blob: cf23c46185b25e8024c5a3e8e90d856bfc3ab1bc [file] [log] [blame]
/*
* Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
* Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/ctype.h>
#include <linux/kthread.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/atomic.h>
#include <scsi/scsi_tcq.h>
#include <target/configfs_macros.h>
#include <target/target_core_base.h>
#include <target/target_core_fabric_configfs.h>
#include <target/target_core_fabric.h>
#include <target/target_core_configfs.h>
#include "ib_srpt.h"
/* Name of this kernel module. */
#define DRV_NAME "ib_srpt"
#define DRV_VERSION "2.0.0"
#define DRV_RELDATE "2011-02-14"
#define SRPT_ID_STRING "Linux SRP target"
#undef pr_fmt
#define pr_fmt(fmt) DRV_NAME " " fmt
MODULE_AUTHOR("Vu Pham and Bart Van Assche");
MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
"v" DRV_VERSION " (" DRV_RELDATE ")");
MODULE_LICENSE("Dual BSD/GPL");
/*
* Global Variables
*/
static u64 srpt_service_guid;
static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */
static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */
static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
module_param(srp_max_req_size, int, 0444);
MODULE_PARM_DESC(srp_max_req_size,
"Maximum size of SRP request messages in bytes.");
static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
module_param(srpt_srq_size, int, 0444);
MODULE_PARM_DESC(srpt_srq_size,
"Shared receive queue (SRQ) size.");
static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
{
return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
}
module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
0444);
MODULE_PARM_DESC(srpt_service_guid,
"Using this value for ioc_guid, id_ext, and cm_listen_id"
" instead of using the node_guid of the first HCA.");
static struct ib_client srpt_client;
static struct target_fabric_configfs *srpt_target;
static void srpt_release_channel(struct srpt_rdma_ch *ch);
static int srpt_queue_status(struct se_cmd *cmd);
/**
* opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
*/
static inline
enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
{
switch (dir) {
case DMA_TO_DEVICE: return DMA_FROM_DEVICE;
case DMA_FROM_DEVICE: return DMA_TO_DEVICE;
default: return dir;
}
}
/**
* srpt_sdev_name() - Return the name associated with the HCA.
*
* Examples are ib0, ib1, ...
*/
static inline const char *srpt_sdev_name(struct srpt_device *sdev)
{
return sdev->device->name;
}
static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
{
unsigned long flags;
enum rdma_ch_state state;
spin_lock_irqsave(&ch->spinlock, flags);
state = ch->state;
spin_unlock_irqrestore(&ch->spinlock, flags);
return state;
}
static enum rdma_ch_state
srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
{
unsigned long flags;
enum rdma_ch_state prev;
spin_lock_irqsave(&ch->spinlock, flags);
prev = ch->state;
ch->state = new_state;
spin_unlock_irqrestore(&ch->spinlock, flags);
return prev;
}
/**
* srpt_test_and_set_ch_state() - Test and set the channel state.
*
* Returns true if and only if the channel state has been set to the new state.
*/
static bool
srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
enum rdma_ch_state new)
{
unsigned long flags;
enum rdma_ch_state prev;
spin_lock_irqsave(&ch->spinlock, flags);
prev = ch->state;
if (prev == old)
ch->state = new;
spin_unlock_irqrestore(&ch->spinlock, flags);
return prev == old;
}
/**
* srpt_event_handler() - Asynchronous IB event callback function.
*
* Callback function called by the InfiniBand core when an asynchronous IB
* event occurs. This callback may occur in interrupt context. See also
* section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
* Architecture Specification.
*/
static void srpt_event_handler(struct ib_event_handler *handler,
struct ib_event *event)
{
struct srpt_device *sdev;
struct srpt_port *sport;
sdev = ib_get_client_data(event->device, &srpt_client);
if (!sdev || sdev->device != event->device)
return;
pr_debug("ASYNC event= %d on device= %s\n", event->event,
srpt_sdev_name(sdev));
switch (event->event) {
case IB_EVENT_PORT_ERR:
if (event->element.port_num <= sdev->device->phys_port_cnt) {
sport = &sdev->port[event->element.port_num - 1];
sport->lid = 0;
sport->sm_lid = 0;
}
break;
case IB_EVENT_PORT_ACTIVE:
case IB_EVENT_LID_CHANGE:
case IB_EVENT_PKEY_CHANGE:
case IB_EVENT_SM_CHANGE:
case IB_EVENT_CLIENT_REREGISTER:
/* Refresh port data asynchronously. */
if (event->element.port_num <= sdev->device->phys_port_cnt) {
sport = &sdev->port[event->element.port_num - 1];
if (!sport->lid && !sport->sm_lid)
schedule_work(&sport->work);
}
break;
default:
printk(KERN_ERR "received unrecognized IB event %d\n",
event->event);
break;
}
}
/**
* srpt_srq_event() - SRQ event callback function.
*/
static void srpt_srq_event(struct ib_event *event, void *ctx)
{
printk(KERN_INFO "SRQ event %d\n", event->event);
}
/**
* srpt_qp_event() - QP event callback function.
*/
static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
{
pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
switch (event->event) {
case IB_EVENT_COMM_EST:
ib_cm_notify(ch->cm_id, event->event);
break;
case IB_EVENT_QP_LAST_WQE_REACHED:
if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
CH_RELEASING))
srpt_release_channel(ch);
else
pr_debug("%s: state %d - ignored LAST_WQE.\n",
ch->sess_name, srpt_get_ch_state(ch));
break;
default:
printk(KERN_ERR "received unrecognized IB QP event %d\n",
event->event);
break;
}
}
/**
* srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
*
* @slot: one-based slot number.
* @value: four-bit value.
*
* Copies the lowest four bits of value in element slot of the array of four
* bit elements called c_list (controller list). The index slot is one-based.
*/
static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
{
u16 id;
u8 tmp;
id = (slot - 1) / 2;
if (slot & 0x1) {
tmp = c_list[id] & 0xf;
c_list[id] = (value << 4) | tmp;
} else {
tmp = c_list[id] & 0xf0;
c_list[id] = (value & 0xf) | tmp;
}
}
/**
* srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
*
* See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
* Specification.
*/
static void srpt_get_class_port_info(struct ib_dm_mad *mad)
{
struct ib_class_port_info *cif;
cif = (struct ib_class_port_info *)mad->data;
memset(cif, 0, sizeof *cif);
cif->base_version = 1;
cif->class_version = 1;
cif->resp_time_value = 20;
mad->mad_hdr.status = 0;
}
/**
* srpt_get_iou() - Write IOUnitInfo to a management datagram.
*
* See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
* Specification. See also section B.7, table B.6 in the SRP r16a document.
*/
static void srpt_get_iou(struct ib_dm_mad *mad)
{
struct ib_dm_iou_info *ioui;
u8 slot;
int i;
ioui = (struct ib_dm_iou_info *)mad->data;
ioui->change_id = __constant_cpu_to_be16(1);
ioui->max_controllers = 16;
/* set present for slot 1 and empty for the rest */
srpt_set_ioc(ioui->controller_list, 1, 1);
for (i = 1, slot = 2; i < 16; i++, slot++)
srpt_set_ioc(ioui->controller_list, slot, 0);
mad->mad_hdr.status = 0;
}
/**
* srpt_get_ioc() - Write IOControllerprofile to a management datagram.
*
* See also section 16.3.3.4 IOControllerProfile in the InfiniBand
* Architecture Specification. See also section B.7, table B.7 in the SRP
* r16a document.
*/
static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
struct ib_dm_mad *mad)
{
struct srpt_device *sdev = sport->sdev;
struct ib_dm_ioc_profile *iocp;
iocp = (struct ib_dm_ioc_profile *)mad->data;
if (!slot || slot > 16) {
mad->mad_hdr.status
= __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
return;
}
if (slot > 2) {
mad->mad_hdr.status
= __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
return;
}
memset(iocp, 0, sizeof *iocp);
strcpy(iocp->id_string, SRPT_ID_STRING);
iocp->guid = cpu_to_be64(srpt_service_guid);
iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
iocp->subsys_device_id = 0x0;
iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS);
iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL);
iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION);
iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
iocp->rdma_read_depth = 4;
iocp->send_size = cpu_to_be32(srp_max_req_size);
iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
1U << 24));
iocp->num_svc_entries = 1;
iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
mad->mad_hdr.status = 0;
}
/**
* srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
*
* See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
* Specification. See also section B.7, table B.8 in the SRP r16a document.
*/
static void srpt_get_svc_entries(u64 ioc_guid,
u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
{
struct ib_dm_svc_entries *svc_entries;
WARN_ON(!ioc_guid);
if (!slot || slot > 16) {
mad->mad_hdr.status
= __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
return;
}
if (slot > 2 || lo > hi || hi > 1) {
mad->mad_hdr.status
= __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
return;
}
svc_entries = (struct ib_dm_svc_entries *)mad->data;
memset(svc_entries, 0, sizeof *svc_entries);
svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
snprintf(svc_entries->service_entries[0].name,
sizeof(svc_entries->service_entries[0].name),
"%s%016llx",
SRP_SERVICE_NAME_PREFIX,
ioc_guid);
mad->mad_hdr.status = 0;
}
/**
* srpt_mgmt_method_get() - Process a received management datagram.
* @sp: source port through which the MAD has been received.
* @rq_mad: received MAD.
* @rsp_mad: response MAD.
*/
static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
struct ib_dm_mad *rsp_mad)
{
u16 attr_id;
u32 slot;
u8 hi, lo;
attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
switch (attr_id) {
case DM_ATTR_CLASS_PORT_INFO:
srpt_get_class_port_info(rsp_mad);
break;
case DM_ATTR_IOU_INFO:
srpt_get_iou(rsp_mad);
break;
case DM_ATTR_IOC_PROFILE:
slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
srpt_get_ioc(sp, slot, rsp_mad);
break;
case DM_ATTR_SVC_ENTRIES:
slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
hi = (u8) ((slot >> 8) & 0xff);
lo = (u8) (slot & 0xff);
slot = (u16) ((slot >> 16) & 0xffff);
srpt_get_svc_entries(srpt_service_guid,
slot, hi, lo, rsp_mad);
break;
default:
rsp_mad->mad_hdr.status =
__constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
break;
}
}
/**
* srpt_mad_send_handler() - Post MAD-send callback function.
*/
static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
struct ib_mad_send_wc *mad_wc)
{
ib_destroy_ah(mad_wc->send_buf->ah);
ib_free_send_mad(mad_wc->send_buf);
}
/**
* srpt_mad_recv_handler() - MAD reception callback function.
*/
static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
struct ib_mad_recv_wc *mad_wc)
{
struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
struct ib_ah *ah;
struct ib_mad_send_buf *rsp;
struct ib_dm_mad *dm_mad;
if (!mad_wc || !mad_wc->recv_buf.mad)
return;
ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
mad_wc->recv_buf.grh, mad_agent->port_num);
if (IS_ERR(ah))
goto err;
BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
mad_wc->wc->pkey_index, 0,
IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
GFP_KERNEL);
if (IS_ERR(rsp))
goto err_rsp;
rsp->ah = ah;
dm_mad = rsp->mad;
memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
dm_mad->mad_hdr.status = 0;
switch (mad_wc->recv_buf.mad->mad_hdr.method) {
case IB_MGMT_METHOD_GET:
srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
break;
case IB_MGMT_METHOD_SET:
dm_mad->mad_hdr.status =
__constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
break;
default:
dm_mad->mad_hdr.status =
__constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
break;
}
if (!ib_post_send_mad(rsp, NULL)) {
ib_free_recv_mad(mad_wc);
/* will destroy_ah & free_send_mad in send completion */
return;
}
ib_free_send_mad(rsp);
err_rsp:
ib_destroy_ah(ah);
err:
ib_free_recv_mad(mad_wc);
}
/**
* srpt_refresh_port() - Configure a HCA port.
*
* Enable InfiniBand management datagram processing, update the cached sm_lid,
* lid and gid values, and register a callback function for processing MADs
* on the specified port.
*
* Note: It is safe to call this function more than once for the same port.
*/
static int srpt_refresh_port(struct srpt_port *sport)
{
struct ib_mad_reg_req reg_req;
struct ib_port_modify port_modify;
struct ib_port_attr port_attr;
int ret;
memset(&port_modify, 0, sizeof port_modify);
port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
port_modify.clr_port_cap_mask = 0;
ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
if (ret)
goto err_mod_port;
ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
if (ret)
goto err_query_port;
sport->sm_lid = port_attr.sm_lid;
sport->lid = port_attr.lid;
ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
if (ret)
goto err_query_port;
if (!sport->mad_agent) {
memset(&reg_req, 0, sizeof reg_req);
reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
sport->port,
IB_QPT_GSI,
&reg_req, 0,
srpt_mad_send_handler,
srpt_mad_recv_handler,
sport);
if (IS_ERR(sport->mad_agent)) {
ret = PTR_ERR(sport->mad_agent);
sport->mad_agent = NULL;
goto err_query_port;
}
}
return 0;
err_query_port:
port_modify.set_port_cap_mask = 0;
port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
err_mod_port:
return ret;
}
/**
* srpt_unregister_mad_agent() - Unregister MAD callback functions.
