| /* |
| * PowerPC version |
| * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) |
| * |
| * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) |
| * and Cort Dougan (PReP) (cort@cs.nmt.edu) |
| * Copyright (C) 1996 Paul Mackerras |
| * PPC44x/36-bit changes by Matt Porter (mporter@mvista.com) |
| * |
| * Derived from "arch/i386/mm/init.c" |
| * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/mm.h> |
| #include <linux/stddef.h> |
| #include <linux/init.h> |
| #include <linux/bootmem.h> |
| #include <linux/highmem.h> |
| #include <linux/initrd.h> |
| #include <linux/pagemap.h> |
| #include <linux/suspend.h> |
| #include <linux/lmb.h> |
| #include <linux/hugetlb.h> |
| |
| #include <asm/pgalloc.h> |
| #include <asm/prom.h> |
| #include <asm/io.h> |
| #include <asm/mmu_context.h> |
| #include <asm/pgtable.h> |
| #include <asm/mmu.h> |
| #include <asm/smp.h> |
| #include <asm/machdep.h> |
| #include <asm/btext.h> |
| #include <asm/tlb.h> |
| #include <asm/sections.h> |
| #include <asm/sparsemem.h> |
| #include <asm/vdso.h> |
| #include <asm/fixmap.h> |
| #include <asm/swiotlb.h> |
| |
| #include "mmu_decl.h" |
| |
| #ifndef CPU_FTR_COHERENT_ICACHE |
| #define CPU_FTR_COHERENT_ICACHE 0 /* XXX for now */ |
| #define CPU_FTR_NOEXECUTE 0 |
| #endif |
| |
| int init_bootmem_done; |
| int mem_init_done; |
| phys_addr_t memory_limit; |
| |
| #ifdef CONFIG_HIGHMEM |
| pte_t *kmap_pte; |
| pgprot_t kmap_prot; |
| |
| EXPORT_SYMBOL(kmap_prot); |
| EXPORT_SYMBOL(kmap_pte); |
| |
| static inline pte_t *virt_to_kpte(unsigned long vaddr) |
| { |
| return pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k(vaddr), |
| vaddr), vaddr), vaddr); |
| } |
| #endif |
| |
| int page_is_ram(unsigned long pfn) |
| { |
| #ifndef CONFIG_PPC64 /* XXX for now */ |
| return pfn < max_pfn; |
| #else |
| unsigned long paddr = (pfn << PAGE_SHIFT); |
| int i; |
| for (i=0; i < lmb.memory.cnt; i++) { |
| unsigned long base; |
| |
| base = lmb.memory.region[i].base; |
| |
| if ((paddr >= base) && |
| (paddr < (base + lmb.memory.region[i].size))) { |
| return 1; |
| } |
| } |
| |
| return 0; |
| #endif |
| } |
| |
| pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, |
| unsigned long size, pgprot_t vma_prot) |
| { |
| if (ppc_md.phys_mem_access_prot) |
| return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot); |
| |
| if (!page_is_ram(pfn)) |
| vma_prot = pgprot_noncached(vma_prot); |
| |
| return vma_prot; |
| } |
| EXPORT_SYMBOL(phys_mem_access_prot); |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| |
| #ifdef CONFIG_NUMA |
| int memory_add_physaddr_to_nid(u64 start) |
| { |
| return hot_add_scn_to_nid(start); |
| } |
| #endif |
| |
| int arch_add_memory(int nid, u64 start, u64 size) |
| { |
| struct pglist_data *pgdata; |
| struct zone *zone; |
| unsigned long start_pfn = start >> PAGE_SHIFT; |
| unsigned long nr_pages = size >> PAGE_SHIFT; |
| |
| pgdata = NODE_DATA(nid); |
| |
| start = (unsigned long)__va(start); |
| create_section_mapping(start, start + size); |
| |
| /* this should work for most non-highmem platforms */ |
| zone = pgdata->node_zones; |
| |
| return __add_pages(nid, zone, start_pfn, nr_pages); |
| } |
| #endif /* CONFIG_MEMORY_HOTPLUG */ |
| |
| /* |
| * walk_memory_resource() needs to make sure there is no holes in a given |
| * memory range. PPC64 does not maintain the memory layout in /proc/iomem. |
| * Instead it maintains it in lmb.memory structures. Walk through the |
| * memory regions, find holes and callback for contiguous regions. |
| */ |
| int |
| walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, |
| void *arg, int (*func)(unsigned long, unsigned long, void *)) |
| { |
| struct lmb_property res; |
| unsigned long pfn, len; |
| u64 end; |
| int ret = -1; |
| |
| res.base = (u64) start_pfn << PAGE_SHIFT; |
| res.size = (u64) nr_pages << PAGE_SHIFT; |
| |
| end = res.base + res.size - 1; |
| while ((res.base < end) && (lmb_find(&res) >= 0)) { |
| pfn = (unsigned long)(res.base >> PAGE_SHIFT); |
| len = (unsigned long)(res.size >> PAGE_SHIFT); |
| ret = (*func)(pfn, len, arg); |
| if (ret) |
| break; |
| res.base += (res.size + 1); |
| res.size = (end - res.base + 1); |
| } |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(walk_system_ram_range); |
| |
| /* |
| * Initialize the bootmem system and give it all the memory we |
| * have available. If we are using highmem, we only put the |
| * lowmem into the bootmem system. |
| */ |
| #ifndef CONFIG_NEED_MULTIPLE_NODES |
| void __init do_init_bootmem(void) |
| { |
| unsigned long i; |
| unsigned long start, bootmap_pages; |
| unsigned long total_pages; |
| int boot_mapsize; |
| |
| max_low_pfn = max_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT; |
| total_pages = (lmb_end_of_DRAM() - memstart_addr) >> PAGE_SHIFT; |
| #ifdef CONFIG_HIGHMEM |
| total_pages = total_lowmem >> PAGE_SHIFT; |
| max_low_pfn = lowmem_end_addr >> PAGE_SHIFT; |
| #endif |
| |
| /* |
| * Find an area to use for the bootmem bitmap. Calculate the size of |
| * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE. |
| * Add 1 additional page in case the address isn't page-aligned. |
| */ |
| bootmap_pages = bootmem_bootmap_pages(total_pages); |
| |
| start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE); |
| |
| min_low_pfn = MEMORY_START >> PAGE_SHIFT; |
| boot_mapsize = init_bootmem_node(NODE_DATA(0), start >> PAGE_SHIFT, min_low_pfn, max_low_pfn); |
| |
| /* Add active regions with valid PFNs */ |
| for (i = 0; i < lmb.memory.cnt; i++) { |
| unsigned long start_pfn, end_pfn; |
| start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT; |
| end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i); |
| add_active_range(0, start_pfn, end_pfn); |
| } |
| |
| /* Add all physical memory to the bootmem map, mark each area |
| * present. |
| */ |
| #ifdef CONFIG_HIGHMEM |
| free_bootmem_with_active_regions(0, lowmem_end_addr >> PAGE_SHIFT); |
| |
| /* reserve the sections we're already using */ |
| for (i = 0; i < lmb.reserved.cnt; i++) { |
| unsigned long addr = lmb.reserved.region[i].base + |
| lmb_size_bytes(&lmb.reserved, i) - 1; |
| if (addr < lowmem_end_addr) |
| reserve_bootmem(lmb.reserved.region[i].base, |
| lmb_size_bytes(&lmb.reserved, i), |
| BOOTMEM_DEFAULT); |
| else if (lmb.reserved.region[i].base < lowmem_end_addr) { |
| unsigned long adjusted_size = lowmem_end_addr - |
| lmb.reserved.region[i].base; |
| reserve_bootmem(lmb.reserved.region[i].base, |
| adjusted_size, BOOTMEM_DEFAULT); |
| } |
| } |
| #else |
| free_bootmem_with_active_regions(0, max_pfn); |
| |
| /* reserve the sections we're already using */ |
| for (i = 0; i < lmb.reserved.cnt; i++) |
| reserve_bootmem(lmb.reserved.region[i].base, |
| lmb_size_bytes(&lmb.reserved, i), |
| BOOTMEM_DEFAULT); |
| |
| #endif |
| /* XXX need to clip this if using highmem? */ |
| sparse_memory_present_with_active_regions(0); |
| |
| init_bootmem_done = 1; |
| } |
| |
| /* mark pages that don't exist as nosave */ |
| static int __init mark_nonram_nosave(void) |
| { |
| unsigned long lmb_next_region_start_pfn, |
| lmb_region_max_pfn; |
| int i; |
| |
| for (i = 0; i < lmb.memory.cnt - 1; i++) { |
| lmb_region_max_pfn = |
| (lmb.memory.region[i].base >> PAGE_SHIFT) + |
| (lmb.memory.region[i].size >> PAGE_SHIFT); |
| lmb_next_region_start_pfn = |
| lmb.memory.region[i+1].base >> PAGE_SHIFT; |
| |
| if (lmb_region_max_pfn < lmb_next_region_start_pfn) |
| register_nosave_region(lmb_region_max_pfn, |
| lmb_next_region_start_pfn); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * paging_init() sets up the page tables - in fact we've already done this. |
| */ |
| void __init paging_init(void) |
| { |
| unsigned long total_ram = lmb_phys_mem_size(); |
| phys_addr_t top_of_ram = lmb_end_of_DRAM(); |
| unsigned long max_zone_pfns[MAX_NR_ZONES]; |
| |
| #ifdef CONFIG_PPC32 |
| unsigned long v = __fix_to_virt(__end_of_fixed_addresses - 1); |
| unsigned long end = __fix_to_virt(FIX_HOLE); |
| |
| for (; v < end; v += PAGE_SIZE) |
| map_page(v, 0, 0); /* XXX gross */ |
| #endif |
| |
| #ifdef CONFIG_HIGHMEM |
| map_page(PKMAP_BASE, 0, 0); /* XXX gross */ |
| pkmap_page_table = virt_to_kpte(PKMAP_BASE); |
| |
| kmap_pte = virt_to_kpte(__fix_to_virt(FIX_KMAP_BEGIN)); |
| kmap_prot = PAGE_KERNEL; |
| #endif /* CONFIG_HIGHMEM */ |
| |
| printk(KERN_DEBUG "Top of RAM: 0x%llx, Total RAM: 0x%lx\n", |
| (unsigned long long)top_of_ram, total_ram); |
| printk(KERN_DEBUG "Memory hole size: %ldMB\n", |
| (long int)((top_of_ram - total_ram) >> 20)); |
| memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); |
| #ifdef CONFIG_HIGHMEM |
| max_zone_pfns[ZONE_DMA] = lowmem_end_addr >> PAGE_SHIFT; |
| max_zone_pfns[ZONE_HIGHMEM] = top_of_ram >> PAGE_SHIFT; |
| #else |
| max_zone_pfns[ZONE_DMA] = top_of_ram >> PAGE_SHIFT; |
| #endif |
| free_area_init_nodes(max_zone_pfns); |
| |
| mark_nonram_nosave(); |
| } |
| #endif /* ! CONFIG_NEED_MULTIPLE_NODES */ |
| |
| void __init mem_init(void) |
| { |
| #ifdef CONFIG_NEED_MULTIPLE_NODES |
| int nid; |
| #endif |
| pg_data_t *pgdat; |
| unsigned long i; |
| struct page *page; |
| unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize; |
| |
| #ifdef CONFIG_SWIOTLB |
| if (ppc_swiotlb_enable) |
| swiotlb_init(1); |
| #endif |
| |
| num_physpages = lmb.memory.size >> PAGE_SHIFT; |
| high_memory = (void *) __va(max_low_pfn * PAGE_SIZE); |
| |
| #ifdef CONFIG_NEED_MULTIPLE_NODES |
| for_each_online_node(nid) { |
| if (NODE_DATA(nid)->node_spanned_pages != 0) { |
| printk("freeing bootmem node %d\n", nid); |
| totalram_pages += |
| free_all_bootmem_node(NODE_DATA(nid)); |
| } |
| } |
| #else |
| max_mapnr = max_pfn; |
| totalram_pages += free_all_bootmem(); |
| #endif |
| for_each_online_pgdat(pgdat) { |
| for (i = 0; i < pgdat->node_spanned_pages; i++) { |
| if (!pfn_valid(pgdat->node_start_pfn + i)) |
| continue; |
| page = pgdat_page_nr(pgdat, i); |
| if (PageReserved(page)) |
| reservedpages++; |
| } |
| } |
| |
| codesize = (unsigned long)&_sdata - (unsigned long)&_stext; |
| datasize = (unsigned long)&_edata - (unsigned long)&_sdata; |
| initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin; |
| bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start; |
| |
| #ifdef CONFIG_HIGHMEM |
| { |
| unsigned long pfn, highmem_mapnr; |
| |
| highmem_mapnr = lowmem_end_addr >> PAGE_SHIFT; |
| for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) { |
| struct page *page = pfn_to_page(pfn); |
| if (lmb_is_reserved(pfn << PAGE_SHIFT)) |
| continue; |
| ClearPageReserved(page); |
| init_page_count(page); |
| __free_page(page); |
| totalhigh_pages++; |
| reservedpages--; |
| } |
| totalram_pages += totalhigh_pages; |
| printk(KERN_DEBUG "High memory: %luk\n", |
| totalhigh_pages << (PAGE_SHIFT-10)); |
| } |
| #endif /* CONFIG_HIGHMEM */ |
| |
| printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, " |
| "%luk reserved, %luk data, %luk bss, %luk init)\n", |
| nr_free_pages() << (PAGE_SHIFT-10), |
| num_physpages << (PAGE_SHIFT-10), |
| codesize >> 10, |
| reservedpages << (PAGE_SHIFT-10), |
| datasize >> 10, |
| bsssize >> 10, |
| initsize >> 10); |
| |
| #ifdef CONFIG_PPC32 |
| pr_info("Kernel virtual memory layout:\n"); |
| pr_info(" * 0x%08lx..0x%08lx : fixmap\n", FIXADDR_START, FIXADDR_TOP); |
| #ifdef CONFIG_HIGHMEM |
| pr_info(" * 0x%08lx..0x%08lx : highmem PTEs\n", |
| PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP)); |
| #endif /* CONFIG_HIGHMEM */ |
| #ifdef CONFIG_NOT_COHERENT_CACHE |
| pr_info(" * 0x%08lx..0x%08lx : consistent mem\n", |
| IOREMAP_TOP, IOREMAP_TOP + CONFIG_CONSISTENT_SIZE); |
| #endif /* CONFIG_NOT_COHERENT_CACHE */ |
| pr_info(" * 0x%08lx..0x%08lx : early ioremap\n", |
| ioremap_bot, IOREMAP_TOP); |
| pr_info(" * 0x%08lx..0x%08lx : vmalloc & ioremap\n", |
| VMALLOC_START, VMALLOC_END); |
| #endif /* CONFIG_PPC32 */ |
| |
| mem_init_done = 1; |
| } |
| |
| /* |
| * This is called when a page has been modified by the kernel. |
| * It just marks the page as not i-cache clean. We do the i-cache |
| * flush later when the page is given to a user process, if necessary. |
| */ |
| void flush_dcache_page(struct page *page) |
| { |
| if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE)) |
| return; |
| /* avoid an atomic op if possible */ |
| if (test_bit(PG_arch_1, &page->flags)) |
| clear_bit(PG_arch_1, &page->flags); |
| } |
| EXPORT_SYMBOL(flush_dcache_page); |
| |
| void flush_dcache_icache_page(struct page *page) |
| { |
| #ifdef CONFIG_HUGETLB_PAGE |
| if (PageCompound(page)) { |
| flush_dcache_icache_hugepage(page); |
| return; |
| } |
| #endif |
| #ifdef CONFIG_BOOKE |
| { |
| void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE); |
| __flush_dcache_icache(start); |
| kunmap_atomic(start, KM_PPC_SYNC_ICACHE); |
| } |
| #elif defined(CONFIG_8xx) || defined(CONFIG_PPC64) |
| /* On 8xx there is no need to kmap since highmem is not supported */ |
| __flush_dcache_icache(page_address(page)); |
| #else |
| __flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT); |
| #endif |
| } |
| |
| void clear_user_page(void *page, unsigned long vaddr, struct page *pg) |
| { |
| clear_page(page); |
| |
| /* |
| * We shouldnt have to do this, but some versions of glibc |
| * require it (ld.so assumes zero filled pages are icache clean) |
| * - Anton |
| */ |
| flush_dcache_page(pg); |
| } |
| EXPORT_SYMBOL(clear_user_page); |
| |
| void copy_user_page(void *vto, void *vfrom, unsigned long vaddr, |
| struct page *pg) |
| { |
| copy_page(vto, vfrom); |
| |
| /* |
| * We should be able to use the following optimisation, however |
| * there are two problems. |
| * Firstly a bug in some versions of binutils meant PLT sections |
| * were not marked executable. |
| * Secondly the first word in the GOT section is blrl, used |
| * to establish the GOT address. Until recently the GOT was |
| * not marked executable. |
| * - Anton |
| */ |
| #if 0 |
| if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0)) |
| return; |
| #endif |
| |
| flush_dcache_page(pg); |
| } |
| |
| void flush_icache_user_range(struct vm_area_struct *vma, struct page *page, |
| unsigned long addr, int len) |
| { |
| unsigned long maddr; |
| |
| maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK); |
| flush_icache_range(maddr, maddr + len); |
| kunmap(page); |
| } |
| EXPORT_SYMBOL(flush_icache_user_range); |
| |
| /* |
| * This is called at the end of handling a user page fault, when the |
| * fault has been handled by updating a PTE in the linux page tables. |
| * We use it to preload an HPTE into the hash table corresponding to |
| * the updated linux PTE. |
| * |
| * This must always be called with the pte lock held. |
| */ |
| void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, |
| pte_t *ptep) |
| { |
| #ifdef CONFIG_PPC_STD_MMU |
| unsigned long access = 0, trap; |
| |
| /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */ |
| if (!pte_young(*ptep) || address >= TASK_SIZE) |
| return; |
| |
| /* We try to figure out if we are coming from an instruction |
| * access fault and pass that down to __hash_page so we avoid |
| * double-faulting on execution of fresh text. We have to test |
| * for regs NULL since init will get here first thing at boot |
| * |
| * We also avoid filling the hash if not coming from a fault |
| */ |
| if (current->thread.regs == NULL) |
| return; |
| trap = TRAP(current->thread.regs); |
| if (trap == 0x400) |
| access |= _PAGE_EXEC; |
| else if (trap != 0x300) |
| return; |
| hash_preload(vma->vm_mm, address, access, trap); |
| #endif /* CONFIG_PPC_STD_MMU */ |
| } |