| /* |
| * Copyright 2011 Tilera Corporation. All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation, version 2. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for |
| * more details. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/moduleparam.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> /* printk() */ |
| #include <linux/slab.h> /* kmalloc() */ |
| #include <linux/errno.h> /* error codes */ |
| #include <linux/types.h> /* size_t */ |
| #include <linux/interrupt.h> |
| #include <linux/in.h> |
| #include <linux/netdevice.h> /* struct device, and other headers */ |
| #include <linux/etherdevice.h> /* eth_type_trans */ |
| #include <linux/skbuff.h> |
| #include <linux/ioctl.h> |
| #include <linux/cdev.h> |
| #include <linux/hugetlb.h> |
| #include <linux/in6.h> |
| #include <linux/timer.h> |
| #include <linux/io.h> |
| #include <linux/u64_stats_sync.h> |
| #include <asm/checksum.h> |
| #include <asm/homecache.h> |
| |
| #include <hv/drv_xgbe_intf.h> |
| #include <hv/drv_xgbe_impl.h> |
| #include <hv/hypervisor.h> |
| #include <hv/netio_intf.h> |
| |
| /* For TSO */ |
| #include <linux/ip.h> |
| #include <linux/tcp.h> |
| |
| |
| /* |
| * First, "tile_net_init_module()" initializes all four "devices" which |
| * can be used by linux. |
| * |
| * Then, "ifconfig DEVICE up" calls "tile_net_open()", which analyzes |
| * the network cpus, then uses "tile_net_open_aux()" to initialize |
| * LIPP/LEPP, and then uses "tile_net_open_inner()" to register all |
| * the tiles, provide buffers to LIPP, allow ingress to start, and |
| * turn on hypervisor interrupt handling (and NAPI) on all tiles. |
| * |
| * If registration fails due to the link being down, then "retry_work" |
| * is used to keep calling "tile_net_open_inner()" until it succeeds. |
| * |
| * If "ifconfig DEVICE down" is called, it uses "tile_net_stop()" to |
| * stop egress, drain the LIPP buffers, unregister all the tiles, stop |
| * LIPP/LEPP, and wipe the LEPP queue. |
| * |
| * We start out with the ingress interrupt enabled on each CPU. When |
| * this interrupt fires, we disable it, and call "napi_schedule()". |
| * This will cause "tile_net_poll()" to be called, which will pull |
| * packets from the netio queue, filtering them out, or passing them |
| * to "netif_receive_skb()". If our budget is exhausted, we will |
| * return, knowing we will be called again later. Otherwise, we |
| * reenable the ingress interrupt, and call "napi_complete()". |
| * |
| * HACK: Since disabling the ingress interrupt is not reliable, we |
| * ignore the interrupt if the global "active" flag is false. |
| * |
| * |
| * NOTE: The use of "native_driver" ensures that EPP exists, and that |
| * we are using "LIPP" and "LEPP". |
| * |
| * NOTE: Failing to free completions for an arbitrarily long time |
| * (which is defined to be illegal) does in fact cause bizarre |
| * problems. The "egress_timer" helps prevent this from happening. |
| */ |
| |
| |
| /* HACK: Allow use of "jumbo" packets. */ |
| /* This should be 1500 if "jumbo" is not set in LIPP. */ |
| /* This should be at most 10226 (10240 - 14) if "jumbo" is set in LIPP. */ |
| /* ISSUE: This has not been thoroughly tested (except at 1500). */ |
| #define TILE_NET_MTU 1500 |
| |
| /* HACK: Define this to verify incoming packets. */ |
| /* #define TILE_NET_VERIFY_INGRESS */ |
| |
| /* Use 3000 to enable the Linux Traffic Control (QoS) layer, else 0. */ |
| #define TILE_NET_TX_QUEUE_LEN 0 |
| |
| /* Define to dump packets (prints out the whole packet on tx and rx). */ |
| /* #define TILE_NET_DUMP_PACKETS */ |
| |
| /* Define to enable debug spew (all PDEBUG's are enabled). */ |
| /* #define TILE_NET_DEBUG */ |
| |
| |
| /* Define to activate paranoia checks. */ |
| /* #define TILE_NET_PARANOIA */ |
| |
| /* Default transmit lockup timeout period, in jiffies. */ |
| #define TILE_NET_TIMEOUT (5 * HZ) |
| |
| /* Default retry interval for bringing up the NetIO interface, in jiffies. */ |
| #define TILE_NET_RETRY_INTERVAL (5 * HZ) |
| |
| /* Number of ports (xgbe0, xgbe1, gbe0, gbe1). */ |
| #define TILE_NET_DEVS 4 |
| |
| |
| |
| /* Paranoia. */ |
| #if NET_IP_ALIGN != LIPP_PACKET_PADDING |
| #error "NET_IP_ALIGN must match LIPP_PACKET_PADDING." |
| #endif |
| |
| |
| /* Debug print. */ |
| #ifdef TILE_NET_DEBUG |
| #define PDEBUG(fmt, args...) net_printk(fmt, ## args) |
| #else |
| #define PDEBUG(fmt, args...) |
| #endif |
| |
| |
| MODULE_AUTHOR("Tilera"); |
| MODULE_LICENSE("GPL"); |
| |
| |
| /* |
| * Queue of incoming packets for a specific cpu and device. |
| * |
| * Includes a pointer to the "system" data, and the actual "user" data. |
| */ |
| struct tile_netio_queue { |
| netio_queue_impl_t *__system_part; |
| netio_queue_user_impl_t __user_part; |
| |
| }; |
| |
| |
| /* |
| * Statistics counters for a specific cpu and device. |
| */ |
| struct tile_net_stats_t { |
| struct u64_stats_sync syncp; |
| u64 rx_packets; /* total packets received */ |
| u64 tx_packets; /* total packets transmitted */ |
| u64 rx_bytes; /* total bytes received */ |
| u64 tx_bytes; /* total bytes transmitted */ |
| u64 rx_errors; /* packets truncated or marked bad by hw */ |
| u64 rx_dropped; /* packets not for us or intf not up */ |
| }; |
| |
| |
| /* |
| * Info for a specific cpu and device. |
| * |
| * ISSUE: There is a "dev" pointer in "napi" as well. |
| */ |
| struct tile_net_cpu { |
| /* The NAPI struct. */ |
| struct napi_struct napi; |
| /* Packet queue. */ |
| struct tile_netio_queue queue; |
| /* Statistics. */ |
| struct tile_net_stats_t stats; |
| /* True iff NAPI is enabled. */ |
| bool napi_enabled; |
| /* True if this tile has successfully registered with the IPP. */ |
| bool registered; |
| /* True if the link was down last time we tried to register. */ |
| bool link_down; |
| /* True if "egress_timer" is scheduled. */ |
| bool egress_timer_scheduled; |
| /* Number of small sk_buffs which must still be provided. */ |
| unsigned int num_needed_small_buffers; |
| /* Number of large sk_buffs which must still be provided. */ |
| unsigned int num_needed_large_buffers; |
| /* A timer for handling egress completions. */ |
| struct timer_list egress_timer; |
| }; |
| |
| |
| /* |
| * Info for a specific device. |
| */ |
| struct tile_net_priv { |
| /* Our network device. */ |
| struct net_device *dev; |
| /* Pages making up the egress queue. */ |
| struct page *eq_pages; |
| /* Address of the actual egress queue. */ |
| lepp_queue_t *eq; |
| /* Protects "eq". */ |
| spinlock_t eq_lock; |
| /* The hypervisor handle for this interface. */ |
| int hv_devhdl; |
| /* The intr bit mask that IDs this device. */ |
| u32 intr_id; |
| /* True iff "tile_net_open_aux()" has succeeded. */ |
| bool partly_opened; |
| /* True iff the device is "active". */ |
| bool active; |
| /* Effective network cpus. */ |
| struct cpumask network_cpus_map; |
| /* Number of network cpus. */ |
| int network_cpus_count; |
| /* Credits per network cpu. */ |
| int network_cpus_credits; |
| /* For NetIO bringup retries. */ |
| struct delayed_work retry_work; |
| /* Quick access to per cpu data. */ |
| struct tile_net_cpu *cpu[NR_CPUS]; |
| }; |
| |
| /* Log2 of the number of small pages needed for the egress queue. */ |
| #define EQ_ORDER get_order(sizeof(lepp_queue_t)) |
| /* Size of the egress queue's pages. */ |
| #define EQ_SIZE (1 << (PAGE_SHIFT + EQ_ORDER)) |
| |
| /* |
| * The actual devices (xgbe0, xgbe1, gbe0, gbe1). |
| */ |
| static struct net_device *tile_net_devs[TILE_NET_DEVS]; |
| |
| /* |
| * The "tile_net_cpu" structures for each device. |
| */ |
| static DEFINE_PER_CPU(struct tile_net_cpu, hv_xgbe0); |
| static DEFINE_PER_CPU(struct tile_net_cpu, hv_xgbe1); |
| static DEFINE_PER_CPU(struct tile_net_cpu, hv_gbe0); |
| static DEFINE_PER_CPU(struct tile_net_cpu, hv_gbe1); |
| |
| |
| /* |
| * True if "network_cpus" was specified. |
| */ |
| static bool network_cpus_used; |
| |
| /* |
| * The actual cpus in "network_cpus". |
| */ |
| static struct cpumask network_cpus_map; |
| |
| |
| |
| #ifdef TILE_NET_DEBUG |
| /* |
| * printk with extra stuff. |
| * |
| * We print the CPU we're running in brackets. |
| */ |
| static void net_printk(char *fmt, ...) |
| { |
| int i; |
| int len; |
| va_list args; |
| static char buf[256]; |
| |
| len = sprintf(buf, "tile_net[%2.2d]: ", smp_processor_id()); |
| va_start(args, fmt); |
| i = vscnprintf(buf + len, sizeof(buf) - len - 1, fmt, args); |
| va_end(args); |
| buf[255] = '\0'; |
| pr_notice(buf); |
| } |
| #endif |
| |
| |
| #ifdef TILE_NET_DUMP_PACKETS |
| /* |
| * Dump a packet. |
| */ |
| static void dump_packet(unsigned char *data, unsigned long length, char *s) |
| { |
| int my_cpu = smp_processor_id(); |
| |
| unsigned long i; |
| char buf[128]; |
| |
| static unsigned int count; |
| |
| pr_info("dump_packet(data %p, length 0x%lx s %s count 0x%x)\n", |
