blob: 24b91cb3283995d7c0cd1a4b6fbd8ac8aa5bd1f0 [file] [log] [blame]
/*
* Copyright (c) by Jaroslav Kysela <perex@perex.cz>
* and (c) 1999 Steve Ratcliffe <steve@parabola.demon.co.uk>
* Copyright (C) 1999-2000 Takashi Iwai <tiwai@suse.de>
*
* Routines for control of EMU8000 chip
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/wait.h>
#include <linux/sched/signal.h>
#include <linux/slab.h>
#include <linux/ioport.h>
#include <linux/export.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <sound/core.h>
#include <sound/emu8000.h>
#include <sound/emu8000_reg.h>
#include <linux/uaccess.h>
#include <linux/init.h>
#include <sound/control.h>
#include <sound/initval.h>
/*
* emu8000 register controls
*/
/*
* The following routines read and write registers on the emu8000. They
* should always be called via the EMU8000*READ/WRITE macros and never
* directly. The macros handle the port number and command word.
*/
/* Write a word */
void snd_emu8000_poke(struct snd_emu8000 *emu, unsigned int port, unsigned int reg, unsigned int val)
{
unsigned long flags;
spin_lock_irqsave(&emu->reg_lock, flags);
if (reg != emu->last_reg) {
outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
emu->last_reg = reg;
}
outw((unsigned short)val, port); /* Send data */
spin_unlock_irqrestore(&emu->reg_lock, flags);
}
/* Read a word */
unsigned short snd_emu8000_peek(struct snd_emu8000 *emu, unsigned int port, unsigned int reg)
{
unsigned short res;
unsigned long flags;
spin_lock_irqsave(&emu->reg_lock, flags);
if (reg != emu->last_reg) {
outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
emu->last_reg = reg;
}
res = inw(port); /* Read data */
spin_unlock_irqrestore(&emu->reg_lock, flags);
return res;
}
/* Write a double word */
void snd_emu8000_poke_dw(struct snd_emu8000 *emu, unsigned int port, unsigned int reg, unsigned int val)
{
unsigned long flags;
spin_lock_irqsave(&emu->reg_lock, flags);
if (reg != emu->last_reg) {
outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
emu->last_reg = reg;
}
outw((unsigned short)val, port); /* Send low word of data */
outw((unsigned short)(val>>16), port+2); /* Send high word of data */
spin_unlock_irqrestore(&emu->reg_lock, flags);
}
/* Read a double word */
unsigned int snd_emu8000_peek_dw(struct snd_emu8000 *emu, unsigned int port, unsigned int reg)
{
unsigned short low;
unsigned int res;
unsigned long flags;
spin_lock_irqsave(&emu->reg_lock, flags);
if (reg != emu->last_reg) {
outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
emu->last_reg = reg;
}
low = inw(port); /* Read low word of data */
res = low + (inw(port+2) << 16);
spin_unlock_irqrestore(&emu->reg_lock, flags);
return res;
}
/*
* Set up / close a channel to be used for DMA.
*/
/*exported*/ void
snd_emu8000_dma_chan(struct snd_emu8000 *emu, int ch, int mode)
{
unsigned right_bit = (mode & EMU8000_RAM_RIGHT) ? 0x01000000 : 0;
mode &= EMU8000_RAM_MODE_MASK;
if (mode == EMU8000_RAM_CLOSE) {
EMU8000_CCCA_WRITE(emu, ch, 0);
EMU8000_DCYSUSV_WRITE(emu, ch, 0x807F);
return;
}
EMU8000_DCYSUSV_WRITE(emu, ch, 0x80);
EMU8000_VTFT_WRITE(emu, ch, 0);
EMU8000_CVCF_WRITE(emu, ch, 0);
EMU8000_PTRX_WRITE(emu, ch, 0x40000000);
EMU8000_CPF_WRITE(emu, ch, 0x40000000);
EMU8000_PSST_WRITE(emu, ch, 0);
EMU8000_CSL_WRITE(emu, ch, 0);
if (mode == EMU8000_RAM_WRITE) /* DMA write */
EMU8000_CCCA_WRITE(emu, ch, 0x06000000 | right_bit);
else /* DMA read */
EMU8000_CCCA_WRITE(emu, ch, 0x04000000 | right_bit);
}
/*
*/
static void
snd_emu8000_read_wait(struct snd_emu8000 *emu)
{
while ((EMU8000_SMALR_READ(emu) & 0x80000000) != 0) {
schedule_timeout_interruptible(1);
if (signal_pending(current))
break;
}
}
/*
*/
static void
snd_emu8000_write_wait(struct snd_emu8000 *emu)
{
