| /* |
| * Copyright(c) 2015 Intel Corporation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| */ |
| #include <linux/radix-tree.h> |
| #include <linux/device.h> |
| #include <linux/types.h> |
| #include <linux/pfn_t.h> |
| #include <linux/io.h> |
| #include <linux/mm.h> |
| #include <linux/memory_hotplug.h> |
| #include <linux/swap.h> |
| #include <linux/swapops.h> |
| #include <linux/kasan.h> |
| |
| #ifndef ioremap_cache |
| /* temporary while we convert existing ioremap_cache users to memremap */ |
| __weak void __iomem *ioremap_cache(resource_size_t offset, unsigned long size) |
| { |
| return ioremap(offset, size); |
| } |
| #endif |
| |
| #ifndef arch_memremap_wb |
| static void *arch_memremap_wb(resource_size_t offset, unsigned long size) |
| { |
| return (__force void *)ioremap_cache(offset, size); |
| } |
| #endif |
| |
| #ifndef arch_memremap_can_ram_remap |
| static bool arch_memremap_can_ram_remap(resource_size_t offset, size_t size, |
| unsigned long flags) |
| { |
| return true; |
| } |
| #endif |
| |
| static void *try_ram_remap(resource_size_t offset, size_t size, |
| unsigned long flags) |
| { |
| unsigned long pfn = PHYS_PFN(offset); |
| |
| /* In the simple case just return the existing linear address */ |
| if (pfn_valid(pfn) && !PageHighMem(pfn_to_page(pfn)) && |
| arch_memremap_can_ram_remap(offset, size, flags)) |
| return __va(offset); |
| |
| return NULL; /* fallback to arch_memremap_wb */ |
| } |
| |
| /** |
| * memremap() - remap an iomem_resource as cacheable memory |
| * @offset: iomem resource start address |
| * @size: size of remap |
| * @flags: any of MEMREMAP_WB, MEMREMAP_WT, MEMREMAP_WC, |
| * MEMREMAP_ENC, MEMREMAP_DEC |
| * |
| * memremap() is "ioremap" for cases where it is known that the resource |
| * being mapped does not have i/o side effects and the __iomem |
| * annotation is not applicable. In the case of multiple flags, the different |
| * mapping types will be attempted in the order listed below until one of |
| * them succeeds. |
| * |
| * MEMREMAP_WB - matches the default mapping for System RAM on |
| * the architecture. This is usually a read-allocate write-back cache. |
| * Morever, if MEMREMAP_WB is specified and the requested remap region is RAM |
| * memremap() will bypass establishing a new mapping and instead return |
| * a pointer into the direct map. |
| * |
| * MEMREMAP_WT - establish a mapping whereby writes either bypass the |
| * cache or are written through to memory and never exist in a |
| * cache-dirty state with respect to program visibility. Attempts to |
| * map System RAM with this mapping type will fail. |
| * |
| * MEMREMAP_WC - establish a writecombine mapping, whereby writes may |
| * be coalesced together (e.g. in the CPU's write buffers), but is otherwise |
| * uncached. Attempts to map System RAM with this mapping type will fail. |
| */ |
| void *memremap(resource_size_t offset, size_t size, unsigned long flags) |
| { |
| int is_ram = region_intersects(offset, size, |
| IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE); |
| void *addr = NULL; |
| |
| if (!flags) |
| return NULL; |
| |
| if (is_ram == REGION_MIXED) { |
| WARN_ONCE(1, "memremap attempted on mixed range %pa size: %#lx\n", |
| &offset, (unsigned long) size); |
| return NULL; |
| } |
| |
| /* Try all mapping types requested until one returns non-NULL */ |
| if (flags & MEMREMAP_WB) { |
| /* |
| * MEMREMAP_WB is special in that it can be satisifed |