*
* Note: It is safe to call this function more than once for the same device.
*/
static void srpt_unregister_mad_agent(struct srpt_device *sdev)
{
struct ib_port_modify port_modify = {
.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
};
struct srpt_port *sport;
int i;
for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
sport = &sdev->port[i - 1];
WARN_ON(sport->port != i);
if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
printk(KERN_ERR "disabling MAD processing failed.\n");
if (sport->mad_agent) {
ib_unregister_mad_agent(sport->mad_agent);
sport->mad_agent = NULL;
}
}
}
/**
* srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
*/
static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
int ioctx_size, int dma_size,
enum dma_data_direction dir)
{
struct srpt_ioctx *ioctx;
ioctx = kmalloc(ioctx_size, GFP_KERNEL);
if (!ioctx)
goto err;
ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
if (!ioctx->buf)
goto err_free_ioctx;
ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
if (ib_dma_mapping_error(sdev->device, ioctx->dma))
goto err_free_buf;
return ioctx;
err_free_buf:
kfree(ioctx->buf);
err_free_ioctx:
kfree(ioctx);
err:
return NULL;
}
/**
* srpt_free_ioctx() - Free an SRPT I/O context structure.
*/
static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
int dma_size, enum dma_data_direction dir)
{
if (!ioctx)
return;
ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
kfree(ioctx->buf);
kfree(ioctx);
}
/**
* srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
* @sdev: Device to allocate the I/O context ring for.
* @ring_size: Number of elements in the I/O context ring.
* @ioctx_size: I/O context size.
* @dma_size: DMA buffer size.
* @dir: DMA data direction.
*/
static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
int ring_size, int ioctx_size,
int dma_size, enum dma_data_direction dir)
{
struct srpt_ioctx **ring;
int i;
WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
&& ioctx_size != sizeof(struct srpt_send_ioctx));
ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
if (!ring)
goto out;
for (i = 0; i < ring_size; ++i) {
ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
if (!ring[i])
goto err;
ring[i]->index = i;
}
goto out;
err:
while (--i >= 0)
srpt_free_ioctx(sdev, ring[i], dma_size, dir);
kfree(ring);
ring = NULL;
out:
return ring;
}
/**
* srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
*/
static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
struct srpt_device *sdev, int ring_size,
int dma_size, enum dma_data_direction dir)
{
int i;
for (i = 0; i < ring_size; ++i)
srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
kfree(ioctx_ring);
}
/**
* srpt_get_cmd_state() - Get the state of a SCSI command.
*/
static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
{
enum srpt_command_state state;
unsigned long flags;
BUG_ON(!ioctx);
spin_lock_irqsave(&ioctx->spinlock, flags);
state = ioctx->state;
spin_unlock_irqrestore(&ioctx->spinlock, flags);
return state;
}
/**
* srpt_set_cmd_state() - Set the state of a SCSI command.
*
* Does not modify the state of aborted commands. Returns the previous command
* state.
*/
static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
enum srpt_command_state new)
{
enum srpt_command_state previous;
unsigned long flags;
BUG_ON(!ioctx);
spin_lock_irqsave(&ioctx->spinlock, flags);
previous = ioctx->state;
if (previous != SRPT_STATE_DONE)
ioctx->state = new;
spin_unlock_irqrestore(&ioctx->spinlock, flags);
return previous;
}
/**
* srpt_test_and_set_cmd_state() - Test and set the state of a command.
*
* Returns true if and only if the previous command state was equal to 'old'.
*/
static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
enum srpt_command_state old,
enum srpt_command_state new)
{
enum srpt_command_state previous;
unsigned long flags;
WARN_ON(!ioctx);
WARN_ON(old == SRPT_STATE_DONE);
WARN_ON(new == SRPT_STATE_NEW);
spin_lock_irqsave(&ioctx->spinlock, flags);
previous = ioctx->state;
if (previous == old)
ioctx->state = new;
spin_unlock_irqrestore(&ioctx->spinlock, flags);
return previous == old;
}
/**
* srpt_post_recv() - Post an IB receive request.
*/
static int srpt_post_recv(struct srpt_device *sdev,
struct srpt_recv_ioctx *ioctx)
{
struct ib_sge list;
struct ib_recv_wr wr, *bad_wr;
BUG_ON(!sdev);
wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
list.addr = ioctx->ioctx.dma;
list.length = srp_max_req_size;
list.lkey = sdev->mr->lkey;
wr.next = NULL;
wr.sg_list = &list;
wr.num_sge = 1;
return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
}
/**
* srpt_post_send() - Post an IB send request.
*
* Returns zero upon success and a non-zero value upon failure.
*/
static int srpt_post_send(struct srpt_rdma_ch *ch,
struct srpt_send_ioctx *ioctx, int len)
{
struct ib_sge list;
struct ib_send_wr wr, *bad_wr;
struct srpt_device *sdev = ch->sport->sdev;
int ret;
atomic_inc(&ch->req_lim);
ret = -ENOMEM;
if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
printk(KERN_WARNING "IB send queue full (needed 1)\n");
goto out;
}
ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
DMA_TO_DEVICE);
list.addr = ioctx->ioctx.dma;
list.length = len;
list.lkey = sdev->mr->lkey;
wr.next = NULL;
wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
wr.sg_list = &list;
wr.num_sge = 1;
wr.opcode = IB_WR_SEND;
wr.send_flags = IB_SEND_SIGNALED;
ret = ib_post_send(ch->qp, &wr, &bad_wr);
out:
if (ret < 0) {
atomic_inc(&ch->sq_wr_avail);
atomic_dec(&ch->req_lim);
}
return ret;
}
/**
* srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
* @ioctx: Pointer to the I/O context associated with the request.
* @srp_cmd: Pointer to the SRP_CMD request data.
* @dir: Pointer to the variable to which the transfer direction will be
* written.
* @data_len: Pointer to the variable to which the total data length of all
* descriptors in the SRP_CMD request will be written.
*
* This function initializes ioctx->nrbuf and ioctx->r_bufs.
*
* Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
* -ENOMEM when memory allocation fails and zero upon success.
*/
static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
struct srp_cmd *srp_cmd,
enum dma_data_direction *dir, u64 *data_len)
{
struct srp_indirect_buf *idb;
struct srp_direct_buf *db;
unsigned add_cdb_offset;
int ret;
/*
* The pointer computations below will only be compiled correctly
* if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
* whether srp_cmd::add_data has been declared as a byte pointer.
*/
BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
&& !__same_type(srp_cmd->add_data[0], (u8)0));
BUG_ON(!dir);
BUG_ON(!data_len);
ret = 0;
*data_len = 0;
/*
* The lower four bits of the buffer format field contain the DATA-IN
* buffer descriptor format, and the highest four bits contain the
* DATA-OUT buffer descriptor format.
*/
*dir = DMA_NONE;
if (srp_cmd->buf_fmt & 0xf)
/* DATA-IN: transfer data from target to initiator (read). */
*dir = DMA_FROM_DEVICE;
else if (srp_cmd->buf_fmt >> 4)
/* DATA-OUT: transfer data from initiator to target (write). */
*dir = DMA_TO_DEVICE;
/*
* According to the SRP spec, the lower two bits of the 'ADDITIONAL
* CDB LENGTH' field are reserved and the size in bytes of this field
* is four times the value specified in bits 3..7. Hence the "& ~3".
*/
add_cdb_offset = srp_cmd->add_cdb_len & ~3;
if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
ioctx->n_rbuf = 1;
ioctx->rbufs = &ioctx->single_rbuf;
db = (struct srp_direct_buf *)(srp_cmd->add_data
+ add_cdb_offset);
memcpy(ioctx->rbufs, db, sizeof *db);
*data_len = be32_to_cpu(db->len);
} else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
idb = (struct srp_indirect_buf *)(srp_cmd->add_data
+ add_cdb_offset);
ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
if (ioctx->n_rbuf >
(srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
printk(KERN_ERR "received unsupported SRP_CMD request"
" type (%u out + %u in != %u / %zu)\n",
srp_cmd->data_out_desc_cnt,
srp_cmd->data_in_desc_cnt,
be32_to_cpu(idb->table_desc.len),
sizeof(*db));
ioctx->n_rbuf = 0;
ret = -EINVAL;
goto out;
}
if (ioctx->n_rbuf == 1)
ioctx->rbufs = &ioctx->single_rbuf;
else {
ioctx->rbufs =
kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
if (!ioctx->rbufs) {
ioctx->n_rbuf = 0;
ret = -ENOMEM;
goto out;
}
}
db = idb->desc_list;
memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
*data_len = be32_to_cpu(idb->len);
}
out:
return ret;
}
/**
* srpt_init_ch_qp() - Initialize queue pair attributes.
*
* Initialized the attributes of queue pair 'qp' by allowing local write,
* remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
*/
static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
struct ib_qp_attr *attr;
int ret;
attr = kzalloc(sizeof *attr, GFP_KERNEL);
if (!attr)
return -ENOMEM;
attr->qp_state = IB_QPS_INIT;
attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
IB_ACCESS_REMOTE_WRITE;
attr->port_num = ch->sport->port;
attr->pkey_index = 0;
ret = ib_modify_qp(qp, attr,
IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
IB_QP_PKEY_INDEX);
kfree(attr);
return ret;
}
/**
* srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
* @ch: channel of the queue pair.
* @qp: queue pair to change the state of.
*
* Returns zero upon success and a negative value upon failure.
*
* Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
* If this structure ever becomes larger, it might be necessary to allocate
* it dynamically instead of on the stack.
*/
static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
struct ib_qp_attr qp_attr;
int attr_mask;
int ret;
qp_attr.qp_state = IB_QPS_RTR;
ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
if (ret)
goto out;
qp_attr.max_dest_rd_atomic = 4;
ret = ib_modify_qp(qp, &qp_attr, attr_mask);
out:
return ret;
}
/**
* srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
* @ch: channel of the queue pair.
* @qp: queue pair to change the state of.
*
* Returns zero upon success and a negative value upon failure.
*
* Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
* If this structure ever becomes larger, it might be necessary to allocate
* it dynamically instead of on the stack.
*/
static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
{
struct ib_qp_attr qp_attr;
int attr_mask;
int ret;
qp_attr.qp_state = IB_QPS_RTS;
ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
if (ret)
goto out;
qp_attr.max_rd_atomic = 4;
ret = ib_modify_qp(qp, &qp_attr, attr_mask);
out:
return ret;
}
/**
* srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
*/
static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
{
struct ib_qp_attr qp_attr;
qp_attr.qp_state = IB_QPS_ERR;
return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
}
/**
* srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
*/
static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
struct srpt_send_ioctx *ioctx)
{
struct scatterlist *sg;
enum dma_data_direction dir;
BUG_ON(!ch);
BUG_ON(!ioctx);
BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
while (ioctx->n_rdma)
kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);
kfree(ioctx->rdma_ius);
ioctx->rdma_ius = NULL;
if (ioctx->mapped_sg_count) {
sg = ioctx->sg;
WARN_ON(!sg);
dir = ioctx->cmd.data_direction;
BUG_ON(dir == DMA_NONE);
ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
opposite_dma_dir(dir));
ioctx->mapped_sg_count = 0;
}
}
/**
* srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
*/
static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
struct srpt_send_ioctx *ioctx)
{
struct se_cmd *cmd;
struct scatterlist *sg, *sg_orig;
int sg_cnt;
enum dma_data_direction dir;
struct rdma_iu *riu;
struct srp_direct_buf *db;
dma_addr_t dma_addr;
struct ib_sge *sge;
u64 raddr;
u32 rsize;
u32 tsize;
u32 dma_len;
int count, nrdma;
int i, j, k;
BUG_ON(!ch);
BUG_ON(!ioctx);
cmd = &ioctx->cmd;
dir = cmd->data_direction;
BUG_ON(dir == DMA_NONE);
ioctx->sg = sg = sg_orig = cmd->t_data_sg;
ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
opposite_dma_dir(dir));
if (unlikely(!count))
return -EAGAIN;
ioctx->mapped_sg_count = count;
if (ioctx->rdma_ius && ioctx->n_rdma_ius)
nrdma = ioctx->n_rdma_ius;
else {
nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
+ ioctx->n_rbuf;
ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
if (!ioctx->rdma_ius)
goto free_mem;
ioctx->n_rdma_ius = nrdma;
}
db = ioctx->rbufs;
tsize = cmd->data_length;
dma_len = sg_dma_len(&sg[0]);
riu = ioctx->rdma_ius;
/*
* For each remote desc - calculate the #ib_sge.