| data, length, s, count++); |
| |
| pr_info("\n"); |
| |
| for (i = 0; i < length; i++) { |
| if ((i & 0xf) == 0) |
| sprintf(buf, "[%02d] %8.8lx:", my_cpu, i); |
| sprintf(buf + strlen(buf), " %2.2x", data[i]); |
| if ((i & 0xf) == 0xf || i == length - 1) { |
| strcat(buf, "\n"); |
| pr_info("%s", buf); |
| } |
| } |
| } |
| #endif |
| |
| |
| /* |
| * Provide support for the __netio_fastio1() swint |
| * (see <hv/drv_xgbe_intf.h> for how it is used). |
| * |
| * The fastio swint2 call may clobber all the caller-saved registers. |
| * It rarely clobbers memory, but we allow for the possibility in |
| * the signature just to be on the safe side. |
| * |
| * Also, gcc doesn't seem to allow an input operand to be |
| * clobbered, so we fake it with dummy outputs. |
| * |
| * This function can't be static because of the way it is declared |
| * in the netio header. |
| */ |
| inline int __netio_fastio1(u32 fastio_index, u32 arg0) |
| { |
| long result, clobber_r1, clobber_r10; |
| asm volatile("swint2" |
| : "=R00" (result), |
| "=R01" (clobber_r1), "=R10" (clobber_r10) |
| : "R10" (fastio_index), "R01" (arg0) |
| : "memory", "r2", "r3", "r4", |
| "r5", "r6", "r7", "r8", "r9", |
| "r11", "r12", "r13", "r14", |
| "r15", "r16", "r17", "r18", "r19", |
| "r20", "r21", "r22", "r23", "r24", |
| "r25", "r26", "r27", "r28", "r29"); |
| return result; |
| } |
| |
| |
| static void tile_net_return_credit(struct tile_net_cpu *info) |
| { |
| struct tile_netio_queue *queue = &info->queue; |
| netio_queue_user_impl_t *qup = &queue->__user_part; |
| |
| /* Return four credits after every fourth packet. */ |
| if (--qup->__receive_credit_remaining == 0) { |
| u32 interval = qup->__receive_credit_interval; |
| qup->__receive_credit_remaining = interval; |
| __netio_fastio_return_credits(qup->__fastio_index, interval); |
| } |
| } |
| |
| |
| |
| /* |
| * Provide a linux buffer to LIPP. |
| */ |
| static void tile_net_provide_linux_buffer(struct tile_net_cpu *info, |
| void *va, bool small) |
| { |
| struct tile_netio_queue *queue = &info->queue; |
| |
| /* Convert "va" and "small" to "linux_buffer_t". */ |
| unsigned int buffer = ((unsigned int)(__pa(va) >> 7) << 1) + small; |
| |
| __netio_fastio_free_buffer(queue->__user_part.__fastio_index, buffer); |
| } |
| |
| |
| /* |
| * Provide a linux buffer for LIPP. |
| * |
| * Note that the ACTUAL allocation for each buffer is a "struct sk_buff", |
| * plus a chunk of memory that includes not only the requested bytes, but |
| * also NET_SKB_PAD bytes of initial padding, and a "struct skb_shared_info". |
| * |
| * Note that "struct skb_shared_info" is 88 bytes with 64K pages and |
| * 268 bytes with 4K pages (since the frags[] array needs 18 entries). |
| * |
| * Without jumbo packets, the maximum packet size will be 1536 bytes, |
| * and we use 2 bytes (NET_IP_ALIGN) of padding. ISSUE: If we told |
| * the hardware to clip at 1518 bytes instead of 1536 bytes, then we |
| * could save an entire cache line, but in practice, we don't need it. |
| * |
| * Since CPAs are 38 bits, and we can only encode the high 31 bits in |
| * a "linux_buffer_t", the low 7 bits must be zero, and thus, we must |
| * align the actual "va" mod 128. |
| * |
| * We assume that the underlying "head" will be aligned mod 64. Note |
| * that in practice, we have seen "head" NOT aligned mod 128 even when |
| * using 2048 byte allocations, which is surprising. |
| * |
| * If "head" WAS always aligned mod 128, we could change LIPP to |
| * assume that the low SIX bits are zero, and the 7th bit is one, that |
| * is, align the actual "va" mod 128 plus 64, which would be "free". |
| * |
| * For now, the actual "head" pointer points at NET_SKB_PAD bytes of |
| * padding, plus 28 or 92 bytes of extra padding, plus the sk_buff |
| * pointer, plus the NET_IP_ALIGN padding, plus 126 or 1536 bytes for |
| * the actual packet, plus 62 bytes of empty padding, plus some |
| * padding and the "struct skb_shared_info". |
| * |
| * With 64K pages, a large buffer thus needs 32+92+4+2+1536+62+88 |
| * bytes, or 1816 bytes, which fits comfortably into 2048 bytes. |
| * |
| * With 64K pages, a small buffer thus needs 32+92+4+2+126+88 |
| * bytes, or 344 bytes, which means we are wasting 64+ bytes, and |
| * could presumably increase the size of small buffers. |
| * |
| * With 4K pages, a large buffer thus needs 32+92+4+2+1536+62+268 |
| * bytes, or 1996 bytes, which fits comfortably into 2048 bytes. |
| * |
| * With 4K pages, a small buffer thus needs 32+92+4+2+126+268 |
| * bytes, or 524 bytes, which is annoyingly wasteful. |
| * |
| * Maybe we should increase LIPP_SMALL_PACKET_SIZE to 192? |
| * |
| * ISSUE: Maybe we should increase "NET_SKB_PAD" to 64? |
| */ |
| static bool tile_net_provide_needed_buffer(struct tile_net_cpu *info, |
| bool small) |
| { |
| #if TILE_NET_MTU <= 1536 |
| /* Without "jumbo", 2 + 1536 should be sufficient. */ |
| unsigned int large_size = NET_IP_ALIGN + 1536; |
| #else |
| /* ISSUE: This has not been tested. */ |
| unsigned int large_size = NET_IP_ALIGN + TILE_NET_MTU + 100; |
| #endif |
| |
| /* Avoid "false sharing" with last cache line. */ |
| /* ISSUE: This is already done by "netdev_alloc_skb()". */ |
| unsigned int len = |
| (((small ? LIPP_SMALL_PACKET_SIZE : large_size) + |
| CHIP_L2_LINE_SIZE() - 1) & -CHIP_L2_LINE_SIZE()); |
| |
| unsigned int padding = 128 - NET_SKB_PAD; |
| unsigned int align; |
| |
| struct sk_buff *skb; |
| void *va; |
| |
| struct sk_buff **skb_ptr; |
| |
| /* Request 96 extra bytes for alignment purposes. */ |
| skb = netdev_alloc_skb(info->napi.dev, len + padding); |
| if (skb == NULL) |
| return false; |
| |
| /* Skip 32 or 96 bytes to align "data" mod 128. */ |
| align = -(long)skb->data & (128 - 1); |
| BUG_ON(align > padding); |
| skb_reserve(skb, align); |
| |
| /* This address is given to IPP. */ |
| va = skb->data; |
| |
| /* Buffers must not span a huge page. */ |
| BUG_ON(((((long)va & ~HPAGE_MASK) + len) & HPAGE_MASK) != 0); |
| |
| #ifdef TILE_NET_PARANOIA |
| #if CHIP_HAS_CBOX_HOME_MAP() |
| if (hash_default) { |
| HV_PTE pte = *virt_to_pte(current->mm, (unsigned long)va); |
| if (hv_pte_get_mode(pte) != HV_PTE_MODE_CACHE_HASH_L3) |
| panic("Non-HFH ingress buffer! VA=%p Mode=%d PTE=%llx", |
| va, hv_pte_get_mode(pte), hv_pte_val(pte)); |
| } |
| #endif |
| #endif |
| |
| /* Invalidate the packet buffer. */ |
| if (!hash_default) |
| __inv_buffer(va, len); |
| |
| /* Skip two bytes to satisfy LIPP assumptions. */ |
| /* Note that this aligns IP on a 16 byte boundary. */ |
| /* ISSUE: Do this when the packet arrives? */ |
| skb_reserve(skb, NET_IP_ALIGN); |
| |
| /* Save a back-pointer to 'skb'. */ |
| skb_ptr = va - sizeof(*skb_ptr); |
| *skb_ptr = skb; |
| |
| /* Make sure "skb_ptr" has been flushed. */ |
| __insn_mf(); |
| |
| /* Provide the new buffer. */ |
| tile_net_provide_linux_buffer(info, va, small); |
| |
| return true; |
| } |
| |
| |
| /* |
| * Provide linux buffers for LIPP. |
| */ |
| static void tile_net_provide_needed_buffers(struct tile_net_cpu *info) |
| { |
| while (info->num_needed_small_buffers != 0) { |
| if (!tile_net_provide_needed_buffer(info, true)) |
| goto oops; |
| info->num_needed_small_buffers--; |
| } |
| |
| while (info->num_needed_large_buffers != 0) { |
| if (!tile_net_provide_needed_buffer(info, false)) |
| goto oops; |
| info->num_needed_large_buffers--; |
| } |
| |
| return; |
| |
| oops: |
| |
| /* Add a description to the page allocation failure dump. */ |
| pr_notice("Could not provide a linux buffer to LIPP.\n"); |
| } |
| |
| |
| /* |
| * Grab some LEPP completions, and store them in "comps", of size |
| * "comps_size", and return the number of completions which were |
| * stored, so the caller can free them. |
| */ |
| static unsigned int tile_net_lepp_grab_comps(lepp_queue_t *eq, |
| struct sk_buff *comps[], |
| unsigned int comps_size, |
| unsigned int min_size) |
| { |
| unsigned int n = 0; |
| |
| unsigned int comp_head = eq->comp_head; |
| unsigned int comp_busy = eq->comp_busy; |
| |
| while (comp_head != comp_busy && n < comps_size) { |
| comps[n++] = eq->comps[comp_head]; |
| LEPP_QINC(comp_head); |
| } |
| |
| if (n < min_size) |
| return 0; |
| |
| eq->comp_head = comp_head; |
| |
| return n; |
| } |
| |
| |
| /* |
| * Free some comps, and return true iff there are still some pending. |
| */ |
| static bool tile_net_lepp_free_comps(struct net_device *dev, bool all) |
| { |
| struct tile_net_priv *priv = netdev_priv(dev); |
| |
| lepp_queue_t *eq = priv->eq; |
| |
| struct sk_buff *olds[64]; |
| unsigned int wanted = 64; |
| unsigned int i, n; |
| bool pending; |
| |
| spin_lock(&priv->eq_lock); |
| |
| if (all) |
| eq->comp_busy = eq->comp_tail; |
| |
| n = tile_net_lepp_grab_comps(eq, olds, wanted, 0); |
| |
| pending = (eq->comp_head != eq->comp_tail); |
| |
| spin_unlock(&priv->eq_lock); |
| |
