blob: e6bd8e57d92d81fd4047702dc05d2ea39751c86b [file] [log] [blame]
/*
* File: msi.c
* Purpose: PCI Message Signaled Interrupt (MSI)
*
* Copyright (C) 2003-2004 Intel
* Copyright (C) Tom Long Nguyen (tom.l.nguyen@intel.com)
*/
#include <linux/err.h>
#include <linux/mm.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/export.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/msi.h>
#include <linux/smp.h>
#include <linux/errno.h>
#include <linux/io.h>
#include <linux/slab.h>
#include "pci.h"
static int pci_msi_enable = 1;
#define msix_table_size(flags) ((flags & PCI_MSIX_FLAGS_QSIZE) + 1)
/* Arch hooks */
int __weak arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
{
struct msi_chip *chip = dev->bus->msi;
int err;
if (!chip || !chip->setup_irq)
return -EINVAL;
err = chip->setup_irq(chip, dev, desc);
if (err < 0)
return err;
irq_set_chip_data(desc->irq, chip);
return 0;
}
void __weak arch_teardown_msi_irq(unsigned int irq)
{
struct msi_chip *chip = irq_get_chip_data(irq);
if (!chip || !chip->teardown_irq)
return;
chip->teardown_irq(chip, irq);
}
int __weak arch_msi_check_device(struct pci_dev *dev, int nvec, int type)
{
struct msi_chip *chip = dev->bus->msi;
if (!chip || !chip->check_device)
return 0;
return chip->check_device(chip, dev, nvec, type);
}
int __weak arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
{
struct msi_desc *entry;
int ret;
/*
* If an architecture wants to support multiple MSI, it needs to
* override arch_setup_msi_irqs()
*/
if (type == PCI_CAP_ID_MSI && nvec > 1)
return 1;
list_for_each_entry(entry, &dev->msi_list, list) {
ret = arch_setup_msi_irq(dev, entry);
if (ret < 0)
return ret;
if (ret > 0)
return -ENOSPC;
}
return 0;
}
/*
* We have a default implementation available as a separate non-weak
* function, as it is used by the Xen x86 PCI code
*/
void default_teardown_msi_irqs(struct pci_dev *dev)
{
struct msi_desc *entry;
list_for_each_entry(entry, &dev->msi_list, list) {
int i, nvec;
if (entry->irq == 0)
continue;
if (entry->nvec_used)
nvec = entry->nvec_used;
else
nvec = 1 << entry->msi_attrib.multiple;
for (i = 0; i < nvec; i++)
arch_teardown_msi_irq(entry->irq + i);
}
}
void __weak arch_teardown_msi_irqs(struct pci_dev *dev)
{
return default_teardown_msi_irqs(dev);
}
void default_restore_msi_irqs(struct pci_dev *dev, int irq)
{
struct msi_desc *entry;
entry = NULL;
if (dev->msix_enabled) {
list_for_each_entry(entry, &dev->msi_list, list) {
if (irq == entry->irq)
break;
}
} else if (dev->msi_enabled) {
entry = irq_get_msi_desc(irq);
}
if (entry)
write_msi_msg(irq, &entry->msg);
}
void __weak arch_restore_msi_irqs(struct pci_dev *dev, int irq)
{
return default_restore_msi_irqs(dev, irq);
}
static void msi_set_enable(struct pci_dev *dev, int enable)
{
u16 control;
pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
control &= ~PCI_MSI_FLAGS_ENABLE;
if (enable)
control |= PCI_MSI_FLAGS_ENABLE;
pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control);
}
static void msix_set_enable(struct pci_dev *dev, int enable)
{
u16 control;
pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control);
control &= ~PCI_MSIX_FLAGS_ENABLE;
if (enable)
control |= PCI_MSIX_FLAGS_ENABLE;
pci_write_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, control);
}
static inline __attribute_const__ u32 msi_mask(unsigned x)
{
/* Don't shift by >= width of type */
if (x >= 5)
return 0xffffffff;
return (1 << (1 << x)) - 1;
}
static inline __attribute_const__ u32 msi_capable_mask(u16 control)
{
return msi_mask((control >> 1) & 7);
}
static inline __attribute_const__ u32 msi_enabled_mask(u16 control)
{
return msi_mask((control >> 4) & 7);
}
/*
* PCI 2.3 does not specify mask bits for each MSI interrupt. Attempting to
* mask all MSI interrupts by clearing the MSI enable bit does not work
* reliably as devices without an INTx disable bit will then generate a
* level IRQ which will never be cleared.