* If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
* each remote desc rdma_iu is required a rdma wr;
* else
* we need to allocate extra rdma_iu to carry extra #ib_sge in
* another rdma wr
*/
for (i = 0, j = 0;
j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
rsize = be32_to_cpu(db->len);
raddr = be64_to_cpu(db->va);
riu->raddr = raddr;
riu->rkey = be32_to_cpu(db->key);
riu->sge_cnt = 0;
/* calculate how many sge required for this remote_buf */
while (rsize > 0 && tsize > 0) {
if (rsize >= dma_len) {
tsize -= dma_len;
rsize -= dma_len;
raddr += dma_len;
if (tsize > 0) {
++j;
if (j < count) {
sg = sg_next(sg);
dma_len = sg_dma_len(sg);
}
}
} else {
tsize -= rsize;
dma_len -= rsize;
rsize = 0;
}
++riu->sge_cnt;
if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
++ioctx->n_rdma;
riu->sge =
kmalloc(riu->sge_cnt * sizeof *riu->sge,
GFP_KERNEL);
if (!riu->sge)
goto free_mem;
++riu;
riu->sge_cnt = 0;
riu->raddr = raddr;
riu->rkey = be32_to_cpu(db->key);
}
}
++ioctx->n_rdma;
riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
GFP_KERNEL);
if (!riu->sge)
goto free_mem;
}
db = ioctx->rbufs;
tsize = cmd->data_length;
riu = ioctx->rdma_ius;
sg = sg_orig;
dma_len = sg_dma_len(&sg[0]);
dma_addr = sg_dma_address(&sg[0]);
/* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
for (i = 0, j = 0;
j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
rsize = be32_to_cpu(db->len);
sge = riu->sge;
k = 0;
while (rsize > 0 && tsize > 0) {
sge->addr = dma_addr;
sge->lkey = ch->sport->sdev->mr->lkey;
if (rsize >= dma_len) {
sge->length =
(tsize < dma_len) ? tsize : dma_len;
tsize -= dma_len;
rsize -= dma_len;
if (tsize > 0) {
++j;
if (j < count) {
sg = sg_next(sg);
dma_len = sg_dma_len(sg);
dma_addr = sg_dma_address(sg);
}
}
} else {
sge->length = (tsize < rsize) ? tsize : rsize;
tsize -= rsize;
dma_len -= rsize;
dma_addr += rsize;
rsize = 0;
}
++k;
if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
++riu;
sge = riu->sge;
k = 0;
} else if (rsize > 0 && tsize > 0)
++sge;
}
}
return 0;
free_mem:
srpt_unmap_sg_to_ib_sge(ch, ioctx);
return -ENOMEM;
}
/**
* srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
*/
static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
{
struct srpt_send_ioctx *ioctx;
unsigned long flags;
BUG_ON(!ch);
ioctx = NULL;
spin_lock_irqsave(&ch->spinlock, flags);
if (!list_empty(&ch->free_list)) {
ioctx = list_first_entry(&ch->free_list,
struct srpt_send_ioctx, free_list);
list_del(&ioctx->free_list);
}
spin_unlock_irqrestore(&ch->spinlock, flags);
if (!ioctx)
return ioctx;
BUG_ON(ioctx->ch != ch);
kref_init(&ioctx->kref);
spin_lock_init(&ioctx->spinlock);
ioctx->state = SRPT_STATE_NEW;
ioctx->n_rbuf = 0;
ioctx->rbufs = NULL;
ioctx->n_rdma = 0;
ioctx->n_rdma_ius = 0;
ioctx->rdma_ius = NULL;
ioctx->mapped_sg_count = 0;
init_completion(&ioctx->tx_done);
ioctx->queue_status_only = false;
/*
* transport_init_se_cmd() does not initialize all fields, so do it
* here.
*/
memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
return ioctx;
}
/**
* srpt_put_send_ioctx() - Free up resources.
*/
static void srpt_put_send_ioctx(struct srpt_send_ioctx *ioctx)
{
struct srpt_rdma_ch *ch;
unsigned long flags;
BUG_ON(!ioctx);
ch = ioctx->ch;
BUG_ON(!ch);
WARN_ON(srpt_get_cmd_state(ioctx) != SRPT_STATE_DONE);
srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
transport_generic_free_cmd(&ioctx->cmd, 0);
if (ioctx->n_rbuf > 1) {
kfree(ioctx->rbufs);
ioctx->rbufs = NULL;
ioctx->n_rbuf = 0;
}
spin_lock_irqsave(&ch->spinlock, flags);
list_add(&ioctx->free_list, &ch->free_list);
spin_unlock_irqrestore(&ch->spinlock, flags);
}
static void srpt_put_send_ioctx_kref(struct kref *kref)
{
srpt_put_send_ioctx(container_of(kref, struct srpt_send_ioctx, kref));
}
/**
* srpt_abort_cmd() - Abort a SCSI command.
* @ioctx: I/O context associated with the SCSI command.
* @context: Preferred execution context.
*/
static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
{
enum srpt_command_state state;
unsigned long flags;
BUG_ON(!ioctx);
/*
* If the command is in a state where the target core is waiting for
* the ib_srpt driver, change the state to the next state. Changing
* the state of the command from SRPT_STATE_NEED_DATA to
* SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
* function a second time.
*/
spin_lock_irqsave(&ioctx->spinlock, flags);
state = ioctx->state;
switch (state) {
case SRPT_STATE_NEED_DATA:
ioctx->state = SRPT_STATE_DATA_IN;
break;
case SRPT_STATE_DATA_IN:
case SRPT_STATE_CMD_RSP_SENT:
case SRPT_STATE_MGMT_RSP_SENT:
ioctx->state = SRPT_STATE_DONE;
break;
default:
break;
}
spin_unlock_irqrestore(&ioctx->spinlock, flags);
if (state == SRPT_STATE_DONE)
goto out;
pr_debug("Aborting cmd with state %d and tag %lld\n", state,
ioctx->tag);
switch (state) {
case SRPT_STATE_NEW:
case SRPT_STATE_DATA_IN:
case SRPT_STATE_MGMT:
/*
* Do nothing - defer abort processing until
* srpt_queue_response() is invoked.
*/
WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
break;
case SRPT_STATE_NEED_DATA:
/* DMA_TO_DEVICE (write) - RDMA read error. */
/* XXX(hch): this is a horrible layering violation.. */
spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
ioctx->cmd.transport_state |= CMD_T_LUN_STOP;
ioctx->cmd.transport_state &= ~CMD_T_ACTIVE;
spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
complete(&ioctx->cmd.transport_lun_stop_comp);
break;
case SRPT_STATE_CMD_RSP_SENT:
/*
* SRP_RSP sending failed or the SRP_RSP send completion has
* not been received in time.
*/
srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
ioctx->cmd.transport_state |= CMD_T_LUN_STOP;
spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
break;
case SRPT_STATE_MGMT_RSP_SENT:
srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
break;
default:
WARN_ON("ERROR: unexpected command state");
break;
}
out:
return state;
}
/**
* srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
*/
static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
{
struct srpt_send_ioctx *ioctx;
enum srpt_command_state state;
struct se_cmd *cmd;
u32 index;
atomic_inc(&ch->sq_wr_avail);
index = idx_from_wr_id(wr_id);
ioctx = ch->ioctx_ring[index];
state = srpt_get_cmd_state(ioctx);
cmd = &ioctx->cmd;
WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
&& state != SRPT_STATE_MGMT_RSP_SENT
&& state != SRPT_STATE_NEED_DATA
&& state != SRPT_STATE_DONE);
/* If SRP_RSP sending failed, undo the ch->req_lim change. */
if (state == SRPT_STATE_CMD_RSP_SENT
|| state == SRPT_STATE_MGMT_RSP_SENT)
atomic_dec(&ch->req_lim);
srpt_abort_cmd(ioctx);
}
/**
* srpt_handle_send_comp() - Process an IB send completion notification.
*/
static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
struct srpt_send_ioctx *ioctx)
{
enum srpt_command_state state;
atomic_inc(&ch->sq_wr_avail);
state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
&& state != SRPT_STATE_MGMT_RSP_SENT
&& state != SRPT_STATE_DONE))
pr_debug("state = %d\n", state);
if (state != SRPT_STATE_DONE)
kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
else
printk(KERN_ERR "IB completion has been received too late for"
" wr_id = %u.\n", ioctx->ioctx.index);
}
/**
* srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
*
* XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
* the data that has been transferred via IB RDMA had to be postponed until the
* check_stop_free() callback. None of this is necessary anymore and needs to
* be cleaned up.
*/
static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
struct srpt_send_ioctx *ioctx,
enum srpt_opcode opcode)
{
WARN_ON(ioctx->n_rdma <= 0);
atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
if (opcode == SRPT_RDMA_READ_LAST) {
if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
SRPT_STATE_DATA_IN))
target_execute_cmd(&ioctx->cmd);
else
printk(KERN_ERR "%s[%d]: wrong state = %d\n", __func__,
__LINE__, srpt_get_cmd_state(ioctx));
} else if (opcode == SRPT_RDMA_ABORT) {
ioctx->rdma_aborted = true;
} else {
WARN(true, "unexpected opcode %d\n", opcode);
}
}
/**
* srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
*/
static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
struct srpt_send_ioctx *ioctx,
enum srpt_opcode opcode)
{
struct se_cmd *cmd;
enum srpt_command_state state;
unsigned long flags;
cmd = &ioctx->cmd;
state = srpt_get_cmd_state(ioctx);
switch (opcode) {
case SRPT_RDMA_READ_LAST:
if (ioctx->n_rdma <= 0) {
printk(KERN_ERR "Received invalid RDMA read"
" error completion with idx %d\n",
ioctx->ioctx.index);
break;
}
atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
if (state == SRPT_STATE_NEED_DATA)
srpt_abort_cmd(ioctx);
else
printk(KERN_ERR "%s[%d]: wrong state = %d\n",
__func__, __LINE__, state);
break;
case SRPT_RDMA_WRITE_LAST:
spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
ioctx->cmd.transport_state |= CMD_T_LUN_STOP;
spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
break;
default:
printk(KERN_ERR "%s[%d]: opcode = %u\n", __func__,
__LINE__, opcode);
break;
}
}
/**
* srpt_build_cmd_rsp() - Build an SRP_RSP response.
* @ch: RDMA channel through which the request has been received.
* @ioctx: I/O context associated with the SRP_CMD request. The response will
* be built in the buffer ioctx->buf points at and hence this function will
* overwrite the request data.
* @tag: tag of the request for which this response is being generated.
* @status: value for the STATUS field of the SRP_RSP information unit.
*
* Returns the size in bytes of the SRP_RSP response.
*
* An SRP_RSP response contains a SCSI status or service response. See also
* section 6.9 in the SRP r16a document for the format of an SRP_RSP
* response. See also SPC-2 for more information about sense data.
*/
static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
struct srpt_send_ioctx *ioctx, u64 tag,
int status)
{
struct srp_rsp *srp_rsp;
const u8 *sense_data;
int sense_data_len, max_sense_len;
/*
* The lowest bit of all SAM-3 status codes is zero (see also
* paragraph 5.3 in SAM-3).
*/
WARN_ON(status & 1);
srp_rsp = ioctx->ioctx.buf;
BUG_ON(!srp_rsp);
sense_data = ioctx->sense_data;
sense_data_len = ioctx->cmd.scsi_sense_length;
WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
memset(srp_rsp, 0, sizeof *srp_rsp);
srp_rsp->opcode = SRP_RSP;
srp_rsp->req_lim_delta =
__constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
srp_rsp->tag = tag;
srp_rsp->status = status;
if (sense_data_len) {
BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
if (sense_data_len > max_sense_len) {
printk(KERN_WARNING "truncated sense data from %d to %d"
" bytes\n", sense_data_len, max_sense_len);
sense_data_len = max_sense_len;
}
srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
memcpy(srp_rsp + 1, sense_data, sense_data_len);
}
return sizeof(*srp_rsp) + sense_data_len;
}
/**
* srpt_build_tskmgmt_rsp() - Build a task management response.
* @ch: RDMA channel through which the request has been received.
* @ioctx: I/O context in which the SRP_RSP response will be built.
* @rsp_code: RSP_CODE that will be stored in the response.
* @tag: Tag of the request for which this response is being generated.
*
* Returns the size in bytes of the SRP_RSP response.
*
* An SRP_RSP response contains a SCSI status or service response. See also
* section 6.9 in the SRP r16a document for the format of an SRP_RSP
* response.