| * from the direct map. Some archs depend on the |
| * capability of memremap() to autodetect cases where |
| * the requested range is potentially in System RAM. |
| */ |
| if (is_ram == REGION_INTERSECTS) |
| addr = try_ram_remap(offset, size, flags); |
| if (!addr) |
| addr = arch_memremap_wb(offset, size); |
| } |
| |
| /* |
| * If we don't have a mapping yet and other request flags are |
| * present then we will be attempting to establish a new virtual |
| * address mapping. Enforce that this mapping is not aliasing |
| * System RAM. |
| */ |
| if (!addr && is_ram == REGION_INTERSECTS && flags != MEMREMAP_WB) { |
| WARN_ONCE(1, "memremap attempted on ram %pa size: %#lx\n", |
| &offset, (unsigned long) size); |
| return NULL; |
| } |
| |
| if (!addr && (flags & MEMREMAP_WT)) |
| addr = ioremap_wt(offset, size); |
| |
| if (!addr && (flags & MEMREMAP_WC)) |
| addr = ioremap_wc(offset, size); |
| |
| return addr; |
| } |
| EXPORT_SYMBOL(memremap); |
| |
| void memunmap(void *addr) |
| { |
| if (is_vmalloc_addr(addr)) |
| iounmap((void __iomem *) addr); |
| } |
| EXPORT_SYMBOL(memunmap); |
| |
| static void devm_memremap_release(struct device *dev, void *res) |
| { |
| memunmap(*(void **)res); |
| } |
| |
| static int devm_memremap_match(struct device *dev, void *res, void *match_data) |
| { |
| return *(void **)res == match_data; |
| } |
| |
| void *devm_memremap(struct device *dev, resource_size_t offset, |
| size_t size, unsigned long flags) |
| { |
| void **ptr, *addr; |
| |
| ptr = devres_alloc_node(devm_memremap_release, sizeof(*ptr), GFP_KERNEL, |
| dev_to_node(dev)); |
| if (!ptr) |
| return ERR_PTR(-ENOMEM); |
| |
| addr = memremap(offset, size, flags); |
| if (addr) { |
| *ptr = addr; |
| devres_add(dev, ptr); |
| } else { |
| devres_free(ptr); |
| return ERR_PTR(-ENXIO); |
| } |
| |
| return addr; |
| } |
| EXPORT_SYMBOL(devm_memremap); |
| |
| void devm_memunmap(struct device *dev, void *addr) |
| { |
| WARN_ON(devres_release(dev, devm_memremap_release, |
| devm_memremap_match, addr)); |
| } |
| EXPORT_SYMBOL(devm_memunmap); |
| |
| #ifdef CONFIG_ZONE_DEVICE |
| static DEFINE_MUTEX(pgmap_lock); |
| static RADIX_TREE(pgmap_radix, GFP_KERNEL); |
| #define SECTION_MASK ~((1UL << PA_SECTION_SHIFT) - 1) |
| #define SECTION_SIZE (1UL << PA_SECTION_SHIFT) |
| |
| struct page_map { |
| struct resource res; |
| struct percpu_ref *ref; |
| struct dev_pagemap pgmap; |
| struct vmem_altmap altmap; |
| }; |
| |
| static unsigned long order_at(struct resource *res, unsigned long pgoff) |
| { |
| unsigned long phys_pgoff = PHYS_PFN(res->start) + pgoff; |
| unsigned long nr_pages, mask; |
| |
| nr_pages = PHYS_PFN(resource_size(res)); |
| if (nr_pages == pgoff) |
| return ULONG_MAX; |
| |
| /* |
| * What is the largest aligned power-of-2 range available from |
| * this resource pgoff to the end of the resource range, |
| * considering the alignment of the current pgoff? |
| */ |
| mask = phys_pgoff | rounddown_pow_of_two(nr_pages - pgoff); |
| if (!mask) |
| return ULONG_MAX; |
| |
| return find_first_bit(&mask, BITS_PER_LONG); |
| } |
| |
| #define foreach_order_pgoff(res, order, pgoff) \ |
| for (pgoff = 0, order = order_at((res), pgoff); order < ULONG_MAX; \ |
| pgoff += 1UL << order, order = order_at((res), pgoff)) |
| |
| #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) |
| int device_private_entry_fault(struct vm_area_struct *vma, |
| unsigned long addr, |
| swp_entry_t entry, |
| unsigned int flags, |
