap_data *data; |
| unsigned long size; |
| void *all_buf; |
| |
| WARN_ON(atomic_read(&event->mmap_count)); |
| |
| size = sizeof(struct perf_mmap_data); |
| size += sizeof(void *); |
| |
| data = kzalloc(size, GFP_KERNEL); |
| if (!data) |
| goto fail; |
| |
| INIT_WORK(&data->work, perf_mmap_data_free_work); |
| |
| all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE); |
| if (!all_buf) |
| goto fail_all_buf; |
| |
| data->user_page = all_buf; |
| data->data_pages[0] = all_buf + PAGE_SIZE; |
| data->data_order = ilog2(nr_pages); |
| data->nr_pages = 1; |
| |
| return data; |
| |
| fail_all_buf: |
| kfree(data); |
| |
| fail: |
| return NULL; |
| } |
| |
| #endif |
| |
| static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) |
| { |
| struct perf_event *event = vma->vm_file->private_data; |
| struct perf_mmap_data *data; |
| int ret = VM_FAULT_SIGBUS; |
| |
| if (vmf->flags & FAULT_FLAG_MKWRITE) { |
| if (vmf->pgoff == 0) |
| ret = 0; |
| return ret; |
| } |
| |
| rcu_read_lock(); |
| data = rcu_dereference(event->data); |
| if (!data) |
| goto unlock; |
| |
| if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE)) |
| goto unlock; |
| |
| vmf->page = perf_mmap_to_page(data, vmf->pgoff); |
| if (!vmf->page) |
| goto unlock; |
| |
| get_page(vmf->page); |
| vmf->page->mapping = vma->vm_file->f_mapping; |
| vmf->page->index = vmf->pgoff; |
| |
| ret = 0; |
| unlock: |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| |
| static void |
| perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data) |
| { |
| long max_size = perf_data_size(data); |
| |
| atomic_set(&data->lock, -1); |
| |
| if (event->attr.watermark) { |
| data->watermark = min_t(long, max_size, |
| event->attr.wakeup_watermark); |
| } |
| |
| if (!data->watermark) |
| data->watermark = max_size / 2; |
| |
| |
| rcu_assign_pointer(event->data, data); |
| } |
| |
| static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head) |
| { |
| struct perf_mmap_data *data; |
| |
| data = container_of(rcu_head, struct perf_mmap_data, rcu_head); |
| perf_mmap_data_free(data); |
| } |
| |
| static void perf_mmap_data_release(struct perf_event *event) |
| { |
| struct perf_mmap_data *data = event->data; |
| |
| WARN_ON(atomic_read(&event->mmap_count)); |
| |
| rcu_assign_pointer(event->data, NULL); |
| call_rcu(&data->rcu_head, perf_mmap_data_free_rcu); |
| } |
| |
| static void perf_mmap_open(struct vm_area_struct *vma) |
| { |
| struct perf_event *event = vma->vm_file->private_data; |
| |
| atomic_inc(&event->mmap_count); |
| } |
| |
| static void perf_mmap_close(struct vm_area_struct *vma) |
| { |
| struct perf_event *event = vma->vm_file->private_data; |
| |
| WARN_ON_ONCE(event->ctx->parent_ctx); |
| if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) { |
| unsigned long size = perf_data_size(event->data); |
| struct user_struct *user = current_user(); |
| |
| atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm); |
| vma->vm_mm->locked_vm -= event->data->nr_locked; |
| perf_mmap_data_release(event); |
| mutex_unlock(&event->mmap_mutex); |
| } |
| } |
| |
| static const struct vm_operations_struct perf_mmap_vmops = { |
| .open = perf_mmap_open, |
| .close = perf_mmap_close, |
| .fault = perf_mmap_fault, |
| .page_mkwrite = perf_mmap_fault, |
| }; |
| |
| static int perf_mmap(struct file *file, struct vm_area_struct *vma) |
| { |
| struct perf_event *event = file->private_data; |
| unsigned long user_locked, user_lock_limit; |
| struct user_struct *user = current_user(); |
| unsigned long locked, lock_limit; |
| struct perf_mmap_data *data; |
| unsigned long vma_size; |
| unsigned long nr_pages; |
| long user_extra, extra; |
| int ret = 0; |
| |
| if (!(vma->vm_flags & VM_SHARED)) |
| return -EINVAL; |
| |
| vma_size = vma->vm_end - vma->vm_start; |
| nr_pages = (vma_size / PAGE_SIZE) - 1; |
| |
| /* |
| * If we have data pages ensure they're a power-of-two number, so we |
| * can do bitmasks instead of modulo. |
| */ |
| if (nr_pages != 0 && !is_power_of_2(nr_pages)) |
| return -EINVAL; |
| |
| if (vma_size != PAGE_SIZE * (1 + nr_pages)) |
| return -EINVAL; |
| |
| if (vma->vm_pgoff != 0) |
| return -EINVAL; |
| |
| WARN_ON_ONCE(event->ctx->parent_ctx); |
| mutex_lock(&event->mmap_mutex); |
| if (event->output) { |
| ret = -EINVAL; |
| goto unlock; |
| } |
| |
| if (atomic_inc_not_zero(&event->mmap_count)) { |
| if (nr_pages != event->data->nr_pages) |
| ret = -EINVAL; |
| goto unlock; |
| } |
| |
| user_extra = nr_pages + 1; |
| user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10); |
| |
| /* |
| * Increase the limit linearly with more CPUs: |
| */ |
| user_lock_limit *= num_online_cpus(); |
| |
| user_locked = atomic_long_read(&user->locked_vm) + user_extra; |
| |
| extra = 0; |
| if (user_locked > user_lock_limit) |
| extra = user_locked - user_lock_limit; |
| |
| lock_limit = rlimit(RLIMIT_MEMLOCK); |
| lock_limit >>= PAGE_SHIFT; |
| locked = vma->vm_mm->locked_vm + extra; |
| |
| if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() && |
| !capable(CAP_IPC_LOCK)) { |
| ret = -EPERM; |
| goto unlock; |
| } |
| |
| WARN_ON(event->data); |
| |
| data = perf_mmap_data_alloc(event, nr_pages); |
| ret = -ENOMEM; |
| if (!data) |
| goto unlock; |
| |
| ret = 0; |
| perf_mmap_data_init(event, data); |
| |
| atomic_set(&event->mmap_count, 1); |
| atomic_long_add(user_extra, &user->locked_vm); |
| vma->vm_mm->locked_vm += extra; |
| event->data->nr_locked = extra; |
| if (vma->vm_flags & VM_WRITE) |
| event->data->writable = 1; |
| |
| unlock: |
| mutex_unlock(&event->mmap_mutex); |
| |
| vma->vm_flags |= VM_RESERVED; |
| vma->vm_ops = &perf_mmap_vmops; |
| |
| return ret; |
| } |
| |
| static int perf_fasync(int fd, struct file *filp, int on) |
| { |
| struct inode *inode = filp->f_path.dentry->d_inode; |
| struct perf_event *event = filp->private_data; |
| int retval; |
| |
| mutex_lock(&inode->i_mutex); |
| retval = fasync_helper(fd, filp, on, &event->fasync); |
| mutex_unlock(&inode->i_mutex); |
| |
| if (retval < 0) |
| return retval; |
| |
| return 0; |
| } |
| |
| static const struct file_operations perf_fops = { |
| .llseek = no_llseek, |
| .release = perf_release, |
| .read = perf_read, |
| .poll = perf_poll, |
| .unlocked_ioctl = perf_ioctl, |
| .compat_ioctl = perf_ioctl, |
| .mmap = perf_mmap, |
| .fasync = perf_fasync, |
| }; |
| |
| /* |
| * Perf event wakeup |
| * |
| * If there's data, ensure we set the poll() state and publish everything |
| * to user-space before waking everybody up. |
| */ |
| |
| void perf_event_wakeup(struct perf_event *event) |
| { |
| wake_up_all(&event->waitq); |
| |
| if (event->pending_kill) { |
| kill_fasync(&event->fasync, SIGIO, event->pending_kill); |
| event->pending_kill = 0; |
| } |
| } |
| |
| /* |
| * Pending wakeups |
| * |
| * Handle the case where we need to wakeup up from NMI (or rq->lock) context. |
| * |
| * The NMI bit means we cannot possibly take locks. Therefore, maintain a |
| * single linked list and use cmpxchg() to add entries lockless. |
| */ |
| |
| static void perf_pending_event(struct perf_pending_entry *entry) |
| { |
| struct perf_event *event = container_of(entry, |
| struct perf_event, pending); |
| |
| if (event->pending_disable) { |
| event->pending_disable = 0; |
| __perf_event_disable(event); |
| } |
| |
| if (event->pending_wakeup) { |
| event->pending_wakeup = 0; |
| perf_event_wakeup(event); |
| } |
| } |
| |
| #define PENDING_TAIL ((struct perf_pending_entry *)-1UL) |
| |
| static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = { |
| PENDING_TAIL, |
| }; |
| |
| static void perf_pending_queue(struct perf_pending_entry *entry, |
| void (*func)(struct perf_pending_entry *)) |
| { |
| struct perf_pending_entry **head; |
| |
| if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL) |
| return; |
| |
| entry->func = func; |
| |
| head = &get_cpu_var(perf_pending_head); |
| |
| do { |
| entry->next = *head; |
| } while (cmpxchg(head, entry->next, entry) != entry->next); |
| |
| set_perf_event_pending(); |
| |
| put_cpu_var(perf_pending_head); |
| } |
| |
| static int __perf_pending_run(void) |
| { |
| struct perf_pending_entry *list; |
| int nr = 0; |
| |
| list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL); |
| while (list != PENDING_TAIL) { |
| void (*func)(struct perf_pending_entry *); |
| struct perf_pending_entry *entry = list; |
| |
| list = list->next; |
| |
| func = entry->func; |
| entry->next = NULL; |
| /* |
| * Ensure we observe the unqueue before we issue the wakeup, |
| * so that we won't be waiting forever. |
| * -- see perf_not_pending(). |
| */ |
| smp_wmb(); |
| |
| func(entry); |
| nr++; |
| } |
| |
| return nr; |
| } |
| |
| static inline int perf_not_pending(struct perf_event *event) |
| { |
| /* |
| * If we flush on whatever cpu we run, there is a chance we don't |
| * need to wait. |
| */ |
| get_cpu(); |
| __perf_pending_run(); |
| put_cpu(); |
| |
| /* |
| * Ensure we see the proper queue state before going to sleep |
| * so that we do not miss the wakeup. -- see perf_pending_handle() |
| */ |
| smp_rmb(); |
| return event->pending.next == NULL; |
| } |
| |
| static void perf_pending_sync(struct perf_event *event) |
| { |
| wait_event(event->waitq, perf_not_pending(event)); |
| } |
| |
| void perf_event_do_pending(void) |
| { |
| __perf_pending_run(); |
| } |
| |
| /* |
| * Callchain support -- arch specific |
| */ |
| |
| __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs) |
| { |
| return NULL; |
| } |
| |
| __weak |
| void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip) |
| { |
| } |
| |
| |
| /* |
| * We assume there is only KVM supporting the callbacks. |
| * Later on, we might change it to a list if there is |
| * another virtualization implementation supporting the callbacks. |
| */ |
| struct perf_guest_info_callbacks *perf_guest_cbs; |
| |
| int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) |
| { |
| perf_guest_cbs = cbs; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks); |
| |
| int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs) |
| { |
| perf_guest_cbs = NULL; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks); |
| |
| /* |
| * Output |
| */ |
| static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail, |
| unsigned long offset, unsigned long head) |