*/
u32 default_msi_mask_irq(struct msi_desc *desc, u32 mask, u32 flag)
{
u32 mask_bits = desc->masked;
if (!desc->msi_attrib.maskbit)
return 0;
mask_bits &= ~mask;
mask_bits |= flag;
pci_write_config_dword(desc->dev, desc->mask_pos, mask_bits);
return mask_bits;
}
__weak u32 arch_msi_mask_irq(struct msi_desc *desc, u32 mask, u32 flag)
{
return default_msi_mask_irq(desc, mask, flag);
}
static void msi_mask_irq(struct msi_desc *desc, u32 mask, u32 flag)
{
desc->masked = arch_msi_mask_irq(desc, mask, flag);
}
/*
* This internal function does not flush PCI writes to the device.
* All users must ensure that they read from the device before either
* assuming that the device state is up to date, or returning out of this
* file. This saves a few milliseconds when initialising devices with lots
* of MSI-X interrupts.
*/
u32 default_msix_mask_irq(struct msi_desc *desc, u32 flag)
{
u32 mask_bits = desc->masked;
unsigned offset = desc->msi_attrib.entry_nr * PCI_MSIX_ENTRY_SIZE +
PCI_MSIX_ENTRY_VECTOR_CTRL;
mask_bits &= ~PCI_MSIX_ENTRY_CTRL_MASKBIT;
if (flag)
mask_bits |= PCI_MSIX_ENTRY_CTRL_MASKBIT;
writel(mask_bits, desc->mask_base + offset);
return mask_bits;
}
__weak u32 arch_msix_mask_irq(struct msi_desc *desc, u32 flag)
{
return default_msix_mask_irq(desc, flag);
}
static void msix_mask_irq(struct msi_desc *desc, u32 flag)
{
desc->masked = arch_msix_mask_irq(desc, flag);
}
static void msi_set_mask_bit(struct irq_data *data, u32 flag)
{
struct msi_desc *desc = irq_data_get_msi(data);
if (desc->msi_attrib.is_msix) {
msix_mask_irq(desc, flag);
readl(desc->mask_base); /* Flush write to device */
} else {
unsigned offset = data->irq - desc->dev->irq;
msi_mask_irq(desc, 1 << offset, flag << offset);
}
}
void mask_msi_irq(struct irq_data *data)
{
msi_set_mask_bit(data, 1);
}
void unmask_msi_irq(struct irq_data *data)
{
msi_set_mask_bit(data, 0);
}
void __read_msi_msg(struct msi_desc *entry, struct msi_msg *msg)
{
BUG_ON(entry->dev->current_state != PCI_D0);
if (entry->msi_attrib.is_msix) {
void __iomem *base = entry->mask_base +
entry->msi_attrib.entry_nr * PCI_MSIX_ENTRY_SIZE;
msg->address_lo = readl(base + PCI_MSIX_ENTRY_LOWER_ADDR);
msg->address_hi = readl(base + PCI_MSIX_ENTRY_UPPER_ADDR);
msg->data = readl(base + PCI_MSIX_ENTRY_DATA);
} else {
struct pci_dev *dev = entry->dev;
int pos = dev->msi_cap;
u16 data;
pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_LO,
&msg->address_lo);
if (entry->msi_attrib.is_64) {
pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_HI,
&msg->address_hi);
pci_read_config_word(dev, pos + PCI_MSI_DATA_64, &data);
} else {
msg->address_hi = 0;
pci_read_config_word(dev, pos + PCI_MSI_DATA_32, &data);
}
msg->data = data;
}
}
void read_msi_msg(unsigned int irq, struct msi_msg *msg)
{
struct msi_desc *entry = irq_get_msi_desc(irq);
__read_msi_msg(entry, msg);
}
void __get_cached_msi_msg(struct msi_desc *entry, struct msi_msg *msg)
{
/* Assert that the cache is valid, assuming that
* valid messages are not all-zeroes. */
BUG_ON(!(entry->msg.address_hi | entry->msg.address_lo |
entry->msg.data));
*msg = entry->msg;
}
void get_cached_msi_msg(unsigned int irq, struct msi_msg *msg)
{
struct msi_desc *entry = irq_get_msi_desc(irq);
__get_cached_msi_msg(entry, msg);
}
void __write_msi_msg(struct msi_desc *entry, struct msi_msg *msg)
{
if (entry->dev->current_state != PCI_D0) {
/* Don't touch the hardware now */
} else if (entry->msi_attrib.is_msix) {