| for (i = 0; i < n; i++) |
| kfree_skb(olds[i]); |
| |
| return pending; |
| } |
| |
| |
| /* |
| * Make sure the egress timer is scheduled. |
| * |
| * Note that we use "schedule if not scheduled" logic instead of the more |
| * obvious "reschedule" logic, because "reschedule" is fairly expensive. |
| */ |
| static void tile_net_schedule_egress_timer(struct tile_net_cpu *info) |
| { |
| if (!info->egress_timer_scheduled) { |
| mod_timer_pinned(&info->egress_timer, jiffies + 1); |
| info->egress_timer_scheduled = true; |
| } |
| } |
| |
| |
| /* |
| * The "function" for "info->egress_timer". |
| * |
| * This timer will reschedule itself as long as there are any pending |
| * completions expected (on behalf of any tile). |
| * |
| * ISSUE: Realistically, will the timer ever stop scheduling itself? |
| * |
| * ISSUE: This timer is almost never actually needed, so just use a global |
| * timer that can run on any tile. |
| * |
| * ISSUE: Maybe instead track number of expected completions, and free |
| * only that many, resetting to zero if "pending" is ever false. |
| */ |
| static void tile_net_handle_egress_timer(unsigned long arg) |
| { |
| struct tile_net_cpu *info = (struct tile_net_cpu *)arg; |
| struct net_device *dev = info->napi.dev; |
| |
| /* The timer is no longer scheduled. */ |
| info->egress_timer_scheduled = false; |
| |
| /* Free comps, and reschedule timer if more are pending. */ |
| if (tile_net_lepp_free_comps(dev, false)) |
| tile_net_schedule_egress_timer(info); |
| } |
| |
| |
| static void tile_net_discard_aux(struct tile_net_cpu *info, int index) |
| { |
| struct tile_netio_queue *queue = &info->queue; |
| netio_queue_impl_t *qsp = queue->__system_part; |
| netio_queue_user_impl_t *qup = &queue->__user_part; |
| |
| int index2_aux = index + sizeof(netio_pkt_t); |
| int index2 = |
| ((index2_aux == |
| qsp->__packet_receive_queue.__last_packet_plus_one) ? |
| 0 : index2_aux); |
| |
| netio_pkt_t *pkt = (netio_pkt_t *)((unsigned long) &qsp[1] + index); |
| |
| /* Extract the "linux_buffer_t". */ |
| unsigned int buffer = pkt->__packet.word; |
| |
| /* Convert "linux_buffer_t" to "va". */ |
| void *va = __va((phys_addr_t)(buffer >> 1) << 7); |
| |
| /* Acquire the associated "skb". */ |
| struct sk_buff **skb_ptr = va - sizeof(*skb_ptr); |
| struct sk_buff *skb = *skb_ptr; |
| |
| kfree_skb(skb); |
| |
| /* Consume this packet. */ |
| qup->__packet_receive_read = index2; |
| } |
| |
| |
| /* |
| * Like "tile_net_poll()", but just discard packets. |
| */ |
| static void tile_net_discard_packets(struct net_device *dev) |
| { |
| struct tile_net_priv *priv = netdev_priv(dev); |
| int my_cpu = smp_processor_id(); |
| struct tile_net_cpu *info = priv->cpu[my_cpu]; |
| struct tile_netio_queue *queue = &info->queue; |
| netio_queue_impl_t *qsp = queue->__system_part; |
| netio_queue_user_impl_t *qup = &queue->__user_part; |
| |
| while (qup->__packet_receive_read != |
| qsp->__packet_receive_queue.__packet_write) { |
| int index = qup->__packet_receive_read; |
| tile_net_discard_aux(info, index); |
| } |
| } |
| |
| |
| /* |
| * Handle the next packet. Return true if "processed", false if "filtered". |
| */ |
| static bool tile_net_poll_aux(struct tile_net_cpu *info, int index) |
| { |
| struct net_device *dev = info->napi.dev; |
| |
| struct tile_netio_queue *queue = &info->queue; |
| netio_queue_impl_t *qsp = queue->__system_part; |
| netio_queue_user_impl_t *qup = &queue->__user_part; |
| struct tile_net_stats_t *stats = &info->stats; |
| |
| int filter; |
| |
| int index2_aux = index + sizeof(netio_pkt_t); |
| int index2 = |
| ((index2_aux == |
| qsp->__packet_receive_queue.__last_packet_plus_one) ? |
| 0 : index2_aux); |
| |
| netio_pkt_t *pkt = (netio_pkt_t *)((unsigned long) &qsp[1] + index); |
| |
| netio_pkt_metadata_t *metadata = NETIO_PKT_METADATA(pkt); |
| netio_pkt_status_t pkt_status = NETIO_PKT_STATUS_M(metadata, pkt); |
| |
| /* Extract the packet size. FIXME: Shouldn't the second line */ |
| /* get subtracted? Mostly moot, since it should be "zero". */ |
| unsigned long len = |
| (NETIO_PKT_CUSTOM_LENGTH(pkt) + |
| NET_IP_ALIGN - NETIO_PACKET_PADDING); |
| |
| /* Extract the "linux_buffer_t". */ |
| unsigned int buffer = pkt->__packet.word; |
| |
| /* Extract "small" (vs "large"). */ |
| bool small = ((buffer & 1) != 0); |
| |
| /* Convert "linux_buffer_t" to "va". */ |
| void *va = __va((phys_addr_t)(buffer >> 1) << 7); |
| |
| /* Extract the packet data pointer. */ |
| /* Compare to "NETIO_PKT_CUSTOM_DATA(pkt)". */ |
| unsigned char *buf = va + NET_IP_ALIGN; |
| |
| /* Invalidate the packet buffer. */ |
| if (!hash_default) |
| __inv_buffer(buf, len); |
| |
| #ifdef TILE_NET_DUMP_PACKETS |
| dump_packet(buf, len, "rx"); |
| #endif /* TILE_NET_DUMP_PACKETS */ |
| |
| #ifdef TILE_NET_VERIFY_INGRESS |
| if (pkt_status == NETIO_PKT_STATUS_OVERSIZE && len >= 64) { |
| dump_packet(buf, len, "rx"); |
| panic("Unexpected OVERSIZE."); |
| } |
| #endif |
| |
| filter = 0; |
| |
| if (pkt_status == NETIO_PKT_STATUS_BAD) { |
| /* Handle CRC error and hardware truncation. */ |
| filter = 2; |
| } else if (!(dev->flags & IFF_UP)) { |
| /* Filter packets received before we're up. */ |
| filter = 1; |
| } else if (NETIO_PKT_ETHERTYPE_RECOGNIZED_M(metadata, pkt) && |
| pkt_status == NETIO_PKT_STATUS_UNDERSIZE) { |
| /* Filter "truncated" packets. */ |
| filter = 2; |
| } else if (!(dev->flags & IFF_PROMISC)) { |
| if (!is_multicast_ether_addr(buf)) { |
| /* Filter packets not for our address. */ |
| const u8 *mine = dev->dev_addr; |
| filter = !ether_addr_equal(mine, buf); |
| } |
| } |
| |
| u64_stats_update_begin(&stats->syncp); |
| |
| if (filter != 0) { |
| |
| if (filter == 1) |
| stats->rx_dropped++; |
| else |
| stats->rx_errors++; |
| |
| tile_net_provide_linux_buffer(info, va, small); |
| |
| } else { |
| |
| /* Acquire the associated "skb". */ |
| struct sk_buff **skb_ptr = va - sizeof(*skb_ptr); |
| struct sk_buff *skb = *skb_ptr; |
| |
| /* Paranoia. */ |
| if (skb->data != buf) |
| panic("Corrupt linux buffer from LIPP! " |
| "VA=%p, skb=%p, skb->data=%p\n", |
| va, skb, skb->data); |
| |
| /* Encode the actual packet length. */ |
| skb_put(skb, len); |
| |
| /* NOTE: This call also sets "skb->dev = dev". */ |
| skb->protocol = eth_type_trans(skb, dev); |
| |
| /* Avoid recomputing "good" TCP/UDP checksums. */ |
| if (NETIO_PKT_L4_CSUM_CORRECT_M(metadata, pkt)) |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| |
| netif_receive_skb(skb); |
| |
| stats->rx_packets++; |
| stats->rx_bytes += len; |
| } |
| |
| u64_stats_update_end(&stats->syncp); |
| |
| /* ISSUE: It would be nice to defer this until the packet has */ |
| /* actually been processed. */ |
| tile_net_return_credit(info); |
| |
| /* Consume this packet. */ |
| qup->__packet_receive_read = index2; |
| |
| return !filter; |
| } |
| |
| |
| /* |
| * Handle some packets for the given device on the current CPU. |
| * |
| * If "tile_net_stop()" is called on some other tile while this |
| * function is running, we will return, hopefully before that |
| * other tile asks us to call "napi_disable()". |
| * |
| * The "rotting packet" race condition occurs if a packet arrives |
| * during the extremely narrow window between the queue appearing to |
| * be empty, and the ingress interrupt being re-enabled. This happens |
| * a LOT under heavy network load. |
| */ |
| static int tile_net_poll(struct napi_struct *napi, int budget) |
| { |
| struct net_device *dev = napi->dev; |
| struct tile_net_priv *priv = netdev_priv(dev); |
| int my_cpu = smp_processor_id(); |
| struct tile_net_cpu *info = priv->cpu[my_cpu]; |
| struct tile_netio_queue *queue = &info->queue; |
| netio_queue_impl_t *qsp = queue->__system_part; |
| netio_queue_user_impl_t *qup = &queue->__user_part; |
| |
| unsigned int work = 0; |
| |
| if (budget <= 0) |
| goto done; |
| |
| while (priv->active) { |
| int index = qup->__packet_receive_read; |
| if (index == qsp->__packet_receive_queue.__packet_write) |
| break; |
| |
| if (tile_net_poll_aux(info, index)) { |
| if (++work >= budget) |
| goto done; |
| } |
| } |
| |
| napi_complete(&info->napi); |
| |
| if (!priv->active) |
| goto done; |
| |
| /* Re-enable the ingress interrupt. */ |
| enable_percpu_irq(priv->intr_id, 0); |
| |
| /* HACK: Avoid the "rotting packet" problem (see above). */ |
| if (qup->__packet_receive_read != |
| qsp->__packet_receive_queue.__packet_write) { |
| /* ISSUE: Sometimes this returns zero, presumably */ |
| /* because an interrupt was handled for this tile. */ |
| (void)napi_reschedule(&info->napi); |
| } |
| |
| done: |
| |
| if (priv->active) |
| tile_net_provide_needed_buffers(info); |
| |
| return work; |
| } |
| |
| |
| /* |
| * Handle an ingress interrupt for the given device on the current cpu. |
| * |
| * ISSUE: Sometimes this gets called after "disable_percpu_irq()" has |