while ((EMU8000_SMALW_READ(emu) & 0x80000000) != 0) {
schedule_timeout_interruptible(1);
if (signal_pending(current))
break;
}
}
/*
* detect a card at the given port
*/
static int
snd_emu8000_detect(struct snd_emu8000 *emu)
{
/* Initialise */
EMU8000_HWCF1_WRITE(emu, 0x0059);
EMU8000_HWCF2_WRITE(emu, 0x0020);
EMU8000_HWCF3_WRITE(emu, 0x0000);
/* Check for a recognisable emu8000 */
/*
if ((EMU8000_U1_READ(emu) & 0x000f) != 0x000c)
return -ENODEV;
*/
if ((EMU8000_HWCF1_READ(emu) & 0x007e) != 0x0058)
return -ENODEV;
if ((EMU8000_HWCF2_READ(emu) & 0x0003) != 0x0003)
return -ENODEV;
snd_printdd("EMU8000 [0x%lx]: Synth chip found\n",
emu->port1);
return 0;
}
/*
* intiailize audio channels
*/
static void
init_audio(struct snd_emu8000 *emu)
{
int ch;
/* turn off envelope engines */
for (ch = 0; ch < EMU8000_CHANNELS; ch++)
EMU8000_DCYSUSV_WRITE(emu, ch, 0x80);
/* reset all other parameters to zero */
for (ch = 0; ch < EMU8000_CHANNELS; ch++) {
EMU8000_ENVVOL_WRITE(emu, ch, 0);
EMU8000_ENVVAL_WRITE(emu, ch, 0);
EMU8000_DCYSUS_WRITE(emu, ch, 0);
EMU8000_ATKHLDV_WRITE(emu, ch, 0);
EMU8000_LFO1VAL_WRITE(emu, ch, 0);
EMU8000_ATKHLD_WRITE(emu, ch, 0);
EMU8000_LFO2VAL_WRITE(emu, ch, 0);
EMU8000_IP_WRITE(emu, ch, 0);
EMU8000_IFATN_WRITE(emu, ch, 0);
EMU8000_PEFE_WRITE(emu, ch, 0);
EMU8000_FMMOD_WRITE(emu, ch, 0);
EMU8000_TREMFRQ_WRITE(emu, ch, 0);
EMU8000_FM2FRQ2_WRITE(emu, ch, 0);
EMU8000_PTRX_WRITE(emu, ch, 0);
EMU8000_VTFT_WRITE(emu, ch, 0);
EMU8000_PSST_WRITE(emu, ch, 0);
EMU8000_CSL_WRITE(emu, ch, 0);
EMU8000_CCCA_WRITE(emu, ch, 0);
}
for (ch = 0; ch < EMU8000_CHANNELS; ch++) {
EMU8000_CPF_WRITE(emu, ch, 0);
EMU8000_CVCF_WRITE(emu, ch, 0);
}
}
/*
* initialize DMA address
*/
static void
init_dma(struct snd_emu8000 *emu)
{
EMU8000_SMALR_WRITE(emu, 0);
EMU8000_SMARR_WRITE(emu, 0);
EMU8000_SMALW_WRITE(emu, 0);
EMU8000_SMARW_WRITE(emu, 0);
}
/*
* initialization arrays; from ADIP
*/
static unsigned short init1[128] = {
0x03ff, 0x0030, 0x07ff, 0x0130, 0x0bff, 0x0230, 0x0fff, 0x0330,
0x13ff, 0x0430, 0x17ff, 0x0530, 0x1bff, 0x0630, 0x1fff, 0x0730,
0x23ff, 0x0830, 0x27ff, 0x0930, 0x2bff, 0x0a30, 0x2fff, 0x0b30,
0x33ff, 0x0c30, 0x37ff, 0x0d30, 0x3bff, 0x0e30, 0x3fff, 0x0f30,
0x43ff, 0x0030, 0x47ff, 0x0130, 0x4bff, 0x0230, 0x4fff, 0x0330,
0x53ff, 0x0430, 0x57ff, 0x0530, 0x5bff, 0x0630, 0x5fff, 0x0730,
0x63ff, 0x0830, 0x67ff, 0x0930, 0x6bff, 0x0a30, 0x6fff, 0x0b30,
0x73ff, 0x0c30, 0x77ff, 0x0d30, 0x7bff, 0x0e30, 0x7fff, 0x0f30,
0x83ff, 0x0030, 0x87ff, 0x0130, 0x8bff, 0x0230, 0x8fff, 0x0330,
0x93ff, 0x0430, 0x97ff, 0x0530, 0x9bff, 0x0630, 0x9fff, 0x0730,
0xa3ff, 0x0830, 0xa7ff, 0x0930, 0xabff, 0x0a30, 0xafff, 0x0b30,
0xb3ff, 0x0c30, 0xb7ff, 0x0d30, 0xbbff, 0x0e30, 0xbfff, 0x0f30,
0xc3ff, 0x0030, 0xc7ff, 0x0130, 0xcbff, 0x0230, 0xcfff, 0x0330,
0xd3ff, 0x0430, 0xd7ff, 0x0530, 0xdbff, 0x0630, 0xdfff, 0x0730,
0xe3ff, 0x0830, 0xe7ff, 0x0930, 0xebff, 0x0a30, 0xefff, 0x0b30,
0xf3ff, 0x0c30, 0xf7ff, 0x0d30, 0xfbff, 0x0e30, 0xffff, 0x0f30,
};
static unsigned short init2[128] = {
0x03ff, 0x8030, 0x07ff, 0x8130, 0x0bff, 0x8230, 0x0fff, 0x8330,
0x13ff, 0x8430, 0x17ff, 0x8530, 0x1bff, 0x8630, 0x1fff, 0x8730,
0x23ff, 0x8830, 0x27ff, 0x8930, 0x2bff, 0x8a30, 0x2fff, 0x8b30,
0x33ff, 0x8c30, 0x37ff, 0x8d30, 0x3bff, 0x8e30, 0x3fff, 0x8f30,
0x43ff, 0x8030, 0x47ff, 0x8130, 0x4bff, 0x8230, 0x4fff, 0x8330,
0x53ff, 0x8430, 0x57ff, 0x8530, 0x5bff, 0x8630, 0x5fff, 0x8730,
0x63ff, 0x8830, 0x67ff, 0x8930, 0x6bff, 0x8a30, 0x6fff, 0x8b30,
0x73ff, 0x8c30, 0x77ff, 0x8d30, 0x7bff, 0x8e30, 0x7fff, 0x8f30,
0x83ff, 0x8030, 0x87ff, 0x8130, 0x8bff, 0x8230, 0x8fff, 0x8330,
0x93ff, 0x8430, 0x97ff, 0x8530, 0x9bff, 0x8630, 0x9fff, 0x8730,
0xa3ff, 0x8830, 0xa7ff, 0x8930, 0xabff, 0x8a30, 0xafff, 0x8b30,