*/
static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
struct srpt_send_ioctx *ioctx,
u8 rsp_code, u64 tag)
{
struct srp_rsp *srp_rsp;
int resp_data_len;
int resp_len;
resp_data_len = (rsp_code == SRP_TSK_MGMT_SUCCESS) ? 0 : 4;
resp_len = sizeof(*srp_rsp) + resp_data_len;
srp_rsp = ioctx->ioctx.buf;
BUG_ON(!srp_rsp);
memset(srp_rsp, 0, sizeof *srp_rsp);
srp_rsp->opcode = SRP_RSP;
srp_rsp->req_lim_delta = __constant_cpu_to_be32(1
+ atomic_xchg(&ch->req_lim_delta, 0));
srp_rsp->tag = tag;
if (rsp_code != SRP_TSK_MGMT_SUCCESS) {
srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
srp_rsp->data[3] = rsp_code;
}
return resp_len;
}
#define NO_SUCH_LUN ((uint64_t)-1LL)
/*
* SCSI LUN addressing method. See also SAM-2 and the section about
* eight byte LUNs.
*/
enum scsi_lun_addr_method {
SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0,
SCSI_LUN_ADDR_METHOD_FLAT = 1,
SCSI_LUN_ADDR_METHOD_LUN = 2,
SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
};
/*
* srpt_unpack_lun() - Convert from network LUN to linear LUN.
*
* Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
* order (big endian) to a linear LUN. Supports three LUN addressing methods:
* peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
*/
static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
{
uint64_t res = NO_SUCH_LUN;
int addressing_method;
if (unlikely(len < 2)) {
printk(KERN_ERR "Illegal LUN length %d, expected 2 bytes or "
"more", len);
goto out;
}
switch (len) {
case 8:
if ((*((__be64 *)lun) &
__constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
goto out_err;
break;
case 4:
if (*((__be16 *)&lun[2]) != 0)
goto out_err;
break;
case 6:
if (*((__be32 *)&lun[2]) != 0)
goto out_err;
break;
case 2:
break;
default:
goto out_err;
}
addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
switch (addressing_method) {
case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
case SCSI_LUN_ADDR_METHOD_FLAT:
case SCSI_LUN_ADDR_METHOD_LUN:
res = *(lun + 1) | (((*lun) & 0x3f) << 8);
break;
case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
default:
printk(KERN_ERR "Unimplemented LUN addressing method %u",
addressing_method);
break;
}
out:
return res;
out_err:
printk(KERN_ERR "Support for multi-level LUNs has not yet been"
" implemented");
goto out;
}
static int srpt_check_stop_free(struct se_cmd *cmd)
{
struct srpt_send_ioctx *ioctx;
ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
return kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
}
/**
* srpt_handle_cmd() - Process SRP_CMD.
*/
static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
struct srpt_recv_ioctx *recv_ioctx,
struct srpt_send_ioctx *send_ioctx)
{
struct se_cmd *cmd;
struct srp_cmd *srp_cmd;
uint64_t unpacked_lun;
u64 data_len;
enum dma_data_direction dir;
int ret;
BUG_ON(!send_ioctx);
srp_cmd = recv_ioctx->ioctx.buf;
kref_get(&send_ioctx->kref);
cmd = &send_ioctx->cmd;
send_ioctx->tag = srp_cmd->tag;
switch (srp_cmd->task_attr) {
case SRP_CMD_SIMPLE_Q:
cmd->sam_task_attr = MSG_SIMPLE_TAG;
break;
case SRP_CMD_ORDERED_Q:
default:
cmd->sam_task_attr = MSG_ORDERED_TAG;
break;
case SRP_CMD_HEAD_OF_Q:
cmd->sam_task_attr = MSG_HEAD_TAG;
break;
case SRP_CMD_ACA:
cmd->sam_task_attr = MSG_ACA_TAG;
break;
}
ret = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len);
if (ret) {
printk(KERN_ERR "0x%llx: parsing SRP descriptor table failed.\n",
srp_cmd->tag);
cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
kref_put(&send_ioctx->kref, srpt_put_send_ioctx_kref);
goto send_sense;
}
cmd->data_length = data_len;
cmd->data_direction = dir;
unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
sizeof(srp_cmd->lun));
if (transport_lookup_cmd_lun(cmd, unpacked_lun) < 0) {
kref_put(&send_ioctx->kref, srpt_put_send_ioctx_kref);
goto send_sense;
}
ret = target_setup_cmd_from_cdb(cmd, srp_cmd->cdb);
if (ret < 0) {
kref_put(&send_ioctx->kref, srpt_put_send_ioctx_kref);
if (cmd->se_cmd_flags & SCF_SCSI_RESERVATION_CONFLICT) {
srpt_queue_status(cmd);
return 0;
} else
goto send_sense;
}
transport_handle_cdb_direct(cmd);
return 0;
send_sense:
transport_send_check_condition_and_sense(cmd, cmd->scsi_sense_reason,
0);
return -1;
}
/**
* srpt_rx_mgmt_fn_tag() - Process a task management function by tag.
* @ch: RDMA channel of the task management request.
* @fn: Task management function to perform.
* @req_tag: Tag of the SRP task management request.
* @mgmt_ioctx: I/O context of the task management request.
*
* Returns zero if the target core will process the task management
* request asynchronously.
*
* Note: It is assumed that the initiator serializes tag-based task management
* requests.
*/
static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag)
{
struct srpt_device *sdev;
struct srpt_rdma_ch *ch;
struct srpt_send_ioctx *target;
int ret, i;
ret = -EINVAL;
ch = ioctx->ch;
BUG_ON(!ch);
BUG_ON(!ch->sport);
sdev = ch->sport->sdev;
BUG_ON(!sdev);
spin_lock_irq(&sdev->spinlock);
for (i = 0; i < ch->rq_size; ++i) {
target = ch->ioctx_ring[i];
if (target->cmd.se_lun == ioctx->cmd.se_lun &&
target->tag == tag &&
srpt_get_cmd_state(target) != SRPT_STATE_DONE) {
ret = 0;
/* now let the target core abort &target->cmd; */
break;
}
}
spin_unlock_irq(&sdev->spinlock);
return ret;
}
static int srp_tmr_to_tcm(int fn)
{
switch (fn) {
case SRP_TSK_ABORT_TASK:
return TMR_ABORT_TASK;
case SRP_TSK_ABORT_TASK_SET:
return TMR_ABORT_TASK_SET;
case SRP_TSK_CLEAR_TASK_SET:
return TMR_CLEAR_TASK_SET;
case SRP_TSK_LUN_RESET:
return TMR_LUN_RESET;
case SRP_TSK_CLEAR_ACA:
return TMR_CLEAR_ACA;
default:
return -1;
}
}
/**
* srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
*
* Returns 0 if and only if the request will be processed by the target core.
*
* For more information about SRP_TSK_MGMT information units, see also section
* 6.7 in the SRP r16a document.
*/
static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
struct srpt_recv_ioctx *recv_ioctx,
struct srpt_send_ioctx *send_ioctx)
{
struct srp_tsk_mgmt *srp_tsk;
struct se_cmd *cmd;
uint64_t unpacked_lun;
int tcm_tmr;
int res;
BUG_ON(!send_ioctx);
srp_tsk = recv_ioctx->ioctx.buf;
cmd = &send_ioctx->cmd;
pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
" cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
send_ioctx->tag = srp_tsk->tag;
tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
if (tcm_tmr < 0) {
send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
send_ioctx->cmd.se_tmr_req->response =
TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
goto process_tmr;
}
res = core_tmr_alloc_req(cmd, NULL, tcm_tmr, GFP_KERNEL);
if (res < 0) {
send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
goto process_tmr;
}
unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
sizeof(srp_tsk->lun));
res = transport_lookup_tmr_lun(&send_ioctx->cmd, unpacked_lun);
if (res) {
pr_debug("rejecting TMR for LUN %lld\n", unpacked_lun);
send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
send_ioctx->cmd.se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
goto process_tmr;
}
if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK)
srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag);
process_tmr:
kref_get(&send_ioctx->kref);
if (!(send_ioctx->cmd.se_cmd_flags & SCF_SCSI_CDB_EXCEPTION))
transport_generic_handle_tmr(&send_ioctx->cmd);
else
transport_send_check_condition_and_sense(cmd,
cmd->scsi_sense_reason, 0);
}
/**
* srpt_handle_new_iu() - Process a newly received information unit.
* @ch: RDMA channel through which the information unit has been received.
* @ioctx: SRPT I/O context associated with the information unit.
*/
static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
struct srpt_recv_ioctx *recv_ioctx,
struct srpt_send_ioctx *send_ioctx)
{
struct srp_cmd *srp_cmd;
enum rdma_ch_state ch_state;
BUG_ON(!ch);
BUG_ON(!recv_ioctx);
ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
recv_ioctx->ioctx.dma, srp_max_req_size,
DMA_FROM_DEVICE);
ch_state = srpt_get_ch_state(ch);
if (unlikely(ch_state == CH_CONNECTING)) {
list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
goto out;
}
if (unlikely(ch_state != CH_LIVE))
goto out;
srp_cmd = recv_ioctx->ioctx.buf;
if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
if (!send_ioctx)
send_ioctx = srpt_get_send_ioctx(ch);
if (unlikely(!send_ioctx)) {
list_add_tail(&recv_ioctx->wait_list,
&ch->cmd_wait_list);
goto out;
}
}
transport_init_se_cmd(&send_ioctx->cmd, &srpt_target->tf_ops, ch->sess,
0, DMA_NONE, MSG_SIMPLE_TAG,
send_ioctx->sense_data);
switch (srp_cmd->opcode) {
case SRP_CMD:
srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
break;
case SRP_TSK_MGMT:
srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
break;
case SRP_I_LOGOUT:
printk(KERN_ERR "Not yet implemented: SRP_I_LOGOUT\n");
break;
case SRP_CRED_RSP:
pr_debug("received SRP_CRED_RSP\n");
break;
case SRP_AER_RSP:
pr_debug("received SRP_AER_RSP\n");
break;
case SRP_RSP:
printk(KERN_ERR "Received SRP_RSP\n");
break;
default:
printk(KERN_ERR "received IU with unknown opcode 0x%x\n",
srp_cmd->opcode);
break;
}
srpt_post_recv(ch->sport->sdev, recv_ioctx);
out:
return;
}
static void srpt_process_rcv_completion(struct ib_cq *cq,
struct srpt_rdma_ch *ch,
struct ib_wc *wc)
{
struct srpt_device *sdev = ch->sport->sdev;
struct srpt_recv_ioctx *ioctx;
u32 index;
index = idx_from_wr_id(wc->wr_id);
if (wc->status == IB_WC_SUCCESS) {
int req_lim;
req_lim = atomic_dec_return(&ch->req_lim);
if (unlikely(req_lim < 0))
printk(KERN_ERR "req_lim = %d < 0\n", req_lim);
ioctx = sdev->ioctx_ring[index];
srpt_handle_new_iu(ch, ioctx, NULL);
} else {
printk(KERN_INFO "receiving failed for idx %u with status %d\n",
index, wc->status);
}
}
/**
* srpt_process_send_completion() - Process an IB send completion.
*
* Note: Although this has not yet been observed during tests, at least in
* theory it is possible that the srpt_get_send_ioctx() call invoked by
* srpt_handle_new_iu() fails. This is possible because the req_lim_delta
* value in each response is set to one, and it is possible that this response
* makes the initiator send a new request before the send completion for that
* response has been processed. This could e.g. happen if the call to
* srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
* if IB retransmission causes generation of the send completion to be
* delayed. Incoming information units for which srpt_get_send_ioctx() fails
* are queued on cmd_wait_list. The code below processes these delayed
* requests one at a time.
*/
static void srpt_process_send_completion(struct ib_cq *cq,
struct srpt_rdma_ch *ch,
struct ib_wc *wc)
{
struct srpt_send_ioctx *send_ioctx;
uint32_t index;
enum srpt_opcode opcode;
index = idx_from_wr_id(wc->wr_id);
opcode = opcode_from_wr_id(wc->wr_id);
send_ioctx = ch->ioctx_ring[index];
if (wc->status == IB_WC_SUCCESS) {
if (opcode == SRPT_SEND)
srpt_handle_send_comp(ch, send_ioctx);
else {
WARN_ON(opcode != SRPT_RDMA_ABORT &&
wc->opcode != IB_WC_RDMA_READ);
srpt_handle_rdma_comp(ch, send_ioctx, opcode);
}
} else {
if (opcode == SRPT_SEND) {
printk(KERN_INFO "sending response for idx %u failed"
" with status %d\n", index, wc->status);
srpt_handle_send_err_comp(ch, wc->wr_id);
} else if (opcode != SRPT_RDMA_MID) {
printk(KERN_INFO "RDMA t %d for idx %u failed with"
" status %d", opcode, index, wc->status);
srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
}
}
while (unlikely(opcode == SRPT_SEND
&& !list_empty(&ch->cmd_wait_list)
&& srpt_get_ch_state(ch) == CH_LIVE
&& (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
struct srpt_recv_ioctx *recv_ioctx;
recv_ioctx = list_first_entry(&ch->cmd_wait_list,
struct srpt_recv_ioctx,
wait_list);
list_del(&recv_ioctx->wait_list);
srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
}
}
static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
{
struct ib_wc *const wc = ch->wc;
int i, n;
WARN_ON(cq != ch->cq);
ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
for (i = 0; i < n; i++) {
if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
srpt_process_rcv_completion(cq, ch, &wc[i]);
else
srpt_process_send_completion(cq, ch, &wc[i]);
}
}
}
/**
* srpt_completion() - IB completion queue callback function.
