blob: 0986c2363e96843c9c71bc6813e48054d0091f85 [file] [log] [blame]
/*
* Implementation of the policy database.
*
* Author : Stephen Smalley, <sds@tycho.nsa.gov>
*/
/*
* Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
*
* Support for enhanced MLS infrastructure.
*
* Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
*
* Added conditional policy language extensions
*
* Updated: Hewlett-Packard <paul@paul-moore.com>
*
* Added support for the policy capability bitmap
*
* Update: Mellanox Techonologies
*
* Added Infiniband support
*
* Copyright (C) 2016 Mellanox Techonologies
* Copyright (C) 2007 Hewlett-Packard Development Company, L.P.
* Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
* Copyright (C) 2003 - 2004 Tresys Technology, LLC
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 2.
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/audit.h>
#include <linux/flex_array.h>
#include "security.h"
#include "policydb.h"
#include "conditional.h"
#include "mls.h"
#include "services.h"
#include "flask.h"
#define _DEBUG_HASHES
#ifdef DEBUG_HASHES
static const char *symtab_name[SYM_NUM] = {
"common prefixes",
"classes",
"roles",
"types",
"users",
"bools",
"levels",
"categories",
};
#endif
static unsigned int symtab_sizes[SYM_NUM] = {
2,
32,
16,
512,
128,
16,
16,
16,
};
struct policydb_compat_info {
int version;
int sym_num;
int ocon_num;
};
/* These need to be updated if SYM_NUM or OCON_NUM changes */
static struct policydb_compat_info policydb_compat[] = {
{
.version = POLICYDB_VERSION_BASE,
.sym_num = SYM_NUM - 3,
.ocon_num = OCON_NUM - 3,
},
{
.version = POLICYDB_VERSION_BOOL,
.sym_num = SYM_NUM - 2,
.ocon_num = OCON_NUM - 3,
},
{
.version = POLICYDB_VERSION_IPV6,
.sym_num = SYM_NUM - 2,
.ocon_num = OCON_NUM - 2,
},
{
.version = POLICYDB_VERSION_NLCLASS,
.sym_num = SYM_NUM - 2,
.ocon_num = OCON_NUM - 2,
},
{
.version = POLICYDB_VERSION_MLS,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM - 2,
},
{
.version = POLICYDB_VERSION_AVTAB,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM - 2,
},
{
.version = POLICYDB_VERSION_RANGETRANS,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM - 2,
},
{
.version = POLICYDB_VERSION_POLCAP,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM - 2,
},
{
.version = POLICYDB_VERSION_PERMISSIVE,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM - 2,
},
{
.version = POLICYDB_VERSION_BOUNDARY,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM - 2,
},
{
.version = POLICYDB_VERSION_FILENAME_TRANS,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM - 2,
},
{
.version = POLICYDB_VERSION_ROLETRANS,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM - 2,
},
{
.version = POLICYDB_VERSION_NEW_OBJECT_DEFAULTS,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM - 2,
},
{
.version = POLICYDB_VERSION_DEFAULT_TYPE,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM - 2,
},
{
.version = POLICYDB_VERSION_CONSTRAINT_NAMES,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM - 2,
},
{
.version = POLICYDB_VERSION_XPERMS_IOCTL,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM - 2,
},
{
.version = POLICYDB_VERSION_INFINIBAND,
.sym_num = SYM_NUM,
.ocon_num = OCON_NUM,
},
};
static struct policydb_compat_info *policydb_lookup_compat(int version)
{
int i;
struct policydb_compat_info *info = NULL;
for (i = 0; i < ARRAY_SIZE(policydb_compat); i++) {
if (policydb_compat[i].version == version) {
info = &policydb_compat[i];
break;
}
}
return info;
}
/*
* Initialize the role table.
*/
static int roles_init(struct policydb *p)
{
char *key = NULL;
int rc;
struct role_datum *role;
role = kzalloc(sizeof(*role), GFP_KERNEL);
if (!role)
return -ENOMEM;
rc = -EINVAL;
role->value = ++p->p_roles.nprim;
if (role->value != OBJECT_R_VAL)
goto out;
rc = -ENOMEM;
key = kstrdup(OBJECT_R, GFP_KERNEL);
if (!key)
goto out;
rc = hashtab_insert(p->p_roles.table, key, role);
if (rc)
goto out;
return 0;
out:
kfree(key);
kfree(role);
return rc;
}
static u32 filenametr_hash(struct hashtab *h, const void *k)
{
const struct filename_trans *ft = k;
unsigned long hash;
unsigned int byte_num;
unsigned char focus;
hash = ft->stype ^ ft->ttype ^ ft->tclass;
byte_num = 0;
while ((focus = ft->name[byte_num++]))
hash = partial_name_hash(focus, hash);
return hash & (h->size - 1);
}
static int filenametr_cmp(struct hashtab *h, const void *k1, const void *k2)
{
const struct filename_trans *ft1 = k1;
const struct filename_trans *ft2 = k2;
int v;
v = ft1->stype - ft2->stype;
if (v)
return v;
v = ft1->ttype - ft2->ttype;
if (v)
return v;
v = ft1->tclass - ft2->tclass;
if (v)
return v;
return strcmp(ft1->name, ft2->name);
}
static u32 rangetr_hash(struct hashtab *h, const void *k)
{
const struct range_trans *key = k;
return (key->source_type + (key->target_type << 3) +
(key->target_class << 5)) & (h->size - 1);
}
static int rangetr_cmp(struct hashtab *h, const void *k1, const void *k2)
{
const struct range_trans *key1 = k1, *key2 = k2;
int v;
v = key1->source_type - key2->source_type;
if (v)
return v;
v = key1->target_type - key2->target_type;
if (v)
return v;
v = key1->target_class - key2->target_class;
return v;
}
static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap);
/*
* Initialize a policy database structure.
*/
static int policydb_init(struct policydb *p)
{
int i, rc;
memset(p, 0, sizeof(*p));
for (i = 0; i < SYM_NUM; i++) {
rc = symtab_init(&p->symtab[i], symtab_sizes[i]);
if (rc)
goto out;
}
rc = avtab_init(&p->te_avtab);
if (rc)
goto out;
rc = roles_init(p);
if (rc)
goto out;
rc = cond_policydb_init(p);
if (rc)
goto out;
p->filename_trans = hashtab_create(filenametr_hash, filenametr_cmp, (1 << 10));
if (!p->filename_trans) {
rc = -ENOMEM;
goto out;
}
p->range_tr = hashtab_create(rangetr_hash, rangetr_cmp, 256);
if (!p->range_tr) {
rc = -ENOMEM;
goto out;
}
ebitmap_init(&p->filename_trans_ttypes);
ebitmap_init(&p->policycaps);
ebitmap_init(&p->permissive_map);
return 0;
out:
hashtab_destroy(p->filename_trans);
hashtab_destroy(p->range_tr);
for (i = 0; i < SYM_NUM; i++) {
hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
hashtab_destroy(p->symtab[i].table);
}
return rc;
}
/*
* The following *_index functions are used to
* define the val_to_name and val_to_struct arrays
* in a policy database structure. The val_to_name
* arrays are used when converting security context
* structures into string representations. The
* val_to_struct arrays are used when the attributes
* of a class, role, or user are needed.
*/
static int common_index(void *key, void *datum, void *datap)
{
struct policydb *p;
struct common_datum *comdatum;
struct flex_array *fa;
comdatum = datum;
p = datap;
if (!comdatum->value || comdatum->value > p->p_commons.nprim)
return -EINVAL;
fa = p->sym_val_to_name[SYM_COMMONS];
if (flex_array_put_ptr(fa, comdatum->value - 1, key,
GFP_KERNEL | __GFP_ZERO))
BUG();
return 0;
}
static int class_index(void *key, void *datum, void *datap)
{
struct policydb *p;
struct class_datum *cladatum;
struct flex_array *fa;
cladatum = datum;
p = datap;
if (!cladatum->value || cladatum->value > p->p_classes.nprim)
return -EINVAL;
fa = p->sym_val_to_name[SYM_CLASSES];
if (flex_array_put_ptr(fa, cladatum->value - 1, key,
GFP_KERNEL | __GFP_ZERO))
BUG();
p->class_val_to_struct[cladatum->value - 1] = cladatum;
return 0;
}
static int role_index(void *key, void *datum, void *datap)
{
struct policydb *p;
struct role_datum *role;
struct flex_array *fa;
role = datum;
p = datap;
if (!role->value
|| role->value > p->p_roles.nprim
|| role->bounds > p->p_roles.nprim)
return -EINVAL;
fa = p->sym_val_to_name[SYM_ROLES];
if (flex_array_put_ptr(fa, role->value - 1, key,
GFP_KERNEL | __GFP_ZERO))
BUG();
p->role_val_to_struct[role->value - 1] = role;
return 0;
}
static int type_index(void *key, void *datum, void *datap)
{
struct policydb *p;
struct type_datum *typdatum;
struct flex_array *fa;
typdatum = datum;
p = datap;
if (typdatum->primary) {
if (!typdatum->value
|| typdatum->value > p->p_types.nprim
|| typdatum->bounds > p->p_types.nprim)
return -EINVAL;
fa = p->sym_val_to_name[SYM_TYPES];
if (flex_array_put_ptr(fa, typdatum->value - 1, key,
GFP_KERNEL | __GFP_ZERO))
BUG();
fa = p->type_val_to_struct_array;
if (flex_array_put_ptr(fa, typdatum->value - 1, typdatum,
GFP_KERNEL | __GFP_ZERO))
BUG();
}
return 0;
}
static int user_index(void *key, void *datum, void *datap)
{
struct policydb *p;
struct user_datum *usrdatum;
struct flex_array *fa;
usrdatum = datum;
p = datap;
if (!usrdatum->value
|| usrdatum->value > p->p_users.nprim
|| usrdatum->bounds > p->p_users.nprim)
return -EINVAL;
fa = p->sym_val_to_name[SYM_USERS];
if (flex_array_put_ptr(fa, usrdatum->value - 1, key,
GFP_KERNEL | __GFP_ZERO))
BUG();
p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
return 0;
}
static int sens_index(void *key, void *datum, void *datap)
{
struct policydb *p;
struct level_datum *levdatum;
struct flex_array *fa;
levdatum = datum;
p = datap;
if (!levdatum->isalias) {
if (!levdatum->level->sens ||
levdatum->level->sens > p->p_levels.nprim)
return -EINVAL;
fa = p->sym_val_to_name[SYM_LEVELS];
if (flex_array_put_ptr(fa, levdatum->level->sens - 1, key,
GFP_KERNEL | __GFP_ZERO))
BUG();
}
return 0;
}
static int cat_index(void *key, void *datum, void *datap)
{
struct policydb *p;
struct cat_datum *catdatum;
struct flex_array *fa;
catdatum = datum;
p = datap;
if (!catdatum->isalias) {
if (!catdatum->value || catdatum->value > p->p_cats.nprim)
return -EINVAL;
fa = p->sym_val_to_name[SYM_CATS];
if (flex_array_put_ptr(fa, catdatum->value - 1, key,
GFP_KERNEL | __GFP_ZERO))
BUG();
}
return 0;
}
static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
{
common_index,
class_index,
role_index,
type_index,
user_index,
cond_index_bool,
sens_index,
cat_index,
};
#ifdef DEBUG_HASHES
static void hash_eval(struct hashtab *h, const char *hash_name)
{
struct hashtab_info info;
hashtab_stat(h, &info);
printk(KERN_DEBUG "SELinux: %s: %d entries and %d/%d buckets used, "
"longest chain length %d\n", hash_name, h->nel,
info.slots_used, h->size, info.max_chain_len);
}
static void symtab_hash_eval(struct symtab *s)
{
int i;
for (i = 0; i < SYM_NUM; i++)
hash_eval(s[i].table, symtab_name[i]);
}
#else
static inline void hash_eval(struct hashtab *h, char *hash_name)
{
}
#endif
/*
* Define the other val_to_name and val_to_struct arrays
* in a policy database structure.