| * been called! This is probably due to "pending hypervisor downcalls". |
| * |
| * ISSUE: Is there any race condition between the "napi_schedule()" here |
| * and the "napi_complete()" call above? |
| */ |
| static irqreturn_t tile_net_handle_ingress_interrupt(int irq, void *dev_ptr) |
| { |
| struct net_device *dev = (struct net_device *)dev_ptr; |
| struct tile_net_priv *priv = netdev_priv(dev); |
| int my_cpu = smp_processor_id(); |
| struct tile_net_cpu *info = priv->cpu[my_cpu]; |
| |
| /* Disable the ingress interrupt. */ |
| disable_percpu_irq(priv->intr_id); |
| |
| /* Ignore unwanted interrupts. */ |
| if (!priv->active) |
| return IRQ_HANDLED; |
| |
| /* ISSUE: Sometimes "info->napi_enabled" is false here. */ |
| |
| napi_schedule(&info->napi); |
| |
| return IRQ_HANDLED; |
| } |
| |
| |
| /* |
| * One time initialization per interface. |
| */ |
| static int tile_net_open_aux(struct net_device *dev) |
| { |
| struct tile_net_priv *priv = netdev_priv(dev); |
| |
| int ret; |
| int dummy; |
| unsigned int epp_lotar; |
| |
| /* |
| * Find out where EPP memory should be homed. |
| */ |
| ret = hv_dev_pread(priv->hv_devhdl, 0, |
| (HV_VirtAddr)&epp_lotar, sizeof(epp_lotar), |
| NETIO_EPP_SHM_OFF); |
| if (ret < 0) { |
| pr_err("could not read epp_shm_queue lotar.\n"); |
| return -EIO; |
| } |
| |
| /* |
| * Home the page on the EPP. |
| */ |
| { |
| int epp_home = hv_lotar_to_cpu(epp_lotar); |
| homecache_change_page_home(priv->eq_pages, EQ_ORDER, epp_home); |
| } |
| |
| /* |
| * Register the EPP shared memory queue. |
| */ |
| { |
| netio_ipp_address_t ea = { |
| .va = 0, |
| .pa = __pa(priv->eq), |
| .pte = hv_pte(0), |
| .size = EQ_SIZE, |
| }; |
| ea.pte = hv_pte_set_lotar(ea.pte, epp_lotar); |
| ea.pte = hv_pte_set_mode(ea.pte, HV_PTE_MODE_CACHE_TILE_L3); |
| ret = hv_dev_pwrite(priv->hv_devhdl, 0, |
| (HV_VirtAddr)&ea, |
| sizeof(ea), |
| NETIO_EPP_SHM_OFF); |
| if (ret < 0) |
| return -EIO; |
| } |
| |
| /* |
| * Start LIPP/LEPP. |
| */ |
| if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy, |
| sizeof(dummy), NETIO_IPP_START_SHIM_OFF) < 0) { |
| pr_warn("Failed to start LIPP/LEPP\n"); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| |
| /* |
| * Register with hypervisor on the current CPU. |
| * |
| * Strangely, this function does important things even if it "fails", |
| * which is especially common if the link is not up yet. Hopefully |
| * these things are all "harmless" if done twice! |
| */ |
| static void tile_net_register(void *dev_ptr) |
| { |
| struct net_device *dev = (struct net_device *)dev_ptr; |
| struct tile_net_priv *priv = netdev_priv(dev); |
| int my_cpu = smp_processor_id(); |
| struct tile_net_cpu *info; |
| |
| struct tile_netio_queue *queue; |
| |
| /* Only network cpus can receive packets. */ |
| int queue_id = |
| cpumask_test_cpu(my_cpu, &priv->network_cpus_map) ? 0 : 255; |
| |
| netio_input_config_t config = { |
| .flags = 0, |
| .num_receive_packets = priv->network_cpus_credits, |
| .queue_id = queue_id |
| }; |
| |
| int ret = 0; |
| netio_queue_impl_t *queuep; |
| |
| PDEBUG("tile_net_register(queue_id %d)\n", queue_id); |
| |
| if (!strcmp(dev->name, "xgbe0")) |
| info = this_cpu_ptr(&hv_xgbe0); |
| else if (!strcmp(dev->name, "xgbe1")) |
| info = this_cpu_ptr(&hv_xgbe1); |
| else if (!strcmp(dev->name, "gbe0")) |
| info = this_cpu_ptr(&hv_gbe0); |
| else if (!strcmp(dev->name, "gbe1")) |
| info = this_cpu_ptr(&hv_gbe1); |
| else |
| BUG(); |
| |
| /* Initialize the egress timer. */ |
| init_timer(&info->egress_timer); |
| info->egress_timer.data = (long)info; |
| info->egress_timer.function = tile_net_handle_egress_timer; |
| |
| u64_stats_init(&info->stats.syncp); |
| |
| priv->cpu[my_cpu] = info; |
| |
| /* |
| * Register ourselves with LIPP. This does a lot of stuff, |
| * including invoking the LIPP registration code. |
| */ |
| ret = hv_dev_pwrite(priv->hv_devhdl, 0, |
| (HV_VirtAddr)&config, |
| sizeof(netio_input_config_t), |
| NETIO_IPP_INPUT_REGISTER_OFF); |
| PDEBUG("hv_dev_pwrite(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n", |
| ret); |
| if (ret < 0) { |
| if (ret != NETIO_LINK_DOWN) { |
| printk(KERN_DEBUG "hv_dev_pwrite " |
| "NETIO_IPP_INPUT_REGISTER_OFF failure %d\n", |
| ret); |
| } |
| info->link_down = (ret == NETIO_LINK_DOWN); |
| return; |
| } |
| |
| /* |
| * Get the pointer to our queue's system part. |
| */ |
| |
| ret = hv_dev_pread(priv->hv_devhdl, 0, |
| (HV_VirtAddr)&queuep, |
| sizeof(netio_queue_impl_t *), |
| NETIO_IPP_INPUT_REGISTER_OFF); |
| PDEBUG("hv_dev_pread(NETIO_IPP_INPUT_REGISTER_OFF) returned %d\n", |
| ret); |
| PDEBUG("queuep %p\n", queuep); |
| if (ret <= 0) { |
| /* ISSUE: Shouldn't this be a fatal error? */ |
| pr_err("hv_dev_pread NETIO_IPP_INPUT_REGISTER_OFF failure\n"); |
| return; |
| } |
| |
| queue = &info->queue; |
| |
| queue->__system_part = queuep; |
| |
| memset(&queue->__user_part, 0, sizeof(netio_queue_user_impl_t)); |
| |
| /* This is traditionally "config.num_receive_packets / 2". */ |
| queue->__user_part.__receive_credit_interval = 4; |
| queue->__user_part.__receive_credit_remaining = |
| queue->__user_part.__receive_credit_interval; |
| |
| /* |
| * Get a fastio index from the hypervisor. |
| * ISSUE: Shouldn't this check the result? |
| */ |
| ret = hv_dev_pread(priv->hv_devhdl, 0, |
| (HV_VirtAddr)&queue->__user_part.__fastio_index, |
| sizeof(queue->__user_part.__fastio_index), |
| NETIO_IPP_GET_FASTIO_OFF); |
| PDEBUG("hv_dev_pread(NETIO_IPP_GET_FASTIO_OFF) returned %d\n", ret); |
| |
| /* Now we are registered. */ |
| info->registered = true; |
| } |
| |
| |
| /* |
| * Deregister with hypervisor on the current CPU. |
| * |
| * This simply discards all our credits, so no more packets will be |
| * delivered to this tile. There may still be packets in our queue. |
| * |
| * Also, disable the ingress interrupt. |
| */ |
| static void tile_net_deregister(void *dev_ptr) |
| { |
| struct net_device *dev = (struct net_device *)dev_ptr; |
| struct tile_net_priv *priv = netdev_priv(dev); |
| int my_cpu = smp_processor_id(); |
| struct tile_net_cpu *info = priv->cpu[my_cpu]; |
| |
| /* Disable the ingress interrupt. */ |
| disable_percpu_irq(priv->intr_id); |
| |
| /* Do nothing else if not registered. */ |
| if (info == NULL || !info->registered) |
| return; |
| |
| { |
| struct tile_netio_queue *queue = &info->queue; |
| netio_queue_user_impl_t *qup = &queue->__user_part; |
| |
| /* Discard all our credits. */ |
| __netio_fastio_return_credits(qup->__fastio_index, -1); |
| } |
| } |
| |
| |
| /* |
| * Unregister with hypervisor on the current CPU. |
| * |
| * Also, disable the ingress interrupt. |
| */ |
| static void tile_net_unregister(void *dev_ptr) |
| { |
| struct net_device *dev = (struct net_device *)dev_ptr; |
| struct tile_net_priv *priv = netdev_priv(dev); |
| int my_cpu = smp_processor_id(); |
| struct tile_net_cpu *info = priv->cpu[my_cpu]; |
| |
| int ret; |
| int dummy = 0; |
| |
| /* Disable the ingress interrupt. */ |
| disable_percpu_irq(priv->intr_id); |
| |
| /* Do nothing else if not registered. */ |
| if (info == NULL || !info->registered) |
| return; |
| |
| /* Unregister ourselves with LIPP/LEPP. */ |
| ret = hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy, |
| sizeof(dummy), NETIO_IPP_INPUT_UNREGISTER_OFF); |
| if (ret < 0) |
| panic("Failed to unregister with LIPP/LEPP!\n"); |
| |
| /* Discard all packets still in our NetIO queue. */ |
| tile_net_discard_packets(dev); |
| |
| /* Reset state. */ |
| info->num_needed_small_buffers = 0; |
| info->num_needed_large_buffers = 0; |
| |
| /* Cancel egress timer. */ |
| del_timer(&info->egress_timer); |
| info->egress_timer_scheduled = false; |
| } |
| |
| |
| /* |
| * Helper function for "tile_net_stop()". |
| * |
| * Also used to handle registration failure in "tile_net_open_inner()", |
| * when the various extra steps in "tile_net_stop()" are not necessary. |
| */ |
| static void tile_net_stop_aux(struct net_device *dev) |
| { |
| struct tile_net_priv *priv = netdev_priv(dev); |
| int i; |
| |
| int dummy = 0; |
| |
| /* |
| * Unregister all tiles, so LIPP will stop delivering packets. |
| * Also, delete all the "napi" objects (sequentially, to protect |
| * "dev->napi_list"). |
| */ |
| on_each_cpu(tile_net_unregister, (void *)dev, 1); |
| for_each_online_cpu(i) { |
| struct tile_net_cpu *info = priv->cpu[i]; |
| if (info != NULL && info->registered) { |
| netif_napi_del(&info->napi); |
| info->registered = false; |
| } |
| } |
| |
| /* Stop LIPP/LEPP. */ |
| if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy, |
| sizeof(dummy), NETIO_IPP_STOP_SHIM_OFF) < 0) |
| panic("Failed to stop LIPP/LEPP!\n"); |
| |
| priv->partly_opened = false; |
| } |
| |
| |
| /* |
| * Disable NAPI for the given device on the current cpu. |
| */ |
| static void tile_net_stop_disable(void *dev_ptr) |
| { |