0xb3ff, 0x8c30, 0xb7ff, 0x8d30, 0xbbff, 0x8e30, 0xbfff, 0x8f30,
0xc3ff, 0x8030, 0xc7ff, 0x8130, 0xcbff, 0x8230, 0xcfff, 0x8330,
0xd3ff, 0x8430, 0xd7ff, 0x8530, 0xdbff, 0x8630, 0xdfff, 0x8730,
0xe3ff, 0x8830, 0xe7ff, 0x8930, 0xebff, 0x8a30, 0xefff, 0x8b30,
0xf3ff, 0x8c30, 0xf7ff, 0x8d30, 0xfbff, 0x8e30, 0xffff, 0x8f30,
};
static unsigned short init3[128] = {
0x0C10, 0x8470, 0x14FE, 0xB488, 0x167F, 0xA470, 0x18E7, 0x84B5,
0x1B6E, 0x842A, 0x1F1D, 0x852A, 0x0DA3, 0x8F7C, 0x167E, 0xF254,
0x0000, 0x842A, 0x0001, 0x852A, 0x18E6, 0x8BAA, 0x1B6D, 0xF234,
0x229F, 0x8429, 0x2746, 0x8529, 0x1F1C, 0x86E7, 0x229E, 0xF224,
0x0DA4, 0x8429, 0x2C29, 0x8529, 0x2745, 0x87F6, 0x2C28, 0xF254,
0x383B, 0x8428, 0x320F, 0x8528, 0x320E, 0x8F02, 0x1341, 0xF264,
0x3EB6, 0x8428, 0x3EB9, 0x8528, 0x383A, 0x8FA9, 0x3EB5, 0xF294,
0x3EB7, 0x8474, 0x3EBA, 0x8575, 0x3EB8, 0xC4C3, 0x3EBB, 0xC5C3,
0x0000, 0xA404, 0x0001, 0xA504, 0x141F, 0x8671, 0x14FD, 0x8287,
0x3EBC, 0xE610, 0x3EC8, 0x8C7B, 0x031A, 0x87E6, 0x3EC8, 0x86F7,
0x3EC0, 0x821E, 0x3EBE, 0xD208, 0x3EBD, 0x821F, 0x3ECA, 0x8386,
0x3EC1, 0x8C03, 0x3EC9, 0x831E, 0x3ECA, 0x8C4C, 0x3EBF, 0x8C55,
0x3EC9, 0xC208, 0x3EC4, 0xBC84, 0x3EC8, 0x8EAD, 0x3EC8, 0xD308,
0x3EC2, 0x8F7E, 0x3ECB, 0x8219, 0x3ECB, 0xD26E, 0x3EC5, 0x831F,
0x3EC6, 0xC308, 0x3EC3, 0xB2FF, 0x3EC9, 0x8265, 0x3EC9, 0x8319,
0x1342, 0xD36E, 0x3EC7, 0xB3FF, 0x0000, 0x8365, 0x1420, 0x9570,
};
static unsigned short init4[128] = {
0x0C10, 0x8470, 0x14FE, 0xB488, 0x167F, 0xA470, 0x18E7, 0x84B5,
0x1B6E, 0x842A, 0x1F1D, 0x852A, 0x0DA3, 0x0F7C, 0x167E, 0x7254,
0x0000, 0x842A, 0x0001, 0x852A, 0x18E6, 0x0BAA, 0x1B6D, 0x7234,
0x229F, 0x8429, 0x2746, 0x8529, 0x1F1C, 0x06E7, 0x229E, 0x7224,
0x0DA4, 0x8429, 0x2C29, 0x8529, 0x2745, 0x07F6, 0x2C28, 0x7254,
0x383B, 0x8428, 0x320F, 0x8528, 0x320E, 0x0F02, 0x1341, 0x7264,
0x3EB6, 0x8428, 0x3EB9, 0x8528, 0x383A, 0x0FA9, 0x3EB5, 0x7294,
0x3EB7, 0x8474, 0x3EBA, 0x8575, 0x3EB8, 0x44C3, 0x3EBB, 0x45C3,
0x0000, 0xA404, 0x0001, 0xA504, 0x141F, 0x0671, 0x14FD, 0x0287,
0x3EBC, 0xE610, 0x3EC8, 0x0C7B, 0x031A, 0x07E6, 0x3EC8, 0x86F7,
0x3EC0, 0x821E, 0x3EBE, 0xD208, 0x3EBD, 0x021F, 0x3ECA, 0x0386,
0x3EC1, 0x0C03, 0x3EC9, 0x031E, 0x3ECA, 0x8C4C, 0x3EBF, 0x0C55,
0x3EC9, 0xC208, 0x3EC4, 0xBC84, 0x3EC8, 0x0EAD, 0x3EC8, 0xD308,
0x3EC2, 0x8F7E, 0x3ECB, 0x0219, 0x3ECB, 0xD26E, 0x3EC5, 0x031F,
0x3EC6, 0xC308, 0x3EC3, 0x32FF, 0x3EC9, 0x0265, 0x3EC9, 0x8319,
0x1342, 0xD36E, 0x3EC7, 0x33FF, 0x0000, 0x8365, 0x1420, 0x9570,
};
/* send an initialization array
* Taken from the oss driver, not obvious from the doc how this
* is meant to work
*/
static void
send_array(struct snd_emu8000 *emu, unsigned short *data, int size)
{
int i;
unsigned short *p;
p = data;
for (i = 0; i < size; i++, p++)
EMU8000_INIT1_WRITE(emu, i, *p);
for (i = 0; i < size; i++, p++)
EMU8000_INIT2_WRITE(emu, i, *p);
for (i = 0; i < size; i++, p++)
EMU8000_INIT3_WRITE(emu, i, *p);
for (i = 0; i < size; i++, p++)
EMU8000_INIT4_WRITE(emu, i, *p);
}
/*
* Send initialization arrays to start up, this just follows the
* initialisation sequence in the adip.
*/
static void
init_arrays(struct snd_emu8000 *emu)
{
send_array(emu, init1, ARRAY_SIZE(init1)/4);
msleep((1024 * 1000) / 44100); /* wait for 1024 clocks */
send_array(emu, init2, ARRAY_SIZE(init2)/4);
send_array(emu, init3, ARRAY_SIZE(init3)/4);
EMU8000_HWCF4_WRITE(emu, 0);
EMU8000_HWCF5_WRITE(emu, 0x83);
EMU8000_HWCF6_WRITE(emu, 0x8000);
send_array(emu, init4, ARRAY_SIZE(init4)/4);
}
#define UNIQUE_ID1 0xa5b9
#define UNIQUE_ID2 0x9d53
/*
* Size the onboard memory.
* This is written so as not to need arbitrary delays after the write. It
* seems that the only way to do this is to use the one channel and keep
* reallocating between read and write.