*
* Caller must clean up on failure.
*/
static int policydb_index(struct policydb *p)
{
int i, rc;
printk(KERN_DEBUG "SELinux: %d users, %d roles, %d types, %d bools",
p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim);
if (p->mls_enabled)
printk(KERN_CONT ", %d sens, %d cats", p->p_levels.nprim,
p->p_cats.nprim);
printk(KERN_CONT "\n");
printk(KERN_DEBUG "SELinux: %d classes, %d rules\n",
p->p_classes.nprim, p->te_avtab.nel);
#ifdef DEBUG_HASHES
avtab_hash_eval(&p->te_avtab, "rules");
symtab_hash_eval(p->symtab);
#endif
p->class_val_to_struct = kcalloc(p->p_classes.nprim,
sizeof(*p->class_val_to_struct),
GFP_KERNEL);
if (!p->class_val_to_struct)
return -ENOMEM;
p->role_val_to_struct = kcalloc(p->p_roles.nprim,
sizeof(*p->role_val_to_struct),
GFP_KERNEL);
if (!p->role_val_to_struct)
return -ENOMEM;
p->user_val_to_struct = kcalloc(p->p_users.nprim,
sizeof(*p->user_val_to_struct),
GFP_KERNEL);
if (!p->user_val_to_struct)
return -ENOMEM;
/* Yes, I want the sizeof the pointer, not the structure */
p->type_val_to_struct_array = flex_array_alloc(sizeof(struct type_datum *),
p->p_types.nprim,
GFP_KERNEL | __GFP_ZERO);
if (!p->type_val_to_struct_array)
return -ENOMEM;
rc = flex_array_prealloc(p->type_val_to_struct_array, 0,
p->p_types.nprim, GFP_KERNEL | __GFP_ZERO);
if (rc)
goto out;
rc = cond_init_bool_indexes(p);
if (rc)
goto out;
for (i = 0; i < SYM_NUM; i++) {
p->sym_val_to_name[i] = flex_array_alloc(sizeof(char *),
p->symtab[i].nprim,
GFP_KERNEL | __GFP_ZERO);
if (!p->sym_val_to_name[i])
return -ENOMEM;
rc = flex_array_prealloc(p->sym_val_to_name[i],
0, p->symtab[i].nprim,
GFP_KERNEL | __GFP_ZERO);
if (rc)
goto out;
rc = hashtab_map(p->symtab[i].table, index_f[i], p);
if (rc)
goto out;
}
rc = 0;
out:
return rc;
}
/*
* The following *_destroy functions are used to
* free any memory allocated for each kind of
* symbol data in the policy database.
*/
static int perm_destroy(void *key, void *datum, void *p)
{
kfree(key);
kfree(datum);
return 0;
}
static int common_destroy(void *key, void *datum, void *p)
{
struct common_datum *comdatum;
kfree(key);
if (datum) {
comdatum = datum;
hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
hashtab_destroy(comdatum->permissions.table);
}
kfree(datum);
return 0;
}
static void constraint_expr_destroy(struct constraint_expr *expr)
{
if (expr) {
ebitmap_destroy(&expr->names);
if (expr->type_names) {
ebitmap_destroy(&expr->type_names->types);
ebitmap_destroy(&expr->type_names->negset);
kfree(expr->type_names);
}
kfree(expr);
}
}
static int cls_destroy(void *key, void *datum, void *p)
{
struct class_datum *cladatum;
struct constraint_node *constraint, *ctemp;
struct constraint_expr *e, *etmp;
kfree(key);
if (datum) {
cladatum = datum;
hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
hashtab_destroy(cladatum->permissions.table);
constraint = cladatum->constraints;
while (constraint) {
e = constraint->expr;
while (e) {
etmp = e;
e = e->next;
constraint_expr_destroy(etmp);
}
ctemp = constraint;
constraint = constraint->next;
kfree(ctemp);
}
constraint = cladatum->validatetrans;
while (constraint) {
e = constraint->expr;
while (e) {
etmp = e;
e = e->next;
constraint_expr_destroy(etmp);
}
ctemp = constraint;
constraint = constraint->next;
kfree(ctemp);
}
kfree(cladatum->comkey);
}
kfree(datum);
return 0;
}
static int role_destroy(void *key, void *datum, void *p)
{
struct role_datum *role;
kfree(key);
if (datum) {
role = datum;
ebitmap_destroy(&role->dominates);
ebitmap_destroy(&role->types);
}
kfree(datum);
return 0;
}
static int type_destroy(void *key, void *datum, void *p)
{
kfree(key);
kfree(datum);
return 0;
}
static int user_destroy(void *key, void *datum, void *p)
{
struct user_datum *usrdatum;
kfree(key);
if (datum) {
usrdatum = datum;
ebitmap_destroy(&usrdatum->roles);
ebitmap_destroy(&usrdatum->range.level[0].cat);
ebitmap_destroy(&usrdatum->range.level[1].cat);
ebitmap_destroy(&usrdatum->dfltlevel.cat);
}
kfree(datum);
return 0;
}
static int sens_destroy(void *key, void *datum, void *p)
{
struct level_datum *levdatum;
kfree(key);
if (datum) {
levdatum = datum;
if (levdatum->level)
ebitmap_destroy(&levdatum->level->cat);
kfree(levdatum->level);
}
kfree(datum);
return 0;
}
static int cat_destroy(void *key, void *datum, void *p)
{
kfree(key);
kfree(datum);
return 0;
}
static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
{
common_destroy,
cls_destroy,
role_destroy,
type_destroy,
user_destroy,
cond_destroy_bool,
sens_destroy,
cat_destroy,
};
static int filenametr_destroy(void *key, void *datum, void *p)
{
struct filename_trans *ft = key;
kfree(ft->name);
kfree(key);
kfree(datum);
cond_resched();
return 0;
}
static int range_tr_destroy(void *key, void *datum, void *p)
{
struct mls_range *rt = datum;
kfree(key);
ebitmap_destroy(&rt->level[0].cat);
ebitmap_destroy(&rt->level[1].cat);
kfree(datum);
cond_resched();
return 0;
}
static void ocontext_destroy(struct ocontext *c, int i)
{
if (!c)
return;
context_destroy(&c->context[0]);
context_destroy(&c->context[1]);
if (i == OCON_ISID || i == OCON_FS ||
i == OCON_NETIF || i == OCON_FSUSE)
kfree(c->u.name);
kfree(c);
}
/*
* Free any memory allocated by a policy database structure.
*/
void policydb_destroy(struct policydb *p)
{
struct ocontext *c, *ctmp;
struct genfs *g, *gtmp;
int i;
struct role_allow *ra, *lra = NULL;
struct role_trans *tr, *ltr = NULL;
for (i = 0; i < SYM_NUM; i++) {
cond_resched();
hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
hashtab_destroy(p->symtab[i].table);
}
for (i = 0; i < SYM_NUM; i++) {
if (p->sym_val_to_name[i])
flex_array_free(p->sym_val_to_name[i]);
}
kfree(p->class_val_to_struct);
kfree(p->role_val_to_struct);
kfree(p->user_val_to_struct);
if (p->type_val_to_struct_array)
flex_array_free(p->type_val_to_struct_array);
avtab_destroy(&p->te_avtab);
for (i = 0; i < OCON_NUM; i++) {
cond_resched();
c = p->ocontexts[i];
while (c) {
ctmp = c;
c = c->next;
ocontext_destroy(ctmp, i);
}
p->ocontexts[i] = NULL;
}
g = p->genfs;
while (g) {
cond_resched();
kfree(g->fstype);
c = g->head;
while (c) {
ctmp = c;
c = c->next;
ocontext_destroy(ctmp, OCON_FSUSE);
}
gtmp = g;
g = g->next;
kfree(gtmp);
}
p->genfs = NULL;
cond_policydb_destroy(p);
for (tr = p->role_tr; tr; tr = tr->next) {
cond_resched();
kfree(ltr);
ltr = tr;
}
kfree(ltr);
for (ra = p->role_allow; ra; ra = ra->next) {
cond_resched();
kfree(lra);
lra = ra;
}
kfree(lra);
hashtab_map(p->filename_trans, filenametr_destroy, NULL);
hashtab_destroy(p->filename_trans);
hashtab_map(p->range_tr, range_tr_destroy, NULL);
hashtab_destroy(p->range_tr);
if (p->type_attr_map_array) {
for (i = 0; i < p->p_types.nprim; i++) {
struct ebitmap *e;
e = flex_array_get(p->type_attr_map_array, i);
if (!e)
continue;
ebitmap_destroy(e);
}
flex_array_free(p->type_attr_map_array);
}
ebitmap_destroy(&p->filename_trans_ttypes);
ebitmap_destroy(&p->policycaps);
ebitmap_destroy(&p->permissive_map);
}
/*
* Load the initial SIDs specified in a policy database
* structure into a SID table.