| struct net_device *dev = (struct net_device *)dev_ptr; |
| struct tile_net_priv *priv = netdev_priv(dev); |
| int my_cpu = smp_processor_id(); |
| struct tile_net_cpu *info = priv->cpu[my_cpu]; |
| |
| /* Disable NAPI if needed. */ |
| if (info != NULL && info->napi_enabled) { |
| napi_disable(&info->napi); |
| info->napi_enabled = false; |
| } |
| } |
| |
| |
| /* |
| * Enable NAPI and the ingress interrupt for the given device |
| * on the current cpu. |
| * |
| * ISSUE: Only do this for "network cpus"? |
| */ |
| static void tile_net_open_enable(void *dev_ptr) |
| { |
| struct net_device *dev = (struct net_device *)dev_ptr; |
| struct tile_net_priv *priv = netdev_priv(dev); |
| int my_cpu = smp_processor_id(); |
| struct tile_net_cpu *info = priv->cpu[my_cpu]; |
| |
| /* Enable NAPI. */ |
| napi_enable(&info->napi); |
| info->napi_enabled = true; |
| |
| /* Enable the ingress interrupt. */ |
| enable_percpu_irq(priv->intr_id, 0); |
| } |
| |
| |
| /* |
| * tile_net_open_inner does most of the work of bringing up the interface. |
| * It's called from tile_net_open(), and also from tile_net_retry_open(). |
| * The return value is 0 if the interface was brought up, < 0 if |
| * tile_net_open() should return the return value as an error, and > 0 if |
| * tile_net_open() should return success and schedule a work item to |
| * periodically retry the bringup. |
| */ |
| static int tile_net_open_inner(struct net_device *dev) |
| { |
| struct tile_net_priv *priv = netdev_priv(dev); |
| int my_cpu = smp_processor_id(); |
| struct tile_net_cpu *info; |
| struct tile_netio_queue *queue; |
| int result = 0; |
| int i; |
| int dummy = 0; |
| |
| /* |
| * First try to register just on the local CPU, and handle any |
| * semi-expected "link down" failure specially. Note that we |
| * do NOT call "tile_net_stop_aux()", unlike below. |
| */ |
| tile_net_register(dev); |
| info = priv->cpu[my_cpu]; |
| if (!info->registered) { |
| if (info->link_down) |
| return 1; |
| return -EAGAIN; |
| } |
| |
| /* |
| * Now register everywhere else. If any registration fails, |
| * even for "link down" (which might not be possible), we |
| * clean up using "tile_net_stop_aux()". Also, add all the |
| * "napi" objects (sequentially, to protect "dev->napi_list"). |
| * ISSUE: Only use "netif_napi_add()" for "network cpus"? |
| */ |
| smp_call_function(tile_net_register, (void *)dev, 1); |
| for_each_online_cpu(i) { |
| struct tile_net_cpu *info = priv->cpu[i]; |
| if (info->registered) |
| netif_napi_add(dev, &info->napi, tile_net_poll, 64); |
| else |
| result = -EAGAIN; |
| } |
| if (result != 0) { |
| tile_net_stop_aux(dev); |
| return result; |
| } |
| |
| queue = &info->queue; |
| |
| if (priv->intr_id == 0) { |
| unsigned int irq; |
| |
| /* |
| * Acquire the irq allocated by the hypervisor. Every |
| * queue gets the same irq. The "__intr_id" field is |
| * "1 << irq", so we use "__ffs()" to extract "irq". |
| */ |
| priv->intr_id = queue->__system_part->__intr_id; |
| BUG_ON(priv->intr_id == 0); |
| irq = __ffs(priv->intr_id); |
| |
| /* |
| * Register the ingress interrupt handler for this |
| * device, permanently. |
| * |
| * We used to call "free_irq()" in "tile_net_stop()", |
| * and then re-register the handler here every time, |
| * but that caused DNP errors in "handle_IRQ_event()" |
| * because "desc->action" was NULL. See bug 9143. |
| */ |
| tile_irq_activate(irq, TILE_IRQ_PERCPU); |
| BUG_ON(request_irq(irq, tile_net_handle_ingress_interrupt, |
| 0, dev->name, (void *)dev) != 0); |
| } |
| |
| { |
| /* Allocate initial buffers. */ |
| |
| int max_buffers = |
| priv->network_cpus_count * priv->network_cpus_credits; |
| |
| info->num_needed_small_buffers = |
| min(LIPP_SMALL_BUFFERS, max_buffers); |
| |
| info->num_needed_large_buffers = |
| min(LIPP_LARGE_BUFFERS, max_buffers); |
| |
| tile_net_provide_needed_buffers(info); |
| |
| if (info->num_needed_small_buffers != 0 || |
| info->num_needed_large_buffers != 0) |
| panic("Insufficient memory for buffer stack!"); |
| } |
| |
| /* We are about to be active. */ |
| priv->active = true; |
| |
| /* Make sure "active" is visible to all tiles. */ |
| mb(); |
| |
| /* On each tile, enable NAPI and the ingress interrupt. */ |
| on_each_cpu(tile_net_open_enable, (void *)dev, 1); |
| |
| /* Start LIPP/LEPP and activate "ingress" at the shim. */ |
| if (hv_dev_pwrite(priv->hv_devhdl, 0, (HV_VirtAddr)&dummy, |
| sizeof(dummy), NETIO_IPP_INPUT_INIT_OFF) < 0) |
| panic("Failed to activate the LIPP Shim!\n"); |
| |
| /* Start our transmit queue. */ |
| netif_start_queue(dev); |
| |
| return 0; |
| } |
| |
| |
| /* |
| * Called periodically to retry bringing up the NetIO interface, |
| * if it doesn't come up cleanly during tile_net_open(). |
| */ |
| static void tile_net_open_retry(struct work_struct *w) |
| { |
| struct delayed_work *dw = to_delayed_work(w); |
| |
| struct tile_net_priv *priv = |
| container_of(dw, struct tile_net_priv, retry_work); |
| |
| /* |
| * Try to bring the NetIO interface up. If it fails, reschedule |
| * ourselves to try again later; otherwise, tell Linux we now have |
| * a working link. ISSUE: What if the return value is negative? |
| */ |
| if (tile_net_open_inner(priv->dev) != 0) |
| schedule_delayed_work(&priv->retry_work, |
| TILE_NET_RETRY_INTERVAL); |
| else |
| netif_carrier_on(priv->dev); |
| } |
| |
| |
| /* |
| * Called when a network interface is made active. |
| * |
| * Returns 0 on success, negative value on failure. |
| * |
| * The open entry point is called when a network interface is made |
| * active by the system (IFF_UP). At this point all resources needed |
| * for transmit and receive operations are allocated, the interrupt |
| * handler is registered with the OS (if needed), the watchdog timer |
| * is started, and the stack is notified that the interface is ready. |
| * |
| * If the actual link is not available yet, then we tell Linux that |
| * we have no carrier, and we keep checking until the link comes up. |
| */ |
| static int tile_net_open(struct net_device *dev) |
| { |
| int ret = 0; |
| struct tile_net_priv *priv = netdev_priv(dev); |
| |
| /* |
| * We rely on priv->partly_opened to tell us if this is the |
| * first time this interface is being brought up. If it is |
| * set, the IPP was already initialized and should not be |
| * initialized again. |
| */ |
| if (!priv->partly_opened) { |
| |
| int count; |
| int credits; |
| |
| /* Initialize LIPP/LEPP, and start the Shim. */ |
| ret = tile_net_open_aux(dev); |
| if (ret < 0) { |
| pr_err("tile_net_open_aux failed: %d\n", ret); |
| return ret; |
| } |
| |
| /* Analyze the network cpus. */ |
| |
| if (network_cpus_used) |
| cpumask_copy(&priv->network_cpus_map, |
| &network_cpus_map); |
| else |
| cpumask_copy(&priv->network_cpus_map, cpu_online_mask); |
| |
| |
| count = cpumask_weight(&priv->network_cpus_map); |
| |
| /* Limit credits to available buffers, and apply min. */ |
| credits = max(16, (LIPP_LARGE_BUFFERS / count) & ~1); |
| |
| /* Apply "GBE" max limit. */ |
| /* ISSUE: Use higher limit for XGBE? */ |
| credits = min(NETIO_MAX_RECEIVE_PKTS, credits); |
| |
| priv->network_cpus_count = count; |
| priv->network_cpus_credits = credits; |
| |
| #ifdef TILE_NET_DEBUG |
| pr_info("Using %d network cpus, with %d credits each\n", |
| priv->network_cpus_count, priv->network_cpus_credits); |
| #endif |
| |
| priv->partly_opened = true; |
| |
| } else { |
| /* FIXME: Is this possible? */ |
| /* printk("Already partly opened.\n"); */ |
| } |
| |
| /* |
| * Attempt to bring up the link. |
| */ |
| ret = tile_net_open_inner(dev); |
| if (ret <= 0) { |
| if (ret == 0) |
| netif_carrier_on(dev); |
| return ret; |
| } |
| |
| /* |
| * We were unable to bring up the NetIO interface, but we want to |
| * try again in a little bit. Tell Linux that we have no carrier |
| * so it doesn't try to use the interface before the link comes up |
| * and then remember to try again later. |
| */ |
| netif_carrier_off(dev); |
| schedule_delayed_work(&priv->retry_work, TILE_NET_RETRY_INTERVAL); |
| |
| return 0; |
| } |
| |
| |
| static int tile_net_drain_lipp_buffers(struct tile_net_priv *priv) |
| { |
| int n = 0; |
| |
| /* Drain all the LIPP buffers. */ |
| while (true) { |
| unsigned int buffer; |
| |
| /* NOTE: This should never fail. */ |
| if (hv_dev_pread(priv->hv_devhdl, 0, (HV_VirtAddr)&buffer, |
| sizeof(buffer), NETIO_IPP_DRAIN_OFF) < 0) |
| break; |
| |
| /* Stop when done. */ |
| if (buffer == 0) |
| break; |
| |
| { |
| /* Convert "linux_buffer_t" to "va". */ |
| void *va = __va((phys_addr_t)(buffer >> 1) << 7); |
| |
| /* Acquire the associated "skb". */ |
| struct sk_buff **skb_ptr = va - sizeof(*skb_ptr); |
| struct sk_buff *skb = *skb_ptr; |
| |
| kfree_skb(skb); |
| } |
| |
| n++; |
| } |
| |
| return n; |
| } |
| |
| |
| /* |
| * Disables a network interface. |