*
* Notes:
* - It is guaranteed that a completion handler will never be invoked
* concurrently on two different CPUs for the same completion queue. See also
* Documentation/infiniband/core_locking.txt and the implementation of
* handle_edge_irq() in kernel/irq/chip.c.
* - When threaded IRQs are enabled, completion handlers are invoked in thread
* context instead of interrupt context.
*/
static void srpt_completion(struct ib_cq *cq, void *ctx)
{
struct srpt_rdma_ch *ch = ctx;
wake_up_interruptible(&ch->wait_queue);
}
static int srpt_compl_thread(void *arg)
{
struct srpt_rdma_ch *ch;
/* Hibernation / freezing of the SRPT kernel thread is not supported. */
current->flags |= PF_NOFREEZE;
ch = arg;
BUG_ON(!ch);
printk(KERN_INFO "Session %s: kernel thread %s (PID %d) started\n",
ch->sess_name, ch->thread->comm, current->pid);
while (!kthread_should_stop()) {
wait_event_interruptible(ch->wait_queue,
(srpt_process_completion(ch->cq, ch),
kthread_should_stop()));
}
printk(KERN_INFO "Session %s: kernel thread %s (PID %d) stopped\n",
ch->sess_name, ch->thread->comm, current->pid);
return 0;
}
/**
* srpt_create_ch_ib() - Create receive and send completion queues.
*/
static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
{
struct ib_qp_init_attr *qp_init;
struct srpt_port *sport = ch->sport;
struct srpt_device *sdev = sport->sdev;
u32 srp_sq_size = sport->port_attrib.srp_sq_size;
int ret;
WARN_ON(ch->rq_size < 1);
ret = -ENOMEM;
qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
if (!qp_init)
goto out;
ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
ch->rq_size + srp_sq_size, 0);
if (IS_ERR(ch->cq)) {
ret = PTR_ERR(ch->cq);
printk(KERN_ERR "failed to create CQ cqe= %d ret= %d\n",
ch->rq_size + srp_sq_size, ret);
goto out;
}
qp_init->qp_context = (void *)ch;
qp_init->event_handler
= (void(*)(struct ib_event *, void*))srpt_qp_event;
qp_init->send_cq = ch->cq;
qp_init->recv_cq = ch->cq;
qp_init->srq = sdev->srq;
qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
qp_init->qp_type = IB_QPT_RC;
qp_init->cap.max_send_wr = srp_sq_size;
qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
ch->qp = ib_create_qp(sdev->pd, qp_init);
if (IS_ERR(ch->qp)) {
ret = PTR_ERR(ch->qp);
printk(KERN_ERR "failed to create_qp ret= %d\n", ret);
goto err_destroy_cq;
}
atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
__func__, ch->cq->cqe, qp_init->cap.max_send_sge,
qp_init->cap.max_send_wr, ch->cm_id);
ret = srpt_init_ch_qp(ch, ch->qp);
if (ret)
goto err_destroy_qp;
init_waitqueue_head(&ch->wait_queue);
pr_debug("creating thread for session %s\n", ch->sess_name);
ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
if (IS_ERR(ch->thread)) {
printk(KERN_ERR "failed to create kernel thread %ld\n",
PTR_ERR(ch->thread));
ch->thread = NULL;
goto err_destroy_qp;
}
out:
kfree(qp_init);
return ret;
err_destroy_qp:
ib_destroy_qp(ch->qp);
err_destroy_cq:
ib_destroy_cq(ch->cq);
goto out;
}
static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
{
if (ch->thread)
kthread_stop(ch->thread);
ib_destroy_qp(ch->qp);
ib_destroy_cq(ch->cq);
}
/**
* __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
*
* Reset the QP and make sure all resources associated with the channel will
* be deallocated at an appropriate time.
*
* Note: The caller must hold ch->sport->sdev->spinlock.
*/
static void __srpt_close_ch(struct srpt_rdma_ch *ch)
{
struct srpt_device *sdev;
enum rdma_ch_state prev_state;
unsigned long flags;
sdev = ch->sport->sdev;
spin_lock_irqsave(&ch->spinlock, flags);
prev_state = ch->state;
switch (prev_state) {
case CH_CONNECTING:
case CH_LIVE:
ch->state = CH_DISCONNECTING;
break;
default:
break;
}
spin_unlock_irqrestore(&ch->spinlock, flags);
switch (prev_state) {
case CH_CONNECTING:
ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
NULL, 0);
/* fall through */
case CH_LIVE:
if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
printk(KERN_ERR "sending CM DREQ failed.\n");
break;
case CH_DISCONNECTING:
break;
case CH_DRAINING:
case CH_RELEASING:
break;
}
}
/**
* srpt_close_ch() - Close an RDMA channel.
*/
static void srpt_close_ch(struct srpt_rdma_ch *ch)
{
struct srpt_device *sdev;
sdev = ch->sport->sdev;
spin_lock_irq(&sdev->spinlock);
__srpt_close_ch(ch);
spin_unlock_irq(&sdev->spinlock);
}
/**
* srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
* @cm_id: Pointer to the CM ID of the channel to be drained.
*
* Note: Must be called from inside srpt_cm_handler to avoid a race between
* accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
* (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
* waits until all target sessions for the associated IB device have been
* unregistered and target session registration involves a call to
* ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
* this function has finished).
*/
static void srpt_drain_channel(struct ib_cm_id *cm_id)
{
struct srpt_device *sdev;
struct srpt_rdma_ch *ch;
int ret;
bool do_reset = false;
WARN_ON_ONCE(irqs_disabled());
sdev = cm_id->context;
BUG_ON(!sdev);
spin_lock_irq(&sdev->spinlock);
list_for_each_entry(ch, &sdev->rch_list, list) {
if (ch->cm_id == cm_id) {
do_reset = srpt_test_and_set_ch_state(ch,
CH_CONNECTING, CH_DRAINING) ||
srpt_test_and_set_ch_state(ch,
CH_LIVE, CH_DRAINING) ||
srpt_test_and_set_ch_state(ch,
CH_DISCONNECTING, CH_DRAINING);
break;
}
}
spin_unlock_irq(&sdev->spinlock);
if (do_reset) {
ret = srpt_ch_qp_err(ch);
if (ret < 0)
printk(KERN_ERR "Setting queue pair in error state"
" failed: %d\n", ret);
}
}
/**
* srpt_find_channel() - Look up an RDMA channel.
* @cm_id: Pointer to the CM ID of the channel to be looked up.
*
* Return NULL if no matching RDMA channel has been found.
*/
static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
struct ib_cm_id *cm_id)
{
struct srpt_rdma_ch *ch;
bool found;
WARN_ON_ONCE(irqs_disabled());
BUG_ON(!sdev);
found = false;
spin_lock_irq(&sdev->spinlock);
list_for_each_entry(ch, &sdev->rch_list, list) {
if (ch->cm_id == cm_id) {
found = true;
break;
}
}
spin_unlock_irq(&sdev->spinlock);
return found ? ch : NULL;
}
/**
* srpt_release_channel() - Release channel resources.
*
* Schedules the actual release because:
* - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
* trigger a deadlock.
* - It is not safe to call TCM transport_* functions from interrupt context.
*/
static void srpt_release_channel(struct srpt_rdma_ch *ch)
{
schedule_work(&ch->release_work);
}
static void srpt_release_channel_work(struct work_struct *w)
{
struct srpt_rdma_ch *ch;
struct srpt_device *sdev;
ch = container_of(w, struct srpt_rdma_ch, release_work);
pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
ch->release_done);
sdev = ch->sport->sdev;
BUG_ON(!sdev);
transport_deregister_session_configfs(ch->sess);
transport_deregister_session(ch->sess);
ch->sess = NULL;
srpt_destroy_ch_ib(ch);
srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
ch->sport->sdev, ch->rq_size,
ch->rsp_size, DMA_TO_DEVICE);
spin_lock_irq(&sdev->spinlock);
list_del(&ch->list);
spin_unlock_irq(&sdev->spinlock);
ib_destroy_cm_id(ch->cm_id);
if (ch->release_done)
complete(ch->release_done);
wake_up(&sdev->ch_releaseQ);
kfree(ch);
}
static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
u8 i_port_id[16])
{
struct srpt_node_acl *nacl;
list_for_each_entry(nacl, &sport->port_acl_list, list)
if (memcmp(nacl->i_port_id, i_port_id,
sizeof(nacl->i_port_id)) == 0)
return nacl;
return NULL;
}
static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
u8 i_port_id[16])
{
struct srpt_node_acl *nacl;
spin_lock_irq(&sport->port_acl_lock);
nacl = __srpt_lookup_acl(sport, i_port_id);
spin_unlock_irq(&sport->port_acl_lock);
return nacl;
}
/**
* srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
*
* Ownership of the cm_id is transferred to the target session if this
* functions returns zero. Otherwise the caller remains the owner of cm_id.
*/
static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
struct ib_cm_req_event_param *param,
void *private_data)
{
struct srpt_device *sdev = cm_id->context;
struct srpt_port *sport = &sdev->port[param->port - 1];
struct srp_login_req *req;
struct srp_login_rsp *rsp;
struct srp_login_rej *rej;
struct ib_cm_rep_param *rep_param;
struct srpt_rdma_ch *ch, *tmp_ch;
struct srpt_node_acl *nacl;
u32 it_iu_len;
int i;
int ret = 0;
WARN_ON_ONCE(irqs_disabled());
if (WARN_ON(!sdev || !private_data))
return -EINVAL;
req = (struct srp_login_req *)private_data;
it_iu_len = be32_to_cpu(req->req_it_iu_len);
printk(KERN_INFO "Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
" t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
" (guid=0x%llx:0x%llx)\n",
be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
it_iu_len,
param->port,
be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
rej = kzalloc(sizeof *rej, GFP_KERNEL);
rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
if (!rsp || !rej || !rep_param) {
ret = -ENOMEM;
goto out;
}
if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
rej->reason = __constant_cpu_to_be32(
SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
ret = -EINVAL;
printk(KERN_ERR "rejected SRP_LOGIN_REQ because its"
" length (%d bytes) is out of range (%d .. %d)\n",
it_iu_len, 64, srp_max_req_size);
goto reject;
}
if (!sport->enabled) {
rej->reason = __constant_cpu_to_be32(
SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
ret = -EINVAL;
printk(KERN_ERR "rejected SRP_LOGIN_REQ because the target port"
" has not yet been enabled\n");
goto reject;
}
if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
spin_lock_irq(&sdev->spinlock);
list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
&& !memcmp(ch->t_port_id, req->target_port_id, 16)
&& param->port == ch->sport->port
&& param->listen_id == ch->sport->sdev->cm_id
&& ch->cm_id) {
enum rdma_ch_state ch_state;
ch_state = srpt_get_ch_state(ch);
if (ch_state != CH_CONNECTING
&& ch_state != CH_LIVE)
continue;
/* found an existing channel */
pr_debug("Found existing channel %s"
" cm_id= %p state= %d\n",
ch->sess_name, ch->cm_id, ch_state);
__srpt_close_ch(ch);
rsp->rsp_flags =
SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
}
}
spin_unlock_irq(&sdev->spinlock);
} else
rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
|| *(__be64 *)(req->target_port_id + 8) !=
cpu_to_be64(srpt_service_guid)) {
rej->reason = __constant_cpu_to_be32(
SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
ret = -ENOMEM;
printk(KERN_ERR "rejected SRP_LOGIN_REQ because it"
" has an invalid target port identifier.\n");
goto reject;
}
ch = kzalloc(sizeof *ch, GFP_KERNEL);
if (!ch) {
rej->reason = __constant_cpu_to_be32(
SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
printk(KERN_ERR "rejected SRP_LOGIN_REQ because no memory.\n");
ret = -ENOMEM;
goto reject;
}
INIT_WORK(&ch->release_work, srpt_release_channel_work);
memcpy(ch->i_port_id, req->initiator_port_id, 16);
memcpy(ch->t_port_id, req->target_port_id, 16);
ch->sport = &sdev->port[param->port - 1];
ch->cm_id = cm_id;
/*
* Avoid QUEUE_FULL conditions by limiting the number of buffers used
* for the SRP protocol to the command queue size.