*/
static void
size_dram(struct snd_emu8000 *emu)
{
int i, size;
if (emu->dram_checked)
return;
size = 0;
/* write out a magic number */
snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_WRITE);
snd_emu8000_dma_chan(emu, 1, EMU8000_RAM_READ);
EMU8000_SMALW_WRITE(emu, EMU8000_DRAM_OFFSET);
EMU8000_SMLD_WRITE(emu, UNIQUE_ID1);
snd_emu8000_init_fm(emu); /* This must really be here and not 2 lines back even */
snd_emu8000_write_wait(emu);
/*
* Detect first 512 KiB. If a write succeeds at the beginning of a
* 512 KiB page we assume that the whole page is there.
*/
EMU8000_SMALR_WRITE(emu, EMU8000_DRAM_OFFSET);
EMU8000_SMLD_READ(emu); /* discard stale data */
if (EMU8000_SMLD_READ(emu) != UNIQUE_ID1)
goto skip_detect; /* No RAM */
snd_emu8000_read_wait(emu);
for (size = 512 * 1024; size < EMU8000_MAX_DRAM; size += 512 * 1024) {
/* Write a unique data on the test address.
* if the address is out of range, the data is written on
* 0x200000(=EMU8000_DRAM_OFFSET). Then the id word is
* changed by this data.
*/
/*snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_WRITE);*/
EMU8000_SMALW_WRITE(emu, EMU8000_DRAM_OFFSET + (size>>1));
EMU8000_SMLD_WRITE(emu, UNIQUE_ID2);
snd_emu8000_write_wait(emu);
/*
* read the data on the just written DRAM address
* if not the same then we have reached the end of ram.
*/
/*snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_READ);*/
EMU8000_SMALR_WRITE(emu, EMU8000_DRAM_OFFSET + (size>>1));
/*snd_emu8000_read_wait(emu);*/
EMU8000_SMLD_READ(emu); /* discard stale data */
if (EMU8000_SMLD_READ(emu) != UNIQUE_ID2)
break; /* no memory at this address */
snd_emu8000_read_wait(emu);
/*
* If it is the same it could be that the address just
* wraps back to the beginning; so check to see if the
* initial value has been overwritten.
*/
EMU8000_SMALR_WRITE(emu, EMU8000_DRAM_OFFSET);
EMU8000_SMLD_READ(emu); /* discard stale data */
if (EMU8000_SMLD_READ(emu) != UNIQUE_ID1)
break; /* we must have wrapped around */
snd_emu8000_read_wait(emu);
/* Otherwise, it's valid memory. */
}
skip_detect:
/* wait until FULL bit in SMAxW register is false */
for (i = 0; i < 10000; i++) {
if ((EMU8000_SMALW_READ(emu) & 0x80000000) == 0)
break;
schedule_timeout_interruptible(1);
if (signal_pending(current))
break;
}
snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_CLOSE);
snd_emu8000_dma_chan(emu, 1, EMU8000_RAM_CLOSE);
pr_info("EMU8000 [0x%lx]: %d KiB on-board DRAM detected\n",
emu->port1, size/1024);
emu->mem_size = size;
emu->dram_checked = 1;
}
/*
* Initiailise the FM section. You have to do this to use sample RAM
* and therefore lose 2 voices.
*/
/*exported*/ void
snd_emu8000_init_fm(struct snd_emu8000 *emu)
{
unsigned long flags;
/* Initialize the last two channels for DRAM refresh and producing
the reverb and chorus effects for Yamaha OPL-3 synthesizer */
/* 31: FM left channel, 0xffffe0-0xffffe8 */
EMU8000_DCYSUSV_WRITE(emu, 30, 0x80);
EMU8000_PSST_WRITE(emu, 30, 0xFFFFFFE0); /* full left */
EMU8000_CSL_WRITE(emu, 30, 0x00FFFFE8 | (emu->fm_chorus_depth << 24));
EMU8000_PTRX_WRITE(emu, 30, (emu->fm_reverb_depth << 8));
EMU8000_CPF_WRITE(emu, 30, 0);
EMU8000_CCCA_WRITE(emu, 30, 0x00FFFFE3);
/* 32: FM right channel, 0xfffff0-0xfffff8 */
EMU8000_DCYSUSV_WRITE(emu, 31, 0x80);
EMU8000_PSST_WRITE(emu, 31, 0x00FFFFF0); /* full right */
EMU8000_CSL_WRITE(emu, 31, 0x00FFFFF8 | (emu->fm_chorus_depth << 24));
EMU8000_PTRX_WRITE(emu, 31, (emu->fm_reverb_depth << 8));
EMU8000_CPF_WRITE(emu, 31, 0x8000);
EMU8000_CCCA_WRITE(emu, 31, 0x00FFFFF3);
snd_emu8000_poke((emu), EMU8000_DATA0(emu), EMU8000_CMD(1, (30)), 0);
spin_lock_irqsave(&emu->reg_lock, flags);
while (!(inw(EMU8000_PTR(emu)) & 0x1000))
;
while ((inw(EMU8000_PTR(emu)) & 0x1000))
;
spin_unlock_irqrestore(&emu->reg_lock, flags);
snd_emu8000_poke((emu), EMU8000_DATA0(emu), EMU8000_CMD(1, (30)), 0x4828);
/* this is really odd part.. */
outb(0x3C, EMU8000_PTR(emu));
outb(0, EMU8000_DATA1(emu));
/* skew volume & cutoff */
EMU8000_VTFT_WRITE(emu, 30, 0x8000FFFF);
EMU8000_VTFT_WRITE(emu, 31, 0x8000FFFF);
}
/*
* The main initialization routine.