| { |
| unsigned long mask; |
| |
| if (!data->writable) |
| return true; |
| |
| mask = perf_data_size(data) - 1; |
| |
| offset = (offset - tail) & mask; |
| head = (head - tail) & mask; |
| |
| if ((int)(head - offset) < 0) |
| return false; |
| |
| return true; |
| } |
| |
| static void perf_output_wakeup(struct perf_output_handle *handle) |
| { |
| atomic_set(&handle->data->poll, POLL_IN); |
| |
| if (handle->nmi) { |
| handle->event->pending_wakeup = 1; |
| perf_pending_queue(&handle->event->pending, |
| perf_pending_event); |
| } else |
| perf_event_wakeup(handle->event); |
| } |
| |
| /* |
| * Curious locking construct. |
| * |
| * We need to ensure a later event_id doesn't publish a head when a former |
| * event_id isn't done writing. However since we need to deal with NMIs we |
| * cannot fully serialize things. |
| * |
| * What we do is serialize between CPUs so we only have to deal with NMI |
| * nesting on a single CPU. |
| * |
| * We only publish the head (and generate a wakeup) when the outer-most |
| * event_id completes. |
| */ |
| static void perf_output_lock(struct perf_output_handle *handle) |
| { |
| struct perf_mmap_data *data = handle->data; |
| int cur, cpu = get_cpu(); |
| |
| handle->locked = 0; |
| |
| for (;;) { |
| cur = atomic_cmpxchg(&data->lock, -1, cpu); |
| if (cur == -1) { |
| handle->locked = 1; |
| break; |
| } |
| if (cur == cpu) |
| break; |
| |
| cpu_relax(); |
| } |
| } |
| |
| static void perf_output_unlock(struct perf_output_handle *handle) |
| { |
| struct perf_mmap_data *data = handle->data; |
| unsigned long head; |
| int cpu; |
| |
| data->done_head = data->head; |
| |
| if (!handle->locked) |
| goto out; |
| |
| again: |
| /* |
| * The xchg implies a full barrier that ensures all writes are done |
| * before we publish the new head, matched by a rmb() in userspace when |
| * reading this position. |
| */ |
| while ((head = atomic_long_xchg(&data->done_head, 0))) |
| data->user_page->data_head = head; |
| |
| /* |
| * NMI can happen here, which means we can miss a done_head update. |
| */ |
| |
| cpu = atomic_xchg(&data->lock, -1); |
| WARN_ON_ONCE(cpu != smp_processor_id()); |
| |
| /* |
| * Therefore we have to validate we did not indeed do so. |
| */ |
| if (unlikely(atomic_long_read(&data->done_head))) { |
| /* |
| * Since we had it locked, we can lock it again. |
| */ |
| while (atomic_cmpxchg(&data->lock, -1, cpu) != -1) |
| cpu_relax(); |
| |
| goto again; |
| } |
| |
| if (atomic_xchg(&data->wakeup, 0)) |
| perf_output_wakeup(handle); |
| out: |
| put_cpu(); |
| } |
| |
| void perf_output_copy(struct perf_output_handle *handle, |
| const void *buf, unsigned int len) |
| { |
| unsigned int pages_mask; |
| unsigned long offset; |
| unsigned int size; |
| void **pages; |
| |
| offset = handle->offset; |
| pages_mask = handle->data->nr_pages - 1; |
| pages = handle->data->data_pages; |
| |
| do { |
| unsigned long page_offset; |
| unsigned long page_size; |
| int nr; |
| |
| nr = (offset >> PAGE_SHIFT) & pages_mask; |
| page_size = 1UL << (handle->data->data_order + PAGE_SHIFT); |
| page_offset = offset & (page_size - 1); |
| size = min_t(unsigned int, page_size - page_offset, len); |
| |
| memcpy(pages[nr] + page_offset, buf, size); |
| |
| len -= size; |
| buf += size; |
| offset += size; |
| } while (len); |
| |
| handle->offset = offset; |
| |
| /* |
| * Check we didn't copy past our reservation window, taking the |
| * possible unsigned int wrap into account. |
| */ |
| WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0); |
| } |
| |
| int perf_output_begin(struct perf_output_handle *handle, |
| struct perf_event *event, unsigned int size, |
| int nmi, int sample) |
| { |
| struct perf_event *output_event; |
| struct perf_mmap_data *data; |
| unsigned long tail, offset, head; |
| int have_lost; |
| struct { |
| struct perf_event_header header; |
| u64 id; |
| u64 lost; |
| } lost_event; |
| |
| rcu_read_lock(); |
| /* |
| * For inherited events we send all the output towards the parent. |
| */ |
| if (event->parent) |
| event = event->parent; |
| |
| output_event = rcu_dereference(event->output); |
| if (output_event) |
| event = output_event; |
| |
| data = rcu_dereference(event->data); |
| if (!data) |
| goto out; |
| |
| handle->data = data; |
| handle->event = event; |
| handle->nmi = nmi; |
| handle->sample = sample; |
| |
| if (!data->nr_pages) |
| goto fail; |
| |
| have_lost = atomic_read(&data->lost); |
| if (have_lost) |
| size += sizeof(lost_event); |
| |
| perf_output_lock(handle); |
| |
| do { |
| /* |
| * Userspace could choose to issue a mb() before updating the |
| * tail pointer. So that all reads will be completed before the |
| * write is issued. |
| */ |
| tail = ACCESS_ONCE(data->user_page->data_tail); |
| smp_rmb(); |
| offset = head = atomic_long_read(&data->head); |
| head += size; |
| if (unlikely(!perf_output_space(data, tail, offset, head))) |
| goto fail; |
| } while (atomic_long_cmpxchg(&data->head, offset, head) != offset); |
| |
| handle->offset = offset; |
| handle->head = head; |
| |
| if (head - tail > data->watermark) |
| atomic_set(&data->wakeup, 1); |
| |
| if (have_lost) { |
| lost_event.header.type = PERF_RECORD_LOST; |
| lost_event.header.misc = 0; |
| lost_event.header.size = sizeof(lost_event); |
| lost_event.id = event->id; |
| lost_event.lost = atomic_xchg(&data->lost, 0); |
| |
| perf_output_put(handle, lost_event); |
| } |
| |
| return 0; |
| |
| fail: |
| atomic_inc(&data->lost); |
| perf_output_unlock(handle); |
| out: |
| rcu_read_unlock(); |
| |
| return -ENOSPC; |
| } |
| |
| void perf_output_end(struct perf_output_handle *handle) |
| { |
| struct perf_event *event = handle->event; |
| struct perf_mmap_data *data = handle->data; |
| |
| int wakeup_events = event->attr.wakeup_events; |
| |
| if (handle->sample && wakeup_events) { |
| int events = atomic_inc_return(&data->events); |
| if (events >= wakeup_events) { |
| atomic_sub(wakeup_events, &data->events); |
| atomic_set(&data->wakeup, 1); |
| } |
| } |
| |
| perf_output_unlock(handle); |
| rcu_read_unlock(); |
| } |
| |
| static u32 perf_event_pid(struct perf_event *event, struct task_struct *p) |
| { |
| /* |
| * only top level events have the pid namespace they were created in |
| */ |
| if (event->parent) |
| event = event->parent; |
| |
| return task_tgid_nr_ns(p, event->ns); |
| } |
| |
| static u32 perf_event_tid(struct perf_event *event, struct task_struct *p) |
| { |
| /* |
| * only top level events have the pid namespace they were created in |
| */ |
| if (event->parent) |
| event = event->parent; |
| |
| return task_pid_nr_ns(p, event->ns); |
| } |
| |
| static void perf_output_read_one(struct perf_output_handle *handle, |
| struct perf_event *event) |
| { |
| u64 read_format = event->attr.read_format; |
| u64 values[4]; |
| int n = 0; |
| |
| values[n++] = atomic64_read(&event->count); |
| if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) { |
| values[n++] = event->total_time_enabled + |
| atomic64_read(&event->child_total_time_enabled); |
| } |
| if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) { |
| values[n++] = event->total_time_running + |
| atomic64_read(&event->child_total_time_running); |
| } |
| if (read_format & PERF_FORMAT_ID) |
| values[n++] = primary_event_id(event); |
| |
| perf_output_copy(handle, values, n * sizeof(u64)); |
| } |
| |
| /* |
| * XXX PERF_FORMAT_GROUP vs inherited events seems difficult. |
| */ |
| static void perf_output_read_group(struct perf_output_handle *handle, |
| struct perf_event *event) |
| { |
| struct perf_event *leader = event->group_leader, *sub; |
| u64 read_format = event->attr.read_format; |
| u64 values[5]; |
| int n = 0; |
| |
| values[n++] = 1 + leader->nr_siblings; |
| |
| if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) |
| values[n++] = leader->total_time_enabled; |
| |
| if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) |
| values[n++] = leader->total_time_running; |
| |
| if (leader != event) |
| leader->pmu->read(leader); |
| |
| values[n++] = atomic64_read(&leader->count); |
| if (read_format & PERF_FORMAT_ID) |
| values[n++] = primary_event_id(leader); |
| |
| perf_output_copy(handle, values, n * sizeof(u64)); |
| |
| list_for_each_entry(sub, &leader->sibling_list, group_entry) { |
| n = 0; |
| |
| if (sub != event) |
| sub->pmu->read(sub); |
| |
| values[n++] = atomic64_read(&sub->count); |
| if (read_format & PERF_FORMAT_ID) |
| values[n++] = primary_event_id(sub); |
| |
| perf_output_copy(handle, values, n * sizeof(u64)); |
| } |
| } |
| |
| static void perf_output_read(struct perf_output_handle *handle, |
| struct perf_event *event) |
| { |
| if (event->attr.read_format & PERF_FORMAT_GROUP) |
| perf_output_read_group(handle, event); |
| else |
| perf_output_read_one(handle, event); |
| } |
| |
| void perf_output_sample(struct perf_output_handle *handle, |
| struct perf_event_header *header, |
| struct perf_sample_data *data, |
| struct perf_event *event) |
| { |
| u64 sample_type = data->type; |
| |
| perf_output_put(handle, *header); |
| |
| if (sample_type & PERF_SAMPLE_IP) |
| perf_output_put(handle, data->ip); |
| |
| if (sample_type & PERF_SAMPLE_TID) |
| perf_output_put(handle, data->tid_entry); |
| |
| if (sample_type & PERF_SAMPLE_TIME) |
| perf_output_put(handle, data->time); |
| |
| if (sample_type & PERF_SAMPLE_ADDR) |
| perf_output_put(handle, data->addr); |
| |
| if (sample_type & PERF_SAMPLE_ID) |
| perf_output_put(handle, data->id); |
| |
| if (sample_type & PERF_SAMPLE_STREAM_ID) |
| perf_output_put(handle, data->stream_id); |
| |
| if (sample_type & PERF_SAMPLE_CPU) |
| perf_output_put(handle, data->cpu_entry); |
| |
| if (sample_type & PERF_SAMPLE_PERIOD) |
| perf_output_put(handle, data->period); |
| |
| if (sample_type & PERF_SAMPLE_READ) |
| perf_output_read(handle, event); |
| |
| if (sample_type & PERF_SAMPLE_CALLCHAIN) { |
| if (data->callchain) { |
| int size = 1; |
| |
| if (data->callchain) |
| size += data->callchain->nr; |
| |
| size *= sizeof(u64); |
| |
| perf_output_copy(handle, data->callchain, size); |
| } else { |
| u64 nr = 0; |
| perf_output_put(handle, nr); |
| } |
| } |
| |
| if (sample_type & PERF_SAMPLE_RAW) { |
| if (data->raw) { |
| perf_output_put(handle, data->raw->size); |
| perf_output_copy(handle, data->raw->data, |
| data->raw->size); |
| } else { |
| struct { |
| u32 size; |
| u32 data; |
| } raw = { |
| .size = sizeof(u32), |
| .data = 0, |
| }; |
| perf_output_put(handle, raw); |
| } |
| } |
| } |
| |
| void perf_prepare_sample(struct perf_event_header *header, |
| struct perf_sample_data *data, |
| struct perf_event *event, |
| struct pt_regs *regs) |
| { |
| u64 sample_type = event->attr.sample_type; |
| |
| data->type = sample_type; |
| |
| header->type = PERF_RECORD_SAMPLE; |
| header->size = sizeof(*header); |
| |
| header->misc = 0; |
| header->misc |= perf_misc_flags(regs); |
| |
| if (sample_type & PERF_SAMPLE_IP) { |
| data->ip = perf_instruction_pointer(regs); |
| |
| header->size += sizeof(data->ip); |
| } |
| |
| if (sample_type & PERF_SAMPLE_TID) { |
| /* namespace issues */ |
| data->tid_entry.pid = perf_event_pid(event, current); |
| data->tid_entry.tid = perf_event_tid(event, current); |
| |
| header->size += sizeof(data->tid_entry); |
| } |
| |
| if (sample_type & PERF_SAMPLE_TIME) { |
| data->time = perf_clock(); |
| |
| header->size += sizeof(data->time); |
| } |
| |
| if (sample_type & PERF_SAMPLE_ADDR) |
| header->size += sizeof(data->addr); |
| |
| if (sample_type & PERF_SAMPLE_ID) { |
| data->id = primary_event_id(event); |
| |
| header->size += sizeof(data->id); |
| } |
| |
| if (sample_type & PERF_SAMPLE_STREAM_ID) { |
| data->stream_id = event->id; |
| |
| header->size += sizeof(data->stream_id); |
| } |
| |
| if (sample_type & PERF_SAMPLE_CPU) { |
| data->cpu_entry.cpu = raw_smp_processor_id(); |
| data->cpu_entry.reserved = 0; |
| |
| header->size += sizeof(data->cpu_entry); |
| } |
| |
| if (sample_type & PERF_SAMPLE_PERIOD) |
| header->size += sizeof(data->period); |
| |
| if (sample_type & PERF_SAMPLE_READ) |
| header->size += perf_event_read_size(event); |
| |
| if (sample_type & PERF_SAMPLE_CALLCHAIN) { |
| int size = 1; |
| |
| data->callchain = perf_callchain(regs); |
| |
| if (data->callchain) |
| size += data->callchain->nr; |
| |
| header->size += size * sizeof(u64); |
| } |
| |
| if (sample_type & PERF_SAMPLE_RAW) { |
| int size = sizeof(u32); |
| |
| if (data->raw) |
| size += data->raw->size; |
| else |
| size += sizeof(u32); |
| |
| WARN_ON_ONCE(size & (sizeof(u64)-1)); |
| header->size += size; |
| } |
| } |
| |
| static void perf_event_output(struct perf_event *event, int nmi, |
| struct perf_sample_data *data, |
| struct pt_regs *regs) |
| { |
| struct perf_output_handle handle; |
| struct perf_event_header header; |
| |
| perf_prepare_sample(&header, data, event, regs); |
| |
| if (perf_output_begin(&handle, event, header.size, nmi, 1)) |
| return; |
| |
| perf_output_sample(&handle, &header, data, event); |
| |
| perf_output_end(&handle); |
| } |
| |
| /* |
| * read event_id |
| */ |
| |
| struct perf_read_event { |
| struct perf_event_header header; |
| |
| u32 pid; |
| u32 tid; |
| }; |
| |
| static void |
| perf_event_read_event(struct perf_event *event, |
| struct task_struct *task) |
| { |
| struct perf_output_handle handle; |
| struct perf_read_event read_event = { |
| .header = { |
| .type = PERF_RECORD_READ, |
| .misc = 0, |
| .size = sizeof(read_event) + perf_event_read_size(event), |
| }, |
| .pid = perf_event_pid(event, task), |
| .tid = perf_event_tid(event, task), |
| }; |
| int ret; |
| |
| ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0); |
| if (ret) |
| return; |
| |
| perf_output_put(&handle, read_event); |
| perf_output_read(&handle, event); |
| |
| perf_output_end(&handle); |
| } |
| |
| /* |
| * task tracking -- fork/exit |
| * |
| * enabled by: attr.comm | attr.mmap | attr.task |
| */ |
| |
| struct perf_task_event { |
| struct task_struct *task; |
| struct perf_event_context *task_ctx; |
| |
| struct { |
| struct perf_event_header header; |
| |
| u32 pid; |
| u32 ppid; |
| u32 tid; |
| u32 ptid; |
| u64 time; |
| } event_id; |
| }; |
| |
| static void perf_event_task_output(struct perf_event *event, |
| struct perf_task_event *task_event) |
| { |
| struct perf_output_handle handle; |
| struct task_struct *task = task_event->task; |
| unsigned long flags; |
| int size, ret; |
| |
| /* |
| * If this CPU attempts to acquire an rq lock held by a CPU spinning |
| * in perf_output_lock() from interrupt context, it's game over. |
| */ |
| local_irq_save(flags); |
| |
| size = task_event->event_id.header.size; |
| ret = perf_output_begin(&handle, event, size, 0, 0); |
| |
| if (ret) { |
| local_irq_restore(flags); |
| return; |
| } |
| |
| task_event->event_id.pid = perf_event_pid(event, task); |
| task_event->event_id.ppid = perf_event_pid(event, current); |
| |
| task_event->event_id.tid = perf_event_tid(event, task); |
| task_event->event_id.ptid = perf_event_tid(event, current); |
| |
| perf_output_put(&handle, task_event->event_id); |
| |
| perf_output_end(&handle); |
| local_irq_restore(flags); |
| } |
| |
| static int perf_event_task_match(struct perf_event *event) |
| { |
| if (event->state < PERF_EVENT_STATE_INACTIVE) |
| return 0; |
| |
| if (event->cpu != -1 && event->cpu != smp_processor_id()) |
| return 0; |
| |
| if (event->attr.comm || event->attr.mmap || event->attr.task) |
| return 1; |
| |
| return 0; |
| } |
| |
| static void perf_event_task_ctx(struct perf_event_context *ctx, |
| struct perf_task_event *task_event) |
| { |
| struct perf_event *event; |
| |
| list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { |
| if (perf_event_task_match(event)) |
| perf_event_task_output(event, task_event); |
| } |
| } |
| |
| static void perf_event_task_event(struct perf_task_event *task_event) |
| { |
| struct perf_cpu_context *cpuctx; |
| struct perf_event_context *ctx = task_event->task_ctx; |
| |
| rcu_read_lock(); |
| cpuctx = &get_cpu_var(perf_cpu_context); |
| perf_event_task_ctx(&cpuctx->ctx, task_event); |
| if (!ctx) |
| ctx = rcu_dereference(current->perf_event_ctxp); |
| if (ctx) |
| perf_event_task_ctx(ctx, task_event); |
| put_cpu_var(perf_cpu_context); |
| rcu_read_unlock(); |
| } |
| |
| static void perf_event_task(struct task_struct *task, |
| struct perf_event_context *task_ctx, |
| int new) |
| { |
| struct perf_task_event task_event; |
| |
| if (!atomic_read(&nr_comm_events) && |
| !atomic_read(&nr_mmap_events) && |
| !atomic_read(&nr_task_events)) |
| return; |
| |
| task_event = (struct perf_task_event){ |
| .task = task, |
| .task_ctx = task_ctx, |
| .event_id = { |
| .header = { |
| .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT, |
| .misc = 0, |
| .size = sizeof(task_event.event_id), |
| }, |
| /* .pid */ |
| /* .ppid */ |
| /* .tid */ |
| /* .ptid */ |
| .time = perf_clock(), |
| }, |
| }; |
| |
| perf_event_task_event(&task_event); |
| } |
| |
| void perf_event_fork(struct task_struct *task) |
| { |
| perf_event_task(task, NULL, 1); |
| } |
| |
| /* |
| * comm tracking |
| */ |
| |
| struct perf_comm_event { |
| struct task_struct *task; |
| char *comm; |
| int comm_size; |
| |
| struct { |
| struct perf_event_header header; |
| |
| u32 pid; |
| u32 tid; |
| } event_id; |
| }; |
| |
| static void perf_event_comm_output(struct perf_event *event, |
| struct perf_comm_event *comm_event) |
| { |
| struct perf_output_handle handle; |
| int size = comm_event->event_id.header.size; |
| int ret = perf_output_begin(&handle, event, size, 0, 0); |
| |
| if (ret) |
| return; |
| |
| comm_event->event_id.pid = perf_event_pid(event, comm_event->task); |
| comm_event->event_id.tid = perf_event_tid(event, comm_event->task); |
| |
| perf_output_put(&handle, comm_event->event_id); |
| perf_output_copy(&handle, comm_event->comm, |
| comm_event->comm_size); |
| perf_output_end(&handle); |
| } |
| |
| static int perf_event_comm_match(struct perf_event *event) |
| { |
| if (event->state < PERF_EVENT_STATE_INACTIVE) |
| return 0; |
| |
| if (event->cpu != -1 && event->cpu != smp_processor_id()) |
| return 0; |
| |
| if (event->attr.comm) |
| return 1; |
| |
| return 0; |
| } |
| |
| static void perf_event_comm_ctx(struct perf_event_context *ctx, |
| struct perf_comm_event *comm_event) |
| { |
| struct perf_event *event; |
| |
| list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { |
| if (perf_event_comm_match(event)) |
| perf_event_comm_output(event, comm_event); |
| } |
| } |
| |
| static void perf_event_comm_event(struct perf_comm_event *comm_event) |
| { |
| struct perf_cpu_context *cpuctx; |
| struct perf_event_context *ctx; |
| unsigned int size; |
| char comm[TASK_COMM_LEN]; |
| |
| memset(comm, 0, sizeof(comm)); |
| strlcpy(comm, comm_event->task->comm, sizeof(comm)); |
| size = ALIGN(strlen(comm)+1, sizeof(u64)); |
| |
| comm_event->comm = comm; |
| comm_event->comm_size = size; |
| |
| comm_event->event_id.header.size = sizeof(comm_event->event_id) + size; |
| |
| rcu_read_lock(); |
| cpuctx = &get_cpu_var(perf_cpu_context); |
| perf_event_comm_ctx(&cpuctx->ctx, comm_event); |
| ctx = rcu_dereference(current->perf_event_ctxp); |
| if (ctx) |
| perf_event_comm_ctx(ctx, comm_event); |
| put_cpu_var(perf_cpu_context); |
| rcu_read_unlock(); |
| } |
| |
| void perf_event_comm(struct task_struct *task) |
| { |
| struct perf_comm_event comm_event; |
| |
| if (task->perf_event_ctxp) |
| perf_event_enable_on_exec(task); |
| |
| if (!atomic_read(&nr_comm_events)) |
| return; |
| |
| comm_event = (struct perf_comm_event){ |
| .task = task, |
| /* .comm */ |
| /* .comm_size */ |
| .event_id = { |
| .header = { |
| .type = PERF_RECORD_COMM, |
| .misc = 0, |
| /* .size */ |
| }, |
| /* .pid */ |
| /* .tid */ |
| }, |
| }; |
| |
| perf_event_comm_event(&comm_event); |
| } |
| |
| /* |
| * mmap tracking |
| */ |
| |
| struct perf_mmap_event { |
| struct vm_area_struct *vma; |
| |
| const char *file_name; |
| int file_size; |
| |
| struct { |
| struct perf_event_header header; |
| |
| u32 pid; |
| u32 tid; |
| u64 start; |
| u64 len; |
| u64 pgoff; |
| } event_id; |
| }; |
| |
| static void perf_event_mmap_output(struct perf_event *event, |
| struct perf_mmap_event *mmap_event) |
| { |
| struct perf_output_handle handle; |
| int size = mmap_event->event_id.header.size; |
| int ret = perf_output_begin(&handle, event, size, 0, 0); |
| |
| if (ret) |
| return; |
| |
| mmap_event->event_id.pid = perf_event_pid(event, current); |
| mmap_event->event_id.tid = perf_event_tid(event, current); |
| |
| perf_output_put(&handle, mmap_event->event_id); |
| perf_output_copy(&handle, mmap_event->file_name, |
| mmap_event->file_size); |
| perf_output_end(&handle); |
| } |
| |
| static int perf_event_mmap_match(struct perf_event *event, |
| struct perf_mmap_event *mmap_event) |
| { |
| if (event->state < PERF_EVENT_STATE_INACTIVE) |
| return 0; |
| |
| if (event->cpu != -1 && event->cpu != smp_processor_id()) |
| return 0; |
| |
| if (event->attr.mmap) |
| return 1; |
| |
| return 0; |
| } |
| |
| static void perf_event_mmap_ctx(struct perf_event_context *ctx, |
| struct perf_mmap_event *mmap_event) |
| { |
| struct perf_event *event; |
| |
| list_for_each_entry_rcu(event, &ctx->event_list, event_entry) { |
| if (perf_event_mmap_match(event, mmap_event)) |
| perf_event_mmap_output(event, mmap_event); |
| } |
| } |
| |
| static void perf_event_mmap_event(struct perf_mmap_event *mmap_event) |
| { |
| struct perf_cpu_context *cpuctx; |
| struct perf_event_context *ctx; |
| struct vm_area_struct *vma = mmap_event->vma; |
| struct file *file = vma->vm_file; |
| unsigned int size; |
| char tmp[16]; |
| char *buf = NULL; |
| const char *name; |
| |
| memset(tmp, 0, sizeof(tmp)); |
| |
| if (file) { |
| /* |
| * d_path works from the end of the buffer backwards, so we |
| * need to add enough zero bytes after the string to handle |
| * the 64bit alignment we do later. |
| */ |
| buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL); |
| if (!buf) { |
| name = strncpy(tmp, "//enomem", sizeof(tmp)); |
| goto got_name; |
| } |
| name = d_path(&file->f_path, buf, PATH_MAX); |
| if (IS_ERR(name)) { |
| name = strncpy(tmp, "//toolong", sizeof(tmp)); |
| goto got_name; |
| } |
| } else { |
| if (arch_vma_name(mmap_event->vma)) { |
| name = strncpy(tmp, arch_vma_name(mmap_event->vma), |
| sizeof(tmp)); |
| goto got_name; |
| } |
| |
| if (!vma->vm_mm) { |
| name = strncpy(tmp, "[vdso]", sizeof(tmp)); |
| goto got_name; |
| } |
| |
| name = strncpy(tmp, "//anon", sizeof(tmp)); |
| goto got_name; |
| } |
| |
| got_name: |
| size = ALIGN(strlen(name)+1, sizeof(u64)); |
| |
| mmap_event->file_name = name; |
| mmap_event->file_size = size; |
| |
| mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size; |
| |
| rcu_read_lock(); |
| cpuctx = &get_cpu_var(perf_cpu_context); |
| perf_event_mmap_ctx(&cpuctx->ctx, mmap_event); |
| ctx = rcu_dereference(current->perf_event_ctxp); |
| if (ctx) |
| perf_event_mmap_ctx(ctx, mmap_event); |
| put_cpu_var(perf_cpu_context); |
| rcu_read_unlock(); |
| |
| kfree(buf); |
| } |
| |
| void __perf_event_mmap(struct vm_area_struct *vma) |
| { |
| struct perf_mmap_event mmap_event; |
| |
| if (!atomic_read(&nr_mmap_events)) |
| return; |
| |
| mmap_event = (struct perf_mmap_event){ |
| .vma = vma, |
| /* .file_name */ |
| /* .file_size */ |
| .event_id = { |
| .header = { |
| .type = PERF_RECORD_MMAP, |
| .misc = PERF_RECORD_MISC_USER, |
| /* .size */ |
| }, |
| /* .pid */ |
| /* .tid */ |
| .start = vma->vm_start, |
| .len = vma->vm_end - vma->vm_start, |
| .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT, |
| }, |
| }; |
| |
| perf_event_mmap_event(&mmap_event); |
| } |
| |
| /* |
| * IRQ throttle logging |
| */ |
| |
| static void perf_log_throttle(struct perf_event *event, int enable) |
| { |
| struct perf_output_handle handle; |
| int ret; |
| |
| struct { |
| struct perf_event_header header; |
| u64 time; |
| u64 id; |
| u64 stream_id; |
| } throttle_event = { |
| .header = { |
| .type = PERF_RECORD_THROTTLE, |
| .misc = 0, |
| .size = sizeof(throttle_event), |
| }, |
| .time = perf_clock(), |
| .id = primary_event_id(event), |
| .stream_id = event->id, |
| }; |
| |
| if (enable) |
| throttle_event.header.type = PERF_RECORD_UNTHROTTLE; |
| |
| ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0); |
| if (ret) |
| return; |
| |
| perf_output_put(&handle, throttle_event); |
| perf_output_end(&handle); |
| } |
| |
| /* |
| * Generic event overflow handling, sampling. |
| */ |
| |
| static int __perf_event_overflow(struct perf_event *event, int nmi, |
| int throttle, struct perf_sample_data *data, |
| struct pt_regs *regs) |
| { |
| int events = atomic_read(&event->event_limit); |
| struct hw_perf_event *hwc = &event->hw; |
| int ret = 0; |
| |
| throttle = (throttle && event->pmu->unthrottle != NULL); |
| |
| if (!throttle) { |
| hwc->interrupts++; |
| } else { |
| if (hwc->interrupts != MAX_INTERRUPTS) { |
| hwc->interrupts++; |
| if (HZ * hwc->interrupts > |
| (u64)sysctl_perf_event_sample_rate) { |
| hwc->interrupts = MAX_INTERRUPTS; |
| perf_log_throttle(event, 0); |
| ret = 1; |
| } |
| } else { |
| /* |
| * Keep re-disabling events even though on the previous |
| * pass we disabled it - just in case we raced with a |
| * sched-in and the event got enabled again: |
| */ |
| ret = 1; |
| } |
| } |
| |
| if (event->attr.freq) { |
| u64 now = perf_clock(); |
| s64 delta = now - hwc->freq_time_stamp; |
| |
| hwc->freq_time_stamp = now; |
| |
| if (delta > 0 && delta < 2*TICK_NSEC) |
| perf_adjust_period(event, delta, hwc->last_period); |
| } |
| |
| /* |
| * XXX event_limit might not quite work as expected on inherited |
| * events |
| */ |
| |
| event->pending_kill = POLL_IN; |
| if (events && atomic_dec_and_test(&event->event_limit)) { |
| ret = 1; |
| event->pending_kill = POLL_HUP; |
| if (nmi) { |
| event->pending_disable = 1; |
| perf_pending_queue(&event->pending, |
| perf_pending_event); |
| } else |
| perf_event_disable(event); |
| } |
| |
| if (event->overflow_handler) |
| event->overflow_handler(event, nmi, data, regs); |
| else |
| perf_event_output(event, nmi, data, regs); |
| |
| return ret; |
| } |
| |
| int perf_event_overflow(struct perf_event *event, int nmi, |
| struct perf_sample_data *data, |
| struct pt_regs *regs) |
| { |
| return __perf_event_overflow(event, nmi, 1, data, regs); |
| } |
| |
| /* |
| * Generic software event infrastructure |
| */ |
| |
| /* |
| * We directly increment event->count and keep a second value in |
| * event->hw.period_left to count intervals. This period event |
| * is kept in the range [-sample_period, 0] so that we can use the |
| * sign as trigger. |
| */ |
| |
| static u64 perf_swevent_set_period(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| u64 period = hwc->last_period; |
| u64 nr, offset; |
| s64 old, val; |
| |
| hwc->last_period = hwc->sample_period; |
| |
| again: |
| old = val = atomic64_read(&hwc->period_left); |
| if (val < 0) |
| return 0; |
| |
| nr = div64_u64(period + val, period); |
| offset = nr * period; |
| val -= offset; |
| if (atomic64_cmpxchg(&hwc->period_left, old, val) != old) |
| goto again; |
| |
| return nr; |
| } |
| |
| static void perf_swevent_overflow(struct perf_event *event, u64 overflow, |
| int nmi, struct perf_sample_data *data, |
| struct pt_regs *regs) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| int throttle = 0; |
| |
| data->period = event->hw.last_period; |
| if (!overflow) |
| overflow = perf_swevent_set_period(event); |
| |
| if (hwc->interrupts == MAX_INTERRUPTS) |
| return; |
| |
| for (; overflow; overflow--) { |
| if (__perf_event_overflow(event, nmi, throttle, |
| data, regs)) { |
| /* |
| * We inhibit the overflow from happening when |
| * hwc->interrupts == MAX_INTERRUPTS. |
| */ |
| break; |
| } |
| throttle = 1; |
| } |
| } |
| |
| static void perf_swevent_unthrottle(struct perf_event *event) |
| { |
| /* |
| * Nothing to do, we already reset hwc->interrupts. |
| */ |
| } |
| |
| static void perf_swevent_add(struct perf_event *event, u64 nr, |
| int nmi, struct perf_sample_data *data, |
| struct pt_regs *regs) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| |
| atomic64_add(nr, &event->count); |
| |
| if (!regs) |
| return; |
| |
| if (!hwc->sample_period) |
| return; |
| |
| if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq) |
| return perf_swevent_overflow(event, 1, nmi, data, regs); |
| |
| if (atomic64_add_negative(nr, &hwc->period_left)) |
| return; |
| |
| perf_swevent_overflow(event, 0, nmi, data, regs); |
| } |
| |
| static int perf_tp_event_match(struct perf_event *event, |
| struct perf_sample_data *data); |
| |
| static int perf_exclude_event(struct perf_event *event, |
| struct pt_regs *regs) |
| { |
| if (regs) { |
| if (event->attr.exclude_user && user_mode(regs)) |
| return 1; |
| |
| if (event->attr.exclude_kernel && !user_mode(regs)) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int perf_swevent_match(struct perf_event *event, |
| enum perf_type_id type, |
| u32 event_id, |
| struct perf_sample_data *data, |
| struct pt_regs *regs) |
| { |
| if (event->attr.type != type) |
| return 0; |
| |
| if (event->attr.config != event_id) |
| return 0; |
| |
| if (perf_exclude_event(event, regs)) |
| return 0; |
| |
| if (event->attr.type == PERF_TYPE_TRACEPOINT && |
| !perf_tp_event_match(event, data)) |
| return 0; |
| |
| return 1; |
| } |
| |
| static inline u64 swevent_hash(u64 type, u32 event_id) |
| { |
| u64 val = event_id | (type << 32); |
| |
| return hash_64(val, SWEVENT_HLIST_BITS); |
| } |
| |
| static struct hlist_head * |
| find_swevent_head(struct perf_cpu_context *ctx, u64 type, u32 event_id) |
| { |
| u64 hash; |
| struct swevent_hlist *hlist; |
| |
| hash = swevent_hash(type, event_id); |
| |
| hlist = rcu_dereference(ctx->swevent_hlist); |
| if (!hlist) |
| return NULL; |
| |
| return &hlist->heads[hash]; |
| } |
| |
| static void do_perf_sw_event(enum perf_type_id type, u32 event_id, |
| u64 nr, int nmi, |
| struct perf_sample_data *data, |
| struct pt_regs *regs) |
| { |
| struct perf_cpu_context *cpuctx; |
| struct perf_event *event; |
| struct hlist_node *node; |
| struct hlist_head *head; |
| |
| cpuctx = &__get_cpu_var(perf_cpu_context); |
| |
| rcu_read_lock(); |
| |
| head = find_swevent_head(cpuctx, type, event_id); |
| |
| if (!head) |
| goto end; |
| |
| hlist_for_each_entry_rcu(event, node, head, hlist_entry) { |
| if (perf_swevent_match(event, type, event_id, data, regs)) |
| perf_swevent_add(event, nr, nmi, data, regs); |
| } |
| end: |
| rcu_read_unlock(); |
| } |
| |
| int perf_swevent_get_recursion_context(void) |
| { |
| struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context); |
| int rctx; |
| |
| if (in_nmi()) |
| rctx = 3; |
| else if (in_irq()) |
| rctx = 2; |
| else if (in_softirq()) |
| rctx = 1; |
| else |
| rctx = 0; |
| |
| if (cpuctx->recursion[rctx]) { |
| put_cpu_var(perf_cpu_context); |
| return -1; |
| } |
| |
| cpuctx->recursion[rctx]++; |
| barrier(); |
| |
| return rctx; |
| } |
| EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context); |
| |
| void perf_swevent_put_recursion_context(int rctx) |
| { |
| struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
| barrier(); |
| cpuctx->recursion[rctx]--; |
| put_cpu_var(perf_cpu_context); |
| } |
| EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context); |
| |
| |
| void __perf_sw_event(u32 event_id, u64 nr, int nmi, |
| struct pt_regs *regs, u64 addr) |
| { |
| struct perf_sample_data data; |
| int rctx; |
| |
| rctx = perf_swevent_get_recursion_context(); |
| if (rctx < 0) |
| return; |
| |
| perf_sample_data_init(&data, addr); |
| |
| do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs); |
| |
| perf_swevent_put_recursion_context(rctx); |
| } |
| |
| static void perf_swevent_read(struct perf_event *event) |
| { |
| } |
| |
| static int perf_swevent_enable(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| struct perf_cpu_context *cpuctx; |
| struct hlist_head *head; |
| |
| cpuctx = &__get_cpu_var(perf_cpu_context); |
| |
| if (hwc->sample_period) { |
| hwc->last_period = hwc->sample_period; |
| perf_swevent_set_period(event); |
| } |
| |
| head = find_swevent_head(cpuctx, event->attr.type, event->attr.config); |
| if (WARN_ON_ONCE(!head)) |
| return -EINVAL; |
| |
| hlist_add_head_rcu(&event->hlist_entry, head); |
| |
| return 0; |
| } |
| |
| static void perf_swevent_disable(struct perf_event *event) |
| { |
| hlist_del_rcu(&event->hlist_entry); |
| } |
| |
| static const struct pmu perf_ops_generic = { |
| .enable = perf_swevent_enable, |
| .disable = perf_swevent_disable, |
| .read = perf_swevent_read, |
| .unthrottle = perf_swevent_unthrottle, |
| }; |
| |
| /* |
| * hrtimer based swevent callback |
| */ |
| |
| static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer) |
| { |
| enum hrtimer_restart ret = HRTIMER_RESTART; |
| struct perf_sample_data data; |
| struct pt_regs *regs; |
| struct perf_event *event; |
| u64 period; |
| |
| event = container_of(hrtimer, struct perf_event, hw.hrtimer); |
| event->pmu->read(event); |
| |
| perf_sample_data_init(&data, 0); |
| data.period = event->hw.last_period; |
| regs = get_irq_regs(); |
| |
| if (regs && !perf_exclude_event(event, regs)) { |
| if (!(event->attr.exclude_idle && current->pid == 0)) |
| if (perf_event_overflow(event, 0, &data, regs)) |
| ret = HRTIMER_NORESTART; |
| } |
| |
| period = max_t(u64, 10000, event->hw.sample_period); |
| hrtimer_forward_now(hrtimer, ns_to_ktime(period)); |
| |
| return ret; |
| } |
| |
| static void perf_swevent_start_hrtimer(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| |
| hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| hwc->hrtimer.function = perf_swevent_hrtimer; |
| if (hwc->sample_period) { |
| u64 period; |
| |
| if (hwc->remaining) { |
| if (hwc->remaining < 0) |
| period = 10000; |
| else |
| period = hwc->remaining; |
| hwc->remaining = 0; |
| } else { |
| period = max_t(u64, 10000, hwc->sample_period); |
| } |
| __hrtimer_start_range_ns(&hwc->hrtimer, |
| ns_to_ktime(period), 0, |
| HRTIMER_MODE_REL, 0); |
| } |
| } |
| |
| static void perf_swevent_cancel_hrtimer(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| |
| if (hwc->sample_period) { |
| ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer); |
| hwc->remaining = ktime_to_ns(remaining); |
| |
| hrtimer_cancel(&hwc->hrtimer); |
| } |
| } |
| |
| /* |
| * Software event: cpu wall time clock |
| */ |
| |
| static void cpu_clock_perf_event_update(struct perf_event *event) |
| { |
| int cpu = raw_smp_processor_id(); |
| s64 prev; |
| u64 now; |
| |
| now = cpu_clock(cpu); |
| prev = atomic64_xchg(&event->hw.prev_count, now); |
| atomic64_add(now - prev, &event->count); |
| } |
| |
| static int cpu_clock_perf_event_enable(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| int cpu = raw_smp_processor_id(); |
| |
| atomic64_set(&hwc->prev_count, cpu_clock(cpu)); |
| perf_swevent_start_hrtimer(event); |
| |
| return 0; |
| } |
| |
| static void cpu_clock_perf_event_disable(struct perf_event *event) |
| { |
| perf_swevent_cancel_hrtimer(event); |
| cpu_clock_perf_event_update(event); |
| } |
| |
| static void cpu_clock_perf_event_read(struct perf_event *event) |
| { |
| cpu_clock_perf_event_update(event); |
| } |
| |
| static const struct pmu perf_ops_cpu_clock = { |
| .enable = cpu_clock_perf_event_enable, |
| .disable = cpu_clock_perf_event_disable, |
| .read = cpu_clock_perf_event_read, |
| }; |
| |
| /* |
| * Software event: task time clock |
| */ |
| |
| static void task_clock_perf_event_update(struct perf_event *event, u64 now) |
| { |
| u64 prev; |
| s64 delta; |
| |
| prev = atomic64_xchg(&event->hw.prev_count, now); |
| delta = now - prev; |
| atomic64_add(delta, &event->count); |
| } |
| |
| static int task_clock_perf_event_enable(struct perf_event *event) |
| { |
| struct hw_perf_event *hwc = &event->hw; |
| u64 now; |
| |
| now = event->ctx->time; |
| |
| atomic64_set(&hwc->prev_count, now); |
| |
| perf_swevent_start_hrtimer(event); |
| |
| return 0; |
| } |
| |
| static void task_clock_perf_event_disable(struct perf_event *event) |
| { |
| perf_swevent_cancel_hrtimer(event); |
| task_clock_perf_event_update(event, event->ctx->time); |
| |
| } |
| |
| static void task_clock_perf_event_read(struct perf_event *event) |
| { |
| u64 time; |
| |
| if (!in_nmi()) { |
| update_context_time(event->ctx); |
| time = event->ctx->time; |
| } else { |
| u64 now = perf_clock(); |
| u64 delta = now - event->ctx->timestamp; |
| time = event->ctx->time + delta; |
| } |
| |
| task_clock_perf_event_update(event, time); |
| } |
| |
| static const struct pmu perf_ops_task_clock = { |
| .enable = task_clock_perf_event_enable, |
| .disable = task_clock_perf_event_disable, |
| .read = task_clock_perf_event_read, |
| }; |
| |
| static void swevent_hlist_release_rcu(struct rcu_head *rcu_head) |
| { |
| struct swevent_hlist *hlist; |
| |
| hlist = container_of(rcu_head, struct swevent_hlist, rcu_head); |
| kfree(hlist); |
| } |
| |
| static void swevent_hlist_release(struct perf_cpu_context *cpuctx) |
| { |
| struct swevent_hlist *hlist; |
| |
| if (!cpuctx->swevent_hlist) |
| return; |
| |
| hlist = cpuctx->swevent_hlist; |
| rcu_assign_pointer(cpuctx->swevent_hlist, NULL); |
| call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu); |
| } |
| |
| static void swevent_hlist_put_cpu(struct perf_event *event, int cpu) |
| { |
| struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); |
| |
| mutex_lock(&cpuctx->hlist_mutex); |
| |
| if (!--cpuctx->hlist_refcount) |
| swevent_hlist_release(cpuctx); |
| |
| mutex_unlock(&cpuctx->hlist_mutex); |
| } |
| |
| static void swevent_hlist_put(struct perf_event *event) |
| { |
| int cpu; |
| |
| if (event->cpu != -1) { |
| swevent_hlist_put_cpu(event, event->cpu); |
| return; |
| } |
| |
| for_each_possible_cpu(cpu) |
| swevent_hlist_put_cpu(event, cpu); |
| } |
| |
| static int swevent_hlist_get_cpu(struct perf_event *event, int cpu) |
| { |
| struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); |
| int err = 0; |
| |
| mutex_lock(&cpuctx->hlist_mutex); |
| |
| if (!cpuctx->swevent_hlist && cpu_online(cpu)) { |
| struct swevent_hlist *hlist; |
| |
| hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); |
| if (!hlist) { |
| err = -ENOMEM; |
| goto exit; |
| } |
| rcu_assign_pointer(cpuctx->swevent_hlist, hlist); |
| } |
| cpuctx->hlist_refcount++; |
| exit: |
| mutex_unlock(&cpuctx->hlist_mutex); |
| |
| return err; |
| } |
| |
| static int swevent_hlist_get(struct perf_event *event) |
| { |
| int err; |
| int cpu, failed_cpu; |
| |
| if (event->cpu != -1) |
| return swevent_hlist_get_cpu(event, event->cpu); |
| |
| get_online_cpus(); |
| for_each_possible_cpu(cpu) { |
| err = swevent_hlist_get_cpu(event, cpu); |
| if (err) { |
| failed_cpu = cpu; |
| goto fail; |
| } |
| } |
| put_online_cpus(); |
| |
| return 0; |
| fail: |
| for_each_possible_cpu(cpu) { |
| if (cpu == failed_cpu) |
| break; |
| swevent_hlist_put_cpu(event, cpu); |
| } |
| |
| put_online_cpus(); |
| return err; |
| } |
| |
| #ifdef CONFIG_EVENT_TRACING |
| |
| void perf_tp_event(int event_id, u64 addr, u64 count, void *record, |
| int entry_size, struct pt_regs *regs) |
| { |
| struct perf_sample_data data; |
| struct perf_raw_record raw = { |
| .size = entry_size, |
| .data = record, |
| }; |
| |
| perf_sample_data_init(&data, addr); |
| data.raw = &raw; |
| |
| /* Trace events already protected against recursion */ |
| do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1, |
| &data, regs); |
| } |
| EXPORT_SYMBOL_GPL(perf_tp_event); |
| |
| static int perf_tp_event_match(struct perf_event *event, |
| struct perf_sample_data *data) |
| { |
| void *record = data->raw->data; |
| |
| if (likely(!event->filter) || filter_match_preds(event->filter, record)) |
| return 1; |
| return 0; |
| } |
| |
| static void tp_perf_event_destroy(struct perf_event *event) |
| { |
| perf_trace_disable(event->attr.config); |
| swevent_hlist_put(event); |
| } |
| |
| static const struct pmu *tp_perf_event_init(struct perf_event *event) |
| { |
| int err; |
| |
| /* |
| * Raw tracepoint data is a severe data leak, only allow root to |
| * have these. |
| */ |
| if ((event->attr.sample_type & PERF_SAMPLE_RAW) && |
| perf_paranoid_tracepoint_raw() && |
| !capable(CAP_SYS_ADMIN)) |
| return ERR_PTR(-EPERM); |
| |
| if (perf_trace_enable(event->attr.config)) |
| return NULL; |
| |
| event->destroy = tp_perf_event_destroy; |
| err = swevent_hlist_get(event); |
| if (err) { |
| perf_trace_disable(event->attr.config); |
| return ERR_PTR(err); |
| } |
| |
| return &perf_ops_generic; |
| } |
| |
| static int perf_event_set_filter(struct perf_event *event, void __user *arg) |
| { |
| char *filter_str; |
| int ret; |
| |
| if (event->attr.type != PERF_TYPE_TRACEPOINT) |
| return -EINVAL; |
| |
| filter_str = strndup_user(arg, PAGE_SIZE); |
| if (IS_ERR(filter_str)) |
| return PTR_ERR(filter_str); |
| |
| ret = ftrace_profile_set_filter(event, event->attr.config, filter_str); |
| |
| kfree(filter_str); |
| return ret; |
| } |
| |
| static void perf_event_free_filter(struct perf_event *event) |
| { |
| ftrace_profile_free_filter(event); |
| } |
| |
| #else |
| |
| static int perf_tp_event_match(struct perf_event *event, |
| struct perf_sample_data *data) |
| { |
| return 1; |
| } |
| |
| static const struct pmu *tp_perf_event_init(struct perf_event *event) |
| { |
| return NULL; |
| } |
| |
| static int perf_event_set_filter(struct perf_event *event, void __user *arg) |
| { |
| return -ENOENT; |
| } |
| |
| static void perf_event_free_filter(struct perf_event *event) |
| { |
| } |
| |
| #endif /* CONFIG_EVENT_TRACING */ |
| |
| #ifdef CONFIG_HAVE_HW_BREAKPOINT |
| static void bp_perf_event_destroy(struct perf_event *event) |
| { |
| release_bp_slot(event); |
| } |
| |
| static const struct pmu *bp_perf_event_init(struct perf_event *bp) |
| { |
| int err; |
| |
| err = register_perf_hw_breakpoint(bp); |
| if (err) |
| return ERR_PTR(err); |
| |
| bp->destroy = bp_perf_event_destroy; |
| |
| return &perf_ops_bp; |
| } |
| |
| void perf_bp_event(struct perf_event *bp, void *data) |
| { |
| struct perf_sample_data sample; |
| struct pt_regs *regs = data; |
| |
| perf_sample_data_init(&sample, bp->attr.bp_addr); |
| |
| if (!perf_exclude_event(bp, regs)) |
| perf_swevent_add(bp, 1, 1, &sample, regs); |
| } |
| #else |
| static const struct pmu *bp_perf_event_init(struct perf_event *bp) |
| { |
| return NULL; |
| } |
| |
| void perf_bp_event(struct perf_event *bp, void *regs) |
| { |
| } |
| #endif |
| |
| atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX]; |
| |
| static void sw_perf_event_destroy(struct perf_event *event) |
| { |
| u64 event_id = event->attr.config; |
| |
| WARN_ON(event->parent); |
| |
| atomic_dec(&perf_swevent_enabled[event_id]); |
| swevent_hlist_put(event); |
| } |
| |
| static const struct pmu *sw_perf_event_init(struct perf_event *event) |
| { |
| const struct pmu *pmu = NULL; |
| u64 event_id = event->attr.config; |
| |
| /* |
| * Software events (currently) can't in general distinguish |
| * between user, kernel and hypervisor events. |
| * However, context switches and cpu migrations are considered |
| * to be kernel events, and page faults are never hypervisor |
| * events. |
| */ |
| switch (event_id) { |
| case PERF_COUNT_SW_CPU_CLOCK: |
| pmu = &perf_ops_cpu_clock; |
| |
| break; |
| case PERF_COUNT_SW_TASK_CLOCK: |
| /* |
| * If the user instantiates this as a per-cpu event, |
| * use the cpu_clock event instead. |
| */ |
| if (event->ctx->task) |
| pmu = &perf_ops_task_clock; |
| else |
| pmu = &perf_ops_cpu_clock; |
| |
| break; |
| case PERF_COUNT_SW_PAGE_FAULTS: |
| case PERF_COUNT_SW_PAGE_FAULTS_MIN: |
| case PERF_COUNT_SW_PAGE_FAULTS_MAJ: |
| case PERF_COUNT_SW_CONTEXT_SWITCHES: |
| case PERF_COUNT_SW_CPU_MIGRATIONS: |
| case PERF_COUNT_SW_ALIGNMENT_FAULTS: |
| case PERF_COUNT_SW_EMULATION_FAULTS: |
| if (!event->parent) { |
| int err; |
| |
| err = swevent_hlist_get(event); |
| if (err) |
| return ERR_PTR(err); |
| |
| atomic_inc(&perf_swevent_enabled[event_id]); |
| event->destroy = sw_perf_event_destroy; |
| } |
| pmu = &perf_ops_generic; |
| break; |
| } |
| |
| return pmu; |
| } |
| |
| /* |
| * Allocate and initialize a event structure |
| */ |
| static struct perf_event * |
| perf_event_alloc(struct perf_event_attr *attr, |
| int cpu, |
| struct perf_event_context *ctx, |
| struct perf_event *group_leader, |
| struct perf_event *parent_event, |
| perf_overflow_handler_t overflow_handler, |
| gfp_t gfpflags) |
| { |
| const struct pmu *pmu; |
| struct perf_event *event; |
| struct hw_perf_event *hwc; |
| long err; |
| |
| event = kzalloc(sizeof(*event), gfpflags); |
| if (!event) |
| return ERR_PTR(-ENOMEM); |
| |
| /* |
| * Single events are their own group leaders, with an |
| * empty sibling list: |
| */ |
| if (!group_leader) |
| group_leader = event; |
| |
| mutex_init(&event->child_mutex); |
| INIT_LIST_HEAD(&event->child_list); |
| |
| INIT_LIST_HEAD(&event->group_entry); |
| INIT_LIST_HEAD(&event->event_entry); |
| INIT_LIST_HEAD(&event->sibling_list); |
| init_waitqueue_head(&event->waitq); |
| |
| mutex_init(&event->mmap_mutex); |
| |
| event->cpu = cpu; |
| event->attr = *attr; |
| event->group_leader = group_leader; |
| event->pmu = NULL; |
| event->ctx = ctx; |
| event->oncpu = -1; |
| |
| event->parent = parent_event; |
| |
| event->ns = get_pid_ns(current->nsproxy->pid_ns); |
| event->id = atomic64_inc_return(&perf_event_id); |
| |
| event->state = PERF_EVENT_STATE_INACTIVE; |
| |
| if (!overflow_handler && parent_event) |
| overflow_handler = parent_event->overflow_handler; |
| |
| event->overflow_handler = overflow_handler; |
| |
| if (attr->disabled) |
| event->state = PERF_EVENT_STATE_OFF; |
| |
| pmu = NULL; |
| |
| hwc = &event->hw; |
| hwc->sample_period = attr->sample_period; |
| if (attr->freq && attr->sample_freq) |
| hwc->sample_period = 1; |
| hwc->last_period = hwc->sample_period; |
| |
| atomic64_set(&hwc->period_left, hwc->sample_period); |
| |
| /* |
| * we currently do not support PERF_FORMAT_GROUP on inherited events |
| */ |
| if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP)) |
| goto done; |
| |
| switch (attr->type) { |
| case PERF_TYPE_RAW: |
| case PERF_TYPE_HARDWARE: |
| case PERF_TYPE_HW_CACHE: |
| pmu = hw_perf_event_init(event); |
| break; |
| |
| case PERF_TYPE_SOFTWARE: |
| pmu = sw_perf_event_init(event); |
| break; |
| |
| case PERF_TYPE_TRACEPOINT: |
| pmu = tp_perf_event_init(event); |
| break; |
| |
| case PERF_TYPE_BREAKPOINT: |
| pmu = bp_perf_event_init(event); |
| break; |
| |
| |
| default: |
| break; |
| } |
| done: |
| err = 0; |
| if (!pmu) |
| err = -EINVAL; |
| else if (IS_ERR(pmu)) |
| err = PTR_ERR(pmu); |
| |
| if (err) { |
| if (event->ns) |
| put_pid_ns(event->ns); |
| kfree(event); |
| return ERR_PTR(err); |
| } |
| |
| event->pmu = pmu; |
| |
| if (!event->parent) { |
| atomic_inc(&nr_events); |
| if (event->attr.mmap) |
| atomic_inc(&nr_mmap_events); |
| if (event->attr.comm) |
| atomic_inc(&nr_comm_events); |
| if (event->attr.task) |
| atomic_inc(&nr_task_events); |
| } |
| |
| return event; |
| } |
| |
| static int perf_copy_attr(struct perf_event_attr __user *uattr, |
| struct perf_event_attr *attr) |
| { |
| u32 size; |
| int ret; |
| |
| if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0)) |
| return -EFAULT; |
| |
| /* |
| * zero the full structure, so that a short copy will be nice. |
| */ |
| memset(attr, 0, sizeof(*attr)); |
| |
| ret = get_user(size, &uattr->size); |
| if (ret) |
| return ret; |
| |
| if (size > PAGE_SIZE) /* silly large */ |
| goto err_size; |
| |
| if (!size) /* abi compat */ |
| size = PERF_ATTR_SIZE_VER0; |
| |
| if (size < PERF_ATTR_SIZE_VER0) |
| goto err_size; |
| |
| /* |
| * If we're handed a bigger struct than we know of, |
| * ensure all the unknown bits are 0 - i.e. new |
| * user-space does not rely on any kernel feature |
| * extensions we dont know about yet. |
| */ |
| if (size > sizeof(*attr)) { |
| unsigned char __user *addr; |
| unsigned char __user *end; |
| unsigned char val; |
| |
| addr = (void __user *)uattr + sizeof(*attr); |
| end = (void __user *)uattr + size; |
| |
| for (; addr < end; addr++) { |
| ret = get_user(val, addr); |
| if (ret) |
| return ret; |
| if (val) |
| goto err_size; |
| } |
| size = sizeof(*attr); |
| } |
| |
| ret = copy_from_user(attr, uattr, size); |
| if (ret) |
| return -EFAULT; |
| |
| /* |
| * If the type exists, the corresponding creation will verify |
| * the attr->config. |
| */ |
| if (attr->type >= PERF_TYPE_MAX) |
| return -EINVAL; |
| |
| if (attr->__reserved_1) |
| return -EINVAL; |
| |
| if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) |
| return -EINVAL; |
| |
| if (attr->read_format & ~(PERF_FORMAT_MAX-1)) |
| return -EINVAL; |
| |
| out: |
| return ret; |
| |
| err_size: |
| put_user(sizeof(*attr), &uattr->size); |
| ret = -E2BIG; |
| goto out; |
| } |
| |
| static int perf_event_set_output(struct perf_event *event, int output_fd) |
| { |
| struct perf_event *output_event = NULL; |
| struct file *output_file = NULL; |
| struct perf_event *old_output; |
| int fput_needed = 0; |
| int ret = -EINVAL; |
| |
| if (!output_fd) |
| goto set; |
| |
| output_file = fget_light(output_fd, &fput_needed); |
| if (!output_file) |
| return -EBADF; |
| |
| if (output_file->f_op != &perf_fops) |
| goto out; |
| |
| output_event = output_file->private_data; |
| |
| /* Don't chain output fds */ |
| if (output_event->output) |
| goto out; |
| |
| /* Don't set an output fd when we already have an output channel */ |
| if (event->data) |
| goto out; |
| |
| atomic_long_inc(&output_file->f_count); |
| |
| set: |
| mutex_lock(&event->mmap_mutex); |
| old_output = event->output; |
| rcu_assign_pointer(event->output, output_event); |
| mutex_unlock(&event->mmap_mutex); |
| |
| if (old_output) { |
| /* |
| * we need to make sure no existing perf_output_*() |
| * is still referencing this event. |
| */ |
| synchronize_rcu(); |
| fput(old_output->filp); |
| } |
| |
| ret = 0; |
| out: |
| fput_light(output_file, fput_needed); |
| return ret; |
| } |
| |
| /** |
| * sys_perf_event_open - open a performance event, associate it to a task/cpu |
| * |
| * @attr_uptr: event_id type attributes for monitoring/sampling |
| * @pid: target pid |
| * @cpu: target cpu |
| * @group_fd: group leader event fd |
| */ |
| SYSCALL_DEFINE5(perf_event_open, |
| struct perf_event_attr __user *, attr_uptr, |
| pid_t, pid, int, cpu, int, group_fd, unsigned long, flags) |
| { |
| struct perf_event *event, *group_leader; |
| struct perf_event_attr attr; |
| struct perf_event_context *ctx; |
| struct file *event_file = NULL; |
| struct file *group_file = NULL; |
| int fput_needed = 0; |
| int fput_needed2 = 0; |
| int err; |
| |
| /* for future expandability... */ |
| if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT)) |
| return -EINVAL; |
| |
| err = perf_copy_attr(attr_uptr, &attr); |
| if (err) |
| return err; |
| |
| if (!attr.exclude_kernel) { |
| if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN)) |
| return -EACCES; |
| } |
| |
| if (attr.freq) { |
| if (attr.sample_freq > sysctl_perf_event_sample_rate) |
| return -EINVAL; |
| } |
| |
| /* |
| * Get the target context (task or percpu): |
| */ |
| ctx = find_get_context(pid, cpu); |
| if (IS_ERR(ctx)) |
| return PTR_ERR(ctx); |
| |
| /* |
| * Look up the group leader (we will attach this event to it): |
| */ |
| group_leader = NULL; |
| if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) { |
| err = -EINVAL; |
| group_file = fget_light(group_fd, &fput_needed); |
| if (!group_file) |
| goto err_put_context; |
| if (group_file->f_op != &perf_fops) |
| goto err_put_context; |
| |
| group_leader = group_file->private_data; |
| /* |
| * Do not allow a recursive hierarchy (this new sibling |
| * becoming part of another group-sibling): |
| */ |
| if (group_leader->group_leader != group_leader) |
| goto err_put_context; |
| /* |
| * Do not allow to attach to a group in a different |
| * task or CPU context: |
| */ |
| if (group_leader->ctx != ctx) |
| goto err_put_context; |
| /* |
| * Only a group leader can be exclusive or pinned |
| */ |
| if (attr.exclusive || attr.pinned) |
| goto err_put_context; |
| } |
| |
| event = perf_event_alloc(&attr, cpu, ctx, group_leader, |
| NULL, NULL, GFP_KERNEL); |
| err = PTR_ERR(event); |
| if (IS_ERR(event)) |
| goto err_put_context; |
| |
| err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR); |
| if (err < 0) |
| goto err_free_put_context; |
| |
| event_file = fget_light(err, &fput_needed2); |
| if (!event_file) |
| goto err_free_put_context; |
| |
| if (flags & PERF_FLAG_FD_OUTPUT) { |
| err = perf_event_set_output(event, group_fd); |
| if (err) |
| goto err_fput_free_put_context; |
| } |
| |
| event->filp = event_file; |
| WARN_ON_ONCE(ctx->parent_ctx); |
| mutex_lock(&ctx->mutex); |
| perf_install_in_context(ctx, event, cpu); |
| ++ctx->generation; |
| mutex_unlock(&ctx->mutex); |
| |
| event->owner = current; |
| get_task_struct(current); |
| mutex_lock(¤t->perf_event_mutex); |
| list_add_tail(&event->owner_entry, ¤t->perf_event_list); |
| mutex_unlock(¤t->perf_event_mutex); |
| |
| err_fput_free_put_context: |
| fput_light(event_file, fput_needed2); |
| |
| err_free_put_context: |
| if (err < 0) |
| kfree(event); |
| |
| err_put_context: |
| if (err < 0) |
| put_ctx(ctx); |
| |
| fput_light(group_file, fput_needed); |
| |
| return err; |
| } |
| |
| /** |
| * perf_event_create_kernel_counter |
| * |
| * @attr: attributes of the counter to create |
| * @cpu: cpu in which the counter is bound |
| * @pid: task to profile |
| */ |
| struct perf_event * |
| perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu, |
| pid_t pid, |
| perf_overflow_handler_t overflow_handler) |
| { |
| struct perf_event *event; |
| struct perf_event_context *ctx; |
| int err; |
| |
| /* |
| * Get the target context (task or percpu): |
| */ |
| |
| ctx = find_get_context(pid, cpu); |
| if (IS_ERR(ctx)) { |
| err = PTR_ERR(ctx); |
| goto err_exit; |
| } |
| |
| event = perf_event_alloc(attr, cpu, ctx, NULL, |
| NULL, overflow_handler, GFP_KERNEL); |
| if (IS_ERR(event)) { |
| err = PTR_ERR(event); |
| goto err_put_context; |
| } |
| |
| event->filp = NULL; |
| WARN_ON_ONCE(ctx->parent_ctx); |
| mutex_lock(&ctx->mutex); |
| perf_install_in_context(ctx, event, cpu); |
| ++ctx->generation; |
| mutex_unlock(&ctx->mutex); |
| |
| event->owner = current; |
| get_task_struct(current); |
| mutex_lock(¤t->perf_event_mutex); |
| list_add_tail(&event->owner_entry, ¤t->perf_event_list); |
| mutex_unlock(¤t->perf_event_mutex); |
| |
| return event; |
| |
| err_put_context: |
| put_ctx(ctx); |
| err_exit: |
| return ERR_PTR(err); |
| } |
| EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter); |
| |
| /* |
| * inherit a event from parent task to child task: |
| */ |
| static struct perf_event * |
| inherit_event(struct perf_event *parent_event, |
| struct task_struct *parent, |
| struct perf_event_context *parent_ctx, |
| struct task_struct *child, |
| struct perf_event *group_leader, |
| struct perf_event_context *child_ctx) |
| { |
| struct perf_event *child_event; |
| |
| /* |
| * Instead of creating recursive hierarchies of events, |
| * we link inherited events back to the original parent, |
| * which has a filp for sure, which we use as the reference |
| * count: |
| */ |
| if (parent_event->parent) |
| parent_event = parent_event->parent; |
| |
| child_event = perf_event_alloc(&parent_event->attr, |
| parent_event->cpu, child_ctx, |
| group_leader, parent_event, |
| NULL, GFP_KERNEL); |
| if (IS_ERR(child_event)) |
| return child_event; |
| get_ctx(child_ctx); |
| |
| /* |
| * Make the child state follow the state of the parent event, |
| * not its attr.disabled bit. We hold the parent's mutex, |
| * so we won't race with perf_event_{en, dis}able_family. |
| */ |
| if (parent_event->state >= PERF_EVENT_STATE_INACTIVE) |
| child_event->state = PERF_EVENT_STATE_INACTIVE; |
| else |
| child_event->state = PERF_EVENT_STATE_OFF; |
| |
| if (parent_event->attr.freq) { |
| u64 sample_period = parent_event->hw.sample_period; |
| struct hw_perf_event *hwc = &child_event->hw; |
| |
| hwc->sample_period = sample_period; |
| hwc->last_period = sample_period; |
| |
| atomic64_set(&hwc->period_left, sample_period); |
| } |
| |
| child_event->overflow_handler = parent_event->overflow_handler; |
| |
| /* |
| * Link it up in the child's context: |
| */ |
| add_event_to_ctx(child_event, child_ctx); |
| |
| /* |
| * Get a reference to the parent filp - we will fput it |
| * when the child event exits. This is safe to do because |
| * we are in the parent and we know that the filp still |
| * exists and has a nonzero count: |
| */ |
| atomic_long_inc(&parent_event->filp->f_count); |
| |
| /* |
| * Link this into the parent event's child list |
| */ |
| WARN_ON_ONCE(parent_event->ctx->parent_ctx); |
| mutex_lock(&parent_event->child_mutex); |
| list_add_tail(&child_event->child_list, &parent_event->child_list); |
| mutex_unlock(&parent_event->child_mutex); |
| |
| return child_event; |
| } |
| |
| static int inherit_group(struct perf_event *parent_event, |
| struct task_struct *parent, |
| struct perf_event_context *parent_ctx, |
| struct task_struct *child, |
| struct perf_event_context *child_ctx) |
| { |
| struct perf_event *leader; |
| struct perf_event *sub; |
| struct perf_event *child_ctr; |
| |
| leader = inherit_event(parent_event, parent, parent_ctx, |
| child, NULL, child_ctx); |
| if (IS_ERR(leader)) |
| return PTR_ERR(leader); |
| list_for_each_entry(sub, &parent_event->sibling_list, group_entry) { |
| child_ctr = inherit_event(sub, parent, parent_ctx, |
| child, leader, child_ctx); |
| if (IS_ERR(child_ctr)) |
| return PTR_ERR(child_ctr); |
| } |
| return 0; |
| } |
| |
| static void sync_child_event(struct perf_event *child_event, |
| struct task_struct *child) |
| { |
| struct perf_event *parent_event = child_event->parent; |
| u64 child_val; |
| |
| if (child_event->attr.inherit_stat) |
| perf_event_read_event(child_event, child); |
| |
| child_val = atomic64_read(&child_event->count); |
| |
| /* |
| * Add back the child's count to the parent's count: |
| */ |
| atomic64_add(child_val, &parent_event->count); |
| atomic64_add(child_event->total_time_enabled, |
| &parent_event->child_total_time_enabled); |
| atomic64_add(child_event->total_time_running, |
| &parent_event->child_total_time_running); |
| |
| /* |
| * Remove this event from the parent's list |
| */ |
| WARN_ON_ONCE(parent_event->ctx->parent_ctx); |
| mutex_lock(&parent_event->child_mutex); |
| list_del_init(&child_event->child_list); |
| mutex_unlock(&parent_event->child_mutex); |
| |
| /* |
| * Release the parent event, if this was the last |
| * reference to it. |
| */ |
| fput(parent_event->filp); |
| } |
| |
| static void |
| __perf_event_exit_task(struct perf_event *child_event, |
| struct perf_event_context *child_ctx, |
| struct task_struct *child) |
| { |
| struct perf_event *parent_event; |
| |
| perf_event_remove_from_context(child_event); |
| |
| parent_event = child_event->parent; |
| /* |
| * It can happen that parent exits first, and has events |
| * that are still around due to the child reference. These |
| * events need to be zapped - but otherwise linger. |
| */ |
| if (parent_event) { |
| sync_child_event(child_event, child); |
| free_event(child_event); |
| } |
| } |
| |
| /* |
| * When a child task exits, feed back event values to parent events. |
| */ |
| void perf_event_exit_task(struct task_struct *child) |
| { |
| struct perf_event *child_event, *tmp; |
| struct perf_event_context *child_ctx; |
| unsigned long flags; |
| |
| if (likely(!child->perf_event_ctxp)) { |
| perf_event_task(child, NULL, 0); |
| return; |
| } |
| |
| local_irq_save(flags); |
| /* |
| * We can't reschedule here because interrupts are disabled, |
| * and either child is current or it is a task that can't be |
| * scheduled, so we are now safe from rescheduling changing |
| * our context. |
| */ |
| child_ctx = child->perf_event_ctxp; |
| __perf_event_task_sched_out(child_ctx); |
| |
| /* |
| * Take the context lock here so that if find_get_context is |
| * reading child->perf_event_ctxp, we wait until it has |
| * incremented the context's refcount before we do put_ctx below. |
| */ |
| raw_spin_lock(&child_ctx->lock); |
| child->perf_event_ctxp = NULL; |
| /* |
| * If this context is a clone; unclone it so it can't get |
| * swapped to another process while we're removing all |
| * the events from it. |
| */ |
| unclone_ctx(child_ctx); |
| update_context_time(child_ctx); |
| raw_spin_unlock_irqrestore(&child_ctx->lock, flags); |
| |
| /* |
| * Report the task dead after unscheduling the events so that we |
| * won't get any samples after PERF_RECORD_EXIT. We can however still |
| * get a few PERF_RECORD_READ events. |
| */ |
| perf_event_task(child, child_ctx, 0); |
| |
| /* |
| * We can recurse on the same lock type through: |
| * |
| * __perf_event_exit_task() |
| * sync_child_event() |
| * fput(parent_event->filp) |
| * perf_release() |
| * mutex_lock(&ctx->mutex) |
| * |
| * But since its the parent context it won't be the same instance. |
| */ |
| mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING); |
| |
| again: |
| list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups, |
| group_entry) |
| __perf_event_exit_task(child_event, child_ctx, child); |
| |
| list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups, |