void __iomem *base;
base = entry->mask_base +
entry->msi_attrib.entry_nr * PCI_MSIX_ENTRY_SIZE;
writel(msg->address_lo, base + PCI_MSIX_ENTRY_LOWER_ADDR);
writel(msg->address_hi, base + PCI_MSIX_ENTRY_UPPER_ADDR);
writel(msg->data, base + PCI_MSIX_ENTRY_DATA);
} else {
struct pci_dev *dev = entry->dev;
int pos = dev->msi_cap;
u16 msgctl;
pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &msgctl);
msgctl &= ~PCI_MSI_FLAGS_QSIZE;
msgctl |= entry->msi_attrib.multiple << 4;
pci_write_config_word(dev, pos + PCI_MSI_FLAGS, msgctl);
pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_LO,
msg->address_lo);
if (entry->msi_attrib.is_64) {
pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_HI,
msg->address_hi);
pci_write_config_word(dev, pos + PCI_MSI_DATA_64,
msg->data);
} else {
pci_write_config_word(dev, pos + PCI_MSI_DATA_32,
msg->data);
}
}
entry->msg = *msg;
}
void write_msi_msg(unsigned int irq, struct msi_msg *msg)
{
struct msi_desc *entry = irq_get_msi_desc(irq);
__write_msi_msg(entry, msg);
}
static void free_msi_irqs(struct pci_dev *dev)
{
struct msi_desc *entry, *tmp;
struct attribute **msi_attrs;
struct device_attribute *dev_attr;
int count = 0;
list_for_each_entry(entry, &dev->msi_list, list) {
int i, nvec;
if (!entry->irq)
continue;
if (entry->nvec_used)
nvec = entry->nvec_used;
else
nvec = 1 << entry->msi_attrib.multiple;
for (i = 0; i < nvec; i++)
BUG_ON(irq_has_action(entry->irq + i));
}
arch_teardown_msi_irqs(dev);
list_for_each_entry_safe(entry, tmp, &dev->msi_list, list) {
if (entry->msi_attrib.is_msix) {
if (list_is_last(&entry->list, &dev->msi_list))
iounmap(entry->mask_base);
}
/*
* Its possible that we get into this path
* When populate_msi_sysfs fails, which means the entries
* were not registered with sysfs. In that case don't
* unregister them.
*/
if (entry->kobj.parent) {
kobject_del(&entry->kobj);
kobject_put(&entry->kobj);
}
list_del(&entry->list);
kfree(entry);
}
if (dev->msi_irq_groups) {
sysfs_remove_groups(&dev->dev.kobj, dev->msi_irq_groups);
msi_attrs = dev->msi_irq_groups[0]->attrs;
list_for_each_entry(entry, &dev->msi_list, list) {
dev_attr = container_of(msi_attrs[count],
struct device_attribute, attr);
kfree(dev_attr->attr.name);
kfree(dev_attr);
++count;
}
kfree(msi_attrs);
kfree(dev->msi_irq_groups[0]);
kfree(dev->msi_irq_groups);
dev->msi_irq_groups = NULL;
}
}
static struct msi_desc *alloc_msi_entry(struct pci_dev *dev)
{
struct msi_desc *desc = kzalloc(sizeof(*desc), GFP_KERNEL);
if (!desc)
return NULL;
INIT_LIST_HEAD(&desc->list);
desc->dev = dev;
return desc;
}
static void pci_intx_for_msi(struct pci_dev *dev, int enable)
{
if (!(dev->dev_flags & PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG))
pci_intx(dev, enable);
}
static void __pci_restore_msi_state(struct pci_dev *dev)
{
u16 control;
struct msi_desc *entry;
if (!dev->msi_enabled)
return;
entry = irq_get_msi_desc(dev->irq);
pci_intx_for_msi(dev, 0);
msi_set_enable(dev, 0);
arch_restore_msi_irqs(dev, dev->irq);
pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
msi_mask_irq(entry, msi_capable_mask(control), entry->masked);
control &= ~PCI_MSI_FLAGS_QSIZE;
control |= (entry->msi_attrib.multiple << 4) | PCI_MSI_FLAGS_ENABLE;
pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control);
}
static void __pci_restore_msix_state(struct pci_dev *dev)
{
struct msi_desc *entry;
u16 control;
if (!dev->msix_enabled)
return;