*/
ch->rq_size = SRPT_RQ_SIZE;
spin_lock_init(&ch->spinlock);
ch->state = CH_CONNECTING;
INIT_LIST_HEAD(&ch->cmd_wait_list);
ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
ch->ioctx_ring = (struct srpt_send_ioctx **)
srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
sizeof(*ch->ioctx_ring[0]),
ch->rsp_size, DMA_TO_DEVICE);
if (!ch->ioctx_ring)
goto free_ch;
INIT_LIST_HEAD(&ch->free_list);
for (i = 0; i < ch->rq_size; i++) {
ch->ioctx_ring[i]->ch = ch;
list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
}
ret = srpt_create_ch_ib(ch);
if (ret) {
rej->reason = __constant_cpu_to_be32(
SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
printk(KERN_ERR "rejected SRP_LOGIN_REQ because creating"
" a new RDMA channel failed.\n");
goto free_ring;
}
ret = srpt_ch_qp_rtr(ch, ch->qp);
if (ret) {
rej->reason = __constant_cpu_to_be32(
SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
printk(KERN_ERR "rejected SRP_LOGIN_REQ because enabling"
" RTR failed (error code = %d)\n", ret);
goto destroy_ib;
}
/*
* Use the initator port identifier as the session name.
*/
snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
be64_to_cpu(*(__be64 *)ch->i_port_id),
be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
pr_debug("registering session %s\n", ch->sess_name);
nacl = srpt_lookup_acl(sport, ch->i_port_id);
if (!nacl) {
printk(KERN_INFO "Rejected login because no ACL has been"
" configured yet for initiator %s.\n", ch->sess_name);
rej->reason = __constant_cpu_to_be32(
SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
goto destroy_ib;
}
ch->sess = transport_init_session();
if (IS_ERR(ch->sess)) {
rej->reason = __constant_cpu_to_be32(
SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
pr_debug("Failed to create session\n");
goto deregister_session;
}
ch->sess->se_node_acl = &nacl->nacl;
transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);
pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
ch->sess_name, ch->cm_id);
/* create srp_login_response */
rsp->opcode = SRP_LOGIN_RSP;
rsp->tag = req->tag;
rsp->max_it_iu_len = req->req_it_iu_len;
rsp->max_ti_iu_len = req->req_it_iu_len;
ch->max_ti_iu_len = it_iu_len;
rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
| SRP_BUF_FORMAT_INDIRECT);
rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
atomic_set(&ch->req_lim, ch->rq_size);
atomic_set(&ch->req_lim_delta, 0);
/* create cm reply */
rep_param->qp_num = ch->qp->qp_num;
rep_param->private_data = (void *)rsp;
rep_param->private_data_len = sizeof *rsp;
rep_param->rnr_retry_count = 7;
rep_param->flow_control = 1;
rep_param->failover_accepted = 0;
rep_param->srq = 1;
rep_param->responder_resources = 4;
rep_param->initiator_depth = 4;
ret = ib_send_cm_rep(cm_id, rep_param);
if (ret) {
printk(KERN_ERR "sending SRP_LOGIN_REQ response failed"
" (error code = %d)\n", ret);
goto release_channel;
}
spin_lock_irq(&sdev->spinlock);
list_add_tail(&ch->list, &sdev->rch_list);
spin_unlock_irq(&sdev->spinlock);
goto out;
release_channel:
srpt_set_ch_state(ch, CH_RELEASING);
transport_deregister_session_configfs(ch->sess);
deregister_session:
transport_deregister_session(ch->sess);
ch->sess = NULL;
destroy_ib:
srpt_destroy_ch_ib(ch);
free_ring:
srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
ch->sport->sdev, ch->rq_size,
ch->rsp_size, DMA_TO_DEVICE);
free_ch:
kfree(ch);
reject:
rej->opcode = SRP_LOGIN_REJ;
rej->tag = req->tag;
rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
| SRP_BUF_FORMAT_INDIRECT);
ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
(void *)rej, sizeof *rej);
out:
kfree(rep_param);
kfree(rsp);
kfree(rej);
return ret;
}
static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
{
printk(KERN_INFO "Received IB REJ for cm_id %p.\n", cm_id);
srpt_drain_channel(cm_id);
}
/**
* srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
*
* An IB_CM_RTU_RECEIVED message indicates that the connection is established
* and that the recipient may begin transmitting (RTU = ready to use).
*/
static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
{
struct srpt_rdma_ch *ch;
int ret;
ch = srpt_find_channel(cm_id->context, cm_id);
BUG_ON(!ch);
if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
ret = srpt_ch_qp_rts(ch, ch->qp);
list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
wait_list) {
list_del(&ioctx->wait_list);
srpt_handle_new_iu(ch, ioctx, NULL);
}
if (ret)
srpt_close_ch(ch);
}
}
static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
{
printk(KERN_INFO "Received IB TimeWait exit for cm_id %p.\n", cm_id);
srpt_drain_channel(cm_id);
}
static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
{
printk(KERN_INFO "Received IB REP error for cm_id %p.\n", cm_id);
srpt_drain_channel(cm_id);
}
/**
* srpt_cm_dreq_recv() - Process reception of a DREQ message.
*/
static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
{
struct srpt_rdma_ch *ch;
unsigned long flags;
bool send_drep = false;
ch = srpt_find_channel(cm_id->context, cm_id);
BUG_ON(!ch);
pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
spin_lock_irqsave(&ch->spinlock, flags);
switch (ch->state) {
case CH_CONNECTING:
case CH_LIVE:
send_drep = true;
ch->state = CH_DISCONNECTING;
break;
case CH_DISCONNECTING:
case CH_DRAINING:
case CH_RELEASING:
WARN(true, "unexpected channel state %d\n", ch->state);
break;
}
spin_unlock_irqrestore(&ch->spinlock, flags);
if (send_drep) {
if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
printk(KERN_ERR "Sending IB DREP failed.\n");
printk(KERN_INFO "Received DREQ and sent DREP for session %s.\n",
ch->sess_name);
}
}
/**
* srpt_cm_drep_recv() - Process reception of a DREP message.
*/
static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
{
printk(KERN_INFO "Received InfiniBand DREP message for cm_id %p.\n",
cm_id);
srpt_drain_channel(cm_id);
}
/**
* srpt_cm_handler() - IB connection manager callback function.
*
* A non-zero return value will cause the caller destroy the CM ID.
*
* Note: srpt_cm_handler() must only return a non-zero value when transferring
* ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
* a non-zero value in any other case will trigger a race with the
* ib_destroy_cm_id() call in srpt_release_channel().
*/
static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
{
int ret;
ret = 0;
switch (event->event) {
case IB_CM_REQ_RECEIVED:
ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
event->private_data);
break;
case IB_CM_REJ_RECEIVED:
srpt_cm_rej_recv(cm_id);
break;
case IB_CM_RTU_RECEIVED:
case IB_CM_USER_ESTABLISHED:
srpt_cm_rtu_recv(cm_id);
break;
case IB_CM_DREQ_RECEIVED:
srpt_cm_dreq_recv(cm_id);
break;
case IB_CM_DREP_RECEIVED:
srpt_cm_drep_recv(cm_id);
break;
case IB_CM_TIMEWAIT_EXIT:
srpt_cm_timewait_exit(cm_id);
break;
case IB_CM_REP_ERROR:
srpt_cm_rep_error(cm_id);
break;
case IB_CM_DREQ_ERROR:
printk(KERN_INFO "Received IB DREQ ERROR event.\n");
break;
case IB_CM_MRA_RECEIVED:
printk(KERN_INFO "Received IB MRA event\n");
break;
default:
printk(KERN_ERR "received unrecognized IB CM event %d\n",
event->event);
break;
}
return ret;
}
/**
* srpt_perform_rdmas() - Perform IB RDMA.
*
* Returns zero upon success or a negative number upon failure.
*/
static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
struct srpt_send_ioctx *ioctx)
{
struct ib_send_wr wr;
struct ib_send_wr *bad_wr;
struct rdma_iu *riu;
int i;
int ret;
int sq_wr_avail;
enum dma_data_direction dir;
const int n_rdma = ioctx->n_rdma;
dir = ioctx->cmd.data_direction;
if (dir == DMA_TO_DEVICE) {
/* write */
ret = -ENOMEM;
sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
if (sq_wr_avail < 0) {
printk(KERN_WARNING "IB send queue full (needed %d)\n",
n_rdma);
goto out;
}
}
ioctx->rdma_aborted = false;
ret = 0;
riu = ioctx->rdma_ius;
memset(&wr, 0, sizeof wr);
for (i = 0; i < n_rdma; ++i, ++riu) {
if (dir == DMA_FROM_DEVICE) {
wr.opcode = IB_WR_RDMA_WRITE;
wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
SRPT_RDMA_WRITE_LAST :
SRPT_RDMA_MID,
ioctx->ioctx.index);
} else {
wr.opcode = IB_WR_RDMA_READ;
wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
SRPT_RDMA_READ_LAST :
SRPT_RDMA_MID,
ioctx->ioctx.index);
}
wr.next = NULL;
wr.wr.rdma.remote_addr = riu->raddr;
wr.wr.rdma.rkey = riu->rkey;
wr.num_sge = riu->sge_cnt;
wr.sg_list = riu->sge;
/* only get completion event for the last rdma write */
if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
wr.send_flags = IB_SEND_SIGNALED;
ret = ib_post_send(ch->qp, &wr, &bad_wr);
if (ret)
break;
}
if (ret)
printk(KERN_ERR "%s[%d]: ib_post_send() returned %d for %d/%d",
__func__, __LINE__, ret, i, n_rdma);
if (ret && i > 0) {
wr.num_sge = 0;
wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
wr.send_flags = IB_SEND_SIGNALED;
while (ch->state == CH_LIVE &&
ib_post_send(ch->qp, &wr, &bad_wr) != 0) {
printk(KERN_INFO "Trying to abort failed RDMA transfer [%d]",
ioctx->ioctx.index);
msleep(1000);
}
while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
printk(KERN_INFO "Waiting until RDMA abort finished [%d]",
ioctx->ioctx.index);
msleep(1000);
}
}
out:
if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
atomic_add(n_rdma, &ch->sq_wr_avail);
return ret;
}
/**
* srpt_xfer_data() - Start data transfer from initiator to target.
*/
static int srpt_xfer_data(struct srpt_rdma_ch *ch,
struct srpt_send_ioctx *ioctx)
{
int ret;
ret = srpt_map_sg_to_ib_sge(ch, ioctx);
if (ret) {
printk(KERN_ERR "%s[%d] ret=%d\n", __func__, __LINE__, ret);
goto out;
}
ret = srpt_perform_rdmas(ch, ioctx);
if (ret) {
if (ret == -EAGAIN || ret == -ENOMEM)
printk(KERN_INFO "%s[%d] queue full -- ret=%d\n",
__func__, __LINE__, ret);
else
printk(KERN_ERR "%s[%d] fatal error -- ret=%d\n",
__func__, __LINE__, ret);
goto out_unmap;
}
out:
return ret;
out_unmap:
srpt_unmap_sg_to_ib_sge(ch, ioctx);
goto out;
}
static int srpt_write_pending_status(struct se_cmd *se_cmd)
{
struct srpt_send_ioctx *ioctx;
ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
}
/*
* srpt_write_pending() - Start data transfer from initiator to target (write).
*/
static int srpt_write_pending(struct se_cmd *se_cmd)
{
struct srpt_rdma_ch *ch;
struct srpt_send_ioctx *ioctx;
enum srpt_command_state new_state;
enum rdma_ch_state ch_state;
int ret;
ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
WARN_ON(new_state == SRPT_STATE_DONE);
ch = ioctx->ch;
BUG_ON(!ch);
ch_state = srpt_get_ch_state(ch);
switch (ch_state) {
case CH_CONNECTING:
WARN(true, "unexpected channel state %d\n", ch_state);
ret = -EINVAL;
goto out;
case CH_LIVE:
break;
case CH_DISCONNECTING:
case CH_DRAINING:
case CH_RELEASING:
pr_debug("cmd with tag %lld: channel disconnecting\n",
ioctx->tag);
srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
ret = -EINVAL;
goto out;
}
ret = srpt_xfer_data(ch, ioctx);
out:
return ret;
}
static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
{
switch (tcm_mgmt_status) {
case TMR_FUNCTION_COMPLETE:
return SRP_TSK_MGMT_SUCCESS;
case TMR_FUNCTION_REJECTED:
return SRP_TSK_MGMT_FUNC_NOT_SUPP;
}
return SRP_TSK_MGMT_FAILED;
}
/**
* srpt_queue_response() - Transmits the response to a SCSI command.