*/
int policydb_load_isids(struct policydb *p, struct sidtab *s)
{
struct ocontext *head, *c;
int rc;
rc = sidtab_init(s);
if (rc) {
printk(KERN_ERR "SELinux: out of memory on SID table init\n");
goto out;
}
head = p->ocontexts[OCON_ISID];
for (c = head; c; c = c->next) {
rc = -EINVAL;
if (!c->context[0].user) {
printk(KERN_ERR "SELinux: SID %s was never defined.\n",
c->u.name);
sidtab_destroy(s);
goto out;
}
if (c->sid[0] == SECSID_NULL || c->sid[0] > SECINITSID_NUM) {
pr_err("SELinux: Initial SID %s out of range.\n",
c->u.name);
sidtab_destroy(s);
goto out;
}
rc = context_add_hash(p, &c->context[0]);
if (rc) {
sidtab_destroy(s);
goto out;
}
rc = sidtab_set_initial(s, c->sid[0], &c->context[0]);
if (rc) {
printk(KERN_ERR "SELinux: unable to load initial SID %s.\n",
c->u.name);
sidtab_destroy(s);
goto out;
}
}
rc = 0;
out:
return rc;
}
int policydb_class_isvalid(struct policydb *p, unsigned int class)
{
if (!class || class > p->p_classes.nprim)
return 0;
return 1;
}
int policydb_role_isvalid(struct policydb *p, unsigned int role)
{
if (!role || role > p->p_roles.nprim)
return 0;
return 1;
}
int policydb_type_isvalid(struct policydb *p, unsigned int type)
{
if (!type || type > p->p_types.nprim)
return 0;
return 1;
}
/*
* Return 1 if the fields in the security context
* structure `c' are valid. Return 0 otherwise.
*/
int policydb_context_isvalid(struct policydb *p, struct context *c)
{
struct role_datum *role;
struct user_datum *usrdatum;
if (!c->role || c->role > p->p_roles.nprim)
return 0;
if (!c->user || c->user > p->p_users.nprim)
return 0;
if (!c->type || c->type > p->p_types.nprim)
return 0;
if (c->role != OBJECT_R_VAL) {
/*
* Role must be authorized for the type.
*/
role = p->role_val_to_struct[c->role - 1];
if (!role || !ebitmap_get_bit(&role->types, c->type - 1))
/* role may not be associated with type */
return 0;
/*
* User must be authorized for the role.
*/
usrdatum = p->user_val_to_struct[c->user - 1];
if (!usrdatum)
return 0;
if (!ebitmap_get_bit(&usrdatum->roles, c->role - 1))
/* user may not be associated with role */
return 0;
}
if (!mls_context_isvalid(p, c))
return 0;
return 1;
}
/*
* Read a MLS range structure from a policydb binary
* representation file.
*/
static int mls_read_range_helper(struct mls_range *r, void *fp)
{
__le32 buf[2];
u32 items;
int rc;
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto out;
rc = -EINVAL;
items = le32_to_cpu(buf[0]);
if (items > ARRAY_SIZE(buf)) {
printk(KERN_ERR "SELinux: mls: range overflow\n");
goto out;
}
rc = next_entry(buf, fp, sizeof(u32) * items);
if (rc) {
printk(KERN_ERR "SELinux: mls: truncated range\n");
goto out;
}
r->level[0].sens = le32_to_cpu(buf[0]);
if (items > 1)
r->level[1].sens = le32_to_cpu(buf[1]);
else
r->level[1].sens = r->level[0].sens;
rc = ebitmap_read(&r->level[0].cat, fp);
if (rc) {
printk(KERN_ERR "SELinux: mls: error reading low categories\n");
goto out;
}
if (items > 1) {
rc = ebitmap_read(&r->level[1].cat, fp);
if (rc) {
printk(KERN_ERR "SELinux: mls: error reading high categories\n");
goto bad_high;
}
} else {
rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
if (rc) {
printk(KERN_ERR "SELinux: mls: out of memory\n");
goto bad_high;
}
}
return 0;
bad_high:
ebitmap_destroy(&r->level[0].cat);
out:
return rc;
}
/*
* Read and validate a security context structure
* from a policydb binary representation file.
*/
static int context_read_and_validate(struct context *c,
struct policydb *p,
void *fp)
{
__le32 buf[3];
int rc;
rc = next_entry(buf, fp, sizeof buf);
if (rc) {
printk(KERN_ERR "SELinux: context truncated\n");
goto out;
}
c->user = le32_to_cpu(buf[0]);
c->role = le32_to_cpu(buf[1]);
c->type = le32_to_cpu(buf[2]);
if (p->policyvers >= POLICYDB_VERSION_MLS) {
rc = mls_read_range_helper(&c->range, fp);
if (rc) {
printk(KERN_ERR "SELinux: error reading MLS range of context\n");
goto out;
}
}
rc = -EINVAL;
if (!policydb_context_isvalid(p, c)) {
printk(KERN_ERR "SELinux: invalid security context\n");
context_destroy(c);
goto out;
}
rc = 0;
out:
return rc;
}
/*
* The following *_read functions are used to
* read the symbol data from a policy database
* binary representation file.
*/
static int str_read(char **strp, gfp_t flags, void *fp, u32 len)
{
int rc;
char *str;
if ((len == 0) || (len == (u32)-1))
return -EINVAL;
str = kmalloc(len + 1, flags | __GFP_NOWARN);
if (!str)
return -ENOMEM;
/* it's expected the caller should free the str */
*strp = str;
rc = next_entry(str, fp, len);
if (rc)
return rc;
str[len] = '\0';
return 0;
}
static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
{
char *key = NULL;
struct perm_datum *perdatum;
int rc;
__le32 buf[2];
u32 len;
perdatum = kzalloc(sizeof(*perdatum), GFP_KERNEL);
if (!perdatum)
return -ENOMEM;
rc = next_entry(buf, fp, sizeof buf);
if (rc)
goto bad;
len = le32_to_cpu(buf[0]);
perdatum->value = le32_to_cpu(buf[1]);
rc = str_read(&key, GFP_KERNEL, fp, len);
if (rc)
goto bad;
rc = hashtab_insert(h, key, perdatum);
if (rc)
goto bad;
return 0;
bad:
perm_destroy(key, perdatum, NULL);
return rc;
}
static int common_read(struct policydb *p, struct hashtab *h, void *fp)
{
char *key = NULL;
struct common_datum *comdatum;
__le32 buf[4];
u32 len, nel;
int i, rc;
comdatum = kzalloc(sizeof(*comdatum), GFP_KERNEL);
if (!comdatum)
return -ENOMEM;
rc = next_entry(buf, fp, sizeof buf);
if (rc)
goto bad;
len = le32_to_cpu(buf[0]);
comdatum->value = le32_to_cpu(buf[1]);
rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE);
if (rc)
goto bad;
comdatum->permissions.nprim = le32_to_cpu(buf[2]);
nel = le32_to_cpu(buf[3]);
rc = str_read(&key, GFP_KERNEL, fp, len);
if (rc)
goto bad;
for (i = 0; i < nel; i++) {
rc = perm_read(p, comdatum->permissions.table, fp);
if (rc)
goto bad;
}
rc = hashtab_insert(h, key, comdatum);
if (rc)
goto bad;
return 0;
bad:
common_destroy(key, comdatum, NULL);
return rc;
}
static void type_set_init(struct type_set *t)
{
ebitmap_init(&t->types);
ebitmap_init(&t->negset);
}
static int type_set_read(struct type_set *t, void *fp)
{
__le32 buf[1];
int rc;
if (ebitmap_read(&t->types, fp))
return -EINVAL;
if (ebitmap_read(&t->negset, fp))
return -EINVAL;
rc = next_entry(buf, fp, sizeof(u32));
if (rc < 0)
return -EINVAL;
t->flags = le32_to_cpu(buf[0]);
return 0;
}
static int read_cons_helper(struct policydb *p,
struct constraint_node **nodep,
int ncons, int allowxtarget, void *fp)
{
struct constraint_node *c, *lc;
struct constraint_expr *e, *le;
__le32 buf[3];
u32 nexpr;
int rc, i, j, depth;
lc = NULL;
for (i = 0; i < ncons; i++) {
c = kzalloc(sizeof(*c), GFP_KERNEL);
if (!c)
return -ENOMEM;
if (lc)
lc->next = c;
else
*nodep = c;
rc = next_entry(buf, fp, (sizeof(u32) * 2));
if (rc)
return rc;
c->permissions = le32_to_cpu(buf[0]);
nexpr = le32_to_cpu(buf[1]);
le = NULL;
depth = -1;
for (j = 0; j < nexpr; j++) {
e = kzalloc(sizeof(*e), GFP_KERNEL);
if (!e)
return -ENOMEM;
if (le)
le->next = e;
else
c->expr = e;
rc = next_entry(buf, fp, (sizeof(u32) * 3));
if (rc)
return rc;
e->expr_type = le32_to_cpu(buf[0]);
e->attr = le32_to_cpu(buf[1]);
e->op = le32_to_cpu(buf[2]);
switch (e->expr_type) {
case CEXPR_NOT:
if (depth < 0)
return -EINVAL;
break;
case CEXPR_AND:
case CEXPR_OR:
if (depth < 1)
return -EINVAL;
depth--;
break;
case CEXPR_ATTR:
if (depth == (CEXPR_MAXDEPTH - 1))
return -EINVAL;
depth++;
break;
case CEXPR_NAMES:
if (!allowxtarget && (e->attr & CEXPR_XTARGET))
return -EINVAL;
if (depth == (CEXPR_MAXDEPTH - 1))
return -EINVAL;
depth++;
rc = ebitmap_read(&e->names, fp);
if (rc)
return rc;
if (p->policyvers >=
POLICYDB_VERSION_CONSTRAINT_NAMES) {
e->type_names = kzalloc(sizeof
(*e->type_names),
GFP_KERNEL);
if (!e->type_names)
return -ENOMEM;
type_set_init(e->type_names);
rc = type_set_read(e->type_names, fp);
if (rc)
return rc;
}
break;
default:
return -EINVAL;
}
le = e;
}
if (depth != 0)
return -EINVAL;
lc = c;
}
return 0;
}
static int class_read(struct policydb *p, struct hashtab *h, void *fp)
{
char *key = NULL;
struct class_datum *cladatum;
__le32 buf[6];
u32 len, len2, ncons, nel;
int i, rc;
cladatum = kzalloc(sizeof(*cladatum), GFP_KERNEL);
if (!cladatum)
return -ENOMEM;
rc = next_entry(buf, fp, sizeof(u32)*6);
if (rc)
goto bad;
len = le32_to_cpu(buf[0]);
len2 = le32_to_cpu(buf[1]);
cladatum->value = le32_to_cpu(buf[2]);
rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE);
if (rc)
goto bad;
cladatum->permissions.nprim = le32_to_cpu(buf[3]);
nel = le32_to_cpu(buf[4]);
ncons = le32_to_cpu(buf[5]);
rc = str_read(&key, GFP_KERNEL, fp, len);
if (rc)
goto bad;
if (len2) {
rc = str_read(&cladatum->comkey, GFP_KERNEL, fp, len2);
if (rc)
goto bad;
rc = -EINVAL;
cladatum->comdatum = hashtab_search(p->p_commons.table, cladatum->comkey);
if (!cladatum->comdatum) {