BUG_ON(list_empty(&dev->msi_list));
entry = list_first_entry(&dev->msi_list, struct msi_desc, list);
pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control);
/* route the table */
pci_intx_for_msi(dev, 0);
control |= PCI_MSIX_FLAGS_ENABLE | PCI_MSIX_FLAGS_MASKALL;
pci_write_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, control);
list_for_each_entry(entry, &dev->msi_list, list) {
arch_restore_msi_irqs(dev, entry->irq);
msix_mask_irq(entry, entry->masked);
}
control &= ~PCI_MSIX_FLAGS_MASKALL;
pci_write_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, control);
}
void pci_restore_msi_state(struct pci_dev *dev)
{
__pci_restore_msi_state(dev);
__pci_restore_msix_state(dev);
}
EXPORT_SYMBOL_GPL(pci_restore_msi_state);
static ssize_t msi_mode_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct msi_desc *entry;
unsigned long irq;
int retval;
retval = kstrtoul(attr->attr.name, 10, &irq);
if (retval)
return retval;
list_for_each_entry(entry, &pdev->msi_list, list) {
if (entry->irq == irq) {
return sprintf(buf, "%s\n",
entry->msi_attrib.is_msix ? "msix" : "msi");
}
}
return -ENODEV;
}
static int populate_msi_sysfs(struct pci_dev *pdev)
{
struct attribute **msi_attrs;
struct attribute *msi_attr;
struct device_attribute *msi_dev_attr;
struct attribute_group *msi_irq_group;
const struct attribute_group **msi_irq_groups;
struct msi_desc *entry;
int ret = -ENOMEM;
int num_msi = 0;
int count = 0;
/* Determine how many msi entries we have */
list_for_each_entry(entry, &pdev->msi_list, list) {
++num_msi;
}
if (!num_msi)
return 0;
/* Dynamically create the MSI attributes for the PCI device */
msi_attrs = kzalloc(sizeof(void *) * (num_msi + 1), GFP_KERNEL);
if (!msi_attrs)
return -ENOMEM;
list_for_each_entry(entry, &pdev->msi_list, list) {
char *name = kmalloc(20, GFP_KERNEL);
msi_dev_attr = kzalloc(sizeof(*msi_dev_attr), GFP_KERNEL);
if (!msi_dev_attr)
goto error_attrs;
sprintf(name, "%d", entry->irq);
sysfs_attr_init(&msi_dev_attr->attr);
msi_dev_attr->attr.name = name;
msi_dev_attr->attr.mode = S_IRUGO;
msi_dev_attr->show = msi_mode_show;
msi_attrs[count] = &msi_dev_attr->attr;
++count;
}
msi_irq_group = kzalloc(sizeof(*msi_irq_group), GFP_KERNEL);
if (!msi_irq_group)
goto error_attrs;
msi_irq_group->name = "msi_irqs";
msi_irq_group->attrs = msi_attrs;
msi_irq_groups = kzalloc(sizeof(void *) * 2, GFP_KERNEL);
if (!msi_irq_groups)
goto error_irq_group;
msi_irq_groups[0] = msi_irq_group;
ret = sysfs_create_groups(&pdev->dev.kobj, msi_irq_groups);
if (ret)
goto error_irq_groups;
pdev->msi_irq_groups = msi_irq_groups;
return 0;
error_irq_groups:
kfree(msi_irq_groups);
error_irq_group:
kfree(msi_irq_group);
error_attrs:
count = 0;
msi_attr = msi_attrs[count];
while (msi_attr) {
msi_dev_attr = container_of(msi_attr, struct device_attribute, attr);
kfree(msi_attr->name);
kfree(msi_dev_attr);
++count;
msi_attr = msi_attrs[count];
}
return ret;
}
/**
* msi_capability_init - configure device's MSI capability structure
* @dev: pointer to the pci_dev data structure of MSI device function
* @nvec: number of interrupts to allocate
*
* Setup the MSI capability structure of the device with the requested
* number of interrupts. A return value of zero indicates the successful
* setup of an entry with the new MSI irq. A negative return value indicates
* an error, and a positive return value indicates the number of interrupts
* which could have been allocated.