*/
static void
snd_emu8000_init_hw(struct snd_emu8000 *emu)
{
int i;
emu->last_reg = 0xffff; /* reset the last register index */
/* initialize hardware configuration */
EMU8000_HWCF1_WRITE(emu, 0x0059);
EMU8000_HWCF2_WRITE(emu, 0x0020);
/* disable audio; this seems to reduce a clicking noise a bit.. */
EMU8000_HWCF3_WRITE(emu, 0);
/* initialize audio channels */
init_audio(emu);
/* initialize DMA */
init_dma(emu);
/* initialize init arrays */
init_arrays(emu);
/*
* Initialize the FM section of the AWE32, this is needed
* for DRAM refresh as well
*/
snd_emu8000_init_fm(emu);
/* terminate all voices */
for (i = 0; i < EMU8000_DRAM_VOICES; i++)
EMU8000_DCYSUSV_WRITE(emu, 0, 0x807F);
/* check DRAM memory size */
size_dram(emu);
/* enable audio */
EMU8000_HWCF3_WRITE(emu, 0x4);
/* set equzlier, chorus and reverb modes */
snd_emu8000_update_equalizer(emu);
snd_emu8000_update_chorus_mode(emu);
snd_emu8000_update_reverb_mode(emu);
}
/*----------------------------------------------------------------
* Bass/Treble Equalizer
*----------------------------------------------------------------*/
static unsigned short bass_parm[12][3] = {
{0xD26A, 0xD36A, 0x0000}, /* -12 dB */
{0xD25B, 0xD35B, 0x0000}, /* -8 */
{0xD24C, 0xD34C, 0x0000}, /* -6 */
{0xD23D, 0xD33D, 0x0000}, /* -4 */
{0xD21F, 0xD31F, 0x0000}, /* -2 */
{0xC208, 0xC308, 0x0001}, /* 0 (HW default) */
{0xC219, 0xC319, 0x0001}, /* +2 */
{0xC22A, 0xC32A, 0x0001}, /* +4 */
{0xC24C, 0xC34C, 0x0001}, /* +6 */
{0xC26E, 0xC36E, 0x0001}, /* +8 */
{0xC248, 0xC384, 0x0002}, /* +10 */
{0xC26A, 0xC36A, 0x0002}, /* +12 dB */
};
static unsigned short treble_parm[12][9] = {
{0x821E, 0xC26A, 0x031E, 0xC36A, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001}, /* -12 dB */
{0x821E, 0xC25B, 0x031E, 0xC35B, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
{0x821E, 0xC24C, 0x031E, 0xC34C, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
{0x821E, 0xC23D, 0x031E, 0xC33D, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
{0x821E, 0xC21F, 0x031E, 0xC31F, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
{0x821E, 0xD208, 0x031E, 0xD308, 0x021E, 0xD208, 0x831E, 0xD308, 0x0002},
{0x821E, 0xD208, 0x031E, 0xD308, 0x021D, 0xD219, 0x831D, 0xD319, 0x0002},
{0x821E, 0xD208, 0x031E, 0xD308, 0x021C, 0xD22A, 0x831C, 0xD32A, 0x0002},
{0x821E, 0xD208, 0x031E, 0xD308, 0x021A, 0xD24C, 0x831A, 0xD34C, 0x0002},
{0x821E, 0xD208, 0x031E, 0xD308, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002}, /* +8 (HW default) */
{0x821D, 0xD219, 0x031D, 0xD319, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002},
{0x821C, 0xD22A, 0x031C, 0xD32A, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002} /* +12 dB */
};
/*
* set Emu8000 digital equalizer; from 0 to 11 [-12dB - 12dB]
*/
/*exported*/ void
snd_emu8000_update_equalizer(struct snd_emu8000 *emu)
{
unsigned short w;
int bass = emu->bass_level;
int treble = emu->treble_level;
if (bass < 0 || bass > 11 || treble < 0 || treble > 11)
return;
EMU8000_INIT4_WRITE(emu, 0x01, bass_parm[bass][0]);
EMU8000_INIT4_WRITE(emu, 0x11, bass_parm[bass][1]);
EMU8000_INIT3_WRITE(emu, 0x11, treble_parm[treble][0]);
EMU8000_INIT3_WRITE(emu, 0x13, treble_parm[treble][1]);
EMU8000_INIT3_WRITE(emu, 0x1b, treble_parm[treble][2]);
EMU8000_INIT4_WRITE(emu, 0x07, treble_parm[treble][3]);
EMU8000_INIT4_WRITE(emu, 0x0b, treble_parm[treble][4]);
EMU8000_INIT4_WRITE(emu, 0x0d, treble_parm[treble][5]);
EMU8000_INIT4_WRITE(emu, 0x17, treble_parm[treble][6]);
EMU8000_INIT4_WRITE(emu, 0x19, treble_parm[treble][7]);
w = bass_parm[bass][2] + treble_parm[treble][8];
EMU8000_INIT4_WRITE(emu, 0x15, (unsigned short)(w + 0x0262));
EMU8000_INIT4_WRITE(emu, 0x1d, (unsigned short)(w + 0x8362));
}
/*----------------------------------------------------------------
* Chorus mode control
*----------------------------------------------------------------*/
/*
* chorus mode parameters
*/
#define SNDRV_EMU8000_CHORUS_1 0
#define SNDRV_EMU8000_CHORUS_2 1
#define SNDRV_EMU8000_CHORUS_3 2
#define SNDRV_EMU8000_CHORUS_4 3
#define SNDRV_EMU8000_CHORUS_FEEDBACK 4
#define SNDRV_EMU8000_CHORUS_FLANGER 5
#define SNDRV_EMU8000_CHORUS_SHORTDELAY 6
#define SNDRV_EMU8000_CHORUS_SHORTDELAY2 7
#define SNDRV_EMU8000_CHORUS_PREDEFINED 8
/* user can define chorus modes up to 32 */
#define SNDRV_EMU8000_CHORUS_NUMBERS 32
struct soundfont_chorus_fx {
unsigned short feedback; /* feedback level (0xE600-0xE6FF) */
unsigned short delay_offset; /* delay (0-0x0DA3) [1/44100 sec] */
unsigned short lfo_depth; /* LFO depth (0xBC00-0xBCFF) */
unsigned int delay; /* right delay (0-0xFFFFFFFF) [1/256/44100 sec] */
unsigned int lfo_freq; /* LFO freq LFO freq (0-0xFFFFFFFF) */
};
/* 5 parameters for each chorus mode; 3 x 16bit, 2 x 32bit */
static char chorus_defined[SNDRV_EMU8000_CHORUS_NUMBERS];
static struct soundfont_chorus_fx chorus_parm[SNDRV_EMU8000_CHORUS_NUMBERS] = {
{0xE600, 0x03F6, 0xBC2C ,0x00000000, 0x0000006D}, /* chorus 1 */
{0xE608, 0x031A, 0xBC6E, 0x00000000, 0x0000017C}, /* chorus 2 */
{0xE610, 0x031A, 0xBC84, 0x00000000, 0x00000083}, /* chorus 3 */
{0xE620, 0x0269, 0xBC6E, 0x00000000, 0x0000017C}, /* chorus 4 */
{0xE680, 0x04D3, 0xBCA6, 0x00000000, 0x0000005B}, /* feedback */
{0xE6E0, 0x044E, 0xBC37, 0x00000000, 0x00000026}, /* flanger */
{0xE600, 0x0B06, 0xBC00, 0x0006E000, 0x00000083}, /* short delay */
{0xE6C0, 0x0B06, 0xBC00, 0x0006E000, 0x00000083}, /* short delay + feedback */
};
/*exported*/ int
snd_emu8000_load_chorus_fx(struct snd_emu8000 *emu, int mode, const void __user *buf, long len)
{
struct soundfont_chorus_fx rec;
if (mode < SNDRV_EMU8000_CHORUS_PREDEFINED || mode >= SNDRV_EMU8000_CHORUS_NUMBERS) {
snd_printk(KERN_WARNING "invalid chorus mode %d for uploading\n", mode);
return -EINVAL;
}
if (len < (long)sizeof(rec) || copy_from_user(&rec, buf, sizeof(rec)))
return -EFAULT;
chorus_parm[mode] = rec;
chorus_defined[mode] = 1;
return 0;
}
/*exported*/ void
snd_emu8000_update_chorus_mode(struct snd_emu8000 *emu)
{
int effect = emu->chorus_mode;
if (effect < 0 || effect >= SNDRV_EMU8000_CHORUS_NUMBERS ||
(effect >= SNDRV_EMU8000_CHORUS_PREDEFINED && !chorus_defined[effect]))
return;
EMU8000_INIT3_WRITE(emu, 0x09, chorus_parm[effect].feedback);
EMU8000_INIT3_WRITE(emu, 0x0c, chorus_parm[effect].delay_offset);
EMU8000_INIT4_WRITE(emu, 0x03, chorus_parm[effect].lfo_depth);
EMU8000_HWCF4_WRITE(emu, chorus_parm[effect].delay);
EMU8000_HWCF5_WRITE(emu, chorus_parm[effect].lfo_freq);
EMU8000_HWCF6_WRITE(emu, 0x8000);
EMU8000_HWCF7_WRITE(emu, 0x0000);
}
/*----------------------------------------------------------------
* Reverb mode control
*----------------------------------------------------------------*/
/*
* reverb mode parameters
*/
#define SNDRV_EMU8000_REVERB_ROOM1 0
#define SNDRV_EMU8000_REVERB_ROOM2 1
#define SNDRV_EMU8000_REVERB_ROOM3 2
#define SNDRV_EMU8000_REVERB_HALL1 3
#define SNDRV_EMU8000_REVERB_HALL2 4
#define SNDRV_EMU8000_REVERB_PLATE 5
#define SNDRV_EMU8000_REVERB_DELAY 6
#define SNDRV_EMU8000_REVERB_PANNINGDELAY 7
#define SNDRV_EMU8000_REVERB_PREDEFINED 8
/* user can define reverb modes up to 32 */
#define SNDRV_EMU8000_REVERB_NUMBERS 32
struct soundfont_reverb_fx {
unsigned short parms[28];
};
/* reverb mode settings; write the following 28 data of 16 bit length
* on the corresponding ports in the reverb_cmds array
*/
static char reverb_defined[SNDRV_EMU8000_CHORUS_NUMBERS];
static struct soundfont_reverb_fx reverb_parm[SNDRV_EMU8000_REVERB_NUMBERS] = {
{{ /* room 1 */
0xB488, 0xA450, 0x9550, 0x84B5, 0x383A, 0x3EB5, 0x72F4,
0x72A4, 0x7254, 0x7204, 0x7204, 0x7204, 0x4416, 0x4516,
0xA490, 0xA590, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
}},
{{ /* room 2 */
0xB488, 0xA458, 0x9558, 0x84B5, 0x383A, 0x3EB5, 0x7284,
0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4448, 0x4548,
0xA440, 0xA540, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
}},
{{ /* room 3 */
0xB488, 0xA460, 0x9560, 0x84B5, 0x383A, 0x3EB5, 0x7284,
0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4416, 0x4516,
0xA490, 0xA590, 0x842C, 0x852C, 0x842C, 0x852C, 0x842B,
0x852B, 0x842B, 0x852B, 0x842A, 0x852A, 0x842A, 0x852A,
}},
{{ /* hall 1 */
0xB488, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7284,
0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4448, 0x4548,
0xA440, 0xA540, 0x842B, 0x852B, 0x842B, 0x852B, 0x842A,
0x852A, 0x842A, 0x852A, 0x8429, 0x8529, 0x8429, 0x8529,
}},
{{ /* hall 2 */
0xB488, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7254,
0x7234, 0x7224, 0x7254, 0x7264, 0x7294, 0x44C3, 0x45C3,
0xA404, 0xA504, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
}},
{{ /* plate */
0xB4FF, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7234,
0x7234, 0x7234, 0x7234, 0x7234, 0x7234, 0x4448, 0x4548,
0xA440, 0xA540, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
}},
{{ /* delay */
0xB4FF, 0xA470, 0x9500, 0x84B5, 0x333A, 0x39B5, 0x7204,
0x7204, 0x7204, 0x7204, 0x7204, 0x72F4, 0x4400, 0x4500,
0xA4FF, 0xA5FF, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420,
0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520,
}},
{{ /* panning delay */
0xB4FF, 0xA490, 0x9590, 0x8474, 0x333A, 0x39B5, 0x7204,
0x7204, 0x7204, 0x7204, 0x7204, 0x72F4, 0x4400, 0x4500,
0xA4FF, 0xA5FF, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420,
0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520,
}},
};
enum { DATA1, DATA2 };
#define AWE_INIT1(c) EMU8000_CMD(2,c), DATA1
#define AWE_INIT2(c) EMU8000_CMD(2,c), DATA2
#define AWE_INIT3(c) EMU8000_CMD(3,c), DATA1
#define AWE_INIT4(c) EMU8000_CMD(3,c), DATA2
static struct reverb_cmd_pair {
unsigned short cmd, port;
} reverb_cmds[28] = {
{AWE_INIT1(0x03)}, {AWE_INIT1(0x05)}, {AWE_INIT4(0x1F)}, {AWE_INIT1(0x07)},
{AWE_INIT2(0x14)}, {AWE_INIT2(0x16)}, {AWE_INIT1(0x0F)}, {AWE_INIT1(0x17)},
{AWE_INIT1(0x1F)}, {AWE_INIT2(0x07)}, {AWE_INIT2(0x0F)}, {AWE_INIT2(0x17)},
{AWE_INIT2(0x1D)}, {AWE_INIT2(0x1F)}, {AWE_INIT3(0x01)}, {AWE_INIT3(0x03)},
{AWE_INIT1(0x09)}, {AWE_INIT1(0x0B)}, {AWE_INIT1(0x11)}, {AWE_INIT1(0x13)},
{AWE_INIT1(0x19)}, {AWE_INIT1(0x1B)}, {AWE_INIT2(0x01)}, {AWE_INIT2(0x03)},
{AWE_INIT2(0x09)}, {AWE_INIT2(0x0B)}, {AWE_INIT2(0x11)}, {AWE_INIT2(0x13)},
};
/*exported*/ int
snd_emu8000_load_reverb_fx(struct snd_emu8000 *emu, int mode, const void __user *buf, long len)
{
struct soundfont_reverb_fx rec;
if (mode < SNDRV_EMU8000_REVERB_PREDEFINED || mode >= SNDRV_EMU8000_REVERB_NUMBERS) {
snd_printk(KERN_WARNING "invalid reverb mode %d for uploading\n", mode);
return -EINVAL;
}
if (len < (long)sizeof(rec) || copy_from_user(&rec, buf, sizeof(rec)))
return -EFAULT;
reverb_parm[mode] = rec;
reverb_defined[mode] = 1;
return 0;
}
/*exported*/ void
snd_emu8000_update_reverb_mode(struct snd_emu8000 *emu)
{
int effect = emu->reverb_mode;
int i;
if (effect < 0 || effect >= SNDRV_EMU8000_REVERB_NUMBERS ||
(effect >= SNDRV_EMU8000_REVERB_PREDEFINED && !reverb_defined[effect]))
return;
for (i = 0; i < 28; i++) {
int port;
if (reverb_cmds[i].port == DATA1)
port = EMU8000_DATA1(emu);
else
port = EMU8000_DATA2(emu);
snd_emu8000_poke(emu, port, reverb_cmds[i].cmd, reverb_parm[effect].parms[i]);
}
}
/*----------------------------------------------------------------
* mixer interface
*----------------------------------------------------------------*/
/*
* bass/treble
*/
static int mixer_bass_treble_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 11;
return 0;
}
static int mixer_bass_treble_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
ucontrol->value.integer.value[0] = kcontrol->private_value ? emu->treble_level : emu->bass_level;
return 0;
}
static int mixer_bass_treble_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
unsigned long flags;
int change;
unsigned short val1;
val1 = ucontrol->value.integer.value[0] % 12;
spin_lock_irqsave(&emu->control_lock, flags);
if (kcontrol->private_value) {
change = val1 != emu->treble_level;
emu->treble_level = val1;
} else {
change = val1 != emu->bass_level;
emu->bass_level = val1;
}
spin_unlock_irqrestore(&emu->control_lock, flags);
snd_emu8000_update_equalizer(emu);
return change;
}
static struct snd_kcontrol_new mixer_bass_control =
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Synth Tone Control - Bass",
.info = mixer_bass_treble_info,
.get = mixer_bass_treble_get,
.put = mixer_bass_treble_put,
.private_value = 0,
};
static struct snd_kcontrol_new mixer_treble_control =
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Synth Tone Control - Treble",
.info = mixer_bass_treble_info,
.get = mixer_bass_treble_get,
.put = mixer_bass_treble_put,
.private_value = 1,
};
/*
* chorus/reverb mode
*/
static int mixer_chorus_reverb_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = kcontrol->private_value ? (SNDRV_EMU8000_CHORUS_NUMBERS-1) : (SNDRV_EMU8000_REVERB_NUMBERS-1);
return 0;
}
static int mixer_chorus_reverb_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
ucontrol->value.integer.value[0] = kcontrol->private_value ? emu->chorus_mode : emu->reverb_mode;
return 0;
}
static int mixer_chorus_reverb_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
unsigned long flags;
int change;
unsigned short val1;
spin_lock_irqsave(&emu->control_lock, flags);
if (kcontrol->private_value) {
val1 = ucontrol->value.integer.value[0] % SNDRV_EMU8000_CHORUS_NUMBERS;
change = val1 != emu->chorus_mode;
emu->chorus_mode = val1;
} else {
val1 = ucontrol->value.integer.value[0] % SNDRV_EMU8000_REVERB_NUMBERS;
change = val1 != emu->reverb_mode;
emu->reverb_mode = val1;
}
spin_unlock_irqrestore(&emu->control_lock, flags);
if (change) {
if (kcontrol->private_value)
snd_emu8000_update_chorus_mode(emu);
else
snd_emu8000_update_reverb_mode(emu);
}
return change;
}
static struct snd_kcontrol_new mixer_chorus_mode_control =
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Chorus Mode",
.info = mixer_chorus_reverb_info,
.get = mixer_chorus_reverb_get,
.put = mixer_chorus_reverb_put,
.private_value = 1,
};
static struct snd_kcontrol_new mixer_reverb_mode_control =
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Reverb Mode",
.info = mixer_chorus_reverb_info,
.get = mixer_chorus_reverb_get,
.put = mixer_chorus_reverb_put,
.private_value = 0,
};
/*
* FM OPL3 chorus/reverb depth
*/