*
* Callback function called by the TCM core. Must not block since it can be
* invoked on the context of the IB completion handler.
*/
static int srpt_queue_response(struct se_cmd *cmd)
{
struct srpt_rdma_ch *ch;
struct srpt_send_ioctx *ioctx;
enum srpt_command_state state;
unsigned long flags;
int ret;
enum dma_data_direction dir;
int resp_len;
u8 srp_tm_status;
ret = 0;
ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
ch = ioctx->ch;
BUG_ON(!ch);
spin_lock_irqsave(&ioctx->spinlock, flags);
state = ioctx->state;
switch (state) {
case SRPT_STATE_NEW:
case SRPT_STATE_DATA_IN:
ioctx->state = SRPT_STATE_CMD_RSP_SENT;
break;
case SRPT_STATE_MGMT:
ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
break;
default:
WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
ch, ioctx->ioctx.index, ioctx->state);
break;
}
spin_unlock_irqrestore(&ioctx->spinlock, flags);
if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
|| WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
atomic_inc(&ch->req_lim_delta);
srpt_abort_cmd(ioctx);
goto out;
}
dir = ioctx->cmd.data_direction;
/* For read commands, transfer the data to the initiator. */
if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
!ioctx->queue_status_only) {
ret = srpt_xfer_data(ch, ioctx);
if (ret) {
printk(KERN_ERR "xfer_data failed for tag %llu\n",
ioctx->tag);
goto out;
}
}
if (state != SRPT_STATE_MGMT)
resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag,
cmd->scsi_status);
else {
srp_tm_status
= tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
ioctx->tag);
}
ret = srpt_post_send(ch, ioctx, resp_len);
if (ret) {
printk(KERN_ERR "sending cmd response failed for tag %llu\n",
ioctx->tag);
srpt_unmap_sg_to_ib_sge(ch, ioctx);
srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
}
out:
return ret;
}
static int srpt_queue_status(struct se_cmd *cmd)
{
struct srpt_send_ioctx *ioctx;
ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
BUG_ON(ioctx->sense_data != cmd->sense_buffer);
if (cmd->se_cmd_flags &
(SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
ioctx->queue_status_only = true;
return srpt_queue_response(cmd);
}
static void srpt_refresh_port_work(struct work_struct *work)
{
struct srpt_port *sport = container_of(work, struct srpt_port, work);
srpt_refresh_port(sport);
}
static int srpt_ch_list_empty(struct srpt_device *sdev)
{
int res;
spin_lock_irq(&sdev->spinlock);
res = list_empty(&sdev->rch_list);
spin_unlock_irq(&sdev->spinlock);
return res;
}
/**
* srpt_release_sdev() - Free the channel resources associated with a target.
*/
static int srpt_release_sdev(struct srpt_device *sdev)
{
struct srpt_rdma_ch *ch, *tmp_ch;
int res;
WARN_ON_ONCE(irqs_disabled());
BUG_ON(!sdev);
spin_lock_irq(&sdev->spinlock);
list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
__srpt_close_ch(ch);
spin_unlock_irq(&sdev->spinlock);
res = wait_event_interruptible(sdev->ch_releaseQ,
srpt_ch_list_empty(sdev));
if (res)
printk(KERN_ERR "%s: interrupted.\n", __func__);
return 0;
}
static struct srpt_port *__srpt_lookup_port(const char *name)
{
struct ib_device *dev;
struct srpt_device *sdev;
struct srpt_port *sport;
int i;
list_for_each_entry(sdev, &srpt_dev_list, list) {
dev = sdev->device;
if (!dev)
continue;
for (i = 0; i < dev->phys_port_cnt; i++) {
sport = &sdev->port[i];
if (!strcmp(sport->port_guid, name))
return sport;
}
}
return NULL;
}
static struct srpt_port *srpt_lookup_port(const char *name)
{
struct srpt_port *sport;
spin_lock(&srpt_dev_lock);
sport = __srpt_lookup_port(name);
spin_unlock(&srpt_dev_lock);
return sport;
}
/**
* srpt_add_one() - Infiniband device addition callback function.
*/
static void srpt_add_one(struct ib_device *device)
{
struct srpt_device *sdev;
struct srpt_port *sport;
struct ib_srq_init_attr srq_attr;
int i;
pr_debug("device = %p, device->dma_ops = %p\n", device,
device->dma_ops);
sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
if (!sdev)
goto err;
sdev->device = device;
INIT_LIST_HEAD(&sdev->rch_list);
init_waitqueue_head(&sdev->ch_releaseQ);
spin_lock_init(&sdev->spinlock);
if (ib_query_device(device, &sdev->dev_attr))
goto free_dev;
sdev->pd = ib_alloc_pd(device);
if (IS_ERR(sdev->pd))
goto free_dev;
sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE);
if (IS_ERR(sdev->mr))
goto err_pd;
sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);
srq_attr.event_handler = srpt_srq_event;
srq_attr.srq_context = (void *)sdev;
srq_attr.attr.max_wr = sdev->srq_size;
srq_attr.attr.max_sge = 1;
srq_attr.attr.srq_limit = 0;
srq_attr.srq_type = IB_SRQT_BASIC;
sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
if (IS_ERR(sdev->srq))
goto err_mr;
pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
__func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
device->name);
if (!srpt_service_guid)
srpt_service_guid = be64_to_cpu(device->node_guid);
sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
if (IS_ERR(sdev->cm_id))
goto err_srq;
/* print out target login information */
pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
"pkey=ffff,service_id=%016llx\n", srpt_service_guid,
srpt_service_guid, srpt_service_guid);
/*
* We do not have a consistent service_id (ie. also id_ext of target_id)
* to identify this target. We currently use the guid of the first HCA
* in the system as service_id; therefore, the target_id will change
* if this HCA is gone bad and replaced by different HCA
*/
if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL))
goto err_cm;
INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
srpt_event_handler);
if (ib_register_event_handler(&sdev->event_handler))
goto err_cm;
sdev->ioctx_ring = (struct srpt_recv_ioctx **)
srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
sizeof(*sdev->ioctx_ring[0]),
srp_max_req_size, DMA_FROM_DEVICE);
if (!sdev->ioctx_ring)
goto err_event;
for (i = 0; i < sdev->srq_size; ++i)
srpt_post_recv(sdev, sdev->ioctx_ring[i]);
WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
sport = &sdev->port[i - 1];
sport->sdev = sdev;
sport->port = i;
sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
INIT_WORK(&sport->work, srpt_refresh_port_work);
INIT_LIST_HEAD(&sport->port_acl_list);
spin_lock_init(&sport->port_acl_lock);
if (srpt_refresh_port(sport)) {
printk(KERN_ERR "MAD registration failed for %s-%d.\n",
srpt_sdev_name(sdev), i);
goto err_ring;
}
snprintf(sport->port_guid, sizeof(sport->port_guid),
"0x%016llx%016llx",
be64_to_cpu(sport->gid.global.subnet_prefix),
be64_to_cpu(sport->gid.global.interface_id));
}
spin_lock(&srpt_dev_lock);
list_add_tail(&sdev->list, &srpt_dev_list);
spin_unlock(&srpt_dev_lock);
out:
ib_set_client_data(device, &srpt_client, sdev);
pr_debug("added %s.\n", device->name);
return;
err_ring:
srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
sdev->srq_size, srp_max_req_size,
DMA_FROM_DEVICE);
err_event:
ib_unregister_event_handler(&sdev->event_handler);
err_cm:
ib_destroy_cm_id(sdev->cm_id);
err_srq:
ib_destroy_srq(sdev->srq);
err_mr:
ib_dereg_mr(sdev->mr);
err_pd:
ib_dealloc_pd(sdev->pd);
free_dev:
kfree(sdev);
err:
sdev = NULL;
printk(KERN_INFO "%s(%s) failed.\n", __func__, device->name);
goto out;
}
/**
* srpt_remove_one() - InfiniBand device removal callback function.
*/
static void srpt_remove_one(struct ib_device *device)
{
struct srpt_device *sdev;
int i;
sdev = ib_get_client_data(device, &srpt_client);
if (!sdev) {
printk(KERN_INFO "%s(%s): nothing to do.\n", __func__,
device->name);
return;
}
srpt_unregister_mad_agent(sdev);
ib_unregister_event_handler(&sdev->event_handler);
/* Cancel any work queued by the just unregistered IB event handler. */
for (i = 0; i < sdev->device->phys_port_cnt; i++)
cancel_work_sync(&sdev->port[i].work);
ib_destroy_cm_id(sdev->cm_id);
/*
* Unregistering a target must happen after destroying sdev->cm_id
* such that no new SRP_LOGIN_REQ information units can arrive while
* destroying the target.
*/
spin_lock(&srpt_dev_lock);
list_del(&sdev->list);
spin_unlock(&srpt_dev_lock);
srpt_release_sdev(sdev);
ib_destroy_srq(sdev->srq);
ib_dereg_mr(sdev->mr);
ib_dealloc_pd(sdev->pd);
srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
sdev->ioctx_ring = NULL;
kfree(sdev);
}
static struct ib_client srpt_client = {
.name = DRV_NAME,
.add = srpt_add_one,
.remove = srpt_remove_one
};
static int srpt_check_true(struct se_portal_group *se_tpg)
{
return 1;
}
static int srpt_check_false(struct se_portal_group *se_tpg)
{
return 0;
}
static char *srpt_get_fabric_name(void)
{
return "srpt";
}
static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg)
{
return SCSI_TRANSPORTID_PROTOCOLID_SRP;
}
static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
{
struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
return sport->port_guid;
}
static u16 srpt_get_tag(struct se_portal_group *tpg)
{
return 1;
}
static u32 srpt_get_default_depth(struct se_portal_group *se_tpg)
{
return 1;
}
static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg,
struct se_node_acl *se_nacl,
struct t10_pr_registration *pr_reg,
int *format_code, unsigned char *buf)
{
struct srpt_node_acl *nacl;
struct spc_rdma_transport_id *tr_id;
nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
tr_id = (void *)buf;
tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP;
memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id));
return sizeof(*tr_id);
}
static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg,
struct se_node_acl *se_nacl,
struct t10_pr_registration *pr_reg,
int *format_code)
{
*format_code = 0;
return sizeof(struct spc_rdma_transport_id);
}
static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg,
const char *buf, u32 *out_tid_len,
char **port_nexus_ptr)
{
struct spc_rdma_transport_id *tr_id;
*port_nexus_ptr = NULL;
*out_tid_len = sizeof(struct spc_rdma_transport_id);
tr_id = (void *)buf;
return (char *)tr_id->i_port_id;
}
static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg)
{
struct srpt_node_acl *nacl;
nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL);
if (!nacl) {
printk(KERN_ERR "Unable to allocate struct srpt_node_acl\n");
return NULL;
}
return &nacl->nacl;
}
static void srpt_release_fabric_acl(struct se_portal_group *se_tpg,
struct se_node_acl *se_nacl)
{
struct srpt_node_acl *nacl;
nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
kfree(nacl);
}
static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
{
return 1;
}
static void srpt_release_cmd(struct se_cmd *se_cmd)
{
}
/**
* srpt_shutdown_session() - Whether or not a session may be shut down.
*/
static int srpt_shutdown_session(struct se_session *se_sess)
{
return true;
}
/**
* srpt_close_session() - Forcibly close a session.
*
* Callback function invoked by the TCM core to clean up sessions associated
* with a node ACL when the user invokes
* rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
*/
static void srpt_close_session(struct se_session *se_sess)
{
DECLARE_COMPLETION_ONSTACK(release_done);
struct srpt_rdma_ch *ch;
struct srpt_device *sdev;
int res;
ch = se_sess->fabric_sess_ptr;
WARN_ON(ch->sess != se_sess);
pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
sdev = ch->sport->sdev;
spin_lock_irq(&sdev->spinlock);
BUG_ON(ch->release_done);
ch->release_done = &release_done;
__srpt_close_ch(ch);
spin_unlock_irq(&sdev->spinlock);
res = wait_for_completion_timeout(&release_done, 60 * HZ);
WARN_ON(res <= 0);
}
/**
* srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
*
* A quote from RFC 4455 (SCSI-MIB) about this MIB object:
* This object represents an arbitrary integer used to uniquely identify a
* particular attached remote initiator port to a particular SCSI target port
* within a particular SCSI target device within a particular SCSI instance.
*/
static u32 srpt_sess_get_index(struct se_session *se_sess)
{
return 0;
}
static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
{
}
static u32 srpt_get_task_tag(struct se_cmd *se_cmd)
{
struct srpt_send_ioctx *ioctx;
ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
return ioctx->tag;
}
/* Note: only used from inside debug printk's by the TCM core. */
static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
{
struct srpt_send_ioctx *ioctx;
ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
return srpt_get_cmd_state(ioctx);
}
/**
* srpt_parse_i_port_id() - Parse an initiator port ID.