| pmd_t *pmdp) |
| { |
| struct page *page = device_private_entry_to_page(entry); |
| |
| /* |
| * The page_fault() callback must migrate page back to system memory |
| * so that CPU can access it. This might fail for various reasons |
| * (device issue, device was unsafely unplugged, ...). When such |
| * error conditions happen, the callback must return VM_FAULT_SIGBUS. |
| * |
| * Note that because memory cgroup charges are accounted to the device |
| * memory, this should never fail because of memory restrictions (but |
| * allocation of regular system page might still fail because we are |
| * out of memory). |
| * |
| * There is a more in-depth description of what that callback can and |
| * cannot do, in include/linux/memremap.h |
| */ |
| return page->pgmap->page_fault(vma, addr, page, flags, pmdp); |
| } |
| EXPORT_SYMBOL(device_private_entry_fault); |
| #endif /* CONFIG_DEVICE_PRIVATE */ |
| |
| static void pgmap_radix_release(struct resource *res, unsigned long end_pgoff) |
| { |
| unsigned long pgoff, order; |
| |
| mutex_lock(&pgmap_lock); |
| foreach_order_pgoff(res, order, pgoff) { |
| if (pgoff >= end_pgoff) |
| break; |
| radix_tree_delete(&pgmap_radix, PHYS_PFN(res->start) + pgoff); |
| } |
| mutex_unlock(&pgmap_lock); |
| |
| synchronize_rcu(); |
| } |
| |
| static unsigned long pfn_first(struct page_map *page_map) |
| { |
| struct dev_pagemap *pgmap = &page_map->pgmap; |
| const struct resource *res = &page_map->res; |
| struct vmem_altmap *altmap = pgmap->altmap; |
| unsigned long pfn; |
| |
| pfn = res->start >> PAGE_SHIFT; |
| if (altmap) |
| pfn += vmem_altmap_offset(altmap); |
| return pfn; |
| } |
| |
| static unsigned long pfn_end(struct page_map *page_map) |
| { |
| const struct resource *res = &page_map->res; |
| |
| return (res->start + resource_size(res)) >> PAGE_SHIFT; |
| } |
| |
| #define for_each_device_pfn(pfn, map) \ |
| for (pfn = pfn_first(map); pfn < pfn_end(map); pfn++) |
| |
| static void devm_memremap_pages_release(struct device *dev, void *data) |
| { |
| struct page_map *page_map = data; |
| struct resource *res = &page_map->res; |
| resource_size_t align_start, align_size; |
| struct dev_pagemap *pgmap = &page_map->pgmap; |
| unsigned long pfn; |
| |
| for_each_device_pfn(pfn, page_map) |
| put_page(pfn_to_page(pfn)); |
| |
| if (percpu_ref_tryget_live(pgmap->ref)) { |
| dev_WARN(dev, "%s: page mapping is still live!\n", __func__); |
| percpu_ref_put(pgmap->ref); |
| } |
| |
| /* pages are dead and unused, undo the arch mapping */ |
| align_start = res->start & ~(SECTION_SIZE - 1); |
| align_size = ALIGN(res->start + resource_size(res), SECTION_SIZE) |
| - align_start; |
| |
| mem_hotplug_begin(); |
| arch_remove_memory(align_start, align_size); |
| kasan_remove_zero_shadow(__va(align_start), align_size); |
| mem_hotplug_done(); |
| |
| untrack_pfn(NULL, PHYS_PFN(align_start), align_size); |
| pgmap_radix_release(res, -1); |
| dev_WARN_ONCE(dev, pgmap->altmap && pgmap->altmap->alloc, |
| "%s: failed to free all reserved pages\n", __func__); |
| } |
| |
| /* assumes rcu_read_lock() held at entry */ |
| struct dev_pagemap *find_dev_pagemap(resource_size_t phys) |
| { |
| struct page_map *page_map; |
| |
| WARN_ON_ONCE(!rcu_read_lock_held()); |
| |
| page_map = radix_tree_lookup(&pgmap_radix, PHYS_PFN(phys)); |
| return page_map ? &page_map->pgmap : NULL; |
| } |
| |
| /** |
| * devm_memremap_pages - remap and provide memmap backing for the given resource |
