| #ifndef __ASM_SH_IO_H |
| #define __ASM_SH_IO_H |
| /* |
| * Convention: |
| * read{b,w,l,q}/write{b,w,l,q} are for PCI, |
| * while in{b,w,l}/out{b,w,l} are for ISA |
| * |
| * In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p |
| * and 'string' versions: ins{b,w,l}/outs{b,w,l} |
| * |
| * While read{b,w,l,q} and write{b,w,l,q} contain memory barriers |
| * automatically, there are also __raw versions, which do not. |
| * |
| * Historically, we have also had ctrl_in{b,w,l,q}/ctrl_out{b,w,l,q} for |
| * SuperH specific I/O (raw I/O to on-chip CPU peripherals). In practice |
| * these have the same semantics as the __raw variants, and as such, all |
| * new code should be using the __raw versions. |
| * |
| * All ISA I/O routines are wrapped through the machine vector. If a |
| * board does not provide overrides, a generic set that are copied in |
| * from the default machine vector are used instead. These are largely |
| * for old compat code for I/O offseting to SuperIOs, all of which are |
| * better handled through the machvec ioport mapping routines these days. |
| */ |
| #include <linux/errno.h> |
| #include <asm/cache.h> |
| #include <asm/system.h> |
| #include <asm/addrspace.h> |
| #include <asm/machvec.h> |
| #include <asm/pgtable.h> |
| #include <asm-generic/iomap.h> |
| |
| #ifdef __KERNEL__ |
| /* |
| * Depending on which platform we are running on, we need different |
| * I/O functions. |
| */ |
| #define __IO_PREFIX generic |
| #include <asm/io_generic.h> |
| #include <asm/io_trapped.h> |
| |
| #define inb(p) sh_mv.mv_inb((p)) |
| #define inw(p) sh_mv.mv_inw((p)) |
| #define inl(p) sh_mv.mv_inl((p)) |
| #define outb(x,p) sh_mv.mv_outb((x),(p)) |
| #define outw(x,p) sh_mv.mv_outw((x),(p)) |
| #define outl(x,p) sh_mv.mv_outl((x),(p)) |
| |
| #define inb_p(p) sh_mv.mv_inb_p((p)) |
| #define inw_p(p) sh_mv.mv_inw_p((p)) |
| #define inl_p(p) sh_mv.mv_inl_p((p)) |
| #define outb_p(x,p) sh_mv.mv_outb_p((x),(p)) |
| #define outw_p(x,p) sh_mv.mv_outw_p((x),(p)) |
| #define outl_p(x,p) sh_mv.mv_outl_p((x),(p)) |
| |
| #define insb(p,b,c) sh_mv.mv_insb((p), (b), (c)) |
| #define insw(p,b,c) sh_mv.mv_insw((p), (b), (c)) |
| #define insl(p,b,c) sh_mv.mv_insl((p), (b), (c)) |
| #define outsb(p,b,c) sh_mv.mv_outsb((p), (b), (c)) |
| #define outsw(p,b,c) sh_mv.mv_outsw((p), (b), (c)) |
| #define outsl(p,b,c) sh_mv.mv_outsl((p), (b), (c)) |
| |
| #define __raw_writeb(v,a) (__chk_io_ptr(a), *(volatile u8 __force *)(a) = (v)) |
| #define __raw_writew(v,a) (__chk_io_ptr(a), *(volatile u16 __force *)(a) = (v)) |
| #define __raw_writel(v,a) (__chk_io_ptr(a), *(volatile u32 __force *)(a) = (v)) |
| #define __raw_writeq(v,a) (__chk_io_ptr(a), *(volatile u64 __force *)(a) = (v)) |
| |
| #define __raw_readb(a) (__chk_io_ptr(a), *(volatile u8 __force *)(a)) |
| #define __raw_readw(a) (__chk_io_ptr(a), *(volatile u16 __force *)(a)) |
| #define __raw_readl(a) (__chk_io_ptr(a), *(volatile u32 __force *)(a)) |
| #define __raw_readq(a) (__chk_io_ptr(a), *(volatile u64 __force *)(a)) |
| |
| #define readb(a) ({ u8 r_ = __raw_readb(a); mb(); r_; }) |
| #define readw(a) ({ u16 r_ = __raw_readw(a); mb(); r_; }) |
| #define readl(a) ({ u32 r_ = __raw_readl(a); mb(); r_; }) |
| #define readq(a) ({ u64 r_ = __raw_readq(a); mb(); r_; }) |
| |
| #define writeb(v,a) ({ __raw_writeb((v),(a)); mb(); }) |
| #define writew(v,a) ({ __raw_writew((v),(a)); mb(); }) |
| #define writel(v,a) ({ __raw_writel((v),(a)); mb(); }) |
| #define writeq(v,a) ({ __raw_writeq((v),(a)); mb(); }) |
| |
| /* |
| * Legacy SuperH on-chip I/O functions |
| * |
| * These are all deprecated, all new (and especially cross-platform) code |
| * should be using the __raw_xxx() routines directly. |
| */ |
| static inline u8 __deprecated ctrl_inb(unsigned long addr) |
| { |
| return __raw_readb(addr); |
| } |
| |
| static inline u16 __deprecated ctrl_inw(unsigned long addr) |
| { |
| return __raw_readw(addr); |
| } |
| |
| static inline u32 __deprecated ctrl_inl(unsigned long addr) |
| { |
| return __raw_readl(addr); |
| } |
| |
| static inline u64 __deprecated ctrl_inq(unsigned long addr) |
| { |
| return __raw_readq(addr); |
| } |
| |
| static inline void __deprecated ctrl_outb(u8 v, unsigned long addr) |
| { |
| __raw_writeb(v, addr); |
| } |
| |
| static inline void __deprecated ctrl_outw(u16 v, unsigned long addr) |
| { |
| __raw_writew(v, addr); |
| } |
| |
| static inline void __deprecated ctrl_outl(u32 v, unsigned long addr) |
| { |
| __raw_writel(v, addr); |
| } |
| |
| static inline void __deprecated ctrl_outq(u64 v, unsigned long addr) |
| { |
| __raw_writeq(v, addr); |
| } |
| |
| extern unsigned long generic_io_base; |
| |
| static inline void ctrl_delay(void) |
| { |
| __raw_readw(generic_io_base); |
| } |
| |
| #define __BUILD_MEMORY_STRING(bwlq, type) \ |
| \ |
| static inline void __raw_writes##bwlq(volatile void __iomem *mem, \ |
| const void *addr, unsigned int count) \ |
| { \ |
| const volatile type *__addr = addr; \ |
| \ |
| while (count--) { \ |
| __raw_write##bwlq(*__addr, mem); \ |
| __addr++; \ |
| } \ |
| } \ |
| \ |
| static inline void __raw_reads##bwlq(volatile void __iomem *mem, \ |
| void *addr, unsigned int count) \ |
| { \ |
| volatile type *__addr = addr; \ |
| \ |
| while (count--) { \ |
| *__addr = __raw_read##bwlq(mem); \ |
| __addr++; \ |
| } \ |
| } |
| |
| __BUILD_MEMORY_STRING(b, u8) |
| __BUILD_MEMORY_STRING(w, u16) |
| |
| #ifdef CONFIG_SUPERH32 |
| void __raw_writesl(void __iomem *addr, const void *data, int longlen); |
| void __raw_readsl(const void __iomem *addr, void *data, int longlen); |
| #else |
| __BUILD_MEMORY_STRING(l, u32) |
| #endif |
| |
| __BUILD_MEMORY_STRING(q, u64) |
| |
| #define writesb __raw_writesb |
| #define writesw __raw_writesw |
| #define writesl __raw_writesl |
| |
| #define readsb __raw_readsb |
| #define readsw __raw_readsw |
| #define readsl __raw_readsl |
| |
| #define readb_relaxed(a) readb(a) |
| #define readw_relaxed(a) readw(a) |
| #define readl_relaxed(a) readl(a) |
| #define readq_relaxed(a) readq(a) |
| |
| #ifndef CONFIG_GENERIC_IOMAP |
| /* Simple MMIO */ |
| #define ioread8(a) __raw_readb(a) |
| #define ioread16(a) __raw_readw(a) |
| #define ioread16be(a) be16_to_cpu(__raw_readw((a))) |
| #define ioread32(a) __raw_readl(a) |
| #define ioread32be(a) be32_to_cpu(__raw_readl((a))) |
| |
| #define iowrite8(v,a) __raw_writeb((v),(a)) |
| #define iowrite16(v,a) __raw_writew((v),(a)) |
| #define iowrite16be(v,a) __raw_writew(cpu_to_be16((v)),(a)) |
| #define iowrite32(v,a) __raw_writel((v),(a)) |
| #define iowrite32be(v,a) __raw_writel(cpu_to_be32((v)),(a)) |
| |
| #define ioread8_rep(a, d, c) __raw_readsb((a), (d), (c)) |
| #define ioread16_rep(a, d, c) __raw_readsw((a), (d), (c)) |
| #define ioread32_rep(a, d, c) __raw_readsl((a), (d), (c)) |
| |
| #define iowrite8_rep(a, s, c) __raw_writesb((a), (s), (c)) |
| #define iowrite16_rep(a, s, c) __raw_writesw((a), (s), (c)) |
| #define iowrite32_rep(a, s, c) __raw_writesl((a), (s), (c)) |
| #endif |
| |
| #define mmio_insb(p,d,c) __raw_readsb(p,d,c) |
| #define mmio_insw(p,d,c) __raw_readsw(p,d,c) |
| #define mmio_insl(p,d,c) __raw_readsl(p,d,c) |
| |
| #define mmio_outsb(p,s,c) __raw_writesb(p,s,c) |
| #define mmio_outsw(p,s,c) __raw_writesw(p,s,c) |
| #define mmio_outsl(p,s,c) __raw_writesl(p,s,c) |
| |
| /* synco on SH-4A, otherwise a nop */ |
| #define mmiowb() wmb() |
| |
| #define IO_SPACE_LIMIT 0xffffffff |
| |
| /* |
| * This function provides a method for the generic case where a |
| * board-specific ioport_map simply needs to return the port + some |
| * arbitrary port base. |
| * |
| * We use this at board setup time to implicitly set the port base, and |
| * as a result, we can use the generic ioport_map. |
| */ |
| static inline void __set_io_port_base(unsigned long pbase) |
| { |
| generic_io_base = pbase; |
| } |
| |
| #define __ioport_map(p, n) sh_mv.mv_ioport_map((p), (n)) |
| |
| /* We really want to try and get these to memcpy etc */ |
| void memcpy_fromio(void *, const volatile void __iomem *, unsigned long); |
| void memcpy_toio(volatile void __iomem *, const void *, unsigned long); |
| void memset_io(volatile void __iomem *, int, unsigned long); |
| |
| /* Quad-word real-mode I/O, don't ask.. */ |
| unsigned long long peek_real_address_q(unsigned long long addr); |
| unsigned long long poke_real_address_q(unsigned long long addr, |
| unsigned long long val); |
| |
| #if !defined(CONFIG_MMU) |
| #define virt_to_phys(address) ((unsigned long)(address)) |
| #define phys_to_virt(address) ((void *)(address)) |
| #else |
| #define virt_to_phys(address) (__pa(address)) |
| #define phys_to_virt(address) (__va(address)) |
| #endif |
| |
| /* |
| * On 32-bit SH, we traditionally have the whole physical address space |
| * mapped at all times (as MIPS does), so "ioremap()" and "iounmap()" do |
| * not need to do anything but place the address in the proper segment. |
| * This is true for P1 and P2 addresses, as well as some P3 ones. |
| * However, most of the P3 addresses and newer cores using extended |
| * addressing need to map through page tables, so the ioremap() |
| * implementation becomes a bit more complicated. |
| * |
| * See arch/sh/mm/ioremap.c for additional notes on this. |
| * |
| * We cheat a bit and always return uncachable areas until we've fixed |
| * the drivers to handle caching properly. |
| * |
| * On the SH-5 the concept of segmentation in the 1:1 PXSEG sense simply |
| * doesn't exist, so everything must go through page tables. |
| */ |
| #ifdef CONFIG_MMU |
| void __iomem *__ioremap_caller(unsigned long offset, unsigned long size, |
| pgprot_t prot, void *caller); |
| void __iounmap(void __iomem *addr); |
| |
| static inline void __iomem * |
| __ioremap(unsigned long offset, unsigned long size, pgprot_t prot) |
| { |
| return __ioremap_caller(offset, size, prot, __builtin_return_address(0)); |
| } |
| |
| static inline void __iomem * |
| __ioremap_29bit(unsigned long offset, unsigned long size, pgprot_t prot) |
| { |
| #ifdef CONFIG_29BIT |
| unsigned long last_addr = offset + size - 1; |
| |
| /* |
| * For P1 and P2 space this is trivial, as everything is already |
| * mapped. Uncached access for P1 addresses are done through P2. |
| * In the P3 case or for addresses outside of the 29-bit space, |
| * mapping must be done by the PMB or by using page tables. |
| */ |
| if (likely(PXSEG(offset) < P3SEG && PXSEG(last_addr) < P3SEG)) { |
| if (unlikely(pgprot_val(prot) & _PAGE_CACHABLE)) |
| return (void __iomem *)P1SEGADDR(offset); |
| |
| return (void __iomem *)P2SEGADDR(offset); |
| } |
| |
| /* P4 above the store queues are always mapped. */ |
| if (unlikely(offset >= P3_ADDR_MAX)) |
| return (void __iomem *)P4SEGADDR(offset); |
| #endif |
| |
| return NULL; |
| } |
| |
| static inline void __iomem * |
| __ioremap_mode(unsigned long offset, unsigned long size, pgprot_t prot) |
| { |
| void __iomem *ret; |
| |
| ret = __ioremap_trapped(offset, size); |
| if (ret) |
| return ret; |
| |
| ret = __ioremap_29bit(offset, size, prot); |
| if (ret) |
| return ret; |
| |
| return __ioremap(offset, size, prot); |
| } |
| #else |
| #define __ioremap(offset, size, prot) ((void __iomem *)(offset)) |
| #define __ioremap_mode(offset, size, prot) ((void __iomem *)(offset)) |
| #define __iounmap(addr) do { } while (0) |
| #endif /* CONFIG_MMU */ |
| |
| static inline void __iomem * |
| ioremap(unsigned long offset, unsigned long size) |
| { |
| return __ioremap_mode(offset, size, PAGE_KERNEL_NOCACHE); |
| } |
| |
| static inline void __iomem * |
| ioremap_cache(unsigned long offset, unsigned long size) |
| { |
| return __ioremap_mode(offset, size, PAGE_KERNEL); |
| } |
| |
| #ifdef CONFIG_HAVE_IOREMAP_PROT |
| static inline void __iomem * |
| ioremap_prot(resource_size_t offset, unsigned long size, unsigned long flags) |
| { |
| return __ioremap_mode(offset, size, __pgprot(flags)); |
| } |
| #endif |
| |
| #ifdef CONFIG_IOREMAP_FIXED |
| extern void __iomem *ioremap_fixed(resource_size_t, unsigned long, |
| unsigned long, pgprot_t); |
| extern int iounmap_fixed(void __iomem *); |
| extern void ioremap_fixed_init(void); |
| #else |
| static inline void __iomem * |
| ioremap_fixed(resource_size_t phys_addr, unsigned long offset, |
| unsigned long size, pgprot_t prot) |
| { |
| BUG(); |
| return NULL; |
| } |
| |
| static inline void ioremap_fixed_init(void) { } |
| static inline int iounmap_fixed(void __iomem *addr) { return -EINVAL; } |
| #endif |
| |
| #define ioremap_nocache ioremap |
| #define iounmap __iounmap |
| |
| #define maybebadio(port) \ |
| printk(KERN_ERR "bad PC-like io %s:%u for port 0x%lx at 0x%08x\n", \ |
| __func__, __LINE__, (port), (u32)__builtin_return_address(0)) |
| |
| /* |
| * Convert a physical pointer to a virtual kernel pointer for /dev/mem |
| * access |
| */ |
| #define xlate_dev_mem_ptr(p) __va(p) |
| |
| /* |
| * Convert a virtual cached pointer to an uncached pointer |
| */ |
| #define xlate_dev_kmem_ptr(p) p |
| |
| #define ARCH_HAS_VALID_PHYS_ADDR_RANGE |
| int valid_phys_addr_range(unsigned long addr, size_t size); |
| int valid_mmap_phys_addr_range(unsigned long pfn, size_t size); |
| |
| #endif /* __KERNEL__ */ |
| |
| #endif /* __ASM_SH_IO_H */ |