| * |
| * Returns 0, this is not allowed to fail. |
| * |
| * The close entry point is called when an interface is de-activated |
| * by the OS. The hardware is still under the drivers control, but |
| * needs to be disabled. A global MAC reset is issued to stop the |
| * hardware, and all transmit and receive resources are freed. |
| * |
| * ISSUE: How closely does "netif_running(dev)" mirror "priv->active"? |
| * |
| * Before we are called by "__dev_close()", "netif_running()" will |
| * have been cleared, so no NEW calls to "tile_net_poll()" will be |
| * made by "netpoll_poll_dev()". |
| * |
| * Often, this can cause some tiles to still have packets in their |
| * queues, so we must call "tile_net_discard_packets()" later. |
| * |
| * Note that some other tile may still be INSIDE "tile_net_poll()", |
| * and in fact, many will be, if there is heavy network load. |
| * |
| * Calling "on_each_cpu(tile_net_stop_disable, (void *)dev, 1)" when |
| * any tile is still "napi_schedule()"'d will induce a horrible crash |
| * when "msleep()" is called. This includes tiles which are inside |
| * "tile_net_poll()" which have not yet called "napi_complete()". |
| * |
| * So, we must first try to wait long enough for other tiles to finish |
| * with any current "tile_net_poll()" call, and, hopefully, to clear |
| * the "scheduled" flag. ISSUE: It is unclear what happens to tiles |
| * which have called "napi_schedule()" but which had not yet tried to |
| * call "tile_net_poll()", or which exhausted their budget inside |
| * "tile_net_poll()" just before this function was called. |
| */ |
| static int tile_net_stop(struct net_device *dev) |
| { |
| struct tile_net_priv *priv = netdev_priv(dev); |
| |
| PDEBUG("tile_net_stop()\n"); |
| |
| /* Start discarding packets. */ |
| priv->active = false; |
| |
| /* Make sure "active" is visible to all tiles. */ |
| mb(); |
| |
| /* |
| * On each tile, make sure no NEW packets get delivered, and |
| * disable the ingress interrupt. |
| * |
| * Note that the ingress interrupt can fire AFTER this, |
| * presumably due to packets which were recently delivered, |
| * but it will have no effect. |
| */ |
| on_each_cpu(tile_net_deregister, (void *)dev, 1); |
| |
| /* Optimistically drain LIPP buffers. */ |
| (void)tile_net_drain_lipp_buffers(priv); |
| |
| /* ISSUE: Only needed if not yet fully open. */ |
| cancel_delayed_work_sync(&priv->retry_work); |
| |
| /* Can't transmit any more. */ |
| netif_stop_queue(dev); |
| |
| /* Disable NAPI on each tile. */ |
| on_each_cpu(tile_net_stop_disable, (void *)dev, 1); |
| |
| /* |
| * Drain any remaining LIPP buffers. NOTE: This "printk()" |
| * has never been observed, but in theory it could happen. |
| */ |
| if (tile_net_drain_lipp_buffers(priv) != 0) |
| printk("Had to drain some extra LIPP buffers!\n"); |
| |
| /* Stop LIPP/LEPP. */ |
| tile_net_stop_aux(dev); |
| |
| /* |
| * ISSUE: It appears that, in practice anyway, by the time we |
| * get here, there are no pending completions, but just in case, |
| * we free (all of) them anyway. |
| */ |
| while (tile_net_lepp_free_comps(dev, true)) |
| /* loop */; |
| |
| /* Wipe the EPP queue, and wait till the stores hit the EPP. */ |
| memset(priv->eq, 0, sizeof(lepp_queue_t)); |
| mb(); |
| |
| return 0; |
| } |
| |
| |
| /* |
| * Prepare the "frags" info for the resulting LEPP command. |
| * |
| * If needed, flush the memory used by the frags. |
| */ |
| static unsigned int tile_net_tx_frags(lepp_frag_t *frags, |
| struct sk_buff *skb, |
| void *b_data, unsigned int b_len) |
| { |
| unsigned int i, n = 0; |
| |
| struct skb_shared_info *sh = skb_shinfo(skb); |
| |
| phys_addr_t cpa; |
| |
| if (b_len != 0) { |
| |
| if (!hash_default) |
| finv_buffer_remote(b_data, b_len, 0); |
| |
| cpa = __pa(b_data); |
| frags[n].cpa_lo = cpa; |
| frags[n].cpa_hi = cpa >> 32; |
| frags[n].length = b_len; |
| frags[n].hash_for_home = hash_default; |
| n++; |
| } |
| |
| for (i = 0; i < sh->nr_frags; i++) { |
| |
| skb_frag_t *f = &sh->frags[i]; |
| unsigned long pfn = page_to_pfn(skb_frag_page(f)); |
| |
| /* FIXME: Compute "hash_for_home" properly. */ |
| /* ISSUE: The hypervisor checks CHIP_HAS_REV1_DMA_PACKETS(). */ |
| int hash_for_home = hash_default; |
| |
| /* FIXME: Hmmm. */ |
| if (!hash_default) { |
| void *va = pfn_to_kaddr(pfn) + f->page_offset; |
| BUG_ON(PageHighMem(skb_frag_page(f))); |
| finv_buffer_remote(va, skb_frag_size(f), 0); |
| } |
| |
| cpa = ((phys_addr_t)pfn << PAGE_SHIFT) + f->page_offset; |
| frags[n].cpa_lo = cpa; |
| frags[n].cpa_hi = cpa >> 32; |
| frags[n].length = skb_frag_size(f); |
| frags[n].hash_for_home = hash_for_home; |
| n++; |
| } |
| |
| return n; |
| } |
| |
| |
| /* |
| * This function takes "skb", consisting of a header template and a |
| * payload, and hands it to LEPP, to emit as one or more segments, |
| * each consisting of a possibly modified header, plus a piece of the |
| * payload, via a process known as "tcp segmentation offload". |
| * |
| * Usually, "data" will contain the header template, of size "sh_len", |
| * and "sh->frags" will contain "skb->data_len" bytes of payload, and |
| * there will be "sh->gso_segs" segments. |
| * |
| * Sometimes, if "sendfile()" requires copying, we will be called with |
| * "data" containing the header and payload, with "frags" being empty. |
| * |
| * Sometimes, for example when using NFS over TCP, a single segment can |
| * span 3 fragments, which must be handled carefully in LEPP. |
| * |
| * See "emulate_large_send_offload()" for some reference code, which |
| * does not handle checksumming. |
| * |
| * ISSUE: How do we make sure that high memory DMA does not migrate? |
| */ |
| static int tile_net_tx_tso(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct tile_net_priv *priv = netdev_priv(dev); |
| int my_cpu = smp_processor_id(); |
| struct tile_net_cpu *info = priv->cpu[my_cpu]; |
| struct tile_net_stats_t *stats = &info->stats; |
| |
| struct skb_shared_info *sh = skb_shinfo(skb); |
| |
| unsigned char *data = skb->data; |
| |
| /* The ip header follows the ethernet header. */ |
| struct iphdr *ih = ip_hdr(skb); |
| unsigned int ih_len = ih->ihl * 4; |
| |
| /* Note that "nh == ih", by definition. */ |
| unsigned char *nh = skb_network_header(skb); |
| unsigned int eh_len = nh - data; |
| |
| /* The tcp header follows the ip header. */ |
| struct tcphdr *th = (struct tcphdr *)(nh + ih_len); |
| unsigned int th_len = th->doff * 4; |
| |
| /* The total number of header bytes. */ |
| /* NOTE: This may be less than skb_headlen(skb). */ |
| unsigned int sh_len = eh_len + ih_len + th_len; |
| |
| /* The number of payload bytes at "skb->data + sh_len". */ |
| /* This is non-zero for sendfile() without HIGHDMA. */ |
| unsigned int b_len = skb_headlen(skb) - sh_len; |
| |
| /* The total number of payload bytes. */ |
| unsigned int d_len = b_len + skb->data_len; |
| |
| /* The maximum payload size. */ |
| unsigned int p_len = sh->gso_size; |
| |
| /* The total number of segments. */ |
| unsigned int num_segs = sh->gso_segs; |
| |
| /* The temporary copy of the command. */ |
| u32 cmd_body[(LEPP_MAX_CMD_SIZE + 3) / 4]; |
| lepp_tso_cmd_t *cmd = (lepp_tso_cmd_t *)cmd_body; |
| |
| /* Analyze the "frags". */ |
| unsigned int num_frags = |
| tile_net_tx_frags(cmd->frags, skb, data + sh_len, b_len); |
| |
| /* The size of the command, including frags and header. */ |
| size_t cmd_size = LEPP_TSO_CMD_SIZE(num_frags, sh_len); |
| |
| /* The command header. */ |
| lepp_tso_cmd_t cmd_init = { |
| .tso = true, |
| .header_size = sh_len, |
| .ip_offset = eh_len, |
| .tcp_offset = eh_len + ih_len, |
| .payload_size = p_len, |
| .num_frags = num_frags, |
| }; |
| |
| unsigned long irqflags; |
| |
| lepp_queue_t *eq = priv->eq; |
| |
| struct sk_buff *olds[8]; |
| unsigned int wanted = 8; |
| unsigned int i, nolds = 0; |
| |
| unsigned int cmd_head, cmd_tail, cmd_next; |
| unsigned int comp_tail; |
| |
| |
| /* Paranoia. */ |
| BUG_ON(skb->protocol != htons(ETH_P_IP)); |
| BUG_ON(ih->protocol != IPPROTO_TCP); |
| BUG_ON(skb->ip_summed != CHECKSUM_PARTIAL); |
| BUG_ON(num_frags > LEPP_MAX_FRAGS); |
| /*--BUG_ON(num_segs != (d_len + (p_len - 1)) / p_len); */ |
| BUG_ON(num_segs <= 1); |
| |
| |
| /* Finish preparing the command. */ |
| |
| /* Copy the command header. */ |
| *cmd = cmd_init; |
| |
| /* Copy the "header". */ |
| memcpy(&cmd->frags[num_frags], data, sh_len); |
| |
| |
| /* Prefetch and wait, to minimize time spent holding the spinlock. */ |
| prefetch_L1(&eq->comp_tail); |
| prefetch_L1(&eq->cmd_tail); |
| mb(); |
| |
| |
| /* Enqueue the command. */ |
| |
| spin_lock_irqsave(&priv->eq_lock, irqflags); |
| |
| /* Handle completions if needed to make room. */ |
| /* NOTE: Return NETDEV_TX_BUSY if there is still no room. */ |
| if (lepp_num_free_comp_slots(eq) == 0) { |
| nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 0); |