static int mixer_fm_depth_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 255;
return 0;
}
static int mixer_fm_depth_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
ucontrol->value.integer.value[0] = kcontrol->private_value ? emu->fm_chorus_depth : emu->fm_reverb_depth;
return 0;
}
static int mixer_fm_depth_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
unsigned long flags;
int change;
unsigned short val1;
val1 = ucontrol->value.integer.value[0] % 256;
spin_lock_irqsave(&emu->control_lock, flags);
if (kcontrol->private_value) {
change = val1 != emu->fm_chorus_depth;
emu->fm_chorus_depth = val1;
} else {
change = val1 != emu->fm_reverb_depth;
emu->fm_reverb_depth = val1;
}
spin_unlock_irqrestore(&emu->control_lock, flags);
if (change)
snd_emu8000_init_fm(emu);
return change;
}
static struct snd_kcontrol_new mixer_fm_chorus_depth_control =
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "FM Chorus Depth",
.info = mixer_fm_depth_info,
.get = mixer_fm_depth_get,
.put = mixer_fm_depth_put,
.private_value = 1,
};
static struct snd_kcontrol_new mixer_fm_reverb_depth_control =
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "FM Reverb Depth",
.info = mixer_fm_depth_info,
.get = mixer_fm_depth_get,
.put = mixer_fm_depth_put,
.private_value = 0,
};
static struct snd_kcontrol_new *mixer_defs[EMU8000_NUM_CONTROLS] = {
&mixer_bass_control,
&mixer_treble_control,
&mixer_chorus_mode_control,
&mixer_reverb_mode_control,
&mixer_fm_chorus_depth_control,
&mixer_fm_reverb_depth_control,
};
/*
* create and attach mixer elements for WaveTable treble/bass controls
*/
static int
snd_emu8000_create_mixer(struct snd_card *card, struct snd_emu8000 *emu)
{
int i, err = 0;
if (snd_BUG_ON(!emu || !card))
return -EINVAL;
spin_lock_init(&emu->control_lock);
memset(emu->controls, 0, sizeof(emu->controls));
for (i = 0; i < EMU8000_NUM_CONTROLS; i++) {
if ((err = snd_ctl_add(card, emu->controls[i] = snd_ctl_new1(mixer_defs[i], emu))) < 0) {
emu->controls[i] = NULL;
goto __error;
}
}
return 0;
__error:
for (i = 0; i < EMU8000_NUM_CONTROLS; i++) {
down_write(&card->controls_rwsem);
if (emu->controls[i])
snd_ctl_remove(card, emu->controls[i]);
up_write(&card->controls_rwsem);
}
return err;
}
/*
* free resources
*/
static int snd_emu8000_free(struct snd_emu8000 *hw)
{
release_and_free_resource(hw->res_port1);
release_and_free_resource(hw->res_port2);
release_and_free_resource(hw->res_port3);
kfree(hw);
return 0;
}
/*
*/
static int snd_emu8000_dev_free(struct snd_device *device)
{
struct snd_emu8000 *hw = device->device_data;
return snd_emu8000_free(hw);
}
/*
* initialize and register emu8000 synth device.
*/
int
snd_emu8000_new(struct snd_card *card, int index, long port, int seq_ports,
struct snd_seq_device **awe_ret)
{
struct snd_seq_device *awe;
struct snd_emu8000 *hw;
int err;
static struct snd_device_ops ops = {
.dev_free = snd_emu8000_dev_free,
};
if (awe_ret)
*awe_ret = NULL;
if (seq_ports <= 0)
return 0;
hw = kzalloc(sizeof(*hw), GFP_KERNEL);
if (hw == NULL)
return -ENOMEM;
spin_lock_init(&hw->reg_lock);
hw->index = index;
hw->port1 = port;
hw->port2 = port + 0x400;
hw->port3 = port + 0x800;
if (!(hw->res_port1 = request_region(hw->port1, 4, "Emu8000-1")) ||
!(hw->res_port2 = request_region(hw->port2, 4, "Emu8000-2")) ||
!(hw->res_port3 = request_region(hw->port3, 4, "Emu8000-3"))) {
snd_printk(KERN_ERR "sbawe: can't grab ports 0x%lx, 0x%lx, 0x%lx\n", hw->port1, hw->port2, hw->port3);
snd_emu8000_free(hw);
return -EBUSY;
}
hw->mem_size = 0;
hw->card = card;
hw->seq_ports = seq_ports;
hw->bass_level = 5;
hw->treble_level = 9;
hw->chorus_mode = 2;
hw->reverb_mode = 4;
hw->fm_chorus_depth = 0;
hw->fm_reverb_depth = 0;
if (snd_emu8000_detect(hw) < 0) {
snd_emu8000_free(hw);
return -ENODEV;
}
snd_emu8000_init_hw(hw);
if ((err = snd_emu8000_create_mixer(card, hw)) < 0) {
snd_emu8000_free(hw);
return err;
}
if ((err = snd_device_new(card, SNDRV_DEV_CODEC, hw, &ops)) < 0) {
snd_emu8000_free(hw);
return err;
}
#if IS_ENABLED(CONFIG_SND_SEQUENCER)
if (snd_seq_device_new(card, index, SNDRV_SEQ_DEV_ID_EMU8000,
sizeof(struct snd_emu8000*), &awe) >= 0) {
strcpy(awe->name, "EMU-8000");
*(struct snd_emu8000 **)SNDRV_SEQ_DEVICE_ARGPTR(awe) = hw;
}
#else
awe = NULL;
#endif
if (awe_ret)
*awe_ret = awe;
return 0;
}
/*
* exported stuff
*/
EXPORT_SYMBOL(snd_emu8000_poke);
EXPORT_SYMBOL(snd_emu8000_peek);
EXPORT_SYMBOL(snd_emu8000_poke_dw);
EXPORT_SYMBOL(snd_emu8000_peek_dw);
EXPORT_SYMBOL(snd_emu8000_dma_chan);
EXPORT_SYMBOL(snd_emu8000_init_fm);
EXPORT_SYMBOL(snd_emu8000_load_chorus_fx);
EXPORT_SYMBOL(snd_emu8000_load_reverb_fx);
EXPORT_SYMBOL(snd_emu8000_update_chorus_mode);
EXPORT_SYMBOL(snd_emu8000_update_reverb_mode);
EXPORT_SYMBOL(snd_emu8000_update_equalizer);