| group_entry) |
| __perf_event_exit_task(child_event, child_ctx, child); |
| |
| /* |
| * If the last event was a group event, it will have appended all |
| * its siblings to the list, but we obtained 'tmp' before that which |
| * will still point to the list head terminating the iteration. |
| */ |
| if (!list_empty(&child_ctx->pinned_groups) || |
| !list_empty(&child_ctx->flexible_groups)) |
| goto again; |
| |
| mutex_unlock(&child_ctx->mutex); |
| |
| put_ctx(child_ctx); |
| } |
| |
| static void perf_free_event(struct perf_event *event, |
| struct perf_event_context *ctx) |
| { |
| struct perf_event *parent = event->parent; |
| |
| if (WARN_ON_ONCE(!parent)) |
| return; |
| |
| mutex_lock(&parent->child_mutex); |
| list_del_init(&event->child_list); |
| mutex_unlock(&parent->child_mutex); |
| |
| fput(parent->filp); |
| |
| list_del_event(event, ctx); |
| free_event(event); |
| } |
| |
| /* |
| * free an unexposed, unused context as created by inheritance by |
| * init_task below, used by fork() in case of fail. |
| */ |
| void perf_event_free_task(struct task_struct *task) |
| { |
| struct perf_event_context *ctx = task->perf_event_ctxp; |
| struct perf_event *event, *tmp; |
| |
| if (!ctx) |
| return; |
| |
| mutex_lock(&ctx->mutex); |
| again: |
| list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry) |
| perf_free_event(event, ctx); |
| |
| list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, |
| group_entry) |
| perf_free_event(event, ctx); |
| |
| if (!list_empty(&ctx->pinned_groups) || |
| !list_empty(&ctx->flexible_groups)) |
| goto again; |
| |
| mutex_unlock(&ctx->mutex); |
| |
| put_ctx(ctx); |
| } |
| |
| static int |
| inherit_task_group(struct perf_event *event, struct task_struct *parent, |
| struct perf_event_context *parent_ctx, |
| struct task_struct *child, |
| int *inherited_all) |
| { |
| int ret; |
| struct perf_event_context *child_ctx = child->perf_event_ctxp; |
| |
| if (!event->attr.inherit) { |
| *inherited_all = 0; |
| return 0; |
| } |
| |
| if (!child_ctx) { |
| /* |
| * This is executed from the parent task context, so |
| * inherit events that have been marked for cloning. |
| * First allocate and initialize a context for the |
| * child. |
| */ |
| |
| child_ctx = kzalloc(sizeof(struct perf_event_context), |
| GFP_KERNEL); |
| if (!child_ctx) |
| return -ENOMEM; |
| |
| __perf_event_init_context(child_ctx, child); |
| child->perf_event_ctxp = child_ctx; |
| get_task_struct(child); |
| } |
| |
| ret = inherit_group(event, parent, parent_ctx, |
| child, child_ctx); |
| |
| if (ret) |
| *inherited_all = 0; |
| |
| return ret; |
| } |
| |
| |
| /* |
| * Initialize the perf_event context in task_struct |
| */ |
| int perf_event_init_task(struct task_struct *child) |
| { |
| struct perf_event_context *child_ctx, *parent_ctx; |
| struct perf_event_context *cloned_ctx; |
| struct perf_event *event; |
| struct task_struct *parent = current; |
| int inherited_all = 1; |
| int ret = 0; |
| |
| child->perf_event_ctxp = NULL; |
| |
| mutex_init(&child->perf_event_mutex); |
| INIT_LIST_HEAD(&child->perf_event_list); |
| |
| if (likely(!parent->perf_event_ctxp)) |
| return 0; |
| |
| /* |
| * If the parent's context is a clone, pin it so it won't get |
| * swapped under us. |
| */ |
| parent_ctx = perf_pin_task_context(parent); |
| |
| /* |
| * No need to check if parent_ctx != NULL here; since we saw |
| * it non-NULL earlier, the only reason for it to become NULL |
| * is if we exit, and since we're currently in the middle of |
| * a fork we can't be exiting at the same time. |
| */ |
| |
| /* |
| * Lock the parent list. No need to lock the child - not PID |
| * hashed yet and not running, so nobody can access it. |
| */ |
| mutex_lock(&parent_ctx->mutex); |
| |
| /* |
| * We dont have to disable NMIs - we are only looking at |
| * the list, not manipulating it: |
| */ |
| list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) { |
| ret = inherit_task_group(event, parent, parent_ctx, child, |
| &inherited_all); |
| if (ret) |
| break; |
| } |
| |
| list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) { |
| ret = inherit_task_group(event, parent, parent_ctx, child, |
| &inherited_all); |
| if (ret) |
| break; |
| } |
| |
| child_ctx = child->perf_event_ctxp; |
| |
| if (child_ctx && inherited_all) { |
| /* |
| * Mark the child context as a clone of the parent |
| * context, or of whatever the parent is a clone of. |
| * Note that if the parent is a clone, it could get |
| * uncloned at any point, but that doesn't matter |
| * because the list of events and the generation |
| * count can't have changed since we took the mutex. |
| */ |
| cloned_ctx = rcu_dereference(parent_ctx->parent_ctx); |
| if (cloned_ctx) { |
| child_ctx->parent_ctx = cloned_ctx; |
| child_ctx->parent_gen = parent_ctx->parent_gen; |
| } else { |
| child_ctx->parent_ctx = parent_ctx; |
| child_ctx->parent_gen = parent_ctx->generation; |
| } |
| get_ctx(child_ctx->parent_ctx); |
| } |
| |
| mutex_unlock(&parent_ctx->mutex); |
| |
| perf_unpin_context(parent_ctx); |
| |
| return ret; |
| } |
| |
| static void __init perf_event_init_all_cpus(void) |
| { |
| int cpu; |
| struct perf_cpu_context *cpuctx; |
| |
| for_each_possible_cpu(cpu) { |
| cpuctx = &per_cpu(perf_cpu_context, cpu); |
| mutex_init(&cpuctx->hlist_mutex); |
| __perf_event_init_context(&cpuctx->ctx, NULL); |
| } |
| } |
| |
| static void __cpuinit perf_event_init_cpu(int cpu) |
| { |
| struct perf_cpu_context *cpuctx; |
| |
| cpuctx = &per_cpu(perf_cpu_context, cpu); |
| |
| spin_lock(&perf_resource_lock); |
| cpuctx->max_pertask = perf_max_events - perf_reserved_percpu; |
| spin_unlock(&perf_resource_lock); |
| |
| mutex_lock(&cpuctx->hlist_mutex); |
| if (cpuctx->hlist_refcount > 0) { |
| struct swevent_hlist *hlist; |
| |
| hlist = kzalloc(sizeof(*hlist), GFP_KERNEL); |
| WARN_ON_ONCE(!hlist); |
| rcu_assign_pointer(cpuctx->swevent_hlist, hlist); |
| } |
| mutex_unlock(&cpuctx->hlist_mutex); |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| static void __perf_event_exit_cpu(void *info) |
| { |
| struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); |
| struct perf_event_context *ctx = &cpuctx->ctx; |
| struct perf_event *event, *tmp; |
| |
| list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry) |
| __perf_event_remove_from_context(event); |
| list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry) |
| __perf_event_remove_from_context(event); |
| } |
| static void perf_event_exit_cpu(int cpu) |
| { |
| struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); |
| struct perf_event_context *ctx = &cpuctx->ctx; |
| |
| mutex_lock(&cpuctx->hlist_mutex); |
| swevent_hlist_release(cpuctx); |
| mutex_unlock(&cpuctx->hlist_mutex); |
| |
| mutex_lock(&ctx->mutex); |
| smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1); |
| mutex_unlock(&ctx->mutex); |
| } |
| #else |
| static inline void perf_event_exit_cpu(int cpu) { } |
| #endif |
| |
| static int __cpuinit |
| perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) |
| { |
| unsigned int cpu = (long)hcpu; |
| |
| switch (action) { |
| |
| case CPU_UP_PREPARE: |
| case CPU_UP_PREPARE_FROZEN: |
| perf_event_init_cpu(cpu); |
| break; |
| |
| case CPU_DOWN_PREPARE: |
| case CPU_DOWN_PREPARE_FROZEN: |
| perf_event_exit_cpu(cpu); |
| break; |
| |
| default: |
| break; |
| } |
| |
| return NOTIFY_OK; |
| } |
| |
| /* |
| * This has to have a higher priority than migration_notifier in sched.c. |
| */ |
| static struct notifier_block __cpuinitdata perf_cpu_nb = { |
| .notifier_call = perf_cpu_notify, |
| .priority = 20, |
| }; |
| |
| void __init perf_event_init(void) |
| { |
| perf_event_init_all_cpus(); |
| perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, |
| (void *)(long)smp_processor_id()); |
| perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE, |
| (void *)(long)smp_processor_id()); |
| register_cpu_notifier(&perf_cpu_nb); |
| } |
| |
| static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, |
| struct sysdev_class_attribute *attr, |
| char *buf) |
| { |
| return sprintf(buf, "%d\n", perf_reserved_percpu); |
| } |
| |
| static ssize_t |
| perf_set_reserve_percpu(struct sysdev_class *class, |
| struct sysdev_class_attribute *attr, |
| const char *buf, |
| size_t count) |
| { |
| struct perf_cpu_context *cpuctx; |
| unsigned long val; |
| int err, cpu, mpt; |
| |
| err = strict_strtoul(buf, 10, &val); |
| if (err) |
| return err; |
| if (val > perf_max_events) |
| return -EINVAL; |
| |
| spin_lock(&perf_resource_lock); |
| perf_reserved_percpu = val; |
| for_each_online_cpu(cpu) { |
| cpuctx = &per_cpu(perf_cpu_context, cpu); |
| raw_spin_lock_irq(&cpuctx->ctx.lock); |
| mpt = min(perf_max_events - cpuctx->ctx.nr_events, |
| perf_max_events - perf_reserved_percpu); |
| cpuctx->max_pertask = mpt; |
| raw_spin_unlock_irq(&cpuctx->ctx.lock); |
| } |
| spin_unlock(&perf_resource_lock); |
| |
| return count; |
| } |
| |
| static ssize_t perf_show_overcommit(struct sysdev_class *class, |
| struct sysdev_class_attribute *attr, |
| char *buf) |
| { |
| return sprintf(buf, "%d\n", perf_overcommit); |
| } |
| |
| static ssize_t |
| perf_set_overcommit(struct sysdev_class *class, |
| struct sysdev_class_attribute *attr, |
| const char *buf, size_t count) |
| { |
| unsigned long val; |
| int err; |
| |
| err = strict_strtoul(buf, 10, &val); |
| if (err) |
| return err; |
| if (val > 1) |
| return -EINVAL; |
| |
| spin_lock(&perf_resource_lock); |
| perf_overcommit = val; |
| spin_unlock(&perf_resource_lock); |
| |
| return count; |
| } |
| |
| static SYSDEV_CLASS_ATTR( |
| reserve_percpu, |
| 0644, |
| perf_show_reserve_percpu, |
| perf_set_reserve_percpu |
| ); |
| |
| static SYSDEV_CLASS_ATTR( |
| overcommit, |
| 0644, |
| perf_show_overcommit, |
| perf_set_overcommit |
| ); |
| |
| static struct attribute *perfclass_attrs[] = { |
| &attr_reserve_percpu.attr, |
| &attr_overcommit.attr, |
| NULL |
| }; |
| |
| static struct attribute_group perfclass_attr_group = { |
| .attrs = perfclass_attrs, |
| .name = "perf_events", |
| }; |
| |
| static int __init perf_event_sysfs_init(void) |
| { |
| return sysfs_create_group(&cpu_sysdev_class.kset.kobj, |
| &perfclass_attr_group); |
| } |
| device_initcall(perf_event_sysfs_init); |