printk(KERN_ERR "SELinux: unknown common %s\n", cladatum->comkey);
goto bad;
}
}
for (i = 0; i < nel; i++) {
rc = perm_read(p, cladatum->permissions.table, fp);
if (rc)
goto bad;
}
rc = read_cons_helper(p, &cladatum->constraints, ncons, 0, fp);
if (rc)
goto bad;
if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
/* grab the validatetrans rules */
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto bad;
ncons = le32_to_cpu(buf[0]);
rc = read_cons_helper(p, &cladatum->validatetrans,
ncons, 1, fp);
if (rc)
goto bad;
}
if (p->policyvers >= POLICYDB_VERSION_NEW_OBJECT_DEFAULTS) {
rc = next_entry(buf, fp, sizeof(u32) * 3);
if (rc)
goto bad;
cladatum->default_user = le32_to_cpu(buf[0]);
cladatum->default_role = le32_to_cpu(buf[1]);
cladatum->default_range = le32_to_cpu(buf[2]);
}
if (p->policyvers >= POLICYDB_VERSION_DEFAULT_TYPE) {
rc = next_entry(buf, fp, sizeof(u32) * 1);
if (rc)
goto bad;
cladatum->default_type = le32_to_cpu(buf[0]);
}
rc = hashtab_insert(h, key, cladatum);
if (rc)
goto bad;
return 0;
bad:
cls_destroy(key, cladatum, NULL);
return rc;
}
static int role_read(struct policydb *p, struct hashtab *h, void *fp)
{
char *key = NULL;
struct role_datum *role;
int rc, to_read = 2;
__le32 buf[3];
u32 len;
role = kzalloc(sizeof(*role), GFP_KERNEL);
if (!role)
return -ENOMEM;
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
to_read = 3;
rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
if (rc)
goto bad;
len = le32_to_cpu(buf[0]);
role->value = le32_to_cpu(buf[1]);
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
role->bounds = le32_to_cpu(buf[2]);
rc = str_read(&key, GFP_KERNEL, fp, len);
if (rc)
goto bad;
rc = ebitmap_read(&role->dominates, fp);
if (rc)
goto bad;
rc = ebitmap_read(&role->types, fp);
if (rc)
goto bad;
if (strcmp(key, OBJECT_R) == 0) {
rc = -EINVAL;
if (role->value != OBJECT_R_VAL) {
printk(KERN_ERR "SELinux: Role %s has wrong value %d\n",
OBJECT_R, role->value);
goto bad;
}
rc = 0;
goto bad;
}
rc = hashtab_insert(h, key, role);
if (rc)
goto bad;
return 0;
bad:
role_destroy(key, role, NULL);
return rc;
}
static int type_read(struct policydb *p, struct hashtab *h, void *fp)
{
char *key = NULL;
struct type_datum *typdatum;
int rc, to_read = 3;
__le32 buf[4];
u32 len;
typdatum = kzalloc(sizeof(*typdatum), GFP_KERNEL);
if (!typdatum)
return -ENOMEM;
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
to_read = 4;
rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
if (rc)
goto bad;
len = le32_to_cpu(buf[0]);
typdatum->value = le32_to_cpu(buf[1]);
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) {
u32 prop = le32_to_cpu(buf[2]);
if (prop & TYPEDATUM_PROPERTY_PRIMARY)
typdatum->primary = 1;
if (prop & TYPEDATUM_PROPERTY_ATTRIBUTE)
typdatum->attribute = 1;
typdatum->bounds = le32_to_cpu(buf[3]);
} else {
typdatum->primary = le32_to_cpu(buf[2]);
}
rc = str_read(&key, GFP_KERNEL, fp, len);
if (rc)
goto bad;
rc = hashtab_insert(h, key, typdatum);
if (rc)
goto bad;
return 0;
bad:
type_destroy(key, typdatum, NULL);
return rc;
}
/*
* Read a MLS level structure from a policydb binary
* representation file.
*/
static int mls_read_level(struct mls_level *lp, void *fp)
{
__le32 buf[1];
int rc;
memset(lp, 0, sizeof(*lp));
rc = next_entry(buf, fp, sizeof buf);
if (rc) {
printk(KERN_ERR "SELinux: mls: truncated level\n");
return rc;
}
lp->sens = le32_to_cpu(buf[0]);
rc = ebitmap_read(&lp->cat, fp);
if (rc) {
printk(KERN_ERR "SELinux: mls: error reading level categories\n");
return rc;
}
return 0;
}
static int user_read(struct policydb *p, struct hashtab *h, void *fp)
{
char *key = NULL;
struct user_datum *usrdatum;
int rc, to_read = 2;
__le32 buf[3];
u32 len;
usrdatum = kzalloc(sizeof(*usrdatum), GFP_KERNEL);
if (!usrdatum)
return -ENOMEM;
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
to_read = 3;
rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
if (rc)
goto bad;
len = le32_to_cpu(buf[0]);
usrdatum->value = le32_to_cpu(buf[1]);
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
usrdatum->bounds = le32_to_cpu(buf[2]);
rc = str_read(&key, GFP_KERNEL, fp, len);
if (rc)
goto bad;
rc = ebitmap_read(&usrdatum->roles, fp);
if (rc)
goto bad;
if (p->policyvers >= POLICYDB_VERSION_MLS) {
rc = mls_read_range_helper(&usrdatum->range, fp);
if (rc)
goto bad;
rc = mls_read_level(&usrdatum->dfltlevel, fp);
if (rc)
goto bad;
}
rc = hashtab_insert(h, key, usrdatum);
if (rc)
goto bad;
return 0;
bad:
user_destroy(key, usrdatum, NULL);
return rc;
}
static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
{
char *key = NULL;
struct level_datum *levdatum;
int rc;
__le32 buf[2];
u32 len;
levdatum = kzalloc(sizeof(*levdatum), GFP_ATOMIC);
if (!levdatum)
return -ENOMEM;
rc = next_entry(buf, fp, sizeof buf);
if (rc)
goto bad;
len = le32_to_cpu(buf[0]);
levdatum->isalias = le32_to_cpu(buf[1]);
rc = str_read(&key, GFP_ATOMIC, fp, len);
if (rc)
goto bad;
rc = -ENOMEM;
levdatum->level = kmalloc(sizeof(*levdatum->level), GFP_ATOMIC);
if (!levdatum->level)
goto bad;
rc = mls_read_level(levdatum->level, fp);
if (rc)
goto bad;
rc = hashtab_insert(h, key, levdatum);
if (rc)
goto bad;
return 0;
bad:
sens_destroy(key, levdatum, NULL);
return rc;
}
static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
{
char *key = NULL;
struct cat_datum *catdatum;
int rc;
__le32 buf[3];
u32 len;
catdatum = kzalloc(sizeof(*catdatum), GFP_ATOMIC);
if (!catdatum)
return -ENOMEM;
rc = next_entry(buf, fp, sizeof buf);
if (rc)
goto bad;
len = le32_to_cpu(buf[0]);
catdatum->value = le32_to_cpu(buf[1]);
catdatum->isalias = le32_to_cpu(buf[2]);
rc = str_read(&key, GFP_ATOMIC, fp, len);
if (rc)
goto bad;
rc = hashtab_insert(h, key, catdatum);
if (rc)
goto bad;
return 0;
bad:
cat_destroy(key, catdatum, NULL);
return rc;
}
static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
{
common_read,
class_read,
role_read,
type_read,
user_read,
cond_read_bool,
sens_read,
cat_read,
};
static int user_bounds_sanity_check(void *key, void *datum, void *datap)
{
struct user_datum *upper, *user;
struct policydb *p = datap;
int depth = 0;
upper = user = datum;
while (upper->bounds) {
struct ebitmap_node *node;
unsigned long bit;
if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
printk(KERN_ERR "SELinux: user %s: "
"too deep or looped boundary",
(char *) key);
return -EINVAL;
}
upper = p->user_val_to_struct[upper->bounds - 1];
ebitmap_for_each_positive_bit(&user->roles, node, bit) {
if (ebitmap_get_bit(&upper->roles, bit))
continue;
printk(KERN_ERR
"SELinux: boundary violated policy: "
"user=%s role=%s bounds=%s\n",
sym_name(p, SYM_USERS, user->value - 1),
sym_name(p, SYM_ROLES, bit),
sym_name(p, SYM_USERS, upper->value - 1));
return -EINVAL;
}
}
return 0;
}
static int role_bounds_sanity_check(void *key, void *datum, void *datap)
{
struct role_datum *upper, *role;
struct policydb *p = datap;
int depth = 0;
upper = role = datum;
while (upper->bounds) {
struct ebitmap_node *node;
unsigned long bit;
if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
printk(KERN_ERR "SELinux: role %s: "
"too deep or looped bounds\n",
(char *) key);
return -EINVAL;
}
upper = p->role_val_to_struct[upper->bounds - 1];
ebitmap_for_each_positive_bit(&role->types, node, bit) {
if (ebitmap_get_bit(&upper->types, bit))
continue;
printk(KERN_ERR
"SELinux: boundary violated policy: "
"role=%s type=%s bounds=%s\n",
sym_name(p, SYM_ROLES, role->value - 1),
sym_name(p, SYM_TYPES, bit),
sym_name(p, SYM_ROLES, upper->value - 1));
return -EINVAL;
}
}
return 0;
}
static int type_bounds_sanity_check(void *key, void *datum, void *datap)
{
struct type_datum *upper;
struct policydb *p = datap;
int depth = 0;
upper = datum;
while (upper->bounds) {
if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
printk(KERN_ERR "SELinux: type %s: "
"too deep or looped boundary\n",
(char *) key);
return -EINVAL;
}
upper = flex_array_get_ptr(p->type_val_to_struct_array,
upper->bounds - 1);
BUG_ON(!upper);
if (upper->attribute) {
printk(KERN_ERR "SELinux: type %s: "
"bounded by attribute %s",
(char *) key,
sym_name(p, SYM_TYPES, upper->value - 1));
return -EINVAL;
}
}
return 0;
}
static int policydb_bounds_sanity_check(struct policydb *p)
{
int rc;
if (p->policyvers < POLICYDB_VERSION_BOUNDARY)
return 0;
rc = hashtab_map(p->p_users.table,
user_bounds_sanity_check, p);
if (rc)
return rc;
rc = hashtab_map(p->p_roles.table,
role_bounds_sanity_check, p);
if (rc)
return rc;
rc = hashtab_map(p->p_types.table,
type_bounds_sanity_check, p);
if (rc)
return rc;
return 0;
}
u16 string_to_security_class(struct policydb *p, const char *name)
{
struct class_datum *cladatum;
cladatum = hashtab_search(p->p_classes.table, name);
if (!cladatum)
return 0;
return cladatum->value;
}
u32 string_to_av_perm(struct policydb *p, u16 tclass, const char *name)
{
struct class_datum *cladatum;
struct perm_datum *perdatum = NULL;
struct common_datum *comdatum;
if (!tclass || tclass > p->p_classes.nprim)
return 0;
cladatum = p->class_val_to_struct[tclass-1];
comdatum = cladatum->comdatum;
if (comdatum)
perdatum = hashtab_search(comdatum->permissions.table,
name);
if (!perdatum)
perdatum = hashtab_search(cladatum->permissions.table,
name);
if (!perdatum)
return 0;
return 1U << (perdatum->value-1);
}
static int range_read(struct policydb *p, void *fp)
{
struct range_trans *rt = NULL;
struct mls_range *r = NULL;
int i, rc;
__le32 buf[2];
u32 nel;
if (p->policyvers < POLICYDB_VERSION_MLS)
return 0;
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
return rc;
nel = le32_to_cpu(buf[0]);
for (i = 0; i < nel; i++) {
rc = -ENOMEM;
rt = kzalloc(sizeof(*rt), GFP_KERNEL);
if (!rt)
goto out;
rc = next_entry(buf, fp, (sizeof(u32) * 2));
if (rc)
goto out;
rt->source_type = le32_to_cpu(buf[0]);
rt->target_type = le32_to_cpu(buf[1]);
if (p->policyvers >= POLICYDB_VERSION_RANGETRANS) {
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto out;
rt->target_class = le32_to_cpu(buf[0]);
} else
rt->target_class = p->process_class;
rc = -EINVAL;
if (!policydb_type_isvalid(p, rt->source_type) ||
!policydb_type_isvalid(p, rt->target_type) ||
!policydb_class_isvalid(p, rt->target_class))
goto out;
rc = -ENOMEM;
r = kzalloc(sizeof(*r), GFP_KERNEL);
if (!r)
goto out;
rc = mls_read_range_helper(r, fp);
if (rc)
goto out;
rc = -EINVAL;
if (!mls_range_isvalid(p, r)) {
printk(KERN_WARNING "SELinux: rangetrans: invalid range\n");
goto out;
}
rc = hashtab_insert(p->range_tr, rt, r);
if (rc)
goto out;
rt = NULL;
r = NULL;
}
hash_eval(p->range_tr, "rangetr");
rc = 0;
out:
kfree(rt);
kfree(r);
return rc;
}
static int filename_trans_read(struct policydb *p, void *fp)
{
struct filename_trans *ft;
struct filename_trans_datum *otype;
char *name;
u32 nel, len;
__le32 buf[4];
int rc, i;
if (p->policyvers < POLICYDB_VERSION_FILENAME_TRANS)
return 0;
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
return rc;
nel = le32_to_cpu(buf[0]);
for (i = 0; i < nel; i++) {
otype = NULL;
name = NULL;
rc = -ENOMEM;
ft = kzalloc(sizeof(*ft), GFP_KERNEL);
if (!ft)
goto out;
rc = -ENOMEM;
otype = kmalloc(sizeof(*otype), GFP_KERNEL);
if (!otype)
goto out;
/* length of the path component string */
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto out;
len = le32_to_cpu(buf[0]);
/* path component string */
rc = str_read(&name, GFP_KERNEL, fp, len);
if (rc)
goto out;
ft->name = name;
rc = next_entry(buf, fp, sizeof(u32) * 4);
if (rc)
goto out;
ft->stype = le32_to_cpu(buf[0]);
ft->ttype = le32_to_cpu(buf[1]);
ft->tclass = le32_to_cpu(buf[2]);
otype->otype = le32_to_cpu(buf[3]);
rc = ebitmap_set_bit(&p->filename_trans_ttypes, ft->ttype, 1);
if (rc)
goto out;
rc = hashtab_insert(p->filename_trans, ft, otype);
if (rc) {
/*
* Do not return -EEXIST to the caller, or the system
* will not boot.
*/
if (rc != -EEXIST)
goto out;
/* But free memory to avoid memory leak. */
kfree(ft);
kfree(name);
kfree(otype);
}
}
hash_eval(p->filename_trans, "filenametr");
return 0;
out:
kfree(ft);
kfree(name);
kfree(otype);
return rc;
}
static int genfs_read(struct policydb *p, void *fp)
{
int i, j, rc;
u32 nel, nel2, len, len2;
__le32 buf[1];
struct ocontext *l, *c;
struct ocontext *newc = NULL;
struct genfs *genfs_p, *genfs;
struct genfs *newgenfs = NULL;
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
return rc;
nel = le32_to_cpu(buf[0]);
for (i = 0; i < nel; i++) {
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto out;
len = le32_to_cpu(buf[0]);
rc = -ENOMEM;
newgenfs = kzalloc(sizeof(*newgenfs), GFP_KERNEL);
if (!newgenfs)
goto out;
rc = str_read(&newgenfs->fstype, GFP_KERNEL, fp, len);
if (rc)
goto out;
for (genfs_p = NULL, genfs = p->genfs; genfs;
genfs_p = genfs, genfs = genfs->next) {
rc = -EINVAL;
if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
printk(KERN_ERR "SELinux: dup genfs fstype %s\n",
newgenfs->fstype);
goto out;
}
if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
break;
}
newgenfs->next = genfs;
if (genfs_p)
genfs_p->next = newgenfs;
else
p->genfs = newgenfs;
genfs = newgenfs;
newgenfs = NULL;
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto out;
nel2 = le32_to_cpu(buf[0]);
for (j = 0; j < nel2; j++) {
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto out;
len = le32_to_cpu(buf[0]);
rc = -ENOMEM;
newc = kzalloc(sizeof(*newc), GFP_KERNEL);
if (!newc)
goto out;
rc = str_read(&newc->u.name, GFP_KERNEL, fp, len);
if (rc)
goto out;
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto out;
newc->v.sclass = le32_to_cpu(buf[0]);
rc = context_read_and_validate(&newc->context[0], p, fp);
if (rc)
goto out;
for (l = NULL, c = genfs->head; c;
l = c, c = c->next) {
rc = -EINVAL;
if (!strcmp(newc->u.name, c->u.name) &&
(!c->v.sclass || !newc->v.sclass ||
newc->v.sclass == c->v.sclass)) {
printk(KERN_ERR "SELinux: dup genfs entry (%s,%s)\n",
genfs->fstype, c->u.name);
goto out;
}
len = strlen(newc->u.name);
len2 = strlen(c->u.name);
if (len > len2)
break;
}
newc->next = c;
if (l)
l->next = newc;
else
genfs->head = newc;
newc = NULL;
}
}
rc = 0;
out:
if (newgenfs) {
kfree(newgenfs->fstype);
kfree(newgenfs);
}
ocontext_destroy(newc, OCON_FSUSE);
return rc;
}
static int ocontext_read(struct policydb *p, struct policydb_compat_info *info,
void *fp)
{
int i, j, rc;
u32 nel, len;
__be64 prefixbuf[1];
__le32 buf[3];
struct ocontext *l, *c;
u32 nodebuf[8];
for (i = 0; i < info->ocon_num; i++) {
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto out;
nel = le32_to_cpu(buf[0]);
l = NULL;
for (j = 0; j < nel; j++) {
rc = -ENOMEM;
c = kzalloc(sizeof(*c), GFP_KERNEL);
if (!c)
goto out;
if (l)
l->next = c;
else
p->ocontexts[i] = c;
l = c;
switch (i) {
case OCON_ISID:
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto out;
c->sid[0] = le32_to_cpu(buf[0]);
rc = context_read_and_validate(&c->context[0], p, fp);
if (rc)
goto out;
break;
case OCON_FS:
case OCON_NETIF:
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto out;
len = le32_to_cpu(buf[0]);
rc = str_read(&c->u.name, GFP_KERNEL, fp, len);
if (rc)
goto out;
rc = context_read_and_validate(&c->context[0], p, fp);
if (rc)
goto out;
rc = context_read_and_validate(&c->context[1], p, fp);
if (rc)
goto out;
break;
case OCON_PORT:
rc = next_entry(buf, fp, sizeof(u32)*3);
if (rc)
goto out;
c->u.port.protocol = le32_to_cpu(buf[0]);
c->u.port.low_port = le32_to_cpu(buf[1]);
c->u.port.high_port = le32_to_cpu(buf[2]);
rc = context_read_and_validate(&c->context[0], p, fp);
if (rc)
goto out;
break;
case OCON_NODE:
rc = next_entry(nodebuf, fp, sizeof(u32) * 2);
if (rc)
goto out;
c->u.node.addr = nodebuf[0]; /* network order */
c->u.node.mask = nodebuf[1]; /* network order */
rc = context_read_and_validate(&c->context[0], p, fp);
if (rc)
goto out;
break;
case OCON_FSUSE:
rc = next_entry(buf, fp, sizeof(u32)*2);
if (rc)
goto out;
rc = -EINVAL;
c->v.behavior = le32_to_cpu(buf[0]);
/* Determined at runtime, not in policy DB. */
if (c->v.behavior == SECURITY_FS_USE_MNTPOINT)
goto out;
if (c->v.behavior > SECURITY_FS_USE_MAX)
goto out;
len = le32_to_cpu(buf[1]);
rc = str_read(&c->u.name, GFP_KERNEL, fp, len);
if (rc)
goto out;
rc = context_read_and_validate(&c->context[0], p, fp);
if (rc)
goto out;
break;
case OCON_NODE6: {
int k;
rc = next_entry(nodebuf, fp, sizeof(u32) * 8);
if (rc)
goto out;
for (k = 0; k < 4; k++)
c->u.node6.addr[k] = nodebuf[k];
for (k = 0; k < 4; k++)
c->u.node6.mask[k] = nodebuf[k+4];
rc = context_read_and_validate(&c->context[0], p, fp);
if (rc)
goto out;
break;
}
case OCON_IBPKEY: {
u32 pkey_lo, pkey_hi;
rc = next_entry(prefixbuf, fp, sizeof(u64));
if (rc)
goto out;
/* we need to have subnet_prefix in CPU order */
c->u.ibpkey.subnet_prefix = be64_to_cpu(prefixbuf[0]);
rc = next_entry(buf, fp, sizeof(u32) * 2);
if (rc)
goto out;
pkey_lo = le32_to_cpu(buf[0]);
pkey_hi = le32_to_cpu(buf[1]);
if (pkey_lo > U16_MAX || pkey_hi > U16_MAX) {
rc = -EINVAL;
goto out;
}
c->u.ibpkey.low_pkey = pkey_lo;
c->u.ibpkey.high_pkey = pkey_hi;
rc = context_read_and_validate(&c->context[0],
p,
fp);
if (rc)
goto out;
break;
}
case OCON_IBENDPORT: {
u32 port;
rc = next_entry(buf, fp, sizeof(u32) * 2);
if (rc)
goto out;
len = le32_to_cpu(buf[0]);
rc = str_read(&c->u.ibendport.dev_name, GFP_KERNEL, fp, len);
if (rc)
goto out;
port = le32_to_cpu(buf[1]);
if (port > U8_MAX || port == 0) {
rc = -EINVAL;
goto out;
}
c->u.ibendport.port = port;
rc = context_read_and_validate(&c->context[0],
p,
fp);
if (rc)
goto out;
break;
} /* end case */
} /* end switch */
}
}
rc = 0;
out:
return rc;
}
/*
* Read the configuration data from a policy database binary
* representation file into a policy database structure.
*/
int policydb_read(struct policydb *p, void *fp)
{
struct role_allow *ra, *lra;
struct role_trans *tr, *ltr;
int i, j, rc;
__le32 buf[4];
u32 len, nprim, nel;
char *policydb_str;
struct policydb_compat_info *info;
rc = policydb_init(p);
if (rc)
return rc;
/* Read the magic number and string length. */
rc = next_entry(buf, fp, sizeof(u32) * 2);
if (rc)
goto bad;
rc = -EINVAL;
if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) {
printk(KERN_ERR "SELinux: policydb magic number 0x%x does "
"not match expected magic number 0x%x\n",
le32_to_cpu(buf[0]), POLICYDB_MAGIC);
goto bad;
}
rc = -EINVAL;
len = le32_to_cpu(buf[1]);
if (len != strlen(POLICYDB_STRING)) {
printk(KERN_ERR "SELinux: policydb string length %d does not "
"match expected length %zu\n",
len, strlen(POLICYDB_STRING));
goto bad;
}
rc = -ENOMEM;
policydb_str = kmalloc(len + 1, GFP_KERNEL);
if (!policydb_str) {
printk(KERN_ERR "SELinux: unable to allocate memory for policydb "
"string of length %d\n", len);
goto bad;
}
rc = next_entry(policydb_str, fp, len);
if (rc) {
printk(KERN_ERR "SELinux: truncated policydb string identifier\n");
kfree(policydb_str);
goto bad;
}
rc = -EINVAL;
policydb_str[len] = '\0';
if (strcmp(policydb_str, POLICYDB_STRING)) {
printk(KERN_ERR "SELinux: policydb string %s does not match "
"my string %s\n", policydb_str, POLICYDB_STRING);
kfree(policydb_str);
goto bad;
}
/* Done with policydb_str. */
kfree(policydb_str);
policydb_str = NULL;
/* Read the version and table sizes. */
rc = next_entry(buf, fp, sizeof(u32)*4);
if (rc)
goto bad;
rc = -EINVAL;
p->policyvers = le32_to_cpu(buf[0]);
if (p->policyvers < POLICYDB_VERSION_MIN ||
p->policyvers > POLICYDB_VERSION_MAX) {
printk(KERN_ERR "SELinux: policydb version %d does not match "
"my version range %d-%d\n",
le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
goto bad;
}
if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) {
p->mls_enabled = 1;
rc = -EINVAL;
if (p->policyvers < POLICYDB_VERSION_MLS) {
printk(KERN_ERR "SELinux: security policydb version %d "
"(MLS) not backwards compatible\n",
p->policyvers);
goto bad;
}
}
p->reject_unknown = !!(le32_to_cpu(buf[1]) & REJECT_UNKNOWN);
p->allow_unknown = !!(le32_to_cpu(buf[1]) & ALLOW_UNKNOWN);
if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_ANDROID_NETLINK_ROUTE)) {
p->android_netlink_route = 1;
}
if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_ANDROID_NETLINK_GETNEIGH)) {
p->android_netlink_getneigh = 1;
}
if (p->policyvers >= POLICYDB_VERSION_POLCAP) {
rc = ebitmap_read(&p->policycaps, fp);
if (rc)
goto bad;
}
if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE) {
rc = ebitmap_read(&p->permissive_map, fp);
if (rc)
goto bad;
}
rc = -EINVAL;
info = policydb_lookup_compat(p->policyvers);
if (!info) {
printk(KERN_ERR "SELinux: unable to find policy compat info "
"for version %d\n", p->policyvers);
goto bad;
}
rc = -EINVAL;
if (le32_to_cpu(buf[2]) != info->sym_num ||
le32_to_cpu(buf[3]) != info->ocon_num) {
printk(KERN_ERR "SELinux: policydb table sizes (%d,%d) do "
"not match mine (%d,%d)\n", le32_to_cpu(buf[2]),
le32_to_cpu(buf[3]),
info->sym_num, info->ocon_num);
goto bad;
}
for (i = 0; i < info->sym_num; i++) {
rc = next_entry(buf, fp, sizeof(u32)*2);
if (rc)
goto bad;
nprim = le32_to_cpu(buf[0]);
nel = le32_to_cpu(buf[1]);
for (j = 0; j < nel; j++) {
rc = read_f[i](p, p->symtab[i].table, fp);
if (rc)
goto bad;
}
p->symtab[i].nprim = nprim;
}
rc = -EINVAL;
p->process_class = string_to_security_class(p, "process");
if (!p->process_class)
goto bad;
rc = avtab_read(&p->te_avtab, fp, p);
if (rc)
goto bad;
if (p->policyvers >= POLICYDB_VERSION_BOOL) {
rc = cond_read_list(p, fp);
if (rc)
goto bad;
}
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto bad;
nel = le32_to_cpu(buf[0]);
ltr = NULL;
for (i = 0; i < nel; i++) {
rc = -ENOMEM;
tr = kzalloc(sizeof(*tr), GFP_KERNEL);
if (!tr)
goto bad;
if (ltr)
ltr->next = tr;
else
p->role_tr = tr;
rc = next_entry(buf, fp, sizeof(u32)*3);
if (rc)
goto bad;
rc = -EINVAL;
tr->role = le32_to_cpu(buf[0]);
tr->type = le32_to_cpu(buf[1]);
tr->new_role = le32_to_cpu(buf[2]);
if (p->policyvers >= POLICYDB_VERSION_ROLETRANS) {
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto bad;
tr->tclass = le32_to_cpu(buf[0]);
} else
tr->tclass = p->process_class;
rc = -EINVAL;
if (!policydb_role_isvalid(p, tr->role) ||
!policydb_type_isvalid(p, tr->type) ||
!policydb_class_isvalid(p, tr->tclass) ||
!policydb_role_isvalid(p, tr->new_role))
goto bad;
ltr = tr;
}
rc = next_entry(buf, fp, sizeof(u32));
if (rc)
goto bad;
nel = le32_to_cpu(buf[0]);
lra = NULL;
for (i = 0; i < nel; i++) {
rc = -ENOMEM;
ra = kzalloc(sizeof(*ra), GFP_KERNEL);
if (!ra)
goto bad;
if (lra)
lra->next = ra;
else
p->role_allow = ra;
rc = next_entry(buf, fp, sizeof(u32)*2);
if (rc)
goto bad;
rc = -EINVAL;
ra->role = le32_to_cpu(buf[0]);
ra->new_role = le32_to_cpu(buf[1]);
if (!policydb_role_isvalid(p, ra->role) ||
!policydb_role_isvalid(p, ra->new_role))
goto bad;
lra = ra;
}
rc = filename_trans_read(p, fp);
if (rc)
goto bad;
rc = policydb_index(p);
if (rc)
goto bad;
rc = -EINVAL;
p->process_trans_perms = string_to_av_perm(p, p->process_class, "transition");
p->process_trans_perms |= string_to_av_perm(p, p->process_class, "dyntransition");
if (!p->process_trans_perms)
goto bad;
rc = ocontext_read(p, info, fp);
if (rc)
goto bad;
rc = genfs_read(p, fp);
if (rc)
goto bad;
rc = range_read(p, fp);
if (rc)
goto bad;
rc = -ENOMEM;
p->type_attr_map_array = flex_array_alloc(sizeof(struct ebitmap),
p->p_types.nprim,
GFP_KERNEL | __GFP_ZERO);
if (!p->type_attr_map_array)
goto bad;
/* preallocate so we don't have to worry about the put ever failing */
rc = flex_array_prealloc(p->type_attr_map_array, 0, p->p_types.nprim,
GFP_KERNEL | __GFP_ZERO);
if (rc)
goto bad;
for (i = 0; i < p->p_types.nprim; i++) {
struct ebitmap *e = flex_array_get(p->type_attr_map_array, i);
BUG_ON(!e);
ebitmap_init(e);
if (p->policyvers >= POLICYDB_VERSION_AVTAB) {
rc = ebitmap_read(e, fp);
if (rc)
goto bad;
}
/* add the type itself as the degenerate case */
rc = ebitmap_set_bit(e, i, 1);
if (rc)
goto bad;
}
rc = policydb_bounds_sanity_check(p);
if (rc)
goto bad;
rc = 0;
out:
return rc;
bad:
policydb_destroy(p);
goto out;
}
/*
* Write a MLS level structure to a policydb binary
* representation file.
*/
static int mls_write_level(struct mls_level *l, void *fp)
{
__le32 buf[1];
int rc;
buf[0] = cpu_to_le32(l->sens);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
rc = ebitmap_write(&l->cat, fp);
if (rc)
return rc;
return 0;
}
/*
* Write a MLS range structure to a policydb binary
* representation file.
*/
static int mls_write_range_helper(struct mls_range *r, void *fp)
{
__le32 buf[3];
size_t items;
int rc, eq;
eq = mls_level_eq(&r->level[1], &r->level[0]);
if (eq)
items = 2;
else
items = 3;
buf[0] = cpu_to_le32(items-1);
buf[1] = cpu_to_le32(r->level[0].sens);
if (!eq)
buf[2] = cpu_to_le32(r->level[1].sens);
BUG_ON(items > ARRAY_SIZE(buf));
rc = put_entry(buf, sizeof(u32), items, fp);
if (rc)
return rc;
rc = ebitmap_write(&r->level[0].cat, fp);
if (rc)
return rc;
if (!eq) {
rc = ebitmap_write(&r->level[1].cat, fp);
if (rc)
return rc;
}
return 0;
}
static int sens_write(void *vkey, void *datum, void *ptr)
{
char *key = vkey;
struct level_datum *levdatum = datum;
struct policy_data *pd = ptr;
void *fp = pd->fp;
__le32 buf[2];
size_t len;
int rc;
len = strlen(key);
buf[0] = cpu_to_le32(len);
buf[1] = cpu_to_le32(levdatum->isalias);
rc = put_entry(buf, sizeof(u32), 2, fp);
if (rc)
return rc;
rc = put_entry(key, 1, len, fp);
if (rc)
return rc;
rc = mls_write_level(levdatum->level, fp);
if (rc)
return rc;
return 0;
}
static int cat_write(void *vkey, void *datum, void *ptr)
{
char *key = vkey;
struct cat_datum *catdatum = datum;
struct policy_data *pd = ptr;
void *fp = pd->fp;
__le32 buf[3];
size_t len;
int rc;
len = strlen(key);
buf[0] = cpu_to_le32(len);
buf[1] = cpu_to_le32(catdatum->value);
buf[2] = cpu_to_le32(catdatum->isalias);
rc = put_entry(buf, sizeof(u32), 3, fp);
if (rc)
return rc;
rc = put_entry(key, 1, len, fp);
if (rc)
return rc;
return 0;
}
static int role_trans_write(struct policydb *p, void *fp)
{
struct role_trans *r = p->role_tr;
struct role_trans *tr;
u32 buf[3];
size_t nel;
int rc;
nel = 0;
for (tr = r; tr; tr = tr->next)
nel++;
buf[0] = cpu_to_le32(nel);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
for (tr = r; tr; tr = tr->next) {
buf[0] = cpu_to_le32(tr->role);
buf[1] = cpu_to_le32(tr->type);
buf[2] = cpu_to_le32(tr->new_role);
rc = put_entry(buf, sizeof(u32), 3, fp);
if (rc)
return rc;
if (p->policyvers >= POLICYDB_VERSION_ROLETRANS) {
buf[0] = cpu_to_le32(tr->tclass);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
}
}
return 0;
}
static int role_allow_write(struct role_allow *r, void *fp)
{
struct role_allow *ra;
u32 buf[2];
size_t nel;
int rc;
nel = 0;
for (ra = r; ra; ra = ra->next)
nel++;
buf[0] = cpu_to_le32(nel);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
for (ra = r; ra; ra = ra->next) {
buf[0] = cpu_to_le32(ra->role);
buf[1] = cpu_to_le32(ra->new_role);
rc = put_entry(buf, sizeof(u32), 2, fp);
if (rc)
return rc;
}
return 0;
}
/*
* Write a security context structure
* to a policydb binary representation file.
*/
static int context_write(struct policydb *p, struct context *c,
void *fp)
{
int rc;
__le32 buf[3];
buf[0] = cpu_to_le32(c->user);
buf[1] = cpu_to_le32(c->role);
buf[2] = cpu_to_le32(c->type);
rc = put_entry(buf, sizeof(u32), 3, fp);
if (rc)
return rc;
rc = mls_write_range_helper(&c->range, fp);
if (rc)
return rc;
return 0;
}
/*
* The following *_write functions are used to
* write the symbol data to a policy database
* binary representation file.
*/
static int perm_write(void *vkey, void *datum, void *fp)
{
char *key = vkey;
struct perm_datum *perdatum = datum;
__le32 buf[2];
size_t len;
int rc;
len = strlen(key);
buf[0] = cpu_to_le32(len);
buf[1] = cpu_to_le32(perdatum->value);
rc = put_entry(buf, sizeof(u32), 2, fp);
if (rc)
return rc;
rc = put_entry(key, 1, len, fp);
if (rc)
return rc;
return 0;
}
static int common_write(void *vkey, void *datum, void *ptr)
{
char *key = vkey;
struct common_datum *comdatum = datum;
struct policy_data *pd = ptr;
void *fp = pd->fp;
__le32 buf[4];
size_t len;
int rc;
len = strlen(key);
buf[0] = cpu_to_le32(len);
buf[1] = cpu_to_le32(comdatum->value);
buf[2] = cpu_to_le32(comdatum->permissions.nprim);
buf[3] = cpu_to_le32(comdatum->permissions.table->nel);
rc = put_entry(buf, sizeof(u32), 4, fp);
if (rc)
return rc;
rc = put_entry(key, 1, len, fp);
if (rc)
return rc;
rc = hashtab_map(comdatum->permissions.table, perm_write, fp);
if (rc)
return rc;
return 0;
}
static int type_set_write(struct type_set *t, void *fp)
{
int rc;
__le32 buf[1];
if (ebitmap_write(&t->types, fp))
return -EINVAL;
if (ebitmap_write(&t->negset, fp))
return -EINVAL;
buf[0] = cpu_to_le32(t->flags);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return -EINVAL;
return 0;
}
static int write_cons_helper(struct policydb *p, struct constraint_node *node,
void *fp)
{
struct constraint_node *c;
struct constraint_expr *e;
__le32 buf[3];
u32 nel;
int rc;
for (c = node; c; c = c->next) {
nel = 0;
for (e = c->expr; e; e = e->next)
nel++;
buf[0] = cpu_to_le32(c->permissions);
buf[1] = cpu_to_le32(nel);
rc = put_entry(buf, sizeof(u32), 2, fp);
if (rc)
return rc;
for (e = c->expr; e; e = e->next) {
buf[0] = cpu_to_le32(e->expr_type);
buf[1] = cpu_to_le32(e->attr);
buf[2] = cpu_to_le32(e->op);
rc = put_entry(buf, sizeof(u32), 3, fp);
if (rc)
return rc;
switch (e->expr_type) {
case CEXPR_NAMES:
rc = ebitmap_write(&e->names, fp);
if (rc)
return rc;
if (p->policyvers >=
POLICYDB_VERSION_CONSTRAINT_NAMES) {
rc = type_set_write(e->type_names, fp);
if (rc)
return rc;
}
break;
default:
break;
}
}
}
return 0;
}
static int class_write(void *vkey, void *datum, void *ptr)
{
char *key = vkey;
struct class_datum *cladatum = datum;
struct policy_data *pd = ptr;
void *fp = pd->fp;
struct policydb *p = pd->p;
struct constraint_node *c;
__le32 buf[6];
u32 ncons;
size_t len, len2;
int rc;
len = strlen(key);
if (cladatum->comkey)
len2 = strlen(cladatum->comkey);
else
len2 = 0;
ncons = 0;
for (c = cladatum->constraints; c; c = c->next)
ncons++;
buf[0] = cpu_to_le32(len);
buf[1] = cpu_to_le32(len2);
buf[2] = cpu_to_le32(cladatum->value);
buf[3] = cpu_to_le32(cladatum->permissions.nprim);
if (cladatum->permissions.table)
buf[4] = cpu_to_le32(cladatum->permissions.table->nel);
else
buf[4] = 0;
buf[5] = cpu_to_le32(ncons);
rc = put_entry(buf, sizeof(u32), 6, fp);
if (rc)
return rc;
rc = put_entry(key, 1, len, fp);
if (rc)
return rc;
if (cladatum->comkey) {
rc = put_entry(cladatum->comkey, 1, len2, fp);
if (rc)
return rc;
}
rc = hashtab_map(cladatum->permissions.table, perm_write, fp);
if (rc)
return rc;
rc = write_cons_helper(p, cladatum->constraints, fp);
if (rc)
return rc;
/* write out the validatetrans rule */
ncons = 0;
for (c = cladatum->validatetrans; c; c = c->next)
ncons++;
buf[0] = cpu_to_le32(ncons);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
rc = write_cons_helper(p, cladatum->validatetrans, fp);
if (rc)
return rc;
if (p->policyvers >= POLICYDB_VERSION_NEW_OBJECT_DEFAULTS) {
buf[0] = cpu_to_le32(cladatum->default_user);
buf[1] = cpu_to_le32(cladatum->default_role);
buf[2] = cpu_to_le32(cladatum->default_range);
rc = put_entry(buf, sizeof(uint32_t), 3, fp);
if (rc)
return rc;
}
if (p->policyvers >= POLICYDB_VERSION_DEFAULT_TYPE) {
buf[0] = cpu_to_le32(cladatum->default_type);
rc = put_entry(buf, sizeof(uint32_t), 1, fp);
if (rc)
return rc;
}
return 0;
}
static int role_write(void *vkey, void *datum, void *ptr)
{
char *key = vkey;
struct role_datum *role = datum;
struct policy_data *pd = ptr;
void *fp = pd->fp;
struct policydb *p = pd->p;
__le32 buf[3];
size_t items, len;
int rc;
len = strlen(key);
items = 0;
buf[items++] = cpu_to_le32(len);
buf[items++] = cpu_to_le32(role->value);
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
buf[items++] = cpu_to_le32(role->bounds);
BUG_ON(items > ARRAY_SIZE(buf));
rc = put_entry(buf, sizeof(u32), items, fp);
if (rc)
return rc;
rc = put_entry(key, 1, len, fp);
if (rc)
return rc;
rc = ebitmap_write(&role->dominates, fp);
if (rc)
return rc;
rc = ebitmap_write(&role->types, fp);
if (rc)
return rc;
return 0;
}
static int type_write(void *vkey, void *datum, void *ptr)
{
char *key = vkey;
struct type_datum *typdatum = datum;
struct policy_data *pd = ptr;
struct policydb *p = pd->p;
void *fp = pd->fp;
__le32 buf[4];
int rc;
size_t items, len;
len = strlen(key);
items = 0;
buf[items++] = cpu_to_le32(len);
buf[items++] = cpu_to_le32(typdatum->value);
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) {
u32 properties = 0;
if (typdatum->primary)
properties |= TYPEDATUM_PROPERTY_PRIMARY;
if (typdatum->attribute)
properties |= TYPEDATUM_PROPERTY_ATTRIBUTE;
buf[items++] = cpu_to_le32(properties);
buf[items++] = cpu_to_le32(typdatum->bounds);
} else {
buf[items++] = cpu_to_le32(typdatum->primary);
}
BUG_ON(items > ARRAY_SIZE(buf));
rc = put_entry(buf, sizeof(u32), items, fp);
if (rc)
return rc;
rc = put_entry(key, 1, len, fp);
if (rc)
return rc;
return 0;
}
static int user_write(void *vkey, void *datum, void *ptr)
{
char *key = vkey;
struct user_datum *usrdatum = datum;
struct policy_data *pd = ptr;
struct policydb *p = pd->p;
void *fp = pd->fp;
__le32 buf[3];
size_t items, len;
int rc;
len = strlen(key);
items = 0;
buf[items++] = cpu_to_le32(len);
buf[items++] = cpu_to_le32(usrdatum->value);
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
buf[items++] = cpu_to_le32(usrdatum->bounds);
BUG_ON(items > ARRAY_SIZE(buf));
rc = put_entry(buf, sizeof(u32), items, fp);
if (rc)
return rc;
rc = put_entry(key, 1, len, fp);
if (rc)
return rc;
rc = ebitmap_write(&usrdatum->roles, fp);
if (rc)
return rc;
rc = mls_write_range_helper(&usrdatum->range, fp);
if (rc)
return rc;
rc = mls_write_level(&usrdatum->dfltlevel, fp);
if (rc)
return rc;
return 0;
}
static int (*write_f[SYM_NUM]) (void *key, void *datum,
void *datap) =
{
common_write,
class_write,
role_write,
type_write,
user_write,
cond_write_bool,
sens_write,
cat_write,
};
static int ocontext_write(struct policydb *p, struct policydb_compat_info *info,
void *fp)
{
unsigned int i, j, rc;
size_t nel, len;
__be64 prefixbuf[1];
__le32 buf[3];
u32 nodebuf[8];
struct ocontext *c;
for (i = 0; i < info->ocon_num; i++) {
nel = 0;
for (c = p->ocontexts[i]; c; c = c->next)
nel++;
buf[0] = cpu_to_le32(nel);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
for (c = p->ocontexts[i]; c; c = c->next) {
switch (i) {
case OCON_ISID:
buf[0] = cpu_to_le32(c->sid[0]);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
rc = context_write(p, &c->context[0], fp);
if (rc)
return rc;
break;
case OCON_FS:
case OCON_NETIF:
len = strlen(c->u.name);
buf[0] = cpu_to_le32(len);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
rc = put_entry(c->u.name, 1, len, fp);
if (rc)
return rc;
rc = context_write(p, &c->context[0], fp);
if (rc)
return rc;
rc = context_write(p, &c->context[1], fp);