*/
static int msi_capability_init(struct pci_dev *dev, int nvec)
{
struct msi_desc *entry;
int ret;
u16 control;
unsigned mask;
msi_set_enable(dev, 0); /* Disable MSI during set up */
pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
/* MSI Entry Initialization */
entry = alloc_msi_entry(dev);
if (!entry)
return -ENOMEM;
entry->msi_attrib.is_msix = 0;
entry->msi_attrib.is_64 = !!(control & PCI_MSI_FLAGS_64BIT);
entry->msi_attrib.entry_nr = 0;
entry->msi_attrib.maskbit = !!(control & PCI_MSI_FLAGS_MASKBIT);
entry->msi_attrib.default_irq = dev->irq; /* Save IOAPIC IRQ */
entry->msi_attrib.pos = dev->msi_cap;
if (control & PCI_MSI_FLAGS_64BIT)
entry->mask_pos = dev->msi_cap + PCI_MSI_MASK_64;
else
entry->mask_pos = dev->msi_cap + PCI_MSI_MASK_32;
/* All MSIs are unmasked by default, Mask them all */
if (entry->msi_attrib.maskbit)
pci_read_config_dword(dev, entry->mask_pos, &entry->masked);
mask = msi_capable_mask(control);
msi_mask_irq(entry, mask, mask);
list_add_tail(&entry->list, &dev->msi_list);
/* Configure MSI capability structure */
ret = arch_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSI);
if (ret) {
msi_mask_irq(entry, mask, ~mask);
free_msi_irqs(dev);
return ret;
}
ret = populate_msi_sysfs(dev);
if (ret) {
msi_mask_irq(entry, mask, ~mask);
free_msi_irqs(dev);
return ret;
}
/* Set MSI enabled bits */
pci_intx_for_msi(dev, 0);
msi_set_enable(dev, 1);
dev->msi_enabled = 1;
dev->irq = entry->irq;
return 0;
}
static void __iomem *msix_map_region(struct pci_dev *dev, unsigned nr_entries)
{
resource_size_t phys_addr;
u32 table_offset;
u8 bir;
pci_read_config_dword(dev, dev->msix_cap + PCI_MSIX_TABLE,
&table_offset);
bir = (u8)(table_offset & PCI_MSIX_TABLE_BIR);
table_offset &= PCI_MSIX_TABLE_OFFSET;
phys_addr = pci_resource_start(dev, bir) + table_offset;
return ioremap_nocache(phys_addr, nr_entries * PCI_MSIX_ENTRY_SIZE);
}
static int msix_setup_entries(struct pci_dev *dev, void __iomem *base,
struct msix_entry *entries, int nvec)
{
struct msi_desc *entry;
int i;
for (i = 0; i < nvec; i++) {
entry = alloc_msi_entry(dev);
if (!entry) {
if (!i)
iounmap(base);
else
free_msi_irqs(dev);
/* No enough memory. Don't try again */
return -ENOMEM;
}
entry->msi_attrib.is_msix = 1;
entry->msi_attrib.is_64 = 1;
entry->msi_attrib.entry_nr = entries[i].entry;
entry->msi_attrib.default_irq = dev->irq;
entry->msi_attrib.pos = dev->msix_cap;
entry->mask_base = base;
list_add_tail(&entry->list, &dev->msi_list);
}
return 0;
}
static void msix_program_entries(struct pci_dev *dev,
struct msix_entry *entries)
{
struct msi_desc *entry;
int i = 0;
list_for_each_entry(entry, &dev->msi_list, list) {
int offset = entries[i].entry * PCI_MSIX_ENTRY_SIZE +
PCI_MSIX_ENTRY_VECTOR_CTRL;
entries[i].vector = entry->irq;
irq_set_msi_desc(entry->irq, entry);
entry->masked = readl(entry->mask_base + offset);
msix_mask_irq(entry, 1);
i++;
}
}
/**
* msix_capability_init - configure device's MSI-X capability
* @dev: pointer to the pci_dev data structure of MSI-X device function
* @entries: pointer to an array of struct msix_entry entries
* @nvec: number of @entries
*
* Setup the MSI-X capability structure of device function with a
* single MSI-X irq. A return of zero indicates the successful setup of
* requested MSI-X entries with allocated irqs or non-zero for otherwise.
**/
static int msix_capability_init(struct pci_dev *dev,
struct msix_entry *entries, int nvec)
{
int ret;
u16 control;
void __iomem *base;
pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control);
/* Ensure MSI-X is disabled while it is set up */
control &= ~PCI_MSIX_FLAGS_ENABLE;
pci_write_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, control);
/* Request & Map MSI-X table region */
base = msix_map_region(dev, msix_table_size(control));
if (!base)
return -ENOMEM;
ret = msix_setup_entries(dev, base, entries, nvec);
if (ret)
return ret;
ret = arch_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSIX);
if (ret)
goto out_avail;
/*
* Some devices require MSI-X to be enabled before we can touch the
* MSI-X registers. We need to mask all the vectors to prevent
* interrupts coming in before they're fully set up.
*/
control |= PCI_MSIX_FLAGS_MASKALL | PCI_MSIX_FLAGS_ENABLE;
pci_write_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, control);
msix_program_entries(dev, entries);
ret = populate_msi_sysfs(dev);
if (ret)
goto out_free;
/* Set MSI-X enabled bits and unmask the function */
pci_intx_for_msi(dev, 0);
dev->msix_enabled = 1;
control &= ~PCI_MSIX_FLAGS_MASKALL;
pci_write_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, control);
return 0;
out_avail:
if (ret < 0) {
/*
* If we had some success, report the number of irqs
* we succeeded in setting up.
*/
struct msi_desc *entry;
int avail = 0;
list_for_each_entry(entry, &dev->msi_list, list) {
if (entry->irq != 0)
avail++;
}
if (avail != 0)
ret = avail;
}
out_free:
free_msi_irqs(dev);
return ret;
}
/**
* pci_msi_check_device - check whether MSI may be enabled on a device
* @dev: pointer to the pci_dev data structure of MSI device function
* @nvec: how many MSIs have been requested ?
* @type: are we checking for MSI or MSI-X ?
*
* Look at global flags, the device itself, and its parent buses
* to determine if MSI/-X are supported for the device. If MSI/-X is
* supported return 0, else return an error code.
**/
static int pci_msi_check_device(struct pci_dev *dev, int nvec, int type)
{
struct pci_bus *bus;
int ret;
/* MSI must be globally enabled and supported by the device */
if (!pci_msi_enable || !dev || dev->no_msi)
return -EINVAL;
/*
* You can't ask to have 0 or less MSIs configured.
* a) it's stupid ..
* b) the list manipulation code assumes nvec >= 1.
*/
if (nvec < 1)
return -ERANGE;
/*
* Any bridge which does NOT route MSI transactions from its
* secondary bus to its primary bus must set NO_MSI flag on
* the secondary pci_bus.
* We expect only arch-specific PCI host bus controller driver
* or quirks for specific PCI bridges to be setting NO_MSI.
*/
for (bus = dev->bus; bus; bus = bus->parent)
if (bus->bus_flags & PCI_BUS_FLAGS_NO_MSI)
return -EINVAL;
ret = arch_msi_check_device(dev, nvec, type);
if (ret)
return ret;
return 0;
}
/**
* pci_msi_vec_count - Return the number of MSI vectors a device can send
* @dev: device to report about
*
* This function returns the number of MSI vectors a device requested via
* Multiple Message Capable register. It returns a negative errno if the
* device is not capable sending MSI interrupts. Otherwise, the call succeeds
* and returns a power of two, up to a maximum of 2^5 (32), according to the
* MSI specification.
**/
int pci_msi_vec_count(struct pci_dev *dev)
{
int ret;
u16 msgctl;
if (!dev->msi_cap)
return -EINVAL;
pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &msgctl);
ret = 1 << ((msgctl & PCI_MSI_FLAGS_QMASK) >> 1);
return ret;
}
EXPORT_SYMBOL(pci_msi_vec_count);
/**
* pci_enable_msi_block - configure device's MSI capability structure
* @dev: device to configure
* @nvec: number of interrupts to configure
*
* Allocate IRQs for a device with the MSI capability.
* This function returns a negative errno if an error occurs. If it
* is unable to allocate the number of interrupts requested, it returns
* the number of interrupts it might be able to allocate. If it successfully
* allocates at least the number of interrupts requested, it returns 0 and
* updates the @dev's irq member to the lowest new interrupt number; the
* other interrupt numbers allocated to this device are consecutive.
*/
int pci_enable_msi_block(struct pci_dev *dev, int nvec)
{
int status, maxvec;
if (dev->current_state != PCI_D0)
return -EINVAL;
maxvec = pci_msi_vec_count(dev);
if (maxvec < 0)
return maxvec;
if (nvec > maxvec)
return maxvec;
status = pci_msi_check_device(dev, nvec, PCI_CAP_ID_MSI);
if (status)
return status;
WARN_ON(!!dev->msi_enabled);
/* Check whether driver already requested MSI-X irqs */
if (dev->msix_enabled) {
dev_info(&dev->dev, "can't enable MSI "
"(MSI-X already enabled)\n");
return -EINVAL;
}
status = msi_capability_init(dev, nvec);
return status;
}
EXPORT_SYMBOL(pci_enable_msi_block);
void pci_msi_shutdown(struct pci_dev *dev)
{
struct msi_desc *desc;
u32 mask;
u16 ctrl;
if (!pci_msi_enable || !dev || !dev->msi_enabled)
return;
BUG_ON(list_empty(&dev->msi_list));
desc = list_first_entry(&dev->msi_list, struct msi_desc, list);
msi_set_enable(dev, 0);
pci_intx_for_msi(dev, 1);
dev->msi_enabled = 0;
/* Return the device with MSI unmasked as initial states */
pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &ctrl);
mask = msi_capable_mask(ctrl);
/* Keep cached state to be restored */
arch_msi_mask_irq(desc, mask, ~mask);
/* Restore dev->irq to its default pin-assertion irq */
dev->irq = desc->msi_attrib.default_irq;
}
void pci_disable_msi(struct pci_dev *dev)
{
if (!pci_msi_enable || !dev || !dev->msi_enabled)
return;
pci_msi_shutdown(dev);
free_msi_irqs(dev);
}
EXPORT_SYMBOL(pci_disable_msi);
/**
* pci_msix_vec_count - return the number of device's MSI-X table entries
* @dev: pointer to the pci_dev data structure of MSI-X device function
* This function returns the number of device's MSI-X table entries and
* therefore the number of MSI-X vectors device is capable of sending.
* It returns a negative errno if the device is not capable of sending MSI-X
* interrupts.
**/
int pci_msix_vec_count(struct pci_dev *dev)
{
u16 control;
if (!dev->msix_cap)
return -EINVAL;
pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control);
return msix_table_size(control);
}
EXPORT_SYMBOL(pci_msix_vec_count);
/**
* pci_enable_msix - configure device's MSI-X capability structure
* @dev: pointer to the pci_dev data structure of MSI-X device function
* @entries: pointer to an array of MSI-X entries
* @nvec: number of MSI-X irqs requested for allocation by device driver
*
* Setup the MSI-X capability structure of device function with the number
* of requested irqs upon its software driver call to request for
* MSI-X mode enabled on its hardware device function. A return of zero
* indicates the successful configuration of MSI-X capability structure
* with new allocated MSI-X irqs. A return of < 0 indicates a failure.
* Or a return of > 0 indicates that driver request is exceeding the number
* of irqs or MSI-X vectors available. Driver should use the returned value to
* re-send its request.
**/
int pci_enable_msix(struct pci_dev *dev, struct msix_entry *entries, int nvec)
{
int status, nr_entries;
int i, j;
if (!entries || !dev->msix_cap || dev->current_state != PCI_D0)
return -EINVAL;
status = pci_msi_check_device(dev, nvec, PCI_CAP_ID_MSIX);
if (status)
return status;
nr_entries = pci_msix_vec_count(dev);
if (nr_entries < 0)
return nr_entries;
if (nvec > nr_entries)
return nr_entries;
/* Check for any invalid entries */
for (i = 0; i < nvec; i++) {
if (entries[i].entry >= nr_entries)
return -EINVAL; /* invalid entry */
for (j = i + 1; j < nvec; j++) {
if (entries[i].entry == entries[j].entry)
return -EINVAL; /* duplicate entry */
}
}
WARN_ON(!!dev->msix_enabled);
/* Check whether driver already requested for MSI irq */
if (dev->msi_enabled) {
dev_info(&dev->dev, "can't enable MSI-X "
"(MSI IRQ already assigned)\n");
return -EINVAL;
}
status = msix_capability_init(dev, entries, nvec);
return status;
}
EXPORT_SYMBOL(pci_enable_msix);
void pci_msix_shutdown(struct pci_dev *dev)
{
struct msi_desc *entry;
if (!pci_msi_enable || !dev || !dev->msix_enabled)
return;
/* Return the device with MSI-X masked as initial states */
list_for_each_entry(entry, &dev->msi_list, list) {
/* Keep cached states to be restored */
arch_msix_mask_irq(entry, 1);
}
msix_set_enable(dev, 0);
pci_intx_for_msi(dev, 1);
dev->msix_enabled = 0;
}
void pci_disable_msix(struct pci_dev *dev)
{
if (!pci_msi_enable || !dev || !dev->msix_enabled)
return;
pci_msix_shutdown(dev);
free_msi_irqs(dev);
}
EXPORT_SYMBOL(pci_disable_msix);
/**
* msi_remove_pci_irq_vectors - reclaim MSI(X) irqs to unused state
* @dev: pointer to the pci_dev data structure of MSI(X) device function
*
* Being called during hotplug remove, from which the device function
* is hot-removed. All previous assigned MSI/MSI-X irqs, if
* allocated for this device function, are reclaimed to unused state,
* which may be used later on.
**/
void msi_remove_pci_irq_vectors(struct pci_dev *dev)
{
if (!pci_msi_enable || !dev)
return;
if (dev->msi_enabled || dev->msix_enabled)
free_msi_irqs(dev);
}
void pci_no_msi(void)
{
pci_msi_enable = 0;
}
/**
* pci_msi_enabled - is MSI enabled?
*
* Returns true if MSI has not been disabled by the command-line option
* pci=nomsi.
**/
int pci_msi_enabled(void)
{
return pci_msi_enable;
}
EXPORT_SYMBOL(pci_msi_enabled);
void pci_msi_init_pci_dev(struct pci_dev *dev)
{
INIT_LIST_HEAD(&dev->msi_list);
/* Disable the msi hardware to avoid screaming interrupts
* during boot. This is the power on reset default so
* usually this should be a noop.
*/
dev->msi_cap = pci_find_capability(dev, PCI_CAP_ID_MSI);
if (dev->msi_cap)
msi_set_enable(dev, 0);
dev->msix_cap = pci_find_capability(dev, PCI_CAP_ID_MSIX);
if (dev->msix_cap)
msix_set_enable(dev, 0);
}
/**
* pci_enable_msi_range - configure device's MSI capability structure
* @dev: device to configure
* @minvec: minimal number of interrupts to configure
* @maxvec: maximum number of interrupts to configure
*
* This function tries to allocate a maximum possible number of interrupts in a
* range between @minvec and @maxvec. It returns a negative errno if an error
* occurs. If it succeeds, it returns the actual number of interrupts allocated
* and updates the @dev's irq member to the lowest new interrupt number;
* the other interrupt numbers allocated to this device are consecutive.
**/
int pci_enable_msi_range(struct pci_dev *dev, int minvec, int maxvec)
{
int nvec = maxvec;
int rc;
if (maxvec < minvec)
return -ERANGE;
do {
rc = pci_enable_msi_block(dev, nvec);
if (rc < 0) {
return rc;
} else if (rc > 0) {
if (rc < minvec)
return -ENOSPC;
nvec = rc;
}
} while (rc);
return nvec;
}
EXPORT_SYMBOL(pci_enable_msi_range);
/**
* pci_enable_msix_range - configure device's MSI-X capability structure
* @dev: pointer to the pci_dev data structure of MSI-X device function
* @entries: pointer to an array of MSI-X entries
* @minvec: minimum number of MSI-X irqs requested
* @maxvec: maximum number of MSI-X irqs requested
*
* Setup the MSI-X capability structure of device function with a maximum
* possible number of interrupts in the range between @minvec and @maxvec
* upon its software driver call to request for MSI-X mode enabled on its
* hardware device function. It returns a negative errno if an error occurs.
* If it succeeds, it returns the actual number of interrupts allocated and
* indicates the successful configuration of MSI-X capability structure
* with new allocated MSI-X interrupts.
**/
int pci_enable_msix_range(struct pci_dev *dev, struct msix_entry *entries,
int minvec, int maxvec)
{
int nvec = maxvec;
int rc;
if (maxvec < minvec)
return -ERANGE;
do {
rc = pci_enable_msix(dev, entries, nvec);
if (rc < 0) {
return rc;
} else if (rc > 0) {
if (rc < minvec)
return -ENOSPC;
nvec = rc;
}
} while (rc);
return nvec;
}
EXPORT_SYMBOL(pci_enable_msix_range);