* @name: ASCII representation of a 128-bit initiator port ID.
* @i_port_id: Binary 128-bit port ID.
*/
static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
{
const char *p;
unsigned len, count, leading_zero_bytes;
int ret, rc;
p = name;
if (strnicmp(p, "0x", 2) == 0)
p += 2;
ret = -EINVAL;
len = strlen(p);
if (len % 2)
goto out;
count = min(len / 2, 16U);
leading_zero_bytes = 16 - count;
memset(i_port_id, 0, leading_zero_bytes);
rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
if (rc < 0)
pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
ret = 0;
out:
return ret;
}
/*
* configfs callback function invoked for
* mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
*/
static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg,
struct config_group *group,
const char *name)
{
struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
struct se_node_acl *se_nacl, *se_nacl_new;
struct srpt_node_acl *nacl;
int ret = 0;
u32 nexus_depth = 1;
u8 i_port_id[16];
if (srpt_parse_i_port_id(i_port_id, name) < 0) {
printk(KERN_ERR "invalid initiator port ID %s\n", name);
ret = -EINVAL;
goto err;
}
se_nacl_new = srpt_alloc_fabric_acl(tpg);
if (!se_nacl_new) {
ret = -ENOMEM;
goto err;
}
/*
* nacl_new may be released by core_tpg_add_initiator_node_acl()
* when converting a node ACL from demo mode to explict
*/
se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name,
nexus_depth);
if (IS_ERR(se_nacl)) {
ret = PTR_ERR(se_nacl);
goto err;
}
/* Locate our struct srpt_node_acl and set sdev and i_port_id. */
nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
memcpy(&nacl->i_port_id[0], &i_port_id[0], 16);
nacl->sport = sport;
spin_lock_irq(&sport->port_acl_lock);
list_add_tail(&nacl->list, &sport->port_acl_list);
spin_unlock_irq(&sport->port_acl_lock);
return se_nacl;
err:
return ERR_PTR(ret);
}
/*
* configfs callback function invoked for
* rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
*/
static void srpt_drop_nodeacl(struct se_node_acl *se_nacl)
{
struct srpt_node_acl *nacl;
struct srpt_device *sdev;
struct srpt_port *sport;
nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
sport = nacl->sport;
sdev = sport->sdev;
spin_lock_irq(&sport->port_acl_lock);
list_del(&nacl->list);
spin_unlock_irq(&sport->port_acl_lock);
core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1);
srpt_release_fabric_acl(NULL, se_nacl);
}
static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size(
struct se_portal_group *se_tpg,
char *page)
{
struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
}
static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size(
struct se_portal_group *se_tpg,
const char *page,
size_t count)
{
struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
unsigned long val;
int ret;
ret = strict_strtoul(page, 0, &val);
if (ret < 0) {
pr_err("strict_strtoul() failed with ret: %d\n", ret);
return -EINVAL;
}
if (val > MAX_SRPT_RDMA_SIZE) {
pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
MAX_SRPT_RDMA_SIZE);
return -EINVAL;
}
if (val < DEFAULT_MAX_RDMA_SIZE) {
pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
val, DEFAULT_MAX_RDMA_SIZE);
return -EINVAL;
}
sport->port_attrib.srp_max_rdma_size = val;
return count;
}
TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR);
static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size(
struct se_portal_group *se_tpg,
char *page)
{
struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
}
static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size(
struct se_portal_group *se_tpg,
const char *page,
size_t count)
{
struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
unsigned long val;
int ret;
ret = strict_strtoul(page, 0, &val);
if (ret < 0) {
pr_err("strict_strtoul() failed with ret: %d\n", ret);
return -EINVAL;
}
if (val > MAX_SRPT_RSP_SIZE) {
pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
MAX_SRPT_RSP_SIZE);
return -EINVAL;
}
if (val < MIN_MAX_RSP_SIZE) {
pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
MIN_MAX_RSP_SIZE);
return -EINVAL;
}
sport->port_attrib.srp_max_rsp_size = val;
return count;
}
TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR);
static ssize_t srpt_tpg_attrib_show_srp_sq_size(
struct se_portal_group *se_tpg,
char *page)
{
struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
}
static ssize_t srpt_tpg_attrib_store_srp_sq_size(
struct se_portal_group *se_tpg,
const char *page,
size_t count)
{
struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
unsigned long val;
int ret;
ret = strict_strtoul(page, 0, &val);
if (ret < 0) {
pr_err("strict_strtoul() failed with ret: %d\n", ret);
return -EINVAL;
}
if (val > MAX_SRPT_SRQ_SIZE) {
pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
MAX_SRPT_SRQ_SIZE);
return -EINVAL;
}
if (val < MIN_SRPT_SRQ_SIZE) {
pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
MIN_SRPT_SRQ_SIZE);
return -EINVAL;
}
sport->port_attrib.srp_sq_size = val;
return count;
}
TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR);
static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
&srpt_tpg_attrib_srp_max_rdma_size.attr,
&srpt_tpg_attrib_srp_max_rsp_size.attr,
&srpt_tpg_attrib_srp_sq_size.attr,
NULL,
};
static ssize_t srpt_tpg_show_enable(
struct se_portal_group *se_tpg,
char *page)
{
struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
}
static ssize_t srpt_tpg_store_enable(
struct se_portal_group *se_tpg,
const char *page,
size_t count)
{
struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
unsigned long tmp;
int ret;
ret = strict_strtoul(page, 0, &tmp);
if (ret < 0) {
printk(KERN_ERR "Unable to extract srpt_tpg_store_enable\n");
return -EINVAL;
}
if ((tmp != 0) && (tmp != 1)) {
printk(KERN_ERR "Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
return -EINVAL;
}
if (tmp == 1)
sport->enabled = true;
else
sport->enabled = false;
return count;
}
TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR);
static struct configfs_attribute *srpt_tpg_attrs[] = {
&srpt_tpg_enable.attr,
NULL,
};
/**
* configfs callback invoked for
* mkdir /sys/kernel/config/target/$driver/$port/$tpg
*/
static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
struct config_group *group,
const char *name)
{
struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
int res;
/* Initialize sport->port_wwn and sport->port_tpg_1 */
res = core_tpg_register(&srpt_target->tf_ops, &sport->port_wwn,
&sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL);
if (res)
return ERR_PTR(res);
return &sport->port_tpg_1;
}
/**
* configfs callback invoked for
* rmdir /sys/kernel/config/target/$driver/$port/$tpg
*/
static void srpt_drop_tpg(struct se_portal_group *tpg)
{
struct srpt_port *sport = container_of(tpg,
struct srpt_port, port_tpg_1);
sport->enabled = false;
core_tpg_deregister(&sport->port_tpg_1);
}
/**
* configfs callback invoked for
* mkdir /sys/kernel/config/target/$driver/$port
*/
static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
struct config_group *group,
const char *name)
{
struct srpt_port *sport;
int ret;
sport = srpt_lookup_port(name);
pr_debug("make_tport(%s)\n", name);
ret = -EINVAL;
if (!sport)
goto err;
return &sport->port_wwn;
err:
return ERR_PTR(ret);
}
/**
* configfs callback invoked for
* rmdir /sys/kernel/config/target/$driver/$port
*/
static void srpt_drop_tport(struct se_wwn *wwn)
{
struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
}
static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf,
char *buf)
{
return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
}
TF_WWN_ATTR_RO(srpt, version);
static struct configfs_attribute *srpt_wwn_attrs[] = {
&srpt_wwn_version.attr,
NULL,
};
static struct target_core_fabric_ops srpt_template = {
.get_fabric_name = srpt_get_fabric_name,
.get_fabric_proto_ident = srpt_get_fabric_proto_ident,
.tpg_get_wwn = srpt_get_fabric_wwn,
.tpg_get_tag = srpt_get_tag,
.tpg_get_default_depth = srpt_get_default_depth,
.tpg_get_pr_transport_id = srpt_get_pr_transport_id,
.tpg_get_pr_transport_id_len = srpt_get_pr_transport_id_len,
.tpg_parse_pr_out_transport_id = srpt_parse_pr_out_transport_id,
.tpg_check_demo_mode = srpt_check_false,
.tpg_check_demo_mode_cache = srpt_check_true,
.tpg_check_demo_mode_write_protect = srpt_check_true,
.tpg_check_prod_mode_write_protect = srpt_check_false,
.tpg_alloc_fabric_acl = srpt_alloc_fabric_acl,
.tpg_release_fabric_acl = srpt_release_fabric_acl,
.tpg_get_inst_index = srpt_tpg_get_inst_index,
.release_cmd = srpt_release_cmd,
.check_stop_free = srpt_check_stop_free,
.shutdown_session = srpt_shutdown_session,
.close_session = srpt_close_session,
.sess_get_index = srpt_sess_get_index,
.sess_get_initiator_sid = NULL,
.write_pending = srpt_write_pending,
.write_pending_status = srpt_write_pending_status,
.set_default_node_attributes = srpt_set_default_node_attrs,
.get_task_tag = srpt_get_task_tag,
.get_cmd_state = srpt_get_tcm_cmd_state,
.queue_data_in = srpt_queue_response,
.queue_status = srpt_queue_status,
.queue_tm_rsp = srpt_queue_response,
/*
* Setup function pointers for generic logic in
* target_core_fabric_configfs.c
*/
.fabric_make_wwn = srpt_make_tport,
.fabric_drop_wwn = srpt_drop_tport,
.fabric_make_tpg = srpt_make_tpg,
.fabric_drop_tpg = srpt_drop_tpg,
.fabric_post_link = NULL,
.fabric_pre_unlink = NULL,
.fabric_make_np = NULL,
.fabric_drop_np = NULL,
.fabric_make_nodeacl = srpt_make_nodeacl,
.fabric_drop_nodeacl = srpt_drop_nodeacl,
};
/**
* srpt_init_module() - Kernel module initialization.
*
* Note: Since ib_register_client() registers callback functions, and since at
* least one of these callback functions (srpt_add_one()) calls target core
* functions, this driver must be registered with the target core before
* ib_register_client() is called.
*/
static int __init srpt_init_module(void)
{
int ret;
ret = -EINVAL;
if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
printk(KERN_ERR "invalid value %d for kernel module parameter"
" srp_max_req_size -- must be at least %d.\n",
srp_max_req_size, MIN_MAX_REQ_SIZE);
goto out;
}
if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
|| srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
printk(KERN_ERR "invalid value %d for kernel module parameter"
" srpt_srq_size -- must be in the range [%d..%d].\n",
srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
goto out;
}
srpt_target = target_fabric_configfs_init(THIS_MODULE, "srpt");
if (IS_ERR(srpt_target)) {
printk(KERN_ERR "couldn't register\n");
ret = PTR_ERR(srpt_target);
goto out;
}
srpt_target->tf_ops = srpt_template;
/*
* Set up default attribute lists.
*/
srpt_target->tf_cit_tmpl.tfc_wwn_cit.ct_attrs = srpt_wwn_attrs;
srpt_target->tf_cit_tmpl.tfc_tpg_base_cit.ct_attrs = srpt_tpg_attrs;
srpt_target->tf_cit_tmpl.tfc_tpg_attrib_cit.ct_attrs = srpt_tpg_attrib_attrs;
srpt_target->tf_cit_tmpl.tfc_tpg_param_cit.ct_attrs = NULL;
srpt_target->tf_cit_tmpl.tfc_tpg_np_base_cit.ct_attrs = NULL;
srpt_target->tf_cit_tmpl.tfc_tpg_nacl_base_cit.ct_attrs = NULL;
srpt_target->tf_cit_tmpl.tfc_tpg_nacl_attrib_cit.ct_attrs = NULL;
srpt_target->tf_cit_tmpl.tfc_tpg_nacl_auth_cit.ct_attrs = NULL;
srpt_target->tf_cit_tmpl.tfc_tpg_nacl_param_cit.ct_attrs = NULL;
ret = target_fabric_configfs_register(srpt_target);
if (ret < 0) {
printk(KERN_ERR "couldn't register\n");
goto out_free_target;
}
ret = ib_register_client(&srpt_client);
if (ret) {
printk(KERN_ERR "couldn't register IB client\n");
goto out_unregister_target;
}
return 0;
out_unregister_target:
target_fabric_configfs_deregister(srpt_target);
srpt_target = NULL;
out_free_target:
if (srpt_target)
target_fabric_configfs_free(srpt_target);
out:
return ret;
}
static void __exit srpt_cleanup_module(void)
{
ib_unregister_client(&srpt_client);
target_fabric_configfs_deregister(srpt_target);
srpt_target = NULL;
}
module_init(srpt_init_module);
module_exit(srpt_cleanup_module);