| if (nolds == 0) { |
| busy: |
| spin_unlock_irqrestore(&priv->eq_lock, irqflags); |
| return NETDEV_TX_BUSY; |
| } |
| } |
| |
| cmd_head = eq->cmd_head; |
| cmd_tail = eq->cmd_tail; |
| |
| /* Prepare to advance, detecting full queue. */ |
| /* NOTE: Return NETDEV_TX_BUSY if the queue is full. */ |
| cmd_next = cmd_tail + cmd_size; |
| if (cmd_tail < cmd_head && cmd_next >= cmd_head) |
| goto busy; |
| if (cmd_next > LEPP_CMD_LIMIT) { |
| cmd_next = 0; |
| if (cmd_next == cmd_head) |
| goto busy; |
| } |
| |
| /* Copy the command. */ |
| memcpy(&eq->cmds[cmd_tail], cmd, cmd_size); |
| |
| /* Advance. */ |
| cmd_tail = cmd_next; |
| |
| /* Record "skb" for eventual freeing. */ |
| comp_tail = eq->comp_tail; |
| eq->comps[comp_tail] = skb; |
| LEPP_QINC(comp_tail); |
| eq->comp_tail = comp_tail; |
| |
| /* Flush before allowing LEPP to handle the command. */ |
| /* ISSUE: Is this the optimal location for the flush? */ |
| __insn_mf(); |
| |
| eq->cmd_tail = cmd_tail; |
| |
| /* NOTE: Using "4" here is more efficient than "0" or "2", */ |
| /* and, strangely, more efficient than pre-checking the number */ |
| /* of available completions, and comparing it to 4. */ |
| if (nolds == 0) |
| nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 4); |
| |
| spin_unlock_irqrestore(&priv->eq_lock, irqflags); |
| |
| /* Handle completions. */ |
| for (i = 0; i < nolds; i++) |
| dev_consume_skb_any(olds[i]); |
| |
| /* Update stats. */ |
| u64_stats_update_begin(&stats->syncp); |
| stats->tx_packets += num_segs; |
| stats->tx_bytes += (num_segs * sh_len) + d_len; |
| u64_stats_update_end(&stats->syncp); |
| |
| /* Make sure the egress timer is scheduled. */ |
| tile_net_schedule_egress_timer(info); |
| |
| return NETDEV_TX_OK; |
| } |
| |
| |
| /* |
| * Transmit a packet (called by the kernel via "hard_start_xmit" hook). |
| */ |
| static int tile_net_tx(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct tile_net_priv *priv = netdev_priv(dev); |
| int my_cpu = smp_processor_id(); |
| struct tile_net_cpu *info = priv->cpu[my_cpu]; |
| struct tile_net_stats_t *stats = &info->stats; |
| |
| unsigned long irqflags; |
| |
| struct skb_shared_info *sh = skb_shinfo(skb); |
| |
| unsigned int len = skb->len; |
| unsigned char *data = skb->data; |
| |
| unsigned int csum_start = skb_checksum_start_offset(skb); |
| |
| lepp_frag_t frags[1 + MAX_SKB_FRAGS]; |
| |
| unsigned int num_frags; |
| |
| lepp_queue_t *eq = priv->eq; |
| |
| struct sk_buff *olds[8]; |
| unsigned int wanted = 8; |
| unsigned int i, nolds = 0; |
| |
| unsigned int cmd_size = sizeof(lepp_cmd_t); |
| |
| unsigned int cmd_head, cmd_tail, cmd_next; |
| unsigned int comp_tail; |
| |
| lepp_cmd_t cmds[1 + MAX_SKB_FRAGS]; |
| |
| |
| /* |
| * This is paranoia, since we think that if the link doesn't come |
| * up, telling Linux we have no carrier will keep it from trying |
| * to transmit. If it does, though, we can't execute this routine, |
| * since data structures we depend on aren't set up yet. |
| */ |
| if (!info->registered) |
| return NETDEV_TX_BUSY; |
| |
| |
| /* Save the timestamp. */ |
| dev->trans_start = jiffies; |
| |
| |
| #ifdef TILE_NET_PARANOIA |
| #if CHIP_HAS_CBOX_HOME_MAP() |
| if (hash_default) { |
| HV_PTE pte = *virt_to_pte(current->mm, (unsigned long)data); |
| if (hv_pte_get_mode(pte) != HV_PTE_MODE_CACHE_HASH_L3) |
| panic("Non-HFH egress buffer! VA=%p Mode=%d PTE=%llx", |
| data, hv_pte_get_mode(pte), hv_pte_val(pte)); |
| } |
| #endif |
| #endif |
| |
| |
| #ifdef TILE_NET_DUMP_PACKETS |
| /* ISSUE: Does not dump the "frags". */ |
| dump_packet(data, skb_headlen(skb), "tx"); |
| #endif /* TILE_NET_DUMP_PACKETS */ |
| |
| |
| if (sh->gso_size != 0) |
| return tile_net_tx_tso(skb, dev); |
| |
| |
| /* Prepare the commands. */ |
| |
| num_frags = tile_net_tx_frags(frags, skb, data, skb_headlen(skb)); |
| |
| for (i = 0; i < num_frags; i++) { |
| |
| bool final = (i == num_frags - 1); |
| |
| lepp_cmd_t cmd = { |
| .cpa_lo = frags[i].cpa_lo, |
| .cpa_hi = frags[i].cpa_hi, |
| .length = frags[i].length, |
| .hash_for_home = frags[i].hash_for_home, |
| .send_completion = final, |
| .end_of_packet = final |
| }; |
| |
| if (i == 0 && skb->ip_summed == CHECKSUM_PARTIAL) { |
| cmd.compute_checksum = 1; |
| cmd.checksum_data.bits.start_byte = csum_start; |
| cmd.checksum_data.bits.count = len - csum_start; |
| cmd.checksum_data.bits.destination_byte = |
| csum_start + skb->csum_offset; |
| } |
| |
| cmds[i] = cmd; |
| } |
| |
| |
| /* Prefetch and wait, to minimize time spent holding the spinlock. */ |
| prefetch_L1(&eq->comp_tail); |
| prefetch_L1(&eq->cmd_tail); |
| mb(); |
| |
| |
| /* Enqueue the commands. */ |
| |
| spin_lock_irqsave(&priv->eq_lock, irqflags); |
| |
| /* Handle completions if needed to make room. */ |
| /* NOTE: Return NETDEV_TX_BUSY if there is still no room. */ |
| if (lepp_num_free_comp_slots(eq) == 0) { |
| nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 0); |
| if (nolds == 0) { |
| busy: |
| spin_unlock_irqrestore(&priv->eq_lock, irqflags); |
| return NETDEV_TX_BUSY; |
| } |
| } |
| |
| cmd_head = eq->cmd_head; |
| cmd_tail = eq->cmd_tail; |
| |
| /* Copy the commands, or fail. */ |
| /* NOTE: Return NETDEV_TX_BUSY if the queue is full. */ |
| for (i = 0; i < num_frags; i++) { |
| |
| /* Prepare to advance, detecting full queue. */ |
| cmd_next = cmd_tail + cmd_size; |
| if (cmd_tail < cmd_head && cmd_next >= cmd_head) |
| goto busy; |
| if (cmd_next > LEPP_CMD_LIMIT) { |
| cmd_next = 0; |
| if (cmd_next == cmd_head) |
| goto busy; |
| } |
| |
| /* Copy the command. */ |
| *(lepp_cmd_t *)&eq->cmds[cmd_tail] = cmds[i]; |
| |
| /* Advance. */ |
| cmd_tail = cmd_next; |
| } |
| |
| /* Record "skb" for eventual freeing. */ |
| comp_tail = eq->comp_tail; |
| eq->comps[comp_tail] = skb; |
| LEPP_QINC(comp_tail); |
| eq->comp_tail = comp_tail; |
| |
| /* Flush before allowing LEPP to handle the command. */ |
| /* ISSUE: Is this the optimal location for the flush? */ |
| __insn_mf(); |
| |
| eq->cmd_tail = cmd_tail; |
| |
| /* NOTE: Using "4" here is more efficient than "0" or "2", */ |
| /* and, strangely, more efficient than pre-checking the number */ |
| /* of available completions, and comparing it to 4. */ |
| if (nolds == 0) |
| nolds = tile_net_lepp_grab_comps(eq, olds, wanted, 4); |
| |
| spin_unlock_irqrestore(&priv->eq_lock, irqflags); |
| |
| /* Handle completions. */ |
| for (i = 0; i < nolds; i++) |
| dev_consume_skb_any(olds[i]); |
| |
| /* HACK: Track "expanded" size for short packets (e.g. 42 < 60). */ |
| u64_stats_update_begin(&stats->syncp); |
| stats->tx_packets++; |
| stats->tx_bytes += ((len >= ETH_ZLEN) ? len : ETH_ZLEN); |
| u64_stats_update_end(&stats->syncp); |
| |
| /* Make sure the egress timer is scheduled. */ |
| tile_net_schedule_egress_timer(info); |
| |
| return NETDEV_TX_OK; |
| } |
| |
| |
| /* |
| * Deal with a transmit timeout. |
| */ |
| static void tile_net_tx_timeout(struct net_device *dev) |
| { |
| PDEBUG("tile_net_tx_timeout()\n"); |
| PDEBUG("Transmit timeout at %ld, latency %ld\n", jiffies, |
| jiffies - dev->trans_start); |
| |
| /* XXX: ISSUE: This doesn't seem useful for us. */ |
| netif_wake_queue(dev); |
| } |
| |
| |
| /* |
| * Ioctl commands. |
| */ |
| static int tile_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) |
| { |
| return -EOPNOTSUPP; |
| } |
| |
| |
| /* |
| * Get System Network Statistics. |
| * |
| * Returns the address of the device statistics structure. |
| */ |
| static struct rtnl_link_stats64 *tile_net_get_stats64(struct net_device *dev, |
| struct rtnl_link_stats64 *stats) |
| { |
| struct tile_net_priv *priv = netdev_priv(dev); |
| u64 rx_packets = 0, tx_packets = 0; |
| u64 rx_bytes = 0, tx_bytes = 0; |
| u64 rx_errors = 0, rx_dropped = 0; |
| int i; |
| |
| for_each_online_cpu(i) { |
| struct tile_net_stats_t *cpu_stats; |
| u64 trx_packets, ttx_packets, trx_bytes, ttx_bytes; |
| u64 trx_errors, trx_dropped; |
| unsigned int start; |
| |
| if (priv->cpu[i] == NULL) |
| continue; |
| cpu_stats = &priv->cpu[i]->stats; |
| |
| do { |
| start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); |
| trx_packets = cpu_stats->rx_packets; |
| ttx_packets = cpu_stats->tx_packets; |
| trx_bytes = cpu_stats->rx_bytes; |
| ttx_bytes = cpu_stats->tx_bytes; |
| trx_errors = cpu_stats->rx_errors; |
| trx_dropped = cpu_stats->rx_dropped; |
| } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); |
| |
| rx_packets += trx_packets; |
| tx_packets += ttx_packets; |
| rx_bytes += trx_bytes; |
| tx_bytes += ttx_bytes; |
| rx_errors += trx_errors; |
| rx_dropped += trx_dropped; |
| } |
| |
| stats->rx_packets = rx_packets; |
| stats->tx_packets = tx_packets; |
| stats->rx_bytes = rx_bytes; |
| stats->tx_bytes = tx_bytes; |
| stats->rx_errors = rx_errors; |
| stats->rx_dropped = rx_dropped; |
| |
| return stats; |
| } |