| * @dev: hosting device for @res |
| * @res: "host memory" address range |
| * @ref: a live per-cpu reference count |
| * @altmap: optional descriptor for allocating the memmap from @res |
| * |
| * Notes: |
| * 1/ @ref must be 'live' on entry and 'dead' before devm_memunmap_pages() time |
| * (or devm release event). The expected order of events is that @ref has |
| * been through percpu_ref_kill() before devm_memremap_pages_release(). The |
| * wait for the completion of all references being dropped and |
| * percpu_ref_exit() must occur after devm_memremap_pages_release(). |
| * |
| * 2/ @res is expected to be a host memory range that could feasibly be |
| * treated as a "System RAM" range, i.e. not a device mmio range, but |
| * this is not enforced. |
| */ |
| void *devm_memremap_pages(struct device *dev, struct resource *res, |
| struct percpu_ref *ref, struct vmem_altmap *altmap) |
| { |
| resource_size_t align_start, align_size, align_end; |
| unsigned long pfn, pgoff, order; |
| pgprot_t pgprot = PAGE_KERNEL; |
| struct dev_pagemap *pgmap; |
| struct page_map *page_map; |
| int error, nid, is_ram, i = 0; |
| struct dev_pagemap *conflict_pgmap; |
| |
| align_start = res->start & ~(SECTION_SIZE - 1); |
| align_size = ALIGN(res->start + resource_size(res), SECTION_SIZE) |
| - align_start; |
| align_end = align_start + align_size - 1; |
| |
| conflict_pgmap = get_dev_pagemap(PHYS_PFN(align_start), NULL); |
| if (conflict_pgmap) { |
| dev_WARN(dev, "Conflicting mapping in same section\n"); |
| put_dev_pagemap(conflict_pgmap); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| conflict_pgmap = get_dev_pagemap(PHYS_PFN(align_end), NULL); |
| if (conflict_pgmap) { |
| dev_WARN(dev, "Conflicting mapping in same section\n"); |
| put_dev_pagemap(conflict_pgmap); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| is_ram = region_intersects(align_start, align_size, |
| IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE); |
| |
| if (is_ram != REGION_DISJOINT) { |
| WARN_ONCE(1, "%s attempted on %s region %pr\n", __func__, |
| is_ram == REGION_MIXED ? "mixed" : "ram", res); |
| return ERR_PTR(-ENXIO); |
| } |
| |
| if (!ref) |
| return ERR_PTR(-EINVAL); |
| |
| page_map = devres_alloc_node(devm_memremap_pages_release, |
| sizeof(*page_map), GFP_KERNEL, dev_to_node(dev)); |
| if (!page_map) |
| return ERR_PTR(-ENOMEM); |
| pgmap = &page_map->pgmap; |
| |
| memcpy(&page_map->res, res, sizeof(*res)); |
| |
| pgmap->dev = dev; |
| if (altmap) { |
| memcpy(&page_map->altmap, altmap, sizeof(*altmap)); |
| pgmap->altmap = &page_map->altmap; |
| } |
| pgmap->ref = ref; |
| pgmap->res = &page_map->res; |
| pgmap->type = MEMORY_DEVICE_HOST; |
| pgmap->page_fault = NULL; |
| pgmap->page_free = NULL; |
| pgmap->data = NULL; |
| |
| mutex_lock(&pgmap_lock); |
| error = 0; |
| |
| foreach_order_pgoff(res, order, pgoff) { |
| struct dev_pagemap *dup; |
| |
| rcu_read_lock(); |
| dup = find_dev_pagemap(res->start + PFN_PHYS(pgoff)); |
| rcu_read_unlock(); |
| if (dup) { |
| dev_err(dev, "%s: %pr collides with mapping for %s\n", |
| __func__, res, dev_name(dup->dev)); |
| error = -EBUSY; |
| break; |
| } |
| error = __radix_tree_insert(&pgmap_radix, |
| PHYS_PFN(res->start) + pgoff, order, page_map); |
| if (error) { |
| dev_err(dev, "%s: failed: %d\n", __func__, error); |
| break; |
| } |
| } |
| mutex_unlock(&pgmap_lock); |
| if (error) |
| goto err_radix; |
| |
| nid = dev_to_node(dev); |
| if (nid < 0) |