if (rc)
return rc;
break;
case OCON_PORT:
buf[0] = cpu_to_le32(c->u.port.protocol);
buf[1] = cpu_to_le32(c->u.port.low_port);
buf[2] = cpu_to_le32(c->u.port.high_port);
rc = put_entry(buf, sizeof(u32), 3, fp);
if (rc)
return rc;
rc = context_write(p, &c->context[0], fp);
if (rc)
return rc;
break;
case OCON_NODE:
nodebuf[0] = c->u.node.addr; /* network order */
nodebuf[1] = c->u.node.mask; /* network order */
rc = put_entry(nodebuf, sizeof(u32), 2, fp);
if (rc)
return rc;
rc = context_write(p, &c->context[0], fp);
if (rc)
return rc;
break;
case OCON_FSUSE:
buf[0] = cpu_to_le32(c->v.behavior);
len = strlen(c->u.name);
buf[1] = cpu_to_le32(len);
rc = put_entry(buf, sizeof(u32), 2, fp);
if (rc)
return rc;
rc = put_entry(c->u.name, 1, len, fp);
if (rc)
return rc;
rc = context_write(p, &c->context[0], fp);
if (rc)
return rc;
break;
case OCON_NODE6:
for (j = 0; j < 4; j++)
nodebuf[j] = c->u.node6.addr[j]; /* network order */
for (j = 0; j < 4; j++)
nodebuf[j + 4] = c->u.node6.mask[j]; /* network order */
rc = put_entry(nodebuf, sizeof(u32), 8, fp);
if (rc)
return rc;
rc = context_write(p, &c->context[0], fp);
if (rc)
return rc;
break;
case OCON_IBPKEY:
/* subnet_prefix is in CPU order */
prefixbuf[0] = cpu_to_be64(c->u.ibpkey.subnet_prefix);
rc = put_entry(prefixbuf, sizeof(u64), 1, fp);
if (rc)
return rc;
buf[0] = cpu_to_le32(c->u.ibpkey.low_pkey);
buf[1] = cpu_to_le32(c->u.ibpkey.high_pkey);
rc = put_entry(buf, sizeof(u32), 2, fp);
if (rc)
return rc;
rc = context_write(p, &c->context[0], fp);
if (rc)
return rc;
break;
case OCON_IBENDPORT:
len = strlen(c->u.ibendport.dev_name);
buf[0] = cpu_to_le32(len);
buf[1] = cpu_to_le32(c->u.ibendport.port);
rc = put_entry(buf, sizeof(u32), 2, fp);
if (rc)
return rc;
rc = put_entry(c->u.ibendport.dev_name, 1, len, fp);
if (rc)
return rc;
rc = context_write(p, &c->context[0], fp);
if (rc)
return rc;
break;
}
}
}
return 0;
}
static int genfs_write(struct policydb *p, void *fp)
{
struct genfs *genfs;
struct ocontext *c;
size_t len;
__le32 buf[1];
int rc;
len = 0;
for (genfs = p->genfs; genfs; genfs = genfs->next)
len++;
buf[0] = cpu_to_le32(len);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
for (genfs = p->genfs; genfs; genfs = genfs->next) {
len = strlen(genfs->fstype);
buf[0] = cpu_to_le32(len);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
rc = put_entry(genfs->fstype, 1, len, fp);
if (rc)
return rc;
len = 0;
for (c = genfs->head; c; c = c->next)
len++;
buf[0] = cpu_to_le32(len);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
for (c = genfs->head; c; c = c->next) {
len = strlen(c->u.name);
buf[0] = cpu_to_le32(len);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
rc = put_entry(c->u.name, 1, len, fp);
if (rc)
return rc;
buf[0] = cpu_to_le32(c->v.sclass);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
rc = context_write(p, &c->context[0], fp);
if (rc)
return rc;
}
}
return 0;
}
static int hashtab_cnt(void *key, void *data, void *ptr)
{
int *cnt = ptr;
*cnt = *cnt + 1;
return 0;
}
static int range_write_helper(void *key, void *data, void *ptr)
{
__le32 buf[2];
struct range_trans *rt = key;
struct mls_range *r = data;
struct policy_data *pd = ptr;
void *fp = pd->fp;
struct policydb *p = pd->p;
int rc;
buf[0] = cpu_to_le32(rt->source_type);
buf[1] = cpu_to_le32(rt->target_type);
rc = put_entry(buf, sizeof(u32), 2, fp);
if (rc)
return rc;
if (p->policyvers >= POLICYDB_VERSION_RANGETRANS) {
buf[0] = cpu_to_le32(rt->target_class);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
}
rc = mls_write_range_helper(r, fp);
if (rc)
return rc;
return 0;
}
static int range_write(struct policydb *p, void *fp)
{
__le32 buf[1];
int rc, nel;
struct policy_data pd;
pd.p = p;
pd.fp = fp;
/* count the number of entries in the hashtab */
nel = 0;
rc = hashtab_map(p->range_tr, hashtab_cnt, &nel);
if (rc)
return rc;
buf[0] = cpu_to_le32(nel);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
/* actually write all of the entries */
rc = hashtab_map(p->range_tr, range_write_helper, &pd);
if (rc)
return rc;
return 0;
}
static int filename_write_helper(void *key, void *data, void *ptr)
{
__le32 buf[4];
struct filename_trans *ft = key;
struct filename_trans_datum *otype = data;
void *fp = ptr;
int rc;
u32 len;
len = strlen(ft->name);
buf[0] = cpu_to_le32(len);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
rc = put_entry(ft->name, sizeof(char), len, fp);
if (rc)
return rc;
buf[0] = cpu_to_le32(ft->stype);
buf[1] = cpu_to_le32(ft->ttype);
buf[2] = cpu_to_le32(ft->tclass);
buf[3] = cpu_to_le32(otype->otype);
rc = put_entry(buf, sizeof(u32), 4, fp);
if (rc)
return rc;
return 0;
}
static int filename_trans_write(struct policydb *p, void *fp)
{
u32 nel;
__le32 buf[1];
int rc;
if (p->policyvers < POLICYDB_VERSION_FILENAME_TRANS)
return 0;
nel = 0;
rc = hashtab_map(p->filename_trans, hashtab_cnt, &nel);
if (rc)
return rc;
buf[0] = cpu_to_le32(nel);
rc = put_entry(buf, sizeof(u32), 1, fp);
if (rc)
return rc;
rc = hashtab_map(p->filename_trans, filename_write_helper, fp);
if (rc)
return rc;
return 0;
}
/*
* Write the configuration data in a policy database
* structure to a policy database binary representation
* file.
*/
int policydb_write(struct policydb *p, void *fp)
{
unsigned int i, num_syms;
int rc;
__le32 buf[4];
u32 config;
size_t len;
struct policydb_compat_info *info;
/*
* refuse to write policy older than compressed avtab
* to simplify the writer. There are other tests dropped
* since we assume this throughout the writer code. Be
* careful if you ever try to remove this restriction
*/
if (p->policyvers < POLICYDB_VERSION_AVTAB) {
printk(KERN_ERR "SELinux: refusing to write policy version %d."
" Because it is less than version %d\n", p->policyvers,
POLICYDB_VERSION_AVTAB);
return -EINVAL;
}
config = 0;
if (p->mls_enabled)
config |= POLICYDB_CONFIG_MLS;
if (p->reject_unknown)
config |= REJECT_UNKNOWN;
if (p->allow_unknown)
config |= ALLOW_UNKNOWN;
/* Write the magic number and string identifiers. */
buf[0] = cpu_to_le32(POLICYDB_MAGIC);
len = strlen(POLICYDB_STRING);
buf[1] = cpu_to_le32(len);
rc = put_entry(buf, sizeof(u32), 2, fp);
if (rc)
return rc;
rc = put_entry(POLICYDB_STRING, 1, len, fp);
if (rc)
return rc;
/* Write the version, config, and table sizes. */
info = policydb_lookup_compat(p->policyvers);
if (!info) {
printk(KERN_ERR "SELinux: compatibility lookup failed for policy "
"version %d", p->policyvers);
return -EINVAL;
}
buf[0] = cpu_to_le32(p->policyvers);
buf[1] = cpu_to_le32(config);
buf[2] = cpu_to_le32(info->sym_num);
buf[3] = cpu_to_le32(info->ocon_num);
rc = put_entry(buf, sizeof(u32), 4, fp);
if (rc)
return rc;
if (p->policyvers >= POLICYDB_VERSION_POLCAP) {
rc = ebitmap_write(&p->policycaps, fp);
if (rc)
return rc;
}
if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE) {
rc = ebitmap_write(&p->permissive_map, fp);
if (rc)
return rc;
}
num_syms = info->sym_num;
for (i = 0; i < num_syms; i++) {
struct policy_data pd;
pd.fp = fp;
pd.p = p;
buf[0] = cpu_to_le32(p->symtab[i].nprim);
buf[1] = cpu_to_le32(p->symtab[i].table->nel);
rc = put_entry(buf, sizeof(u32), 2, fp);
if (rc)
return rc;
rc = hashtab_map(p->symtab[i].table, write_f[i], &pd);
if (rc)
return rc;
}
rc = avtab_write(p, &p->te_avtab, fp);
if (rc)
return rc;
rc = cond_write_list(p, p->cond_list, fp);
if (rc)
return rc;
rc = role_trans_write(p, fp);
if (rc)
return rc;
rc = role_allow_write(p->role_allow, fp);
if (rc)
return rc;
rc = filename_trans_write(p, fp);
if (rc)
return rc;
rc = ocontext_write(p, info, fp);
if (rc)
return rc;
rc = genfs_write(p, fp);
if (rc)
return rc;
rc = range_write(p, fp);
if (rc)
return rc;
for (i = 0; i < p->p_types.nprim; i++) {
struct ebitmap *e = flex_array_get(p->type_attr_map_array, i);
BUG_ON(!e);
rc = ebitmap_write(e, fp);
if (rc)
return rc;
}
return 0;
}