| |
| |
| /* |
| * Change the "mtu". |
| * |
| * The "change_mtu" method is usually not needed. |
| * If you need it, it must be like this. |
| */ |
| static int tile_net_change_mtu(struct net_device *dev, int new_mtu) |
| { |
| PDEBUG("tile_net_change_mtu()\n"); |
| |
| /* Check ranges. */ |
| if ((new_mtu < 68) || (new_mtu > 1500)) |
| return -EINVAL; |
| |
| /* Accept the value. */ |
| dev->mtu = new_mtu; |
| |
| return 0; |
| } |
| |
| |
| /* |
| * Change the Ethernet Address of the NIC. |
| * |
| * The hypervisor driver does not support changing MAC address. However, |
| * the IPP does not do anything with the MAC address, so the address which |
| * gets used on outgoing packets, and which is accepted on incoming packets, |
| * is completely up to the NetIO program or kernel driver which is actually |
| * handling them. |
| * |
| * Returns 0 on success, negative on failure. |
| */ |
| static int tile_net_set_mac_address(struct net_device *dev, void *p) |
| { |
| struct sockaddr *addr = p; |
| |
| if (!is_valid_ether_addr(addr->sa_data)) |
| return -EADDRNOTAVAIL; |
| |
| /* ISSUE: Note that "dev_addr" is now a pointer. */ |
| memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); |
| |
| return 0; |
| } |
| |
| |
| /* |
| * Obtain the MAC address from the hypervisor. |
| * This must be done before opening the device. |
| */ |
| static int tile_net_get_mac(struct net_device *dev) |
| { |
| struct tile_net_priv *priv = netdev_priv(dev); |
| |
| char hv_dev_name[32]; |
| int len; |
| |
| __netio_getset_offset_t offset = { .word = NETIO_IPP_PARAM_OFF }; |
| |
| int ret; |
| |
| /* For example, "xgbe0". */ |
| strcpy(hv_dev_name, dev->name); |
| len = strlen(hv_dev_name); |
| |
| /* For example, "xgbe/0". */ |
| hv_dev_name[len] = hv_dev_name[len - 1]; |
| hv_dev_name[len - 1] = '/'; |
| len++; |
| |
| /* For example, "xgbe/0/native_hash". */ |
| strcpy(hv_dev_name + len, hash_default ? "/native_hash" : "/native"); |
| |
| /* Get the hypervisor handle for this device. */ |
| priv->hv_devhdl = hv_dev_open((HV_VirtAddr)hv_dev_name, 0); |
| PDEBUG("hv_dev_open(%s) returned %d %p\n", |
| hv_dev_name, priv->hv_devhdl, &priv->hv_devhdl); |
| if (priv->hv_devhdl < 0) { |
| if (priv->hv_devhdl == HV_ENODEV) |
| printk(KERN_DEBUG "Ignoring unconfigured device %s\n", |
| hv_dev_name); |
| else |
| printk(KERN_DEBUG "hv_dev_open(%s) returned %d\n", |
| hv_dev_name, priv->hv_devhdl); |
| return -1; |
| } |
| |
| /* |
| * Read the hardware address from the hypervisor. |
| * ISSUE: Note that "dev_addr" is now a pointer. |
| */ |
| offset.bits.class = NETIO_PARAM; |
| offset.bits.addr = NETIO_PARAM_MAC; |
| ret = hv_dev_pread(priv->hv_devhdl, 0, |
| (HV_VirtAddr)dev->dev_addr, dev->addr_len, |
| offset.word); |
| PDEBUG("hv_dev_pread(NETIO_PARAM_MAC) returned %d\n", ret); |
| if (ret <= 0) { |
| printk(KERN_DEBUG "hv_dev_pread(NETIO_PARAM_MAC) %s failed\n", |
| dev->name); |
| /* |
| * Since the device is configured by the hypervisor but we |
| * can't get its MAC address, we are most likely running |
| * the simulator, so let's generate a random MAC address. |
| */ |
| eth_hw_addr_random(dev); |
| } |
| |
| return 0; |
| } |
| |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| /* |
| * Polling 'interrupt' - used by things like netconsole to send skbs |
| * without having to re-enable interrupts. It's not called while |
| * the interrupt routine is executing. |
| */ |
| static void tile_net_netpoll(struct net_device *dev) |
| { |
| struct tile_net_priv *priv = netdev_priv(dev); |
| disable_percpu_irq(priv->intr_id); |
| tile_net_handle_ingress_interrupt(priv->intr_id, dev); |
| enable_percpu_irq(priv->intr_id, 0); |
| } |
| #endif |
| |
| |
| static const struct net_device_ops tile_net_ops = { |
| .ndo_open = tile_net_open, |
| .ndo_stop = tile_net_stop, |
| .ndo_start_xmit = tile_net_tx, |
| .ndo_do_ioctl = tile_net_ioctl, |
| .ndo_get_stats64 = tile_net_get_stats64, |
| .ndo_change_mtu = tile_net_change_mtu, |
| .ndo_tx_timeout = tile_net_tx_timeout, |
| .ndo_set_mac_address = tile_net_set_mac_address, |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| .ndo_poll_controller = tile_net_netpoll, |
| #endif |
| }; |
| |
| |
| /* |
| * The setup function. |
| * |
| * This uses ether_setup() to assign various fields in dev, including |
| * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields. |
| */ |
| static void tile_net_setup(struct net_device *dev) |
| { |
| netdev_features_t features = 0; |
| |
| ether_setup(dev); |
| dev->netdev_ops = &tile_net_ops; |
| dev->watchdog_timeo = TILE_NET_TIMEOUT; |
| dev->tx_queue_len = TILE_NET_TX_QUEUE_LEN; |
| dev->mtu = TILE_NET_MTU; |
| |
| features |= NETIF_F_HW_CSUM; |
| features |= NETIF_F_SG; |
| |
| /* We support TSO iff the HV supports sufficient frags. */ |
| if (LEPP_MAX_FRAGS >= 1 + MAX_SKB_FRAGS) |
| features |= NETIF_F_TSO; |
| |
| /* We can't support HIGHDMA without hash_default, since we need |
| * to be able to finv() with a VA if we don't have hash_default. |
| */ |
| if (hash_default) |
| features |= NETIF_F_HIGHDMA; |
| |
| dev->hw_features |= features; |
| dev->vlan_features |= features; |
| dev->features |= features; |
| } |
| |
| |
| /* |
| * Allocate the device structure, register the device, and obtain the |
| * MAC address from the hypervisor. |
| */ |
| static struct net_device *tile_net_dev_init(const char *name) |
| { |
| int ret; |
| struct net_device *dev; |
| struct tile_net_priv *priv; |
| |
| /* |
| * Allocate the device structure. This allocates "priv", calls |
| * tile_net_setup(), and saves "name". Normally, "name" is a |
| * template, instantiated by register_netdev(), but not for us. |
| */ |
| dev = alloc_netdev(sizeof(*priv), name, NET_NAME_UNKNOWN, |
| tile_net_setup); |
| if (!dev) { |
| pr_err("alloc_netdev(%s) failed\n", name); |
| return NULL; |
| } |
| |
| priv = netdev_priv(dev); |
| |
| /* Initialize "priv". */ |
| |
| memset(priv, 0, sizeof(*priv)); |
| |
| /* Save "dev" for "tile_net_open_retry()". */ |
| priv->dev = dev; |
| |
| INIT_DELAYED_WORK(&priv->retry_work, tile_net_open_retry); |
| |
| spin_lock_init(&priv->eq_lock); |
| |
| /* Allocate "eq". */ |
| priv->eq_pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, EQ_ORDER); |
| if (!priv->eq_pages) { |
| free_netdev(dev); |
| return NULL; |
| } |
| priv->eq = page_address(priv->eq_pages); |
| |
| /* Register the network device. */ |
| ret = register_netdev(dev); |
| if (ret) { |
| pr_err("register_netdev %s failed %d\n", dev->name, ret); |
| __free_pages(priv->eq_pages, EQ_ORDER); |
| free_netdev(dev); |
| return NULL; |
| } |
| |
| /* Get the MAC address. */ |
| ret = tile_net_get_mac(dev); |
| if (ret < 0) { |
| unregister_netdev(dev); |
| __free_pages(priv->eq_pages, EQ_ORDER); |
| free_netdev(dev); |
| return NULL; |
| } |
| |
| return dev; |
| } |
| |
| |
| /* |
| * Module cleanup. |
| * |
| * FIXME: If compiled as a module, this module cannot be "unloaded", |
| * because the "ingress interrupt handler" is registered permanently. |
| */ |
| static void tile_net_cleanup(void) |
| { |
| int i; |
| |
| for (i = 0; i < TILE_NET_DEVS; i++) { |
| if (tile_net_devs[i]) { |
| struct net_device *dev = tile_net_devs[i]; |
| struct tile_net_priv *priv = netdev_priv(dev); |
| unregister_netdev(dev); |
| finv_buffer_remote(priv->eq, EQ_SIZE, 0); |
| __free_pages(priv->eq_pages, EQ_ORDER); |
| free_netdev(dev); |
| } |
| } |
| } |
| |
| |
| /* |
| * Module initialization. |
| */ |
| static int tile_net_init_module(void) |
| { |
| pr_info("Tilera Network Driver\n"); |
| |
| tile_net_devs[0] = tile_net_dev_init("xgbe0"); |
| tile_net_devs[1] = tile_net_dev_init("xgbe1"); |
| tile_net_devs[2] = tile_net_dev_init("gbe0"); |
| tile_net_devs[3] = tile_net_dev_init("gbe1"); |
| |
| return 0; |
| } |
| |
| |
| module_init(tile_net_init_module); |
| module_exit(tile_net_cleanup); |
| |
| |
| #ifndef MODULE |
| |
| /* |
| * The "network_cpus" boot argument specifies the cpus that are dedicated |
| * to handle ingress packets. |
| * |
| * The parameter should be in the form "network_cpus=m-n[,x-y]", where |
| * m, n, x, y are integer numbers that represent the cpus that can be |
| * neither a dedicated cpu nor a dataplane cpu. |
| */ |
| static int __init network_cpus_setup(char *str) |
| { |
| int rc = cpulist_parse_crop(str, &network_cpus_map); |
| if (rc != 0) { |
| pr_warn("network_cpus=%s: malformed cpu list\n", str); |
| } else { |
| |
| /* Remove dedicated cpus. */ |
| cpumask_and(&network_cpus_map, &network_cpus_map, |
| cpu_possible_mask); |
| |
| |
| if (cpumask_empty(&network_cpus_map)) { |
| pr_warn("Ignoring network_cpus='%s'\n", str); |
| } else { |
| pr_info("Linux network CPUs: %*pbl\n", |
| cpumask_pr_args(&network_cpus_map)); |
| network_cpus_used = true; |
| } |
| } |
| |
| return 0; |
| } |
| __setup("network_cpus=", network_cpus_setup); |
| |
| #endif |