| nid = numa_mem_id(); |
| |
| error = track_pfn_remap(NULL, &pgprot, PHYS_PFN(align_start), 0, |
| align_size); |
| if (error) |
| goto err_pfn_remap; |
| |
| mem_hotplug_begin(); |
| error = kasan_add_zero_shadow(__va(align_start), align_size); |
| if (error) { |
| mem_hotplug_done(); |
| goto err_kasan; |
| } |
| error = arch_add_memory(nid, align_start, align_size, false); |
| if (!error) |
| move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE], |
| align_start >> PAGE_SHIFT, |
| align_size >> PAGE_SHIFT); |
| mem_hotplug_done(); |
| if (error) |
| goto err_add_memory; |
| |
| for_each_device_pfn(pfn, page_map) { |
| struct page *page = pfn_to_page(pfn); |
| |
| /* |
| * ZONE_DEVICE pages union ->lru with a ->pgmap back |
| * pointer. It is a bug if a ZONE_DEVICE page is ever |
| * freed or placed on a driver-private list. Seed the |
| * storage with LIST_POISON* values. |
| */ |
| list_del(&page->lru); |
| page->pgmap = pgmap; |
| percpu_ref_get(ref); |
| if (!(++i % 1024)) |
| cond_resched(); |
| } |
| devres_add(dev, page_map); |
| return __va(res->start); |
| |
| err_add_memory: |
| kasan_remove_zero_shadow(__va(align_start), align_size); |
| err_kasan: |
| untrack_pfn(NULL, PHYS_PFN(align_start), align_size); |
| err_pfn_remap: |
| err_radix: |
| pgmap_radix_release(res, pgoff); |
| devres_free(page_map); |
| return ERR_PTR(error); |
| } |
| EXPORT_SYMBOL_GPL(devm_memremap_pages); |
| |
| unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) |
| { |
| /* number of pfns from base where pfn_to_page() is valid */ |
| return altmap->reserve + altmap->free; |
| } |
| |
| void vmem_altmap_free(struct vmem_altmap *altmap, unsigned long nr_pfns) |
| { |
| altmap->alloc -= nr_pfns; |
| } |
| |
| struct vmem_altmap *to_vmem_altmap(unsigned long memmap_start) |
| { |
| /* |
| * 'memmap_start' is the virtual address for the first "struct |
| * page" in this range of the vmemmap array. In the case of |
| * CONFIG_SPARSEMEM_VMEMMAP a page_to_pfn conversion is simple |
| * pointer arithmetic, so we can perform this to_vmem_altmap() |
| * conversion without concern for the initialization state of |
| * the struct page fields. |
| */ |
| struct page *page = (struct page *) memmap_start; |
| struct dev_pagemap *pgmap; |
| |
| /* |
| * Unconditionally retrieve a dev_pagemap associated with the |
| * given physical address, this is only for use in the |
| * arch_{add|remove}_memory() for setting up and tearing down |
| * the memmap. |
| */ |
| rcu_read_lock(); |
| pgmap = find_dev_pagemap(__pfn_to_phys(page_to_pfn(page))); |
| rcu_read_unlock(); |
| |
| return pgmap ? pgmap->altmap : NULL; |
| } |
| #endif /* CONFIG_ZONE_DEVICE */ |
| |
| |
| #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) || IS_ENABLED(CONFIG_DEVICE_PUBLIC) |
| void put_zone_device_private_or_public_page(struct page *page) |
| { |
| int count = page_ref_dec_return(page); |
| |
| /* |
| * If refcount is 1 then page is freed and refcount is stable as nobody |
| * holds a reference on the page. |
| */ |
| if (count == 1) { |
| /* Clear Active bit in case of parallel mark_page_accessed */ |
| __ClearPageActive(page); |
| __ClearPageWaiters(page); |
| |
| page->mapping = NULL; |
| mem_cgroup_uncharge(page); |
| |
| page->pgmap->page_free(page, page->pgmap->data); |
| } else if (!count) |
| __put_page(page); |
| } |
| EXPORT_SYMBOL(put_zone_device_private_or_public_page); |
| #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */ |