| /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com |
| * Copyright (c) 2016 Facebook |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of version 2 of the GNU General Public |
| * License as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| */ |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/slab.h> |
| #include <linux/bpf.h> |
| #include <linux/bpf_verifier.h> |
| #include <linux/filter.h> |
| #include <net/netlink.h> |
| #include <linux/file.h> |
| #include <linux/vmalloc.h> |
| #include <linux/stringify.h> |
| |
| /* bpf_check() is a static code analyzer that walks eBPF program |
| * instruction by instruction and updates register/stack state. |
| * All paths of conditional branches are analyzed until 'bpf_exit' insn. |
| * |
| * The first pass is depth-first-search to check that the program is a DAG. |
| * It rejects the following programs: |
| * - larger than BPF_MAXINSNS insns |
| * - if loop is present (detected via back-edge) |
| * - unreachable insns exist (shouldn't be a forest. program = one function) |
| * - out of bounds or malformed jumps |
| * The second pass is all possible path descent from the 1st insn. |
| * Since it's analyzing all pathes through the program, the length of the |
| * analysis is limited to 64k insn, which may be hit even if total number of |
| * insn is less then 4K, but there are too many branches that change stack/regs. |
| * Number of 'branches to be analyzed' is limited to 1k |
| * |
| * On entry to each instruction, each register has a type, and the instruction |
| * changes the types of the registers depending on instruction semantics. |
| * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is |
| * copied to R1. |
| * |
| * All registers are 64-bit. |
| * R0 - return register |
| * R1-R5 argument passing registers |
| * R6-R9 callee saved registers |
| * R10 - frame pointer read-only |
| * |
| * At the start of BPF program the register R1 contains a pointer to bpf_context |
| * and has type PTR_TO_CTX. |
| * |
| * Verifier tracks arithmetic operations on pointers in case: |
| * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), |
| * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), |
| * 1st insn copies R10 (which has FRAME_PTR) type into R1 |
| * and 2nd arithmetic instruction is pattern matched to recognize |
| * that it wants to construct a pointer to some element within stack. |
| * So after 2nd insn, the register R1 has type PTR_TO_STACK |
| * (and -20 constant is saved for further stack bounds checking). |
| * Meaning that this reg is a pointer to stack plus known immediate constant. |
| * |
| * Most of the time the registers have SCALAR_VALUE type, which |
| * means the register has some value, but it's not a valid pointer. |
| * (like pointer plus pointer becomes SCALAR_VALUE type) |
| * |
| * When verifier sees load or store instructions the type of base register |
| * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer |
| * types recognized by check_mem_access() function. |
| * |
| * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' |
| * and the range of [ptr, ptr + map's value_size) is accessible. |
| * |
| * registers used to pass values to function calls are checked against |
| * function argument constraints. |
| * |
| * ARG_PTR_TO_MAP_KEY is one of such argument constraints. |
| * It means that the register type passed to this function must be |
| * PTR_TO_STACK and it will be used inside the function as |
| * 'pointer to map element key' |
| * |
| * For example the argument constraints for bpf_map_lookup_elem(): |
| * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, |
| * .arg1_type = ARG_CONST_MAP_PTR, |
| * .arg2_type = ARG_PTR_TO_MAP_KEY, |
| * |
| * ret_type says that this function returns 'pointer to map elem value or null' |
| * function expects 1st argument to be a const pointer to 'struct bpf_map' and |
| * 2nd argument should be a pointer to stack, which will be used inside |
| * the helper function as a pointer to map element key. |
| * |
| * On the kernel side the helper function looks like: |
| * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) |
| * { |
| * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; |
| * void *key = (void *) (unsigned long) r2; |
| * void *value; |
| * |
| * here kernel can access 'key' and 'map' pointers safely, knowing that |
| * [key, key + map->key_size) bytes are valid and were initialized on |
| * the stack of eBPF program. |
| * } |
| * |
| * Corresponding eBPF program may look like: |
| * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR |
| * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK |
| * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP |
| * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), |
| * here verifier looks at prototype of map_lookup_elem() and sees: |
| * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, |
| * Now verifier knows that this map has key of R1->map_ptr->key_size bytes |
| * |
| * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, |
| * Now verifier checks that [R2, R2 + map's key_size) are within stack limits |
| * and were initialized prior to this call. |
| * If it's ok, then verifier allows this BPF_CALL insn and looks at |
| * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets |
| * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function |
| * returns ether pointer to map value or NULL. |
| * |
| * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' |
| * insn, the register holding that pointer in the true branch changes state to |
| * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false |
| * branch. See check_cond_jmp_op(). |
| * |
| * After the call R0 is set to return type of the function and registers R1-R5 |
| * are set to NOT_INIT to indicate that they are no longer readable. |
| */ |
| |
| /* verifier_state + insn_idx are pushed to stack when branch is encountered */ |
| struct bpf_verifier_stack_elem { |
| /* verifer state is 'st' |
| * before processing instruction 'insn_idx' |
| * and after processing instruction 'prev_insn_idx' |
| */ |
| struct bpf_verifier_state st; |
| int insn_idx; |
| int prev_insn_idx; |
| struct bpf_verifier_stack_elem *next; |
| }; |
| |
| #define BPF_COMPLEXITY_LIMIT_INSNS 131072 |
| #define BPF_COMPLEXITY_LIMIT_STACK 1024 |
| |
| #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA) |
| |
| struct bpf_call_arg_meta { |
| struct bpf_map *map_ptr; |
| bool raw_mode; |
| bool pkt_access; |
| int regno; |
| int access_size; |
| }; |
| |
| /* verbose verifier prints what it's seeing |
| * bpf_check() is called under lock, so no race to access these global vars |
| */ |
| static struct bpf_verifier_log verifier_log; |
| |
| static DEFINE_MUTEX(bpf_verifier_lock); |
| |
| void bpf_verifier_vlog(struct bpf_verifier_log *log, |
| const char *fmt, va_list args) |
| { |
| unsigned int n; |
| |
| n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args); |
| |
| WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1, |
| "verifier log line truncated - local buffer too short\n"); |
| |
| n = min(log->len_total - log->len_used - 1, n); |
| log->kbuf[n] = '\0'; |
| |
| if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1)) |
| log->len_used += n; |
| else |
| log->ubuf = NULL; |
| } |
| |
| /* log_level controls verbosity level of eBPF verifier. |
| * bpf_verifier_log_write() is used to dump the verification trace to the log, |
| * so the user can figure out what's wrong with the program |
| */ |
| __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_log *log, |
| const char *fmt, ...) |
| { |
| va_list args; |
| |
| if (!bpf_verifier_log_needed(log)) |
| return; |
| |
| va_start(args, fmt); |
| bpf_verifier_vlog(log, fmt, args); |
| va_end(args); |
| } |
| EXPORT_SYMBOL_GPL(bpf_verifier_log_write); |
| /* Historically bpf_verifier_log_write was called verbose, but the name was too |
| * generic for symbol export. The function was renamed, but not the calls in |
| * the verifier to avoid complicating backports. Hence the alias below. |
| */ |
| static __printf(1, 2) void verbose(const char *fmt, ...) |
| { |
| va_list args; |
| |
| if (!bpf_verifier_log_needed(&verifier_log)) |
| return; |
| |
| va_start(args, fmt); |
| bpf_verifier_vlog(&verifier_log, fmt, args); |
| va_end(args); |
| } |
| |
| /* string representation of 'enum bpf_reg_type' */ |
| static const char * const reg_type_str[] = { |
| [NOT_INIT] = "?", |
| [SCALAR_VALUE] = "inv", |
| [PTR_TO_CTX] = "ctx", |
| [CONST_PTR_TO_MAP] = "map_ptr", |
| [PTR_TO_MAP_VALUE] = "map_value", |
| [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", |
| [PTR_TO_STACK] = "fp", |
| [PTR_TO_PACKET] = "pkt", |
| [PTR_TO_PACKET_END] = "pkt_end", |
| }; |
| |
| #define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x) |
| static const char * const func_id_str[] = { |
| __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN) |
| }; |
| #undef __BPF_FUNC_STR_FN |
| |
| static const char *func_id_name(int id) |
| { |
| BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID); |
| |
| if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id]) |
| return func_id_str[id]; |
| else |
| return "unknown"; |
| } |
| |
| static void print_verifier_state(struct bpf_verifier_state *state) |
| { |
| struct bpf_reg_state *reg; |
| enum bpf_reg_type t; |
| int i; |
| |
| for (i = 0; i < MAX_BPF_REG; i++) { |
| reg = &state->regs[i]; |
| t = reg->type; |
| if (t == NOT_INIT) |
| continue; |
| verbose(" R%d=%s", i, reg_type_str[t]); |
| if ((t == SCALAR_VALUE || t == PTR_TO_STACK) && |
| tnum_is_const(reg->var_off)) { |
| /* reg->off should be 0 for SCALAR_VALUE */ |
| verbose("%lld", reg->var_off.value + reg->off); |
| } else { |
| verbose("(id=%d", reg->id); |
| if (t != SCALAR_VALUE) |
| verbose(",off=%d", reg->off); |
| if (t == PTR_TO_PACKET) |
| verbose(",r=%d", reg->range); |
| else if (t == CONST_PTR_TO_MAP || |
| t == PTR_TO_MAP_VALUE || |
| t == PTR_TO_MAP_VALUE_OR_NULL) |
| verbose(",ks=%d,vs=%d", |
| reg->map_ptr->key_size, |
| reg->map_ptr->value_size); |
| if (tnum_is_const(reg->var_off)) { |
| /* Typically an immediate SCALAR_VALUE, but |
| * could be a pointer whose offset is too big |
| * for reg->off |
| */ |
| verbose(",imm=%llx", reg->var_off.value); |
| } else { |
| if (reg->smin_value != reg->umin_value && |
| reg->smin_value != S64_MIN) |
| verbose(",smin_value=%lld", |
| (long long)reg->smin_value); |
| if (reg->smax_value != reg->umax_value && |
| reg->smax_value != S64_MAX) |
| verbose(",smax_value=%lld", |
| (long long)reg->smax_value); |
| if (reg->umin_value != 0) |
| verbose(",umin_value=%llu", |
| (unsigned long long)reg->umin_value); |
| if (reg->umax_value != U64_MAX) |
| verbose(",umax_value=%llu", |
| (unsigned long long)reg->umax_value); |
| if (!tnum_is_unknown(reg->var_off)) { |
| char tn_buf[48]; |
| |
| tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); |
| verbose(",var_off=%s", tn_buf); |
| } |
| } |
| verbose(")"); |
| } |
| } |
| for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { |
| if (state->stack[i].slot_type[0] == STACK_SPILL) |
| verbose(" fp%d=%s", |
| (-i - 1) * BPF_REG_SIZE, |
| reg_type_str[state->stack[i].spilled_ptr.type]); |
| } |
| verbose("\n"); |
| } |
| |
| static const char *const bpf_class_string[] = { |
| [BPF_LD] = "ld", |
| [BPF_LDX] = "ldx", |
| [BPF_ST] = "st", |
| [BPF_STX] = "stx", |
| [BPF_ALU] = "alu", |
| [BPF_JMP] = "jmp", |
| [BPF_RET] = "BUG", |
| [BPF_ALU64] = "alu64", |
| }; |
| |
| static const char *const bpf_alu_string[16] = { |
| [BPF_ADD >> 4] = "+=", |
| [BPF_SUB >> 4] = "-=", |
| [BPF_MUL >> 4] = "*=", |
| [BPF_DIV >> 4] = "/=", |
| [BPF_OR >> 4] = "|=", |
| [BPF_AND >> 4] = "&=", |
| [BPF_LSH >> 4] = "<<=", |
| [BPF_RSH >> 4] = ">>=", |
| [BPF_NEG >> 4] = "neg", |
| [BPF_MOD >> 4] = "%=", |
| [BPF_XOR >> 4] = "^=", |
| [BPF_MOV >> 4] = "=", |
| [BPF_ARSH >> 4] = "s>>=", |
| [BPF_END >> 4] = "endian", |
| }; |
| |
| static const char *const bpf_ldst_string[] = { |
| [BPF_W >> 3] = "u32", |
| [BPF_H >> 3] = "u16", |
| [BPF_B >> 3] = "u8", |
| [BPF_DW >> 3] = "u64", |
| }; |
| |
| static const char *const bpf_jmp_string[16] = { |
| [BPF_JA >> 4] = "jmp", |
| [BPF_JEQ >> 4] = "==", |
| [BPF_JGT >> 4] = ">", |
| [BPF_JLT >> 4] = "<", |
| [BPF_JGE >> 4] = ">=", |
| [BPF_JLE >> 4] = "<=", |
| [BPF_JSET >> 4] = "&", |
| [BPF_JNE >> 4] = "!=", |
| [BPF_JSGT >> 4] = "s>", |
| [BPF_JSLT >> 4] = "s<", |
| [BPF_JSGE >> 4] = "s>=", |
| [BPF_JSLE >> 4] = "s<=", |
| [BPF_CALL >> 4] = "call", |
| [BPF_EXIT >> 4] = "exit", |
| }; |
| |
| static void print_bpf_insn(const struct bpf_verifier_env *env, |
| const struct bpf_insn *insn) |
| { |
| u8 class = BPF_CLASS(insn->code); |
| |
| if (class == BPF_ALU || class == BPF_ALU64) { |
| if (BPF_SRC(insn->code) == BPF_X) |
| verbose("(%02x) %sr%d %s %sr%d\n", |
| insn->code, class == BPF_ALU ? "(u32) " : "", |
| insn->dst_reg, |
| bpf_alu_string[BPF_OP(insn->code) >> 4], |
| class == BPF_ALU ? "(u32) " : "", |
| insn->src_reg); |
| else |
| verbose("(%02x) %sr%d %s %s%d\n", |
| insn->code, class == BPF_ALU ? "(u32) " : "", |
| insn->dst_reg, |
| bpf_alu_string[BPF_OP(insn->code) >> 4], |
| class == BPF_ALU ? "(u32) " : "", |
| insn->imm); |
| } else if (class == BPF_STX) { |
| if (BPF_MODE(insn->code) == BPF_MEM) |
| verbose("(%02x) *(%s *)(r%d %+d) = r%d\n", |
| insn->code, |
| bpf_ldst_string[BPF_SIZE(insn->code) >> 3], |
| insn->dst_reg, |
| insn->off, insn->src_reg); |
| else if (BPF_MODE(insn->code) == BPF_XADD) |
| verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n", |
| insn->code, |
| bpf_ldst_string[BPF_SIZE(insn->code) >> 3], |
| insn->dst_reg, insn->off, |
| insn->src_reg); |
| else |
| verbose("BUG_%02x\n", insn->code); |
| } else if (class == BPF_ST) { |
| if (BPF_MODE(insn->code) != BPF_MEM) { |
| verbose("BUG_st_%02x\n", insn->code); |
| return; |
| } |
| verbose("(%02x) *(%s *)(r%d %+d) = %d\n", |
| insn->code, |
| bpf_ldst_string[BPF_SIZE(insn->code) >> 3], |
| insn->dst_reg, |
| insn->off, insn->imm); |
| } else if (class == BPF_LDX) { |
| if (BPF_MODE(insn->code) != BPF_MEM) { |
| verbose("BUG_ldx_%02x\n", insn->code); |
| return; |
| } |
| verbose("(%02x) r%d = *(%s *)(r%d %+d)\n", |
| insn->code, insn->dst_reg, |
| bpf_ldst_string[BPF_SIZE(insn->code) >> 3], |
| insn->src_reg, insn->off); |
| } else if (class == BPF_LD) { |
| if (BPF_MODE(insn->code) == BPF_ABS) { |
| verbose("(%02x) r0 = *(%s *)skb[%d]\n", |
| insn->code, |
| bpf_ldst_string[BPF_SIZE(insn->code) >> 3], |
| insn->imm); |
| } else if (BPF_MODE(insn->code) == BPF_IND) { |
| verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n", |
| insn->code, |
| bpf_ldst_string[BPF_SIZE(insn->code) >> 3], |
| insn->src_reg, insn->imm); |
| } else if (BPF_MODE(insn->code) == BPF_IMM && |
| BPF_SIZE(insn->code) == BPF_DW) { |
| /* At this point, we already made sure that the second |
| * part of the ldimm64 insn is accessible. |
| */ |
| u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; |
| bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD; |
| |
| if (map_ptr && !env->allow_ptr_leaks) |
| imm = 0; |
| |
| verbose("(%02x) r%d = 0x%llx\n", insn->code, |
| insn->dst_reg, (unsigned long long)imm); |
| } else { |
| verbose("BUG_ld_%02x\n", insn->code); |
| return; |
| } |
| } else if (class == BPF_JMP) { |
| u8 opcode = BPF_OP(insn->code); |
| |
| if (opcode == BPF_CALL) { |
| verbose("(%02x) call %s#%d\n", insn->code, |
| func_id_name(insn->imm), insn->imm); |
| } else if (insn->code == (BPF_JMP | BPF_JA)) { |
| verbose("(%02x) goto pc%+d\n", |
| insn->code, insn->off); |
| } else if (insn->code == (BPF_JMP | BPF_EXIT)) { |
| verbose("(%02x) exit\n", insn->code); |
| } else if (BPF_SRC(insn->code) == BPF_X) { |
| verbose("(%02x) if r%d %s r%d goto pc%+d\n", |
| insn->code, insn->dst_reg, |
| bpf_jmp_string[BPF_OP(insn->code) >> 4], |
| insn->src_reg, insn->off); |
| } else { |
| verbose("(%02x) if r%d %s 0x%x goto pc%+d\n", |
| insn->code, insn->dst_reg, |
| bpf_jmp_string[BPF_OP(insn->code) >> 4], |
| insn->imm, insn->off); |
| } |
| } else { |
| verbose("(%02x) %s\n", insn->code, bpf_class_string[class]); |
| } |
| } |
| |
| static int copy_stack_state(struct bpf_verifier_state *dst, |
| const struct bpf_verifier_state *src) |
| { |
| if (!src->stack) |
| return 0; |
| if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) { |
| /* internal bug, make state invalid to reject the program */ |
| memset(dst, 0, sizeof(*dst)); |
| return -EFAULT; |
| } |
| memcpy(dst->stack, src->stack, |
| sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE)); |
| return 0; |
| } |
| |
| /* do_check() starts with zero-sized stack in struct bpf_verifier_state to |
| * make it consume minimal amount of memory. check_stack_write() access from |
| * the program calls into realloc_verifier_state() to grow the stack size. |
| * Note there is a non-zero 'parent' pointer inside bpf_verifier_state |
| * which this function copies over. It points to previous bpf_verifier_state |
| * which is never reallocated |
| */ |
| static int realloc_verifier_state(struct bpf_verifier_state *state, int size, |
| bool copy_old) |
| { |
| u32 old_size = state->allocated_stack; |
| struct bpf_stack_state *new_stack; |
| int slot = size / BPF_REG_SIZE; |
| |
| if (size <= old_size || !size) { |
| if (copy_old) |
| return 0; |
| state->allocated_stack = slot * BPF_REG_SIZE; |
| if (!size && old_size) { |
| kfree(state->stack); |
| state->stack = NULL; |
| } |
| return 0; |
| } |
| new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state), |
| GFP_KERNEL); |
| if (!new_stack) |
| return -ENOMEM; |
| if (copy_old) { |
| if (state->stack) |
| memcpy(new_stack, state->stack, |
| sizeof(*new_stack) * (old_size / BPF_REG_SIZE)); |
| memset(new_stack + old_size / BPF_REG_SIZE, 0, |
| sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE); |
| } |
| state->allocated_stack = slot * BPF_REG_SIZE; |
| kfree(state->stack); |
| state->stack = new_stack; |
| return 0; |
| } |
| |
| static void free_verifier_state(struct bpf_verifier_state *state, |
| bool free_self) |
| { |
| kfree(state->stack); |
| if (free_self) |
| kfree(state); |
| } |
| |
| /* copy verifier state from src to dst growing dst stack space |
| * when necessary to accommodate larger src stack |
| */ |
| static int copy_verifier_state(struct bpf_verifier_state *dst, |
| const struct bpf_verifier_state *src) |
| { |
| int err; |
| |
| err = realloc_verifier_state(dst, src->allocated_stack, false); |
| if (err) |
| return err; |
| memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack)); |
| return copy_stack_state(dst, src); |
| } |
| |
| static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx, |
| int *insn_idx) |
| { |
| struct bpf_verifier_state *cur = env->cur_state; |
| struct bpf_verifier_stack_elem *elem, *head = env->head; |
| int err; |
| |
| if (env->head == NULL) |
| return -ENOENT; |
| |
| if (cur) { |
| err = copy_verifier_state(cur, &head->st); |
| if (err) |
| return err; |
| } |
| if (insn_idx) |
| *insn_idx = head->insn_idx; |
| if (prev_insn_idx) |
| *prev_insn_idx = head->prev_insn_idx; |
| elem = head->next; |
| free_verifier_state(&head->st, false); |
| kfree(head); |
| env->head = elem; |
| env->stack_size--; |
| return 0; |
| } |
| |
| static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env, |
| int insn_idx, int prev_insn_idx, |
| bool speculative) |
| { |
| struct bpf_verifier_stack_elem *elem; |
| struct bpf_verifier_state *cur = env->cur_state; |
| int err; |
| |
| elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL); |
| if (!elem) |
| goto err; |
| |
| elem->insn_idx = insn_idx; |
| elem->prev_insn_idx = prev_insn_idx; |
| elem->next = env->head; |
| elem->st.speculative |= speculative; |
| env->head = elem; |
| env->stack_size++; |
| err = copy_verifier_state(&elem->st, cur); |
| if (err) |
| goto err; |
| if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) { |
| verbose("BPF program is too complex\n"); |
| goto err; |
| } |
| return &elem->st; |
| err: |
| /* pop all elements and return */ |
| while (!pop_stack(env, NULL, NULL)); |
| return NULL; |
| } |
| |
| #define CALLER_SAVED_REGS 6 |
| static const int caller_saved[CALLER_SAVED_REGS] = { |
| BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 |
| }; |
| |
| static void __mark_reg_not_init(struct bpf_reg_state *reg); |
| |
| /* Mark the unknown part of a register (variable offset or scalar value) as |
| * known to have the value @imm. |
| */ |
| static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm) |
| { |
| reg->id = 0; |
| reg->var_off = tnum_const(imm); |
| reg->smin_value = (s64)imm; |
| reg->smax_value = (s64)imm; |
| reg->umin_value = imm; |
| reg->umax_value = imm; |
| } |
| |
| /* Mark the 'variable offset' part of a register as zero. This should be |
| * used only on registers holding a pointer type. |
| */ |
| static void __mark_reg_known_zero(struct bpf_reg_state *reg) |
| { |
| __mark_reg_known(reg, 0); |
| } |
| |
| static void mark_reg_known_zero(struct bpf_reg_state *regs, u32 regno) |
| { |
| if (WARN_ON(regno >= MAX_BPF_REG)) { |
| verbose("mark_reg_known_zero(regs, %u)\n", regno); |
| /* Something bad happened, let's kill all regs */ |
| for (regno = 0; regno < MAX_BPF_REG; regno++) |
| __mark_reg_not_init(regs + regno); |
| return; |
| } |
| __mark_reg_known_zero(regs + regno); |
| } |
| |
| /* Attempts to improve min/max values based on var_off information */ |
| static void __update_reg_bounds(struct bpf_reg_state *reg) |
| { |
| /* min signed is max(sign bit) | min(other bits) */ |
| reg->smin_value = max_t(s64, reg->smin_value, |
| reg->var_off.value | (reg->var_off.mask & S64_MIN)); |
| /* max signed is min(sign bit) | max(other bits) */ |
| reg->smax_value = min_t(s64, reg->smax_value, |
| reg->var_off.value | (reg->var_off.mask & S64_MAX)); |
| reg->umin_value = max(reg->umin_value, reg->var_off.value); |
| reg->umax_value = min(reg->umax_value, |
| reg->var_off.value | reg->var_off.mask); |
| } |
| |
| /* Uses signed min/max values to inform unsigned, and vice-versa */ |
| static void __reg_deduce_bounds(struct bpf_reg_state *reg) |
| { |
| /* Learn sign from signed bounds. |
| * If we cannot cross the sign boundary, then signed and unsigned bounds |
| * are the same, so combine. This works even in the negative case, e.g. |
| * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff. |
| */ |
| if (reg->smin_value >= 0 || reg->smax_value < 0) { |
| reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, |
| reg->umin_value); |
| reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, |
| reg->umax_value); |
| return; |
| } |
| /* Learn sign from unsigned bounds. Signed bounds cross the sign |
| * boundary, so we must be careful. |
| */ |
| if ((s64)reg->umax_value >= 0) { |
| /* Positive. We can't learn anything from the smin, but smax |
| * is positive, hence safe. |
| */ |
| reg->smin_value = reg->umin_value; |
| reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value, |
| reg->umax_value); |
| } else if ((s64)reg->umin_value < 0) { |
| /* Negative. We can't learn anything from the smax, but smin |
| * is negative, hence safe. |
| */ |
| reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value, |
| reg->umin_value); |
| reg->smax_value = reg->umax_value; |
| } |
| } |
| |
| /* Attempts to improve var_off based on unsigned min/max information */ |
| static void __reg_bound_offset(struct bpf_reg_state *reg) |
| { |
| reg->var_off = tnum_intersect(reg->var_off, |
| tnum_range(reg->umin_value, |
| reg->umax_value)); |
| } |
| |
| /* Reset the min/max bounds of a register */ |
| static void __mark_reg_unbounded(struct bpf_reg_state *reg) |
| { |
| reg->smin_value = S64_MIN; |
| reg->smax_value = S64_MAX; |
| reg->umin_value = 0; |
| reg->umax_value = U64_MAX; |
| } |
| |
| /* Mark a register as having a completely unknown (scalar) value. */ |
| static void __mark_reg_unknown(struct bpf_reg_state *reg) |
| { |
| reg->type = SCALAR_VALUE; |
| reg->id = 0; |
| reg->off = 0; |
| reg->var_off = tnum_unknown; |
| __mark_reg_unbounded(reg); |
| } |
| |
| static void mark_reg_unknown(struct bpf_reg_state *regs, u32 regno) |
| { |
| if (WARN_ON(regno >= MAX_BPF_REG)) { |
| verbose("mark_reg_unknown(regs, %u)\n", regno); |
| /* Something bad happened, let's kill all regs */ |
| for (regno = 0; regno < MAX_BPF_REG; regno++) |
| __mark_reg_not_init(regs + regno); |
| return; |
| } |
| __mark_reg_unknown(regs + regno); |
| } |
| |
| static void __mark_reg_not_init(struct bpf_reg_state *reg) |
| { |
| __mark_reg_unknown(reg); |
| reg->type = NOT_INIT; |
| } |
| |
| static void mark_reg_not_init(struct bpf_reg_state *regs, u32 regno) |
| { |
| if (WARN_ON(regno >= MAX_BPF_REG)) { |
| verbose("mark_reg_not_init(regs, %u)\n", regno); |
| /* Something bad happened, let's kill all regs */ |
| for (regno = 0; regno < MAX_BPF_REG; regno++) |
| __mark_reg_not_init(regs + regno); |
| return; |
| } |
| __mark_reg_not_init(regs + regno); |
| } |
| |
| static void init_reg_state(struct bpf_reg_state *regs) |
| { |
| int i; |
| |
| for (i = 0; i < MAX_BPF_REG; i++) { |
| mark_reg_not_init(regs, i); |
| regs[i].live = REG_LIVE_NONE; |
| } |
| |
| /* frame pointer */ |
| regs[BPF_REG_FP].type = PTR_TO_STACK; |
| mark_reg_known_zero(regs, BPF_REG_FP); |
| |
| /* 1st arg to a function */ |
| regs[BPF_REG_1].type = PTR_TO_CTX; |
| mark_reg_known_zero(regs, BPF_REG_1); |
| } |
| |
| enum reg_arg_type { |
| SRC_OP, /* register is used as source operand */ |
| DST_OP, /* register is used as destination operand */ |
| DST_OP_NO_MARK /* same as above, check only, don't mark */ |
| }; |
| |
| static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno) |
| { |
| struct bpf_verifier_state *parent = state->parent; |
| |
| if (regno == BPF_REG_FP) |
| /* We don't need to worry about FP liveness because it's read-only */ |
| return; |
| |
| while (parent) { |
| /* if read wasn't screened by an earlier write ... */ |
| if (state->regs[regno].live & REG_LIVE_WRITTEN) |
| break; |
| /* ... then we depend on parent's value */ |
| parent->regs[regno].live |= REG_LIVE_READ; |
| state = parent; |
| parent = state->parent; |
| } |
| } |
| |
| static int check_reg_arg(struct bpf_verifier_env *env, u32 regno, |
| enum reg_arg_type t) |
| { |
| struct bpf_reg_state *regs = env->cur_state->regs; |
| |
| if (regno >= MAX_BPF_REG) { |
| verbose("R%d is invalid\n", regno); |
| return -EINVAL; |
| } |
| |
| if (t == SRC_OP) { |
| /* check whether register used as source operand can be read */ |
| if (regs[regno].type == NOT_INIT) { |
| verbose("R%d !read_ok\n", regno); |
| return -EACCES; |
| } |
| mark_reg_read(env->cur_state, regno); |
| } else { |
| /* check whether register used as dest operand can be written to */ |
| if (regno == BPF_REG_FP) { |
| verbose("frame pointer is read only\n"); |
| return -EACCES; |
| } |
| regs[regno].live |= REG_LIVE_WRITTEN; |
| if (t == DST_OP) |
| mark_reg_unknown(regs, regno); |
| } |
| return 0; |
| } |
| |
| static bool is_spillable_regtype(enum bpf_reg_type type) |
| { |
| switch (type) { |
| case PTR_TO_MAP_VALUE: |
| case PTR_TO_MAP_VALUE_OR_NULL: |
| case PTR_TO_STACK: |
| case PTR_TO_CTX: |
| case PTR_TO_PACKET: |
| case PTR_TO_PACKET_END: |
| case CONST_PTR_TO_MAP: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| /* check_stack_read/write functions track spill/fill of registers, |
| * stack boundary and alignment are checked in check_mem_access() |
| */ |
| static int check_stack_write(struct bpf_verifier_env *env, |
| struct bpf_verifier_state *state, int off, |
| int size, int value_regno, int insn_idx) |
| { |
| int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err; |
| |
| err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE), |
| true); |
| if (err) |
| return err; |
| /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0, |
| * so it's aligned access and [off, off + size) are within stack limits |
| */ |
| if (!env->allow_ptr_leaks && |
| state->stack[spi].slot_type[0] == STACK_SPILL && |
| size != BPF_REG_SIZE) { |
| verbose("attempt to corrupt spilled pointer on stack\n"); |
| return -EACCES; |
| } |
| |
| if (value_regno >= 0 && |
| is_spillable_regtype(state->regs[value_regno].type)) { |
| |
| /* register containing pointer is being spilled into stack */ |
| if (size != BPF_REG_SIZE) { |
| verbose("invalid size of register spill\n"); |
| return -EACCES; |
| } |
| |
| /* save register state */ |
| state->stack[spi].spilled_ptr = state->regs[value_regno]; |
| state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN; |
| |
| for (i = 0; i < BPF_REG_SIZE; i++) { |
| if (state->stack[spi].slot_type[i] == STACK_MISC && |
| !env->allow_ptr_leaks) { |
| int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off; |
| int soff = (-spi - 1) * BPF_REG_SIZE; |
| |
| /* detected reuse of integer stack slot with a pointer |
| * which means either llvm is reusing stack slot or |
| * an attacker is trying to exploit CVE-2018-3639 |
| * (speculative store bypass) |
| * Have to sanitize that slot with preemptive |
| * store of zero. |
| */ |
| if (*poff && *poff != soff) { |
| /* disallow programs where single insn stores |
| * into two different stack slots, since verifier |
| * cannot sanitize them |
| */ |
| verbose("insn %d cannot access two stack slots fp%d and fp%d", |
| insn_idx, *poff, soff); |
| return -EINVAL; |
| } |
| *poff = soff; |
| } |
| state->stack[spi].slot_type[i] = STACK_SPILL; |
| } |
| } else { |
| /* regular write of data into stack */ |
| state->stack[spi].spilled_ptr = (struct bpf_reg_state) {}; |
| |
| for (i = 0; i < size; i++) |
| state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] = |
| STACK_MISC; |
| } |
| return 0; |
| } |
| |
| static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot) |
| { |
| struct bpf_verifier_state *parent = state->parent; |
| |
| while (parent) { |
| /* if read wasn't screened by an earlier write ... */ |
| if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN) |
| break; |
| /* ... then we depend on parent's value */ |
| parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ; |
| state = parent; |
| parent = state->parent; |
| } |
| } |
| |
| static int check_stack_read(struct bpf_verifier_state *state, int off, int size, |
| int value_regno) |
| { |
| int i, slot = -off - 1, spi = slot / BPF_REG_SIZE; |
| u8 *stype; |
| |
| if (state->allocated_stack <= slot) { |
| verbose("invalid read from stack off %d+0 size %d\n", |
| off, size); |
| return -EACCES; |
| } |
| stype = state->stack[spi].slot_type; |
| |
| if (stype[0] == STACK_SPILL) { |
| if (size != BPF_REG_SIZE) { |
| verbose("invalid size of register spill\n"); |
| return -EACCES; |
| } |
| for (i = 1; i < BPF_REG_SIZE; i++) { |
| if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) { |
| verbose("corrupted spill memory\n"); |
| return -EACCES; |
| } |
| } |
| |
| if (value_regno >= 0) { |
| /* restore register state from stack */ |
| state->regs[value_regno] = state->stack[spi].spilled_ptr; |
| mark_stack_slot_read(state, spi); |
| } |
| return 0; |
| } else { |
| for (i = 0; i < size; i++) { |
| if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) { |
| verbose("invalid read from stack off %d+%d size %d\n", |
| off, i, size); |
| return -EACCES; |
| } |
| } |
| if (value_regno >= 0) |
| /* have read misc data from the stack */ |
| mark_reg_unknown(state->regs, value_regno); |
| return 0; |
| } |
| } |
| |
| static int check_stack_access(struct bpf_verifier_env *env, |
| const struct bpf_reg_state *reg, |
| int off, int size) |
| { |
| /* Stack accesses must be at a fixed offset, so that we |
| * can determine what type of data were returned. See |
| * check_stack_read(). |
| */ |
| if (!tnum_is_const(reg->var_off)) { |
| char tn_buf[48]; |
| |
| tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); |
| verbose("variable stack access var_off=%s off=%d size=%d", |
| tn_buf, off, size); |
| return -EACCES; |
| } |
| |
| if (off >= 0 || off < -MAX_BPF_STACK) { |
| verbose("invalid stack off=%d size=%d\n", off, size); |
| return -EACCES; |
| } |
| |
| return 0; |
| } |
| |
| /* check read/write into map element returned by bpf_map_lookup_elem() */ |
| static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off, |
| int size) |
| { |
| struct bpf_reg_state *regs = cur_regs(env); |
| struct bpf_map *map = regs[regno].map_ptr; |
| |
| if (off < 0 || size <= 0 || off + size > map->value_size) { |
| verbose("invalid access to map value, value_size=%d off=%d size=%d\n", |
| map->value_size, off, size); |
| return -EACCES; |
| } |
| return 0; |
| } |
| |
| /* check read/write into a map element with possible variable offset */ |
| static int check_map_access(struct bpf_verifier_env *env, u32 regno, |
| int off, int size) |
| { |
| struct bpf_verifier_state *state = env->cur_state; |
| struct bpf_reg_state *reg = &state->regs[regno]; |
| int err; |
| |
| /* We may have adjusted the register to this map value, so we |
| * need to try adding each of min_value and max_value to off |
| * to make sure our theoretical access will be safe. |
| */ |
| if (verifier_log.level) |
| print_verifier_state(state); |
| |
| /* The minimum value is only important with signed |
| * comparisons where we can't assume the floor of a |
| * value is 0. If we are using signed variables for our |
| * index'es we need to make sure that whatever we use |
| * will have a set floor within our range. |
| */ |
| if (reg->smin_value < 0 && |
| (reg->smin_value == S64_MIN || |
| (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) || |
| reg->smin_value + off < 0)) { |
| verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", |
| regno); |
| return -EACCES; |
| } |
| err = __check_map_access(env, regno, reg->smin_value + off, size); |
| if (err) { |
| verbose("R%d min value is outside of the array range\n", regno); |
| return err; |
| } |
| |
| /* If we haven't set a max value then we need to bail since we can't be |
| * sure we won't do bad things. |
| * If reg->umax_value + off could overflow, treat that as unbounded too. |
| */ |
| if (reg->umax_value >= BPF_MAX_VAR_OFF) { |
| verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n", |
| regno); |
| return -EACCES; |
| } |
| err = __check_map_access(env, regno, reg->umax_value + off, size); |
| if (err) |
| verbose("R%d max value is outside of the array range\n", regno); |
| return err; |
| } |
| |
| #define MAX_PACKET_OFF 0xffff |
| |
| static bool may_access_direct_pkt_data(struct bpf_verifier_env *env, |
| const struct bpf_call_arg_meta *meta, |
| enum bpf_access_type t) |
| { |
| switch (env->prog->type) { |
| case BPF_PROG_TYPE_LWT_IN: |
| case BPF_PROG_TYPE_LWT_OUT: |
| /* dst_input() and dst_output() can't write for now */ |
| if (t == BPF_WRITE) |
| return false; |
| /* fallthrough */ |
| case BPF_PROG_TYPE_SCHED_CLS: |
| case BPF_PROG_TYPE_SCHED_ACT: |
| case BPF_PROG_TYPE_XDP: |
| case BPF_PROG_TYPE_LWT_XMIT: |
| case BPF_PROG_TYPE_SK_SKB: |
| if (meta) |
| return meta->pkt_access; |
| |
| env->seen_direct_write = true; |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static int __check_packet_access(struct bpf_verifier_env *env, u32 regno, |
| int off, int size) |
| { |
| struct bpf_reg_state *regs = cur_regs(env); |
| struct bpf_reg_state *reg = ®s[regno]; |
| |
| if (off < 0 || size <= 0 || (u64)off + size > reg->range) { |
| verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n", |
| off, size, regno, reg->id, reg->off, reg->range); |
| return -EACCES; |
| } |
| return 0; |
| } |
| |
| static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off, |
| int size) |
| { |
| struct bpf_reg_state *regs = cur_regs(env); |
| struct bpf_reg_state *reg = ®s[regno]; |
| int err; |
| |
| /* We may have added a variable offset to the packet pointer; but any |
| * reg->range we have comes after that. We are only checking the fixed |
| * offset. |
| */ |
| |
| /* We don't allow negative numbers, because we aren't tracking enough |
| * detail to prove they're safe. |
| */ |
| if (reg->smin_value < 0) { |
| verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n", |
| regno); |
| return -EACCES; |
| } |
| err = __check_packet_access(env, regno, off, size); |
| if (err) { |
| verbose("R%d offset is outside of the packet\n", regno); |
| return err; |
| } |
| return err; |
| } |
| |
| /* check access to 'struct bpf_context' fields. Supports fixed offsets only */ |
| static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size, |
| enum bpf_access_type t, enum bpf_reg_type *reg_type) |
| { |
| struct bpf_insn_access_aux info = { |
| .reg_type = *reg_type, |
| }; |
| |
| /* for analyzer ctx accesses are already validated and converted */ |
| if (env->analyzer_ops) |
| return 0; |
| |
| if (env->prog->aux->ops->is_valid_access && |
| env->prog->aux->ops->is_valid_access(off, size, t, env->prog, &info)) { |
| /* A non zero info.ctx_field_size indicates that this field is a |
| * candidate for later verifier transformation to load the whole |
| * field and then apply a mask when accessed with a narrower |
| * access than actual ctx access size. A zero info.ctx_field_size |
| * will only allow for whole field access and rejects any other |
| * type of narrower access. |
| */ |
| env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size; |
| *reg_type = info.reg_type; |
| |
| /* remember the offset of last byte accessed in ctx */ |
| if (env->prog->aux->max_ctx_offset < off + size) |
| env->prog->aux->max_ctx_offset = off + size; |
| return 0; |
| } |
| |
| verbose("invalid bpf_context access off=%d size=%d\n", off, size); |
| return -EACCES; |
| } |
| |
| static bool __is_pointer_value(bool allow_ptr_leaks, |
| const struct bpf_reg_state *reg) |
| { |
| if (allow_ptr_leaks) |
| return false; |
| |
| return reg->type != SCALAR_VALUE; |
| } |
| |
| static bool is_pointer_value(struct bpf_verifier_env *env, int regno) |
| { |
| return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno); |
| } |
| |
| static bool is_ctx_reg(struct bpf_verifier_env *env, int regno) |
| { |
| const struct bpf_reg_state *reg = cur_regs(env) + regno; |
| |
| return reg->type == PTR_TO_CTX; |
| } |
| |
| static bool is_pkt_reg(struct bpf_verifier_env *env, int regno) |
| { |
| const struct bpf_reg_state *reg = cur_regs(env) + regno; |
| |
| return reg->type == PTR_TO_PACKET; |
| } |
| |
| static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg, |
| int off, int size, bool strict) |
| { |
| struct tnum reg_off; |
| int ip_align; |
| |
| /* Byte size accesses are always allowed. */ |
| if (!strict || size == 1) |
| return 0; |
| |
| /* For platforms that do not have a Kconfig enabling |
| * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of |
| * NET_IP_ALIGN is universally set to '2'. And on platforms |
| * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get |
| * to this code only in strict mode where we want to emulate |
| * the NET_IP_ALIGN==2 checking. Therefore use an |
| * unconditional IP align value of '2'. |
| */ |
| ip_align = 2; |
| |
| reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off)); |
| if (!tnum_is_aligned(reg_off, size)) { |
| char tn_buf[48]; |
| |
| tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); |
| verbose("misaligned packet access off %d+%s+%d+%d size %d\n", |
| ip_align, tn_buf, reg->off, off, size); |
| return -EACCES; |
| } |
| |
| return 0; |
| } |
| |
| static int check_generic_ptr_alignment(const struct bpf_reg_state *reg, |
| const char *pointer_desc, |
| int off, int size, bool strict) |
| { |
| struct tnum reg_off; |
| |
| /* Byte size accesses are always allowed. */ |
| if (!strict || size == 1) |
| return 0; |
| |
| reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off)); |
| if (!tnum_is_aligned(reg_off, size)) { |
| char tn_buf[48]; |
| |
| tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); |
| verbose("misaligned %saccess off %s+%d+%d size %d\n", |
| pointer_desc, tn_buf, reg->off, off, size); |
| return -EACCES; |
| } |
| |
| return 0; |
| } |
| |
| static int check_ptr_alignment(struct bpf_verifier_env *env, |
| const struct bpf_reg_state *reg, int off, |
| int size, bool strict_alignment_once) |
| { |
| bool strict = env->strict_alignment || strict_alignment_once; |
| const char *pointer_desc = ""; |
| |
| switch (reg->type) { |
| case PTR_TO_PACKET: |
| /* special case, because of NET_IP_ALIGN */ |
| return check_pkt_ptr_alignment(reg, off, size, strict); |
| case PTR_TO_MAP_VALUE: |
| pointer_desc = "value "; |
| break; |
| case PTR_TO_CTX: |
| pointer_desc = "context "; |
| break; |
| case PTR_TO_STACK: |
| pointer_desc = "stack "; |
| /* The stack spill tracking logic in check_stack_write() |
| * and check_stack_read() relies on stack accesses being |
| * aligned. |
| */ |
| strict = true; |
| break; |
| default: |
| break; |
| } |
| return check_generic_ptr_alignment(reg, pointer_desc, off, size, strict); |
| } |
| |
| static int check_ctx_reg(struct bpf_verifier_env *env, |
| const struct bpf_reg_state *reg, int regno) |
| { |
| /* Access to ctx or passing it to a helper is only allowed in |
| * its original, unmodified form. |
| */ |
| |
| if (reg->off) { |
| verbose("dereference of modified ctx ptr R%d off=%d disallowed\n", |
| regno, reg->off); |
| return -EACCES; |
| } |
| |
| if (!tnum_is_const(reg->var_off) || reg->var_off.value) { |
| char tn_buf[48]; |
| |
| tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); |
| verbose("variable ctx access var_off=%s disallowed\n", tn_buf); |
| return -EACCES; |
| } |
| |
| return 0; |
| } |
| |
| /* truncate register to smaller size (in bytes) |
| * must be called with size < BPF_REG_SIZE |
| */ |
| static void coerce_reg_to_size(struct bpf_reg_state *reg, int size) |
| { |
| u64 mask; |
| |
| /* clear high bits in bit representation */ |
| reg->var_off = tnum_cast(reg->var_off, size); |
| |
| /* fix arithmetic bounds */ |
| mask = ((u64)1 << (size * 8)) - 1; |
| if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) { |
| reg->umin_value &= mask; |
| reg->umax_value &= mask; |
| } else { |
| reg->umin_value = 0; |
| reg->umax_value = mask; |
| } |
| reg->smin_value = reg->umin_value; |
| reg->smax_value = reg->umax_value; |
| } |
| |
| /* check whether memory at (regno + off) is accessible for t = (read | write) |
| * if t==write, value_regno is a register which value is stored into memory |
| * if t==read, value_regno is a register which will receive the value from memory |
| * if t==write && value_regno==-1, some unknown value is stored into memory |
| * if t==read && value_regno==-1, don't care what we read from memory |
| */ |
| static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, |
| int off, int bpf_size, enum bpf_access_type t, |
| int value_regno, bool strict_alignment_once) |
| { |
| struct bpf_verifier_state *state = env->cur_state; |
| struct bpf_reg_state *regs = cur_regs(env); |
| struct bpf_reg_state *reg = regs + regno; |
| int size, err = 0; |
| |
| size = bpf_size_to_bytes(bpf_size); |
| if (size < 0) |
| return size; |
| |
| /* alignment checks will add in reg->off themselves */ |
| err = check_ptr_alignment(env, reg, off, size, strict_alignment_once); |
| if (err) |
| return err; |
| |
| /* for access checks, reg->off is just part of off */ |
| off += reg->off; |
| |
| if (reg->type == PTR_TO_MAP_VALUE) { |
| if (t == BPF_WRITE && value_regno >= 0 && |
| is_pointer_value(env, value_regno)) { |
| verbose("R%d leaks addr into map\n", value_regno); |
| return -EACCES; |
| } |
| |
| err = check_map_access(env, regno, off, size); |
| if (!err && t == BPF_READ && value_regno >= 0) |
| mark_reg_unknown(regs, value_regno); |
| |
| } else if (reg->type == PTR_TO_CTX) { |
| enum bpf_reg_type reg_type = SCALAR_VALUE; |
| |
| if (t == BPF_WRITE && value_regno >= 0 && |
| is_pointer_value(env, value_regno)) { |
| verbose("R%d leaks addr into ctx\n", value_regno); |
| return -EACCES; |
| } |
| err = check_ctx_reg(env, reg, regno); |
| if (err < 0) |
| return err; |
| |
| err = check_ctx_access(env, insn_idx, off, size, t, ®_type); |
| if (!err && t == BPF_READ && value_regno >= 0) { |
| /* ctx access returns either a scalar, or a |
| * PTR_TO_PACKET[_END]. In the latter case, we know |
| * the offset is zero. |
| */ |
| if (reg_type == SCALAR_VALUE) |
| mark_reg_unknown(regs, value_regno); |
| else |
| mark_reg_known_zero(regs, value_regno); |
| regs[value_regno].id = 0; |
| regs[value_regno].off = 0; |
| regs[value_regno].range = 0; |
| regs[value_regno].type = reg_type; |
| } |
| |
| } else if (reg->type == PTR_TO_STACK) { |
| off += reg->var_off.value; |
| err = check_stack_access(env, reg, off, size); |
| if (err) |
| return err; |
| |
| if (env->prog->aux->stack_depth < -off) |
| env->prog->aux->stack_depth = -off; |
| |
| if (t == BPF_WRITE) |
| err = check_stack_write(env, state, off, size, |
| value_regno, insn_idx); |
| else |
| err = check_stack_read(state, off, size, value_regno); |
| } else if (reg->type == PTR_TO_PACKET) { |
| if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) { |
| verbose("cannot write into packet\n"); |
| return -EACCES; |
| } |
| if (t == BPF_WRITE && value_regno >= 0 && |
| is_pointer_value(env, value_regno)) { |
| verbose("R%d leaks addr into packet\n", value_regno); |
| return -EACCES; |
| } |
| err = check_packet_access(env, regno, off, size); |
| if (!err && t == BPF_READ && value_regno >= 0) |
| mark_reg_unknown(regs, value_regno); |
| } else { |
| verbose("R%d invalid mem access '%s'\n", |
| regno, reg_type_str[reg->type]); |
| return -EACCES; |
| } |
| |
| if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ && |
| regs[value_regno].type == SCALAR_VALUE) { |
| /* b/h/w load zero-extends, mark upper bits as known 0 */ |
| coerce_reg_to_size(®s[value_regno], size); |
| } |
| return err; |
| } |
| |
| static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn) |
| { |
| int err; |
| |
| if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || |
| insn->imm != 0) { |
| verbose("BPF_XADD uses reserved fields\n"); |
| return -EINVAL; |
| } |
| |
| /* check src1 operand */ |
| err = check_reg_arg(env, insn->src_reg, SRC_OP); |
| if (err) |
| return err; |
| |
| /* check src2 operand */ |
| err = check_reg_arg(env, insn->dst_reg, SRC_OP); |
| if (err) |
| return err; |
| |
| if (is_pointer_value(env, insn->src_reg)) { |
| verbose("R%d leaks addr into mem\n", insn->src_reg); |
| return -EACCES; |
| } |
| |
| if (is_ctx_reg(env, insn->dst_reg) || |
| is_pkt_reg(env, insn->dst_reg)) { |
| verbose("BPF_XADD stores into R%d %s is not allowed\n", |
| insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ? |
| "context" : "packet"); |
| return -EACCES; |
| } |
| |
| /* check whether atomic_add can read the memory */ |
| err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off, |
| BPF_SIZE(insn->code), BPF_READ, -1, true); |
| if (err) |
| return err; |
| |
| /* check whether atomic_add can write into the same memory */ |
| return check_mem_access(env, insn_idx, insn->dst_reg, insn->off, |
| BPF_SIZE(insn->code), BPF_WRITE, -1, true); |
| } |
| |
| /* Does this register contain a constant zero? */ |
| static bool register_is_null(struct bpf_reg_state reg) |
| { |
| return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0); |
| } |
| |
| /* when register 'regno' is passed into function that will read 'access_size' |
| * bytes from that pointer, make sure that it's within stack boundary |
| * and all elements of stack are initialized. |
| * Unlike most pointer bounds-checking functions, this one doesn't take an |
| * 'off' argument, so it has to add in reg->off itself. |
| */ |
| static int check_stack_boundary(struct bpf_verifier_env *env, int regno, |
| int access_size, bool zero_size_allowed, |
| struct bpf_call_arg_meta *meta) |
| { |
| struct bpf_verifier_state *state = env->cur_state; |
| struct bpf_reg_state *regs = state->regs; |
| int off, i, slot, spi; |
| |
| if (regs[regno].type != PTR_TO_STACK) { |
| /* Allow zero-byte read from NULL, regardless of pointer type */ |
| if (zero_size_allowed && access_size == 0 && |
| register_is_null(regs[regno])) |
| return 0; |
| |
| verbose("R%d type=%s expected=%s\n", regno, |
| reg_type_str[regs[regno].type], |
| reg_type_str[PTR_TO_STACK]); |
| return -EACCES; |
| } |
| |
| /* Only allow fixed-offset stack reads */ |
| if (!tnum_is_const(regs[regno].var_off)) { |
| char tn_buf[48]; |
| |
| tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off); |
| verbose("invalid variable stack read R%d var_off=%s\n", |
| regno, tn_buf); |
| return -EACCES; |
| } |
| off = regs[regno].off + regs[regno].var_off.value; |
| if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || |
| access_size <= 0) { |
| verbose("invalid stack type R%d off=%d access_size=%d\n", |
| regno, off, access_size); |
| return -EACCES; |
| } |
| |
| if (env->prog->aux->stack_depth < -off) |
| env->prog->aux->stack_depth = -off; |
| |
| if (meta && meta->raw_mode) { |
| meta->access_size = access_size; |
| meta->regno = regno; |
| return 0; |
| } |
| |
| for (i = 0; i < access_size; i++) { |
| slot = -(off + i) - 1; |
| spi = slot / BPF_REG_SIZE; |
| if (state->allocated_stack <= slot || |
| state->stack[spi].slot_type[slot % BPF_REG_SIZE] != |
| STACK_MISC) { |
| verbose("invalid indirect read from stack off %d+%d size %d\n", |
| off, i, access_size); |
| return -EACCES; |
| } |
| } |
| return 0; |
| } |
| |
| static int check_helper_mem_access(struct bpf_verifier_env *env, int regno, |
| int access_size, bool zero_size_allowed, |
| struct bpf_call_arg_meta *meta) |
| { |
| struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; |
| |
| switch (reg->type) { |
| case PTR_TO_PACKET: |
| return check_packet_access(env, regno, reg->off, access_size); |
| case PTR_TO_MAP_VALUE: |
| return check_map_access(env, regno, reg->off, access_size); |
| default: /* scalar_value|ptr_to_stack or invalid ptr */ |
| return check_stack_boundary(env, regno, access_size, |
| zero_size_allowed, meta); |
| } |
| } |
| |
| static int check_func_arg(struct bpf_verifier_env *env, u32 regno, |
| enum bpf_arg_type arg_type, |
| struct bpf_call_arg_meta *meta) |
| { |
| struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno]; |
| enum bpf_reg_type expected_type, type = reg->type; |
| int err = 0; |
| |
| if (arg_type == ARG_DONTCARE) |
| return 0; |
| |
| err = check_reg_arg(env, regno, SRC_OP); |
| if (err) |
| return err; |
| |
| if (arg_type == ARG_ANYTHING) { |
| if (is_pointer_value(env, regno)) { |
| verbose("R%d leaks addr into helper function\n", regno); |
| return -EACCES; |
| } |
| return 0; |
| } |
| |
| if (type == PTR_TO_PACKET && |
| !may_access_direct_pkt_data(env, meta, BPF_READ)) { |
| verbose("helper access to the packet is not allowed\n"); |
| return -EACCES; |
| } |
| |
| if (arg_type == ARG_PTR_TO_MAP_KEY || |
| arg_type == ARG_PTR_TO_MAP_VALUE) { |
| expected_type = PTR_TO_STACK; |
| if (type != PTR_TO_PACKET && type != expected_type) |
| goto err_type; |
| } else if (arg_type == ARG_CONST_SIZE || |
| arg_type == ARG_CONST_SIZE_OR_ZERO) { |
| expected_type = SCALAR_VALUE; |
| if (type != expected_type) |
| goto err_type; |
| } else if (arg_type == ARG_CONST_MAP_PTR) { |
| expected_type = CONST_PTR_TO_MAP; |
| if (type != expected_type) |
| goto err_type; |
| } else if (arg_type == ARG_PTR_TO_CTX) { |
| expected_type = PTR_TO_CTX; |
| if (type != expected_type) |
| goto err_type; |
| err = check_ctx_reg(env, reg, regno); |
| if (err < 0) |
| return err; |
| } else if (arg_type == ARG_PTR_TO_MEM || |
| arg_type == ARG_PTR_TO_UNINIT_MEM) { |
| expected_type = PTR_TO_STACK; |
| /* One exception here. In case function allows for NULL to be |
| * passed in as argument, it's a SCALAR_VALUE type. Final test |
| * happens during stack boundary checking. |
| */ |
| if (register_is_null(*reg)) |
| /* final test in check_stack_boundary() */; |
| else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE && |
| type != expected_type) |
| goto err_type; |
| meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM; |
| } else { |
| verbose("unsupported arg_type %d\n", arg_type); |
| return -EFAULT; |
| } |
| |
| if (arg_type == ARG_CONST_MAP_PTR) { |
| /* bpf_map_xxx(map_ptr) call: remember that map_ptr */ |
| meta->map_ptr = reg->map_ptr; |
| } else if (arg_type == ARG_PTR_TO_MAP_KEY) { |
| /* bpf_map_xxx(..., map_ptr, ..., key) call: |
| * check that [key, key + map->key_size) are within |
| * stack limits and initialized |
| */ |
| if (!meta->map_ptr) { |
| /* in function declaration map_ptr must come before |
| * map_key, so that it's verified and known before |
| * we have to check map_key here. Otherwise it means |
| * that kernel subsystem misconfigured verifier |
| */ |
| verbose("invalid map_ptr to access map->key\n"); |
| return -EACCES; |
| } |
| if (type == PTR_TO_PACKET) |
| err = check_packet_access(env, regno, reg->off, |
| meta->map_ptr->key_size); |
| else |
| err = check_stack_boundary(env, regno, |
| meta->map_ptr->key_size, |
| false, NULL); |
| } else if (arg_type == ARG_PTR_TO_MAP_VALUE) { |
| /* bpf_map_xxx(..., map_ptr, ..., value) call: |
| * check [value, value + map->value_size) validity |
| */ |
| if (!meta->map_ptr) { |
| /* kernel subsystem misconfigured verifier */ |
| verbose("invalid map_ptr to access map->value\n"); |
| return -EACCES; |
| } |
| if (type == PTR_TO_PACKET) |
| err = check_packet_access(env, regno, reg->off, |
| meta->map_ptr->value_size); |
| else |
| err = check_stack_boundary(env, regno, |
| meta->map_ptr->value_size, |
| false, NULL); |
| } else if (arg_type == ARG_CONST_SIZE || |
| arg_type == ARG_CONST_SIZE_OR_ZERO) { |
| bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO); |
| |
| /* bpf_xxx(..., buf, len) call will access 'len' bytes |
| * from stack pointer 'buf'. Check it |
| * note: regno == len, regno - 1 == buf |
| */ |
| if (regno == 0) { |
| /* kernel subsystem misconfigured verifier */ |
| verbose("ARG_CONST_SIZE cannot be first argument\n"); |
| return -EACCES; |
| } |
| |
| /* The register is SCALAR_VALUE; the access check |
| * happens using its boundaries. |
| */ |
| |
| if (!tnum_is_const(reg->var_off)) |
| /* For unprivileged variable accesses, disable raw |
| * mode so that the program is required to |
| * initialize all the memory that the helper could |
| * just partially fill up. |
| */ |
| meta = NULL; |
| |
| if (reg->smin_value < 0) { |
| verbose("R%d min value is negative, either use unsigned or 'var &= const'\n", |
| regno); |
| return -EACCES; |
| } |
| |
| if (reg->umin_value == 0) { |
| err = check_helper_mem_access(env, regno - 1, 0, |
| zero_size_allowed, |
| meta); |
| if (err) |
| return err; |
| } |
| |
| if (reg->umax_value >= BPF_MAX_VAR_SIZ) { |
| verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n", |
| regno); |
| return -EACCES; |
| } |
| err = check_helper_mem_access(env, regno - 1, |
| reg->umax_value, |
| zero_size_allowed, meta); |
| } |
| |
| return err; |
| err_type: |
| verbose("R%d type=%s expected=%s\n", regno, |
| reg_type_str[type], reg_type_str[expected_type]); |
| return -EACCES; |
| } |
| |
| static int check_map_func_compatibility(struct bpf_map *map, int func_id) |
| { |
| if (!map) |
| return 0; |
| |
| /* We need a two way check, first is from map perspective ... */ |
| switch (map->map_type) { |
| case BPF_MAP_TYPE_PROG_ARRAY: |
| if (func_id != BPF_FUNC_tail_call) |
| goto error; |
| break; |
| case BPF_MAP_TYPE_PERF_EVENT_ARRAY: |
| if (func_id != BPF_FUNC_perf_event_read && |
| func_id != BPF_FUNC_perf_event_output) |
| goto error; |
| break; |
| case BPF_MAP_TYPE_STACK_TRACE: |
| if (func_id != BPF_FUNC_get_stackid) |
| goto error; |
| break; |
| case BPF_MAP_TYPE_CGROUP_ARRAY: |
| if (func_id != BPF_FUNC_skb_under_cgroup && |
| func_id != BPF_FUNC_current_task_under_cgroup) |
| goto error; |
| break; |
| case BPF_MAP_TYPE_DEVMAP: |
| case BPF_MAP_TYPE_DEVMAP_HASH: |
| if (func_id != BPF_FUNC_redirect_map && |
| func_id != BPF_FUNC_map_lookup_elem) |
| goto error; |
| break; |
| case BPF_MAP_TYPE_ARRAY_OF_MAPS: |
| case BPF_MAP_TYPE_HASH_OF_MAPS: |
| if (func_id != BPF_FUNC_map_lookup_elem) |
| goto error; |
| break; |
| case BPF_MAP_TYPE_SOCKMAP: |
| if (func_id != BPF_FUNC_sk_redirect_map && |
| func_id != BPF_FUNC_sock_map_update && |
| func_id != BPF_FUNC_map_delete_elem) |
| goto error; |
| break; |
| default: |
| break; |
| } |
| |
| /* ... and second from the function itself. */ |
| switch (func_id) { |
| case BPF_FUNC_tail_call: |
| if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY) |
| goto error; |
| break; |
| case BPF_FUNC_perf_event_read: |
| case BPF_FUNC_perf_event_output: |
| if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) |
| goto error; |
| break; |
| case BPF_FUNC_get_stackid: |
| if (map->map_type != BPF_MAP_TYPE_STACK_TRACE) |
| goto error; |
| break; |
| case BPF_FUNC_current_task_under_cgroup: |
| case BPF_FUNC_skb_under_cgroup: |
| if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY) |
| goto error; |
| break; |
| case BPF_FUNC_redirect_map: |
| if (map->map_type != BPF_MAP_TYPE_DEVMAP && |
| map->map_type != BPF_MAP_TYPE_DEVMAP_HASH) |
| goto error; |
| break; |
| case BPF_FUNC_sk_redirect_map: |
| if (map->map_type != BPF_MAP_TYPE_SOCKMAP) |
| goto error; |
| break; |
| case BPF_FUNC_sock_map_update: |
| if (map->map_type != BPF_MAP_TYPE_SOCKMAP) |
| goto error; |
| break; |
| default: |
| break; |
| } |
| |
| return 0; |
| error: |
| verbose("cannot pass map_type %d into func %s#%d\n", |
| map->map_type, func_id_name(func_id), func_id); |
| return -EINVAL; |
| } |
| |
| static int check_raw_mode(const struct bpf_func_proto *fn) |
| { |
| int count = 0; |
| |
| if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM) |
| count++; |
| if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM) |
| count++; |
| if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM) |
| count++; |
| if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM) |
| count++; |
| if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM) |
| count++; |
| |
| return count > 1 ? -EINVAL : 0; |
| } |
| |
| /* Packet data might have moved, any old PTR_TO_PACKET[_END] are now invalid, |
| * so turn them into unknown SCALAR_VALUE. |
| */ |
| static void clear_all_pkt_pointers(struct bpf_verifier_env *env) |
| { |
| struct bpf_verifier_state *state = env->cur_state; |
| struct bpf_reg_state *regs = state->regs, *reg; |
| int i; |
| |
| for (i = 0; i < MAX_BPF_REG; i++) |
| if (regs[i].type == PTR_TO_PACKET || |
| regs[i].type == PTR_TO_PACKET_END) |
| mark_reg_unknown(regs, i); |
| |
| for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { |
| if (state->stack[i].slot_type[0] != STACK_SPILL) |
| continue; |
| reg = &state->stack[i].spilled_ptr; |
| if (reg->type != PTR_TO_PACKET && |
| reg->type != PTR_TO_PACKET_END) |
| continue; |
| __mark_reg_unknown(reg); |
| } |
| } |
| |
| static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx) |
| { |
| const struct bpf_func_proto *fn = NULL; |
| struct bpf_reg_state *regs; |
| struct bpf_call_arg_meta meta; |
| bool changes_data; |
| int i, err; |
| |
| /* find function prototype */ |
| if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { |
| verbose("invalid func %s#%d\n", func_id_name(func_id), func_id); |
| return -EINVAL; |
| } |
| |
| if (env->prog->aux->ops->get_func_proto) |
| fn = env->prog->aux->ops->get_func_proto(func_id, env->prog); |
| |
| if (!fn) { |
| verbose("unknown func %s#%d\n", func_id_name(func_id), func_id); |
| return -EINVAL; |
| } |
| |
| /* eBPF programs must be GPL compatible to use GPL-ed functions */ |
| if (!env->prog->gpl_compatible && fn->gpl_only) { |
| verbose("cannot call GPL only function from proprietary program\n"); |
| return -EINVAL; |
| } |
| |
| changes_data = bpf_helper_changes_pkt_data(fn->func); |
| |
| memset(&meta, 0, sizeof(meta)); |
| meta.pkt_access = fn->pkt_access; |
| |
| /* We only support one arg being in raw mode at the moment, which |
| * is sufficient for the helper functions we have right now. |
| */ |
| err = check_raw_mode(fn); |
| if (err) { |
| verbose("kernel subsystem misconfigured func %s#%d\n", |
| func_id_name(func_id), func_id); |
| return err; |
| } |
| |
| /* check args */ |
| err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta); |
| if (err) |
| return err; |
| err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta); |
| if (err) |
| return err; |
| if (func_id == BPF_FUNC_tail_call) { |
| if (meta.map_ptr == NULL) { |
| verbose("verifier bug\n"); |
| return -EINVAL; |
| } |
| env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr; |
| } |
| err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta); |
| if (err) |
| return err; |
| err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta); |
| if (err) |
| return err; |
| err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta); |
| if (err) |
| return err; |
| |
| /* Mark slots with STACK_MISC in case of raw mode, stack offset |
| * is inferred from register state. |
| */ |
| for (i = 0; i < meta.access_size; i++) { |
| err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, |
| BPF_WRITE, -1, false); |
| if (err) |
| return err; |
| } |
| |
| regs = cur_regs(env); |
| /* reset caller saved regs */ |
| for (i = 0; i < CALLER_SAVED_REGS; i++) { |
| mark_reg_not_init(regs, caller_saved[i]); |
| check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); |
| } |
| |
| /* update return register (already marked as written above) */ |
| if (fn->ret_type == RET_INTEGER) { |
| /* sets type to SCALAR_VALUE */ |
| mark_reg_unknown(regs, BPF_REG_0); |
| } else if (fn->ret_type == RET_VOID) { |
| regs[BPF_REG_0].type = NOT_INIT; |
| } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) { |
| struct bpf_insn_aux_data *insn_aux; |
| |
| regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; |
| /* There is no offset yet applied, variable or fixed */ |
| mark_reg_known_zero(regs, BPF_REG_0); |
| regs[BPF_REG_0].off = 0; |
| /* remember map_ptr, so that check_map_access() |
| * can check 'value_size' boundary of memory access |
| * to map element returned from bpf_map_lookup_elem() |
| */ |
| if (meta.map_ptr == NULL) { |
| verbose("kernel subsystem misconfigured verifier\n"); |
| return -EINVAL; |
| } |
| regs[BPF_REG_0].map_ptr = meta.map_ptr; |
| regs[BPF_REG_0].id = ++env->id_gen; |
| insn_aux = &env->insn_aux_data[insn_idx]; |
| if (!insn_aux->map_ptr) |
| insn_aux->map_ptr = meta.map_ptr; |
| else if (insn_aux->map_ptr != meta.map_ptr) |
| insn_aux->map_ptr = BPF_MAP_PTR_POISON; |
| } else { |
| verbose("unknown return type %d of func %s#%d\n", |
| fn->ret_type, func_id_name(func_id), func_id); |
| return -EINVAL; |
| } |
| |
| err = check_map_func_compatibility(meta.map_ptr, func_id); |
| if (err) |
| return err; |
| |
| if (changes_data) |
| clear_all_pkt_pointers(env); |
| return 0; |
| } |
| |
| static bool signed_add_overflows(s64 a, s64 b) |
| { |
| /* Do the add in u64, where overflow is well-defined */ |
| s64 res = (s64)((u64)a + (u64)b); |
| |
| if (b < 0) |
| return res > a; |
| return res < a; |
| } |
| |
| static bool signed_sub_overflows(s64 a, s64 b) |
| { |
| /* Do the sub in u64, where overflow is well-defined */ |
| s64 res = (s64)((u64)a - (u64)b); |
| |
| if (b < 0) |
| return res < a; |
| return res > a; |
| } |
| |
| static bool check_reg_sane_offset(struct bpf_verifier_env *env, |
| const struct bpf_reg_state *reg, |
| enum bpf_reg_type type) |
| { |
| bool known = tnum_is_const(reg->var_off); |
| s64 val = reg->var_off.value; |
| s64 smin = reg->smin_value; |
| |
| if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) { |
| verbose("math between %s pointer and %lld is not allowed\n", |
| reg_type_str[type], val); |
| return false; |
| } |
| |
| if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) { |
| verbose("%s pointer offset %d is not allowed\n", |
| reg_type_str[type], reg->off); |
| return false; |
| } |
| |
| if (smin == S64_MIN) { |
| verbose("math between %s pointer and register with unbounded min value is not allowed\n", |
| reg_type_str[type]); |
| return false; |
| } |
| |
| if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) { |
| verbose("value %lld makes %s pointer be out of bounds\n", |
| smin, reg_type_str[type]); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env) |
| { |
| return &env->insn_aux_data[env->insn_idx]; |
| } |
| |
| enum { |
| REASON_BOUNDS = -1, |
| REASON_TYPE = -2, |
| REASON_PATHS = -3, |
| REASON_LIMIT = -4, |
| REASON_STACK = -5, |
| }; |
| |
| static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg, |
| u32 *alu_limit, bool mask_to_left) |
| { |
| u32 max = 0, ptr_limit = 0; |
| |
| switch (ptr_reg->type) { |
| case PTR_TO_STACK: |
| /* Offset 0 is out-of-bounds, but acceptable start for the |
| * left direction, see BPF_REG_FP. Also, unknown scalar |
| * offset where we would need to deal with min/max bounds is |
| * currently prohibited for unprivileged. |
| */ |
| max = MAX_BPF_STACK + mask_to_left; |
| ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off); |
| break; |
| case PTR_TO_MAP_VALUE: |
| max = ptr_reg->map_ptr->value_size; |
| ptr_limit = (mask_to_left ? |
| ptr_reg->smin_value : |
| ptr_reg->umax_value) + ptr_reg->off; |
| break; |
| default: |
| return REASON_TYPE; |
| } |
| |
| if (ptr_limit >= max) |
| return REASON_LIMIT; |
| *alu_limit = ptr_limit; |
| return 0; |
| } |
| |
| static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env, |
| const struct bpf_insn *insn) |
| { |
| return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K; |
| } |
| |
| static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux, |
| u32 alu_state, u32 alu_limit) |
| { |
| /* If we arrived here from different branches with different |
| * state or limits to sanitize, then this won't work. |
| */ |
| if (aux->alu_state && |
| (aux->alu_state != alu_state || |
| aux->alu_limit != alu_limit)) |
| return REASON_PATHS; |
| |
| /* Corresponding fixup done in fixup_bpf_calls(). */ |
| aux->alu_state = alu_state; |
| aux->alu_limit = alu_limit; |
| return 0; |
| } |
| |
| static int sanitize_val_alu(struct bpf_verifier_env *env, |
| struct bpf_insn *insn) |
| { |
| struct bpf_insn_aux_data *aux = cur_aux(env); |
| |
| if (can_skip_alu_sanitation(env, insn)) |
| return 0; |
| |
| return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0); |
| } |
| |
| static bool sanitize_needed(u8 opcode) |
| { |
| return opcode == BPF_ADD || opcode == BPF_SUB; |
| } |
| |
| struct bpf_sanitize_info { |
| struct bpf_insn_aux_data aux; |
| bool mask_to_left; |
| }; |
| |
| static int sanitize_ptr_alu(struct bpf_verifier_env *env, |
| struct bpf_insn *insn, |
| const struct bpf_reg_state *ptr_reg, |
| const struct bpf_reg_state *off_reg, |
| struct bpf_reg_state *dst_reg, |
| struct bpf_sanitize_info *info, |
| const bool commit_window) |
| { |
| struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux; |
| struct bpf_verifier_state *vstate = env->cur_state; |
| bool off_is_imm = tnum_is_const(off_reg->var_off); |
| bool off_is_neg = off_reg->smin_value < 0; |
| bool ptr_is_dst_reg = ptr_reg == dst_reg; |
| u8 opcode = BPF_OP(insn->code); |
| u32 alu_state, alu_limit; |
| struct bpf_reg_state tmp; |
| bool ret; |
| int err; |
| |
| if (can_skip_alu_sanitation(env, insn)) |
| return 0; |
| |
| /* We already marked aux for masking from non-speculative |
| * paths, thus we got here in the first place. We only care |
| * to explore bad access from here. |
| */ |
| if (vstate->speculative) |
| goto do_sim; |
| |
| if (!commit_window) { |
| if (!tnum_is_const(off_reg->var_off) && |
| (off_reg->smin_value < 0) != (off_reg->smax_value < 0)) |
| return REASON_BOUNDS; |
| |
| info->mask_to_left = (opcode == BPF_ADD && off_is_neg) || |
| (opcode == BPF_SUB && !off_is_neg); |
| } |
| |
| err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left); |
| if (err < 0) |
| return err; |
| |
| if (commit_window) { |
| /* In commit phase we narrow the masking window based on |
| * the observed pointer move after the simulated operation. |
| */ |
| alu_state = info->aux.alu_state; |
| alu_limit = abs(info->aux.alu_limit - alu_limit); |
| } else { |
| alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0; |
| alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0; |
| alu_state |= ptr_is_dst_reg ? |
| BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST; |
| } |
| |
| err = update_alu_sanitation_state(aux, alu_state, alu_limit); |
| if (err < 0) |
| return err; |
| do_sim: |
| /* If we're in commit phase, we're done here given we already |
| * pushed the truncated dst_reg into the speculative verification |
| * stack. |
| * |
| * Also, when register is a known constant, we rewrite register-based |
| * operation to immediate-based, and thus do not need masking (and as |
| * a consequence, do not need to simulate the zero-truncation either). |
| */ |
| if (commit_window || off_is_imm) |
| return 0; |
| |
| /* Simulate and find potential out-of-bounds access under |
| * speculative execution from truncation as a result of |
| * masking when off was not within expected range. If off |
| * sits in dst, then we temporarily need to move ptr there |
| * to simulate dst (== 0) +/-= ptr. Needed, for example, |
| * for cases where we use K-based arithmetic in one direction |
| * and truncated reg-based in the other in order to explore |
| * bad access. |
| */ |
| if (!ptr_is_dst_reg) { |
| tmp = *dst_reg; |
| *dst_reg = *ptr_reg; |
| } |
| ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true); |
| if (!ptr_is_dst_reg && ret) |
| *dst_reg = tmp; |
| return !ret ? REASON_STACK : 0; |
| } |
| |
| static int sanitize_err(struct bpf_verifier_env *env, |
| const struct bpf_insn *insn, int reason, |
| const struct bpf_reg_state *off_reg, |
| const struct bpf_reg_state *dst_reg) |
| { |
| static const char *err = "pointer arithmetic with it prohibited for !root"; |
| const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub"; |
| u32 dst = insn->dst_reg, src = insn->src_reg; |
| |
| switch (reason) { |
| case REASON_BOUNDS: |
| verbose("R%d has unknown scalar with mixed signed bounds, %s\n", |
| off_reg == dst_reg ? dst : src, err); |
| break; |
| case REASON_TYPE: |
| verbose("R%d has pointer with unsupported alu operation, %s\n", |
| off_reg == dst_reg ? src : dst, err); |
| break; |
| case REASON_PATHS: |
| verbose("R%d tried to %s from different maps, paths or scalars, %s\n", |
| dst, op, err); |
| break; |
| case REASON_LIMIT: |
| verbose("R%d tried to %s beyond pointer bounds, %s\n", |
| dst, op, err); |
| break; |
| case REASON_STACK: |
| verbose("R%d could not be pushed for speculative verification, %s\n", |
| dst, err); |
| break; |
| default: |
| verbose("verifier internal error: unknown reason (%d)\n", |
| reason); |
| break; |
| } |
| |
| return -EACCES; |
| } |
| |
| static int sanitize_check_bounds(struct bpf_verifier_env *env, |
| const struct bpf_insn *insn, |
| const struct bpf_reg_state *dst_reg) |
| { |
| u32 dst = insn->dst_reg; |
| |
| /* For unprivileged we require that resulting offset must be in bounds |
| * in order to be able to sanitize access later on. |
| */ |
| if (env->allow_ptr_leaks) |
| return 0; |
| |
| switch (dst_reg->type) { |
| case PTR_TO_STACK: |
| if (check_stack_access(env, dst_reg, dst_reg->off + |
| dst_reg->var_off.value, 1)) { |
| verbose("R%d stack pointer arithmetic goes out of range, " |
| "prohibited for !root\n", dst); |
| return -EACCES; |
| } |
| break; |
| case PTR_TO_MAP_VALUE: |
| if (check_map_access(env, dst, dst_reg->off, 1)) { |
| verbose("R%d pointer arithmetic of map value goes out of range, " |
| "prohibited for !root\n", dst); |
| return -EACCES; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off. |
| * Caller should also handle BPF_MOV case separately. |
| * If we return -EACCES, caller may want to try again treating pointer as a |
| * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks. |
| */ |
| static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env, |
| struct bpf_insn *insn, |
| const struct bpf_reg_state *ptr_reg, |
| const struct bpf_reg_state *off_reg) |
| { |
| struct bpf_reg_state *regs = cur_regs(env), *dst_reg; |
| bool known = tnum_is_const(off_reg->var_off); |
| s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value, |
| smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value; |
| u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value, |
| umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value; |
| struct bpf_sanitize_info info = {}; |
| u8 opcode = BPF_OP(insn->code); |
| u32 dst = insn->dst_reg; |
| int ret; |
| |
| dst_reg = ®s[dst]; |
| |
| if ((known && (smin_val != smax_val || umin_val != umax_val)) || |
| smin_val > smax_val || umin_val > umax_val) { |
| /* Taint dst register if offset had invalid bounds derived from |
| * e.g. dead branches. |
| */ |
| __mark_reg_unknown(dst_reg); |
| return 0; |
| } |
| |
| if (BPF_CLASS(insn->code) != BPF_ALU64) { |
| /* 32-bit ALU ops on pointers produce (meaningless) scalars */ |
| verbose("R%d 32-bit pointer arithmetic prohibited\n", |
| dst); |
| return -EACCES; |
| } |
| |
| if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { |
| verbose("R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n", |
| dst); |
| return -EACCES; |
| } |
| if (ptr_reg->type == CONST_PTR_TO_MAP) { |
| verbose("R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n", |
| dst); |
| return -EACCES; |
| } |
| if (ptr_reg->type == PTR_TO_PACKET_END) { |
| verbose("R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n", |
| dst); |
| return -EACCES; |
| } |
| |
| /* In case of 'scalar += pointer', dst_reg inherits pointer type and id. |
| * The id may be overwritten later if we create a new variable offset. |
| */ |
| dst_reg->type = ptr_reg->type; |
| dst_reg->id = ptr_reg->id; |
| |
| if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) || |
| !check_reg_sane_offset(env, ptr_reg, ptr_reg->type)) |
| return -EINVAL; |
| |
| if (sanitize_needed(opcode)) { |
| ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg, |
| &info, false); |
| if (ret < 0) |
| return sanitize_err(env, insn, ret, off_reg, dst_reg); |
| } |
| |
| switch (opcode) { |
| case BPF_ADD: |
| /* We can take a fixed offset as long as it doesn't overflow |
| * the s32 'off' field |
| */ |
| if (known && (ptr_reg->off + smin_val == |
| (s64)(s32)(ptr_reg->off + smin_val))) { |
| /* pointer += K. Accumulate it into fixed offset */ |
| dst_reg->smin_value = smin_ptr; |
| dst_reg->smax_value = smax_ptr; |
| dst_reg->umin_value = umin_ptr; |
| dst_reg->umax_value = umax_ptr; |
| dst_reg->var_off = ptr_reg->var_off; |
| dst_reg->off = ptr_reg->off + smin_val; |
| dst_reg->raw = ptr_reg->raw; |
| break; |
| } |
| /* A new variable offset is created. Note that off_reg->off |
| * == 0, since it's a scalar. |
| * dst_reg gets the pointer type and since some positive |
| * integer value was added to the pointer, give it a new 'id' |
| * if it's a PTR_TO_PACKET. |
| * this creates a new 'base' pointer, off_reg (variable) gets |
| * added into the variable offset, and we copy the fixed offset |
| * from ptr_reg. |
| */ |
| if (signed_add_overflows(smin_ptr, smin_val) || |
| signed_add_overflows(smax_ptr, smax_val)) { |
| dst_reg->smin_value = S64_MIN; |
| dst_reg->smax_value = S64_MAX; |
| } else { |
| dst_reg->smin_value = smin_ptr + smin_val; |
| dst_reg->smax_value = smax_ptr + smax_val; |
| } |
| if (umin_ptr + umin_val < umin_ptr || |
| umax_ptr + umax_val < umax_ptr) { |
| dst_reg->umin_value = 0; |
| dst_reg->umax_value = U64_MAX; |
| } else { |
| dst_reg->umin_value = umin_ptr + umin_val; |
| dst_reg->umax_value = umax_ptr + umax_val; |
| } |
| dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off); |
| dst_reg->off = ptr_reg->off; |
| dst_reg->raw = ptr_reg->raw; |
| if (ptr_reg->type == PTR_TO_PACKET) { |
| dst_reg->id = ++env->id_gen; |
| /* something was added to pkt_ptr, set range to zero */ |
| dst_reg->raw = 0; |
| } |
| break; |
| case BPF_SUB: |
| if (dst_reg == off_reg) { |
| /* scalar -= pointer. Creates an unknown scalar */ |
| verbose("R%d tried to subtract pointer from scalar\n", |
| dst); |
| return -EACCES; |
| } |
| /* We don't allow subtraction from FP, because (according to |
| * test_verifier.c test "invalid fp arithmetic", JITs might not |
| * be able to deal with it. |
| */ |
| if (ptr_reg->type == PTR_TO_STACK) { |
| verbose("R%d subtraction from stack pointer prohibited\n", |
| dst); |
| return -EACCES; |
| } |
| if (known && (ptr_reg->off - smin_val == |
| (s64)(s32)(ptr_reg->off - smin_val))) { |
| /* pointer -= K. Subtract it from fixed offset */ |
| dst_reg->smin_value = smin_ptr; |
| dst_reg->smax_value = smax_ptr; |
| dst_reg->umin_value = umin_ptr; |
| dst_reg->umax_value = umax_ptr; |
| dst_reg->var_off = ptr_reg->var_off; |
| dst_reg->id = ptr_reg->id; |
| dst_reg->off = ptr_reg->off - smin_val; |
| dst_reg->raw = ptr_reg->raw; |
| break; |
| } |
| /* A new variable offset is created. If the subtrahend is known |
| * nonnegative, then any reg->range we had before is still good. |
| */ |
| if (signed_sub_overflows(smin_ptr, smax_val) || |
| signed_sub_overflows(smax_ptr, smin_val)) { |
| /* Overflow possible, we know nothing */ |
| dst_reg->smin_value = S64_MIN; |
| dst_reg->smax_value = S64_MAX; |
| } else { |
| dst_reg->smin_value = smin_ptr - smax_val; |
| dst_reg->smax_value = smax_ptr - smin_val; |
| } |
| if (umin_ptr < umax_val) { |
| /* Overflow possible, we know nothing */ |
| dst_reg->umin_value = 0; |
| dst_reg->umax_value = U64_MAX; |
| } else { |
| /* Cannot overflow (as long as bounds are consistent) */ |
| dst_reg->umin_value = umin_ptr - umax_val; |
| dst_reg->umax_value = umax_ptr - umin_val; |
| } |
| dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off); |
| dst_reg->off = ptr_reg->off; |
| dst_reg->raw = ptr_reg->raw; |
| if (ptr_reg->type == PTR_TO_PACKET) { |
| dst_reg->id = ++env->id_gen; |
| /* something was added to pkt_ptr, set range to zero */ |
| if (smin_val < 0) |
| dst_reg->raw = 0; |
| } |
| break; |
| case BPF_AND: |
| case BPF_OR: |
| case BPF_XOR: |
| /* bitwise ops on pointers are troublesome. */ |
| verbose("R%d bitwise operator %s on pointer prohibited\n", |
| dst, bpf_alu_string[opcode >> 4]); |
| return -EACCES; |
| default: |
| /* other operators (e.g. MUL,LSH) produce non-pointer results */ |
| verbose("R%d pointer arithmetic with %s operator prohibited\n", |
| dst, bpf_alu_string[opcode >> 4]); |
| return -EACCES; |
| } |
| |
| if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type)) |
| return -EINVAL; |
| |
| __update_reg_bounds(dst_reg); |
| __reg_deduce_bounds(dst_reg); |
| __reg_bound_offset(dst_reg); |
| |
| if (sanitize_check_bounds(env, insn, dst_reg) < 0) |
| return -EACCES; |
| if (sanitize_needed(opcode)) { |
| ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg, |
| &info, true); |
| if (ret < 0) |
| return sanitize_err(env, insn, ret, off_reg, dst_reg); |
| } |
| |
| return 0; |
| } |
| |
| /* WARNING: This function does calculations on 64-bit values, but the actual |
| * execution may occur on 32-bit values. Therefore, things like bitshifts |
| * need extra checks in the 32-bit case. |
| */ |
| static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env, |
| struct bpf_insn *insn, |
| struct bpf_reg_state *dst_reg, |
| struct bpf_reg_state src_reg) |
| { |
| struct bpf_reg_state *regs = cur_regs(env); |
| u8 opcode = BPF_OP(insn->code); |
| bool src_known, dst_known; |
| s64 smin_val, smax_val; |
| u64 umin_val, umax_val; |
| u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32; |
| int ret; |
| |
| if (insn_bitness == 32) { |
| /* Relevant for 32-bit RSH: Information can propagate towards |
| * LSB, so it isn't sufficient to only truncate the output to |
| * 32 bits. |
| */ |
| coerce_reg_to_size(dst_reg, 4); |
| coerce_reg_to_size(&src_reg, 4); |
| } |
| |
| smin_val = src_reg.smin_value; |
| smax_val = src_reg.smax_value; |
| umin_val = src_reg.umin_value; |
| umax_val = src_reg.umax_value; |
| src_known = tnum_is_const(src_reg.var_off); |
| dst_known = tnum_is_const(dst_reg->var_off); |
| |
| if ((src_known && (smin_val != smax_val || umin_val != umax_val)) || |
| smin_val > smax_val || umin_val > umax_val) { |
| /* Taint dst register if offset had invalid bounds derived from |
| * e.g. dead branches. |
| */ |
| __mark_reg_unknown(dst_reg); |
| return 0; |
| } |
| |
| if (!src_known && |
| opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) { |
| __mark_reg_unknown(dst_reg); |
| return 0; |
| } |
| |
| if (sanitize_needed(opcode)) { |
| ret = sanitize_val_alu(env, insn); |
| if (ret < 0) |
| return sanitize_err(env, insn, ret, NULL, NULL); |
| } |
| |
| switch (opcode) { |
| case BPF_ADD: |
| if (signed_add_overflows(dst_reg->smin_value, smin_val) || |
| signed_add_overflows(dst_reg->smax_value, smax_val)) { |
| dst_reg->smin_value = S64_MIN; |
| dst_reg->smax_value = S64_MAX; |
| } else { |
| dst_reg->smin_value += smin_val; |
| dst_reg->smax_value += smax_val; |
| } |
| if (dst_reg->umin_value + umin_val < umin_val || |
| dst_reg->umax_value + umax_val < umax_val) { |
| dst_reg->umin_value = 0; |
| dst_reg->umax_value = U64_MAX; |
| } else { |
| dst_reg->umin_value += umin_val; |
| dst_reg->umax_value += umax_val; |
| } |
| dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off); |
| break; |
| case BPF_SUB: |
| if (signed_sub_overflows(dst_reg->smin_value, smax_val) || |
| signed_sub_overflows(dst_reg->smax_value, smin_val)) { |
| /* Overflow possible, we know nothing */ |
| dst_reg->smin_value = S64_MIN; |
| dst_reg->smax_value = S64_MAX; |
| } else { |
| dst_reg->smin_value -= smax_val; |
| dst_reg->smax_value -= smin_val; |
| } |
| if (dst_reg->umin_value < umax_val) { |
| /* Overflow possible, we know nothing */ |
| dst_reg->umin_value = 0; |
| dst_reg->umax_value = U64_MAX; |
| } else { |
| /* Cannot overflow (as long as bounds are consistent) */ |
| dst_reg->umin_value -= umax_val; |
| dst_reg->umax_value -= umin_val; |
| } |
| dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off); |
| break; |
| case BPF_MUL: |
| dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off); |
| if (smin_val < 0 || dst_reg->smin_value < 0) { |
| /* Ain't nobody got time to multiply that sign */ |
| __mark_reg_unbounded(dst_reg); |
| __update_reg_bounds(dst_reg); |
| break; |
| } |
| /* Both values are positive, so we can work with unsigned and |
| * copy the result to signed (unless it exceeds S64_MAX). |
| */ |
| if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) { |
| /* Potential overflow, we know nothing */ |
| __mark_reg_unbounded(dst_reg); |
| /* (except what we can learn from the var_off) */ |
| __update_reg_bounds(dst_reg); |
| break; |
| } |
| dst_reg->umin_value *= umin_val; |
| dst_reg->umax_value *= umax_val; |
| if (dst_reg->umax_value > S64_MAX) { |
| /* Overflow possible, we know nothing */ |
| dst_reg->smin_value = S64_MIN; |
| dst_reg->smax_value = S64_MAX; |
| } else { |
| dst_reg->smin_value = dst_reg->umin_value; |
| dst_reg->smax_value = dst_reg->umax_value; |
| } |
| break; |
| case BPF_AND: |
| if (src_known && dst_known) { |
| __mark_reg_known(dst_reg, dst_reg->var_off.value & |
| src_reg.var_off.value); |
| break; |
| } |
| /* We get our minimum from the var_off, since that's inherently |
| * bitwise. Our maximum is the minimum of the operands' maxima. |
| */ |
| dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off); |
| dst_reg->umin_value = dst_reg->var_off.value; |
| dst_reg->umax_value = min(dst_reg->umax_value, umax_val); |
| if (dst_reg->smin_value < 0 || smin_val < 0) { |
| /* Lose signed bounds when ANDing negative numbers, |
| * ain't nobody got time for that. |
| */ |
| dst_reg->smin_value = S64_MIN; |
| dst_reg->smax_value = S64_MAX; |
| } else { |
| /* ANDing two positives gives a positive, so safe to |
| * cast result into s64. |
| */ |
| dst_reg->smin_value = dst_reg->umin_value; |
| dst_reg->smax_value = dst_reg->umax_value; |
| } |
| /* We may learn something more from the var_off */ |
| __update_reg_bounds(dst_reg); |
| break; |
| case BPF_OR: |
| if (src_known && dst_known) { |
| __mark_reg_known(dst_reg, dst_reg->var_off.value | |
| src_reg.var_off.value); |
| break; |
| } |
| /* We get our maximum from the var_off, and our minimum is the |
| * maximum of the operands' minima |
| */ |
| dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off); |
| dst_reg->umin_value = max(dst_reg->umin_value, umin_val); |
| dst_reg->umax_value = dst_reg->var_off.value | |
| dst_reg->var_off.mask; |
| if (dst_reg->smin_value < 0 || smin_val < 0) { |
| /* Lose signed bounds when ORing negative numbers, |
| * ain't nobody got time for that. |
| */ |
| dst_reg->smin_value = S64_MIN; |
| dst_reg->smax_value = S64_MAX; |
| } else { |
| /* ORing two positives gives a positive, so safe to |
| * cast result into s64. |
| */ |
| dst_reg->smin_value = dst_reg->umin_value; |
| dst_reg->smax_value = dst_reg->umax_value; |
| } |
| /* We may learn something more from the var_off */ |
| __update_reg_bounds(dst_reg); |
| break; |
| case BPF_LSH: |
| if (umax_val >= insn_bitness) { |
| /* Shifts greater than 31 or 63 are undefined. |
| * This includes shifts by a negative number. |
| */ |
| mark_reg_unknown(regs, insn->dst_reg); |
| break; |
| } |
| /* We lose all sign bit information (except what we can pick |
| * up from var_off) |
| */ |
| dst_reg->smin_value = S64_MIN; |
| dst_reg->smax_value = S64_MAX; |
| /* If we might shift our top bit out, then we know nothing */ |
| if (dst_reg->umax_value > 1ULL << (63 - umax_val)) { |
| dst_reg->umin_value = 0; |
| dst_reg->umax_value = U64_MAX; |
| } else { |
| dst_reg->umin_value <<= umin_val; |
| dst_reg->umax_value <<= umax_val; |
| } |
| if (src_known) |
| dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val); |
| else |
| dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val); |
| /* We may learn something more from the var_off */ |
| __update_reg_bounds(dst_reg); |
| break; |
| case BPF_RSH: |
| if (umax_val >= insn_bitness) { |
| /* Shifts greater than 31 or 63 are undefined. |
| * This includes shifts by a negative number. |
| */ |
| mark_reg_unknown(regs, insn->dst_reg); |
| break; |
| } |
| /* BPF_RSH is an unsigned shift. If the value in dst_reg might |
| * be negative, then either: |
| * 1) src_reg might be zero, so the sign bit of the result is |
| * unknown, so we lose our signed bounds |
| * 2) it's known negative, thus the unsigned bounds capture the |
| * signed bounds |
| * 3) the signed bounds cross zero, so they tell us nothing |
| * about the result |
| * If the value in dst_reg is known nonnegative, then again the |
| * unsigned bounts capture the signed bounds. |
| * Thus, in all cases it suffices to blow away our signed bounds |
| * and rely on inferring new ones from the unsigned bounds and |
| * var_off of the result. |
| */ |
| dst_reg->smin_value = S64_MIN; |
| dst_reg->smax_value = S64_MAX; |
| if (src_known) |
| dst_reg->var_off = tnum_rshift(dst_reg->var_off, |
| umin_val); |
| else |
| dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val); |
| dst_reg->umin_value >>= umax_val; |
| dst_reg->umax_value >>= umin_val; |
| /* We may learn something more from the var_off */ |
| __update_reg_bounds(dst_reg); |
| break; |
| default: |
| mark_reg_unknown(regs, insn->dst_reg); |
| break; |
| } |
| |
| if (BPF_CLASS(insn->code) != BPF_ALU64) { |
| /* 32-bit ALU ops are (32,32)->32 */ |
| coerce_reg_to_size(dst_reg, 4); |
| } |
| |
| __update_reg_bounds(dst_reg); |
| __reg_deduce_bounds(dst_reg); |
| __reg_bound_offset(dst_reg); |
| return 0; |
| } |
| |
| /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max |
| * and var_off. |
| */ |
| static int adjust_reg_min_max_vals(struct bpf_verifier_env *env, |
| struct bpf_insn *insn) |
| { |
| struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg; |
| struct bpf_reg_state *ptr_reg = NULL, off_reg = {0}; |
| u8 opcode = BPF_OP(insn->code); |
| |
| dst_reg = ®s[insn->dst_reg]; |
| src_reg = NULL; |
| if (dst_reg->type != SCALAR_VALUE) |
| ptr_reg = dst_reg; |
| if (BPF_SRC(insn->code) == BPF_X) { |
| src_reg = ®s[insn->src_reg]; |
| if (src_reg->type != SCALAR_VALUE) { |
| if (dst_reg->type != SCALAR_VALUE) { |
| /* Combining two pointers by any ALU op yields |
| * an arbitrary scalar. Disallow all math except |
| * pointer subtraction |
| */ |
| if (opcode == BPF_SUB && env->allow_ptr_leaks) { |
| mark_reg_unknown(regs, insn->dst_reg); |
| return 0; |
| } |
| verbose("R%d pointer %s pointer prohibited\n", |
| insn->dst_reg, |
| bpf_alu_string[opcode >> 4]); |
| return -EACCES; |
| } else { |
| /* scalar += pointer |
| * This is legal, but we have to reverse our |
| * src/dest handling in computing the range |
| */ |
| return adjust_ptr_min_max_vals(env, insn, |
| src_reg, dst_reg); |
| } |
| } else if (ptr_reg) { |
| /* pointer += scalar */ |
| return adjust_ptr_min_max_vals(env, insn, |
| dst_reg, src_reg); |
| } |
| } else { |
| /* Pretend the src is a reg with a known value, since we only |
| * need to be able to read from this state. |
| */ |
| off_reg.type = SCALAR_VALUE; |
| __mark_reg_known(&off_reg, insn->imm); |
| src_reg = &off_reg; |
| if (ptr_reg) /* pointer += K */ |
| return adjust_ptr_min_max_vals(env, insn, |
| ptr_reg, src_reg); |
| } |
| |
| /* Got here implies adding two SCALAR_VALUEs */ |
| if (WARN_ON_ONCE(ptr_reg)) { |
| print_verifier_state(env->cur_state); |
| verbose("verifier internal error: unexpected ptr_reg\n"); |
| return -EINVAL; |
| } |
| if (WARN_ON(!src_reg)) { |
| print_verifier_state(env->cur_state); |
| verbose("verifier internal error: no src_reg\n"); |
| return -EINVAL; |
| } |
| return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg); |
| } |
| |
| /* check validity of 32-bit and 64-bit arithmetic operations */ |
| static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn) |
| { |
| struct bpf_reg_state *regs = cur_regs(env); |
| u8 opcode = BPF_OP(insn->code); |
| int err; |
| |
| if (opcode == BPF_END || opcode == BPF_NEG) { |
| if (opcode == BPF_NEG) { |
| if (BPF_SRC(insn->code) != 0 || |
| insn->src_reg != BPF_REG_0 || |
| insn->off != 0 || insn->imm != 0) { |
| verbose("BPF_NEG uses reserved fields\n"); |
| return -EINVAL; |
| } |
| } else { |
| if (insn->src_reg != BPF_REG_0 || insn->off != 0 || |
| (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) || |
| BPF_CLASS(insn->code) == BPF_ALU64) { |
| verbose("BPF_END uses reserved fields\n"); |
| return -EINVAL; |
| } |
| } |
| |
| /* check src operand */ |
| err = check_reg_arg(env, insn->dst_reg, SRC_OP); |
| if (err) |
| return err; |
| |
| if (is_pointer_value(env, insn->dst_reg)) { |
| verbose("R%d pointer arithmetic prohibited\n", |
| insn->dst_reg); |
| return -EACCES; |
| } |
| |
| /* check dest operand */ |
| err = check_reg_arg(env, insn->dst_reg, DST_OP); |
| if (err) |
| return err; |
| |
| } else if (opcode == BPF_MOV) { |
| |
| if (BPF_SRC(insn->code) == BPF_X) { |
| if (insn->imm != 0 || insn->off != 0) { |
| verbose("BPF_MOV uses reserved fields\n"); |
| return -EINVAL; |
| } |
| |
| /* check src operand */ |
| err = check_reg_arg(env, insn->src_reg, SRC_OP); |
| if (err) |
| return err; |
| } else { |
| if (insn->src_reg != BPF_REG_0 || insn->off != 0) { |
| verbose("BPF_MOV uses reserved fields\n"); |
| return -EINVAL; |
| } |
| } |
| |
| /* check dest operand */ |
| err = check_reg_arg(env, insn->dst_reg, DST_OP); |
| if (err) |
| return err; |
| |
| if (BPF_SRC(insn->code) == BPF_X) { |
| if (BPF_CLASS(insn->code) == BPF_ALU64) { |
| /* case: R1 = R2 |
| * copy register state to dest reg |
| */ |
| regs[insn->dst_reg] = regs[insn->src_reg]; |
| regs[insn->dst_reg].live |= REG_LIVE_WRITTEN; |
| } else { |
| /* R1 = (u32) R2 */ |
| if (is_pointer_value(env, insn->src_reg)) { |
| verbose("R%d partial copy of pointer\n", |
| insn->src_reg); |
| return -EACCES; |
| } |
| mark_reg_unknown(regs, insn->dst_reg); |
| coerce_reg_to_size(®s[insn->dst_reg], 4); |
| } |
| } else { |
| /* case: R = imm |
| * remember the value we stored into this reg |
| */ |
| regs[insn->dst_reg].type = SCALAR_VALUE; |
| if (BPF_CLASS(insn->code) == BPF_ALU64) { |
| __mark_reg_known(regs + insn->dst_reg, |
| insn->imm); |
| } else { |
| __mark_reg_known(regs + insn->dst_reg, |
| (u32)insn->imm); |
| } |
| } |
| |
| } else if (opcode > BPF_END) { |
| verbose("invalid BPF_ALU opcode %x\n", opcode); |
| return -EINVAL; |
| |
| } else { /* all other ALU ops: and, sub, xor, add, ... */ |
| |
| if (BPF_SRC(insn->code) == BPF_X) { |
| if (insn->imm != 0 || insn->off != 0) { |
| verbose("BPF_ALU uses reserved fields\n"); |
| return -EINVAL; |
| } |
| /* check src1 operand */ |
| err = check_reg_arg(env, insn->src_reg, SRC_OP); |
| if (err) |
| return err; |
| } else { |
| if (insn->src_reg != BPF_REG_0 || insn->off != 0) { |
| verbose("BPF_ALU uses reserved fields\n"); |
| return -EINVAL; |
| } |
| } |
| |
| /* check src2 operand */ |
| err = check_reg_arg(env, insn->dst_reg, SRC_OP); |
| if (err) |
| return err; |
| |
| if ((opcode == BPF_MOD || opcode == BPF_DIV) && |
| BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { |
| verbose("div by zero\n"); |
| return -EINVAL; |
| } |
| |
| if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) { |
| verbose("BPF_ARSH not supported for 32 bit ALU\n"); |
| return -EINVAL; |
| } |
| |
| if ((opcode == BPF_LSH || opcode == BPF_RSH || |
| opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) { |
| int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32; |
| |
| if (insn->imm < 0 || insn->imm >= size) { |
| verbose("invalid shift %d\n", insn->imm); |
| return -EINVAL; |
| } |
| } |
| |
| /* check dest operand */ |
| err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); |
| if (err) |
| return err; |
| |
| return adjust_reg_min_max_vals(env, insn); |
| } |
| |
| return 0; |
| } |
| |
| static void find_good_pkt_pointers(struct bpf_verifier_state *state, |
| struct bpf_reg_state *dst_reg, |
| bool range_right_open) |
| { |
| struct bpf_reg_state *regs = state->regs, *reg; |
| u16 new_range; |
| int i; |
| |
| if (dst_reg->off < 0 || |
| (dst_reg->off == 0 && range_right_open)) |
| /* This doesn't give us any range */ |
| return; |
| |
| if (dst_reg->umax_value > MAX_PACKET_OFF || |
| dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF) |
| /* Risk of overflow. For instance, ptr + (1<<63) may be less |
| * than pkt_end, but that's because it's also less than pkt. |
| */ |
| return; |
| |
| new_range = dst_reg->off; |
| if (range_right_open) |
| new_range++; |
| |
| /* Examples for register markings: |
| * |
| * pkt_data in dst register: |
| * |
| * r2 = r3; |
| * r2 += 8; |
| * if (r2 > pkt_end) goto <handle exception> |
| * <access okay> |
| * |
| * r2 = r3; |
| * r2 += 8; |
| * if (r2 < pkt_end) goto <access okay> |
| * <handle exception> |
| * |
| * Where: |
| * r2 == dst_reg, pkt_end == src_reg |
| * r2=pkt(id=n,off=8,r=0) |
| * r3=pkt(id=n,off=0,r=0) |
| * |
| * pkt_data in src register: |
| * |
| * r2 = r3; |
| * r2 += 8; |
| * if (pkt_end >= r2) goto <access okay> |
| * <handle exception> |
| * |
| * r2 = r3; |
| * r2 += 8; |
| * if (pkt_end <= r2) goto <handle exception> |
| * <access okay> |
| * |
| * Where: |
| * pkt_end == dst_reg, r2 == src_reg |
| * r2=pkt(id=n,off=8,r=0) |
| * r3=pkt(id=n,off=0,r=0) |
| * |
| * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8) |
| * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8) |
| * and [r3, r3 + 8-1) respectively is safe to access depending on |
| * the check. |
| */ |
| |
| /* If our ids match, then we must have the same max_value. And we |
| * don't care about the other reg's fixed offset, since if it's too big |
| * the range won't allow anything. |
| * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16. |
| */ |
| for (i = 0; i < MAX_BPF_REG; i++) |
| if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id) |
| /* keep the maximum range already checked */ |
| regs[i].range = max(regs[i].range, new_range); |
| |
| for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { |
| if (state->stack[i].slot_type[0] != STACK_SPILL) |
| continue; |
| reg = &state->stack[i].spilled_ptr; |
| if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id) |
| reg->range = max(reg->range, new_range); |
| } |
| } |
| |
| /* Adjusts the register min/max values in the case that the dst_reg is the |
| * variable register that we are working on, and src_reg is a constant or we're |
| * simply doing a BPF_K check. |
| * In JEQ/JNE cases we also adjust the var_off values. |
| */ |
| static void reg_set_min_max(struct bpf_reg_state *true_reg, |
| struct bpf_reg_state *false_reg, u64 val, |
| u8 opcode) |
| { |
| /* If the dst_reg is a pointer, we can't learn anything about its |
| * variable offset from the compare (unless src_reg were a pointer into |
| * the same object, but we don't bother with that. |
| * Since false_reg and true_reg have the same type by construction, we |
| * only need to check one of them for pointerness. |
| */ |
| if (__is_pointer_value(false, false_reg)) |
| return; |
| |
| switch (opcode) { |
| case BPF_JEQ: |
| /* If this is false then we know nothing Jon Snow, but if it is |
| * true then we know for sure. |
| */ |
| __mark_reg_known(true_reg, val); |
| break; |
| case BPF_JNE: |
| /* If this is true we know nothing Jon Snow, but if it is false |
| * we know the value for sure; |
| */ |
| __mark_reg_known(false_reg, val); |
| break; |
| case BPF_JGT: |
| false_reg->umax_value = min(false_reg->umax_value, val); |
| true_reg->umin_value = max(true_reg->umin_value, val + 1); |
| break; |
| case BPF_JSGT: |
| false_reg->smax_value = min_t(s64, false_reg->smax_value, val); |
| true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); |
| break; |
| case BPF_JLT: |
| false_reg->umin_value = max(false_reg->umin_value, val); |
| true_reg->umax_value = min(true_reg->umax_value, val - 1); |
| break; |
| case BPF_JSLT: |
| false_reg->smin_value = max_t(s64, false_reg->smin_value, val); |
| true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); |
| break; |
| case BPF_JGE: |
| false_reg->umax_value = min(false_reg->umax_value, val - 1); |
| true_reg->umin_value = max(true_reg->umin_value, val); |
| break; |
| case BPF_JSGE: |
| false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); |
| true_reg->smin_value = max_t(s64, true_reg->smin_value, val); |
| break; |
| case BPF_JLE: |
| false_reg->umin_value = max(false_reg->umin_value, val + 1); |
| true_reg->umax_value = min(true_reg->umax_value, val); |
| break; |
| case BPF_JSLE: |
| false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); |
| true_reg->smax_value = min_t(s64, true_reg->smax_value, val); |
| break; |
| default: |
| break; |
| } |
| |
| __reg_deduce_bounds(false_reg); |
| __reg_deduce_bounds(true_reg); |
| /* We might have learned some bits from the bounds. */ |
| __reg_bound_offset(false_reg); |
| __reg_bound_offset(true_reg); |
| /* Intersecting with the old var_off might have improved our bounds |
| * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), |
| * then new var_off is (0; 0x7f...fc) which improves our umax. |
| */ |
| __update_reg_bounds(false_reg); |
| __update_reg_bounds(true_reg); |
| } |
| |
| /* Same as above, but for the case that dst_reg holds a constant and src_reg is |
| * the variable reg. |
| */ |
| static void reg_set_min_max_inv(struct bpf_reg_state *true_reg, |
| struct bpf_reg_state *false_reg, u64 val, |
| u8 opcode) |
| { |
| if (__is_pointer_value(false, false_reg)) |
| return; |
| |
| switch (opcode) { |
| case BPF_JEQ: |
| /* If this is false then we know nothing Jon Snow, but if it is |
| * true then we know for sure. |
| */ |
| __mark_reg_known(true_reg, val); |
| break; |
| case BPF_JNE: |
| /* If this is true we know nothing Jon Snow, but if it is false |
| * we know the value for sure; |
| */ |
| __mark_reg_known(false_reg, val); |
| break; |
| case BPF_JGT: |
| true_reg->umax_value = min(true_reg->umax_value, val - 1); |
| false_reg->umin_value = max(false_reg->umin_value, val); |
| break; |
| case BPF_JSGT: |
| true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1); |
| false_reg->smin_value = max_t(s64, false_reg->smin_value, val); |
| break; |
| case BPF_JLT: |
| true_reg->umin_value = max(true_reg->umin_value, val + 1); |
| false_reg->umax_value = min(false_reg->umax_value, val); |
| break; |
| case BPF_JSLT: |
| true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1); |
| false_reg->smax_value = min_t(s64, false_reg->smax_value, val); |
| break; |
| case BPF_JGE: |
| true_reg->umax_value = min(true_reg->umax_value, val); |
| false_reg->umin_value = max(false_reg->umin_value, val + 1); |
| break; |
| case BPF_JSGE: |
| true_reg->smax_value = min_t(s64, true_reg->smax_value, val); |
| false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1); |
| break; |
| case BPF_JLE: |
| true_reg->umin_value = max(true_reg->umin_value, val); |
| false_reg->umax_value = min(false_reg->umax_value, val - 1); |
| break; |
| case BPF_JSLE: |
| true_reg->smin_value = max_t(s64, true_reg->smin_value, val); |
| false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1); |
| break; |
| default: |
| break; |
| } |
| |
| __reg_deduce_bounds(false_reg); |
| __reg_deduce_bounds(true_reg); |
| /* We might have learned some bits from the bounds. */ |
| __reg_bound_offset(false_reg); |
| __reg_bound_offset(true_reg); |
| /* Intersecting with the old var_off might have improved our bounds |
| * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), |
| * then new var_off is (0; 0x7f...fc) which improves our umax. |
| */ |
| __update_reg_bounds(false_reg); |
| __update_reg_bounds(true_reg); |
| } |
| |
| /* Regs are known to be equal, so intersect their min/max/var_off */ |
| static void __reg_combine_min_max(struct bpf_reg_state *src_reg, |
| struct bpf_reg_state *dst_reg) |
| { |
| src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value, |
| dst_reg->umin_value); |
| src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value, |
| dst_reg->umax_value); |
| src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value, |
| dst_reg->smin_value); |
| src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value, |
| dst_reg->smax_value); |
| src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off, |
| dst_reg->var_off); |
| /* We might have learned new bounds from the var_off. */ |
| __update_reg_bounds(src_reg); |
| __update_reg_bounds(dst_reg); |
| /* We might have learned something about the sign bit. */ |
| __reg_deduce_bounds(src_reg); |
| __reg_deduce_bounds(dst_reg); |
| /* We might have learned some bits from the bounds. */ |
| __reg_bound_offset(src_reg); |
| __reg_bound_offset(dst_reg); |
| /* Intersecting with the old var_off might have improved our bounds |
| * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc), |
| * then new var_off is (0; 0x7f...fc) which improves our umax. |
| */ |
| __update_reg_bounds(src_reg); |
| __update_reg_bounds(dst_reg); |
| } |
| |
| static void reg_combine_min_max(struct bpf_reg_state *true_src, |
| struct bpf_reg_state *true_dst, |
| struct bpf_reg_state *false_src, |
| struct bpf_reg_state *false_dst, |
| u8 opcode) |
| { |
| switch (opcode) { |
| case BPF_JEQ: |
| __reg_combine_min_max(true_src, true_dst); |
| break; |
| case BPF_JNE: |
| __reg_combine_min_max(false_src, false_dst); |
| break; |
| } |
| } |
| |
| static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id, |
| bool is_null) |
| { |
| struct bpf_reg_state *reg = ®s[regno]; |
| |
| if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) { |
| /* Old offset (both fixed and variable parts) should |
| * have been known-zero, because we don't allow pointer |
| * arithmetic on pointers that might be NULL. |
| */ |
| if (WARN_ON_ONCE(reg->smin_value || reg->smax_value || |
| !tnum_equals_const(reg->var_off, 0) || |
| reg->off)) { |
| __mark_reg_known_zero(reg); |
| reg->off = 0; |
| } |
| if (is_null) { |
| reg->type = SCALAR_VALUE; |
| } else if (reg->map_ptr->inner_map_meta) { |
| reg->type = CONST_PTR_TO_MAP; |
| reg->map_ptr = reg->map_ptr->inner_map_meta; |
| } else { |
| reg->type = PTR_TO_MAP_VALUE; |
| } |
| /* We don't need id from this point onwards anymore, thus we |
| * should better reset it, so that state pruning has chances |
| * to take effect. |
| */ |
| reg->id = 0; |
| } |
| } |
| |
| /* The logic is similar to find_good_pkt_pointers(), both could eventually |
| * be folded together at some point. |
| */ |
| static void mark_map_regs(struct bpf_verifier_state *state, u32 regno, |
| bool is_null) |
| { |
| struct bpf_reg_state *regs = state->regs; |
| u32 id = regs[regno].id; |
| int i; |
| |
| for (i = 0; i < MAX_BPF_REG; i++) |
| mark_map_reg(regs, i, id, is_null); |
| |
| for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) { |
| if (state->stack[i].slot_type[0] != STACK_SPILL) |
| continue; |
| mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null); |
| } |
| } |
| |
| static int check_cond_jmp_op(struct bpf_verifier_env *env, |
| struct bpf_insn *insn, int *insn_idx) |
| { |
| struct bpf_verifier_state *other_branch, *this_branch = env->cur_state; |
| struct bpf_reg_state *regs = this_branch->regs, *dst_reg; |
| u8 opcode = BPF_OP(insn->code); |
| int err; |
| |
| if (opcode > BPF_JSLE) { |
| verbose("invalid BPF_JMP opcode %x\n", opcode); |
| return -EINVAL; |
| } |
| |
| if (BPF_SRC(insn->code) == BPF_X) { |
| if (insn->imm != 0) { |
| verbose("BPF_JMP uses reserved fields\n"); |
| return -EINVAL; |
| } |
| |
| /* check src1 operand */ |
| err = check_reg_arg(env, insn->src_reg, SRC_OP); |
| if (err) |
| return err; |
| |
| if (is_pointer_value(env, insn->src_reg)) { |
| verbose("R%d pointer comparison prohibited\n", |
| insn->src_reg); |
| return -EACCES; |
| } |
| } else { |
| if (insn->src_reg != BPF_REG_0) { |
| verbose("BPF_JMP uses reserved fields\n"); |
| return -EINVAL; |
| } |
| } |
| |
| /* check src2 operand */ |
| err = check_reg_arg(env, insn->dst_reg, SRC_OP); |
| if (err) |
| return err; |
| |
| dst_reg = ®s[insn->dst_reg]; |
| |
| /* detect if R == 0 where R was initialized to zero earlier */ |
| if (BPF_SRC(insn->code) == BPF_K && |
| (opcode == BPF_JEQ || opcode == BPF_JNE) && |
| dst_reg->type == SCALAR_VALUE && |
| tnum_equals_const(dst_reg->var_off, insn->imm)) { |
| if (opcode == BPF_JEQ) { |
| /* if (imm == imm) goto pc+off; |
| * only follow the goto, ignore fall-through |
| */ |
| *insn_idx += insn->off; |
| return 0; |
| } else { |
| /* if (imm != imm) goto pc+off; |
| * only follow fall-through branch, since |
| * that's where the program will go |
| */ |
| return 0; |
| } |
| } |
| |
| other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx, |
| false); |
| if (!other_branch) |
| return -EFAULT; |
| |
| /* detect if we are comparing against a constant value so we can adjust |
| * our min/max values for our dst register. |
| * this is only legit if both are scalars (or pointers to the same |
| * object, I suppose, but we don't support that right now), because |
| * otherwise the different base pointers mean the offsets aren't |
| * comparable. |
| */ |
| if (BPF_SRC(insn->code) == BPF_X) { |
| if (dst_reg->type == SCALAR_VALUE && |
| regs[insn->src_reg].type == SCALAR_VALUE) { |
| if (tnum_is_const(regs[insn->src_reg].var_off)) |
| reg_set_min_max(&other_branch->regs[insn->dst_reg], |
| dst_reg, regs[insn->src_reg].var_off.value, |
| opcode); |
| else if (tnum_is_const(dst_reg->var_off)) |
| reg_set_min_max_inv(&other_branch->regs[insn->src_reg], |
| ®s[insn->src_reg], |
| dst_reg->var_off.value, opcode); |
| else if (opcode == BPF_JEQ || opcode == BPF_JNE) |
| /* Comparing for equality, we can combine knowledge */ |
| reg_combine_min_max(&other_branch->regs[insn->src_reg], |
| &other_branch->regs[insn->dst_reg], |
| ®s[insn->src_reg], |
| ®s[insn->dst_reg], opcode); |
| } |
| } else if (dst_reg->type == SCALAR_VALUE) { |
| reg_set_min_max(&other_branch->regs[insn->dst_reg], |
| dst_reg, insn->imm, opcode); |
| } |
| |
| /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */ |
| if (BPF_SRC(insn->code) == BPF_K && |
| insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) && |
| dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) { |
| /* Mark all identical map registers in each branch as either |
| * safe or unknown depending R == 0 or R != 0 conditional. |
| */ |
| mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE); |
| mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ); |
| } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT && |
| dst_reg->type == PTR_TO_PACKET && |
| regs[insn->src_reg].type == PTR_TO_PACKET_END) { |
| /* pkt_data' > pkt_end */ |
| find_good_pkt_pointers(this_branch, dst_reg, false); |
| } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT && |
| dst_reg->type == PTR_TO_PACKET_END && |
| regs[insn->src_reg].type == PTR_TO_PACKET) { |
| /* pkt_end > pkt_data' */ |
| find_good_pkt_pointers(other_branch, ®s[insn->src_reg], true); |
| } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT && |
| dst_reg->type == PTR_TO_PACKET && |
| regs[insn->src_reg].type == PTR_TO_PACKET_END) { |
| /* pkt_data' < pkt_end */ |
| find_good_pkt_pointers(other_branch, dst_reg, true); |
| } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT && |
| dst_reg->type == PTR_TO_PACKET_END && |
| regs[insn->src_reg].type == PTR_TO_PACKET) { |
| /* pkt_end < pkt_data' */ |
| find_good_pkt_pointers(this_branch, ®s[insn->src_reg], false); |
| } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE && |
| dst_reg->type == PTR_TO_PACKET && |
| regs[insn->src_reg].type == PTR_TO_PACKET_END) { |
| /* pkt_data' >= pkt_end */ |
| find_good_pkt_pointers(this_branch, dst_reg, true); |
| } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE && |
| dst_reg->type == PTR_TO_PACKET_END && |
| regs[insn->src_reg].type == PTR_TO_PACKET) { |
| /* pkt_end >= pkt_data' */ |
| find_good_pkt_pointers(other_branch, ®s[insn->src_reg], false); |
| } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE && |
| dst_reg->type == PTR_TO_PACKET && |
| regs[insn->src_reg].type == PTR_TO_PACKET_END) { |
| /* pkt_data' <= pkt_end */ |
| find_good_pkt_pointers(other_branch, dst_reg, false); |
| } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE && |
| dst_reg->type == PTR_TO_PACKET_END && |
| regs[insn->src_reg].type == PTR_TO_PACKET) { |
| /* pkt_end <= pkt_data' */ |
| find_good_pkt_pointers(this_branch, ®s[insn->src_reg], true); |
| } else if (is_pointer_value(env, insn->dst_reg)) { |
| verbose("R%d pointer comparison prohibited\n", insn->dst_reg); |
| return -EACCES; |
| } |
| if (verifier_log.level) |
| print_verifier_state(this_branch); |
| return 0; |
| } |
| |
| /* return the map pointer stored inside BPF_LD_IMM64 instruction */ |
| static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) |
| { |
| u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; |
| |
| return (struct bpf_map *) (unsigned long) imm64; |
| } |
| |
| /* verify BPF_LD_IMM64 instruction */ |
| static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn) |
| { |
| struct bpf_reg_state *regs = cur_regs(env); |
| int err; |
| |
| if (BPF_SIZE(insn->code) != BPF_DW) { |
| verbose("invalid BPF_LD_IMM insn\n"); |
| return -EINVAL; |
| } |
| if (insn->off != 0) { |
| verbose("BPF_LD_IMM64 uses reserved fields\n"); |
| return -EINVAL; |
| } |
| |
| err = check_reg_arg(env, insn->dst_reg, DST_OP); |
| if (err) |
| return err; |
| |
| if (insn->src_reg == 0) { |
| u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm; |
| |
| regs[insn->dst_reg].type = SCALAR_VALUE; |
| __mark_reg_known(®s[insn->dst_reg], imm); |
| return 0; |
| } |
| |
| /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ |
| BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); |
| |
| regs[insn->dst_reg].type = CONST_PTR_TO_MAP; |
| regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); |
| return 0; |
| } |
| |
| static bool may_access_skb(enum bpf_prog_type type) |
| { |
| switch (type) { |
| case BPF_PROG_TYPE_SOCKET_FILTER: |
| case BPF_PROG_TYPE_SCHED_CLS: |
| case BPF_PROG_TYPE_SCHED_ACT: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| /* verify safety of LD_ABS|LD_IND instructions: |
| * - they can only appear in the programs where ctx == skb |
| * - since they are wrappers of function calls, they scratch R1-R5 registers, |
| * preserve R6-R9, and store return value into R0 |
| * |
| * Implicit input: |
| * ctx == skb == R6 == CTX |
| * |
| * Explicit input: |
| * SRC == any register |
| * IMM == 32-bit immediate |
| * |
| * Output: |
| * R0 - 8/16/32-bit skb data converted to cpu endianness |
| */ |
| static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn) |
| { |
| struct bpf_reg_state *regs = cur_regs(env); |
| static const int ctx_reg = BPF_REG_6; |
| u8 mode = BPF_MODE(insn->code); |
| int i, err; |
| |
| if (!may_access_skb(env->prog->type)) { |
| verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n"); |
| return -EINVAL; |
| } |
| |
| if (insn->dst_reg != BPF_REG_0 || insn->off != 0 || |
| BPF_SIZE(insn->code) == BPF_DW || |
| (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) { |
| verbose("BPF_LD_[ABS|IND] uses reserved fields\n"); |
| return -EINVAL; |
| } |
| |
| /* check whether implicit source operand (register R6) is readable */ |
| err = check_reg_arg(env, ctx_reg, SRC_OP); |
| if (err) |
| return err; |
| |
| if (regs[ctx_reg].type != PTR_TO_CTX) { |
| verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n"); |
| return -EINVAL; |
| } |
| |
| if (mode == BPF_IND) { |
| /* check explicit source operand */ |
| err = check_reg_arg(env, insn->src_reg, SRC_OP); |
| if (err) |
| return err; |
| } |
| |
| err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg); |
| if (err < 0) |
| return err; |
| |
| /* reset caller saved regs to unreadable */ |
| for (i = 0; i < CALLER_SAVED_REGS; i++) { |
| mark_reg_not_init(regs, caller_saved[i]); |
| check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK); |
| } |
| |
| /* mark destination R0 register as readable, since it contains |
| * the value fetched from the packet. |
| * Already marked as written above. |
| */ |
| mark_reg_unknown(regs, BPF_REG_0); |
| return 0; |
| } |
| |
| static int check_return_code(struct bpf_verifier_env *env) |
| { |
| struct bpf_reg_state *reg; |
| struct tnum range = tnum_range(0, 1); |
| |
| switch (env->prog->type) { |
| case BPF_PROG_TYPE_CGROUP_SOCK_ADDR: |
| if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG || |
| env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG) |
| range = tnum_range(1, 1); |
| case BPF_PROG_TYPE_CGROUP_SKB: |
| case BPF_PROG_TYPE_CGROUP_SOCK: |
| case BPF_PROG_TYPE_SOCK_OPS: |
| break; |
| default: |
| return 0; |
| } |
| |
| reg = &env->cur_state->regs[BPF_REG_0]; |
| if (reg->type != SCALAR_VALUE) { |
| verbose("At program exit the register R0 is not a known value (%s)\n", |
| reg_type_str[reg->type]); |
| return -EINVAL; |
| } |
| |
| if (!tnum_in(range, reg->var_off)) { |
| char tn_buf[48]; |
| |
| verbose("At program exit the register R0 "); |
| if (!tnum_is_unknown(reg->var_off)) { |
| tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off); |
| verbose("has value %s", tn_buf); |
| } else { |
| verbose("has unknown scalar value"); |
| } |
| tnum_strn(tn_buf, sizeof(tn_buf), range); |
| verbose(" should have been in %s\n", tn_buf); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /* non-recursive DFS pseudo code |
| * 1 procedure DFS-iterative(G,v): |
| * 2 label v as discovered |
| * 3 let S be a stack |
| * 4 S.push(v) |
| * 5 while S is not empty |
| * 6 t <- S.pop() |
| * 7 if t is what we're looking for: |
| * 8 return t |
| * 9 for all edges e in G.adjacentEdges(t) do |
| * 10 if edge e is already labelled |
| * 11 continue with the next edge |
| * 12 w <- G.adjacentVertex(t,e) |
| * 13 if vertex w is not discovered and not explored |
| * 14 label e as tree-edge |
| * 15 label w as discovered |
| * 16 S.push(w) |
| * 17 continue at 5 |
| * 18 else if vertex w is discovered |
| * 19 label e as back-edge |
| * 20 else |
| * 21 // vertex w is explored |
| * 22 label e as forward- or cross-edge |
| * 23 label t as explored |
| * 24 S.pop() |
| * |
| * convention: |
| * 0x10 - discovered |
| * 0x11 - discovered and fall-through edge labelled |
| * 0x12 - discovered and fall-through and branch edges labelled |
| * 0x20 - explored |
| */ |
| |
| enum { |
| DISCOVERED = 0x10, |
| EXPLORED = 0x20, |
| FALLTHROUGH = 1, |
| BRANCH = 2, |
| }; |
| |
| #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L) |
| |
| static int *insn_stack; /* stack of insns to process */ |
| static int cur_stack; /* current stack index */ |
| static int *insn_state; |
| |
| /* t, w, e - match pseudo-code above: |
| * t - index of current instruction |
| * w - next instruction |
| * e - edge |
| */ |
| static int push_insn(int t, int w, int e, struct bpf_verifier_env *env) |
| { |
| if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) |
| return 0; |
| |
| if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) |
| return 0; |
| |
| if (w < 0 || w >= env->prog->len) { |
| verbose("jump out of range from insn %d to %d\n", t, w); |
| return -EINVAL; |
| } |
| |
| if (e == BRANCH) |
| /* mark branch target for state pruning */ |
| env->explored_states[w] = STATE_LIST_MARK; |
| |
| if (insn_state[w] == 0) { |
| /* tree-edge */ |
| insn_state[t] = DISCOVERED | e; |
| insn_state[w] = DISCOVERED; |
| if (cur_stack >= env->prog->len) |
| return -E2BIG; |
| insn_stack[cur_stack++] = w; |
| return 1; |
| } else if ((insn_state[w] & 0xF0) == DISCOVERED) { |
| verbose("back-edge from insn %d to %d\n", t, w); |
| return -EINVAL; |
| } else if (insn_state[w] == EXPLORED) { |
| /* forward- or cross-edge */ |
| insn_state[t] = DISCOVERED | e; |
| } else { |
| verbose("insn state internal bug\n"); |
| return -EFAULT; |
| } |
| return 0; |
| } |
| |
| /* non-recursive depth-first-search to detect loops in BPF program |
| * loop == back-edge in directed graph |
| */ |
| static int check_cfg(struct bpf_verifier_env *env) |
| { |
| struct bpf_insn *insns = env->prog->insnsi; |
| int insn_cnt = env->prog->len; |
| int ret = 0; |
| int i, t; |
| |
| insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); |
| if (!insn_state) |
| return -ENOMEM; |
| |
| insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); |
| if (!insn_stack) { |
| kfree(insn_state); |
| return -ENOMEM; |
| } |
| |
| insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ |
| insn_stack[0] = 0; /* 0 is the first instruction */ |
| cur_stack = 1; |
| |
| peek_stack: |
| if (cur_stack == 0) |
| goto check_state; |
| t = insn_stack[cur_stack - 1]; |
| |
| if (BPF_CLASS(insns[t].code) == BPF_JMP) { |
| u8 opcode = BPF_OP(insns[t].code); |
| |
| if (opcode == BPF_EXIT) { |
| goto mark_explored; |
| } else if (opcode == BPF_CALL) { |
| ret = push_insn(t, t + 1, FALLTHROUGH, env); |
| if (ret == 1) |
| goto peek_stack; |
| else if (ret < 0) |
| goto err_free; |
| if (t + 1 < insn_cnt) |
| env->explored_states[t + 1] = STATE_LIST_MARK; |
| } else if (opcode == BPF_JA) { |
| if (BPF_SRC(insns[t].code) != BPF_K) { |
| ret = -EINVAL; |
| goto err_free; |
| } |
| /* unconditional jump with single edge */ |
| ret = push_insn(t, t + insns[t].off + 1, |
| FALLTHROUGH, env); |
| if (ret == 1) |
| goto peek_stack; |
| else if (ret < 0) |
| goto err_free; |
| /* tell verifier to check for equivalent states |
| * after every call and jump |
| */ |
| if (t + 1 < insn_cnt) |
| env->explored_states[t + 1] = STATE_LIST_MARK; |
| } else { |
| /* conditional jump with two edges */ |
| env->explored_states[t] = STATE_LIST_MARK; |
| ret = push_insn(t, t + 1, FALLTHROUGH, env); |
| if (ret == 1) |
| goto peek_stack; |
| else if (ret < 0) |
| goto err_free; |
| |
| ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); |
| if (ret == 1) |
| goto peek_stack; |
| else if (ret < 0) |
| goto err_free; |
| } |
| } else { |
| /* all other non-branch instructions with single |
| * fall-through edge |
| */ |
| ret = push_insn(t, t + 1, FALLTHROUGH, env); |
| if (ret == 1) |
| goto peek_stack; |
| else if (ret < 0) |
| goto err_free; |
| } |
| |
| mark_explored: |
| insn_state[t] = EXPLORED; |
| if (cur_stack-- <= 0) { |
| verbose("pop stack internal bug\n"); |
| ret = -EFAULT; |
| goto err_free; |
| } |
| goto peek_stack; |
| |
| check_state: |
| for (i = 0; i < insn_cnt; i++) { |
| if (insn_state[i] != EXPLORED) { |
| verbose("unreachable insn %d\n", i); |
| ret = -EINVAL; |
| goto err_free; |
| } |
| } |
| ret = 0; /* cfg looks good */ |
| |
| err_free: |
| kfree(insn_state); |
| kfree(insn_stack); |
| return ret; |
| } |
| |
| /* check %cur's range satisfies %old's */ |
| static bool range_within(struct bpf_reg_state *old, |
| struct bpf_reg_state *cur) |
| { |
| return old->umin_value <= cur->umin_value && |
| old->umax_value >= cur->umax_value && |
| old->smin_value <= cur->smin_value && |
| old->smax_value >= cur->smax_value; |
| } |
| |
| /* Maximum number of register states that can exist at once */ |
| #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) |
| struct idpair { |
| u32 old; |
| u32 cur; |
| }; |
| |
| /* If in the old state two registers had the same id, then they need to have |
| * the same id in the new state as well. But that id could be different from |
| * the old state, so we need to track the mapping from old to new ids. |
| * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent |
| * regs with old id 5 must also have new id 9 for the new state to be safe. But |
| * regs with a different old id could still have new id 9, we don't care about |
| * that. |
| * So we look through our idmap to see if this old id has been seen before. If |
| * so, we require the new id to match; otherwise, we add the id pair to the map. |
| */ |
| static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < ID_MAP_SIZE; i++) { |
| if (!idmap[i].old) { |
| /* Reached an empty slot; haven't seen this id before */ |
| idmap[i].old = old_id; |
| idmap[i].cur = cur_id; |
| return true; |
| } |
| if (idmap[i].old == old_id) |
| return idmap[i].cur == cur_id; |
| } |
| /* We ran out of idmap slots, which should be impossible */ |
| WARN_ON_ONCE(1); |
| return false; |
| } |
| |
| /* Returns true if (rold safe implies rcur safe) */ |
| static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur, |
| struct idpair *idmap) |
| { |
| if (!(rold->live & REG_LIVE_READ)) |
| /* explored state didn't use this */ |
| return true; |
| |
| if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0) |
| return true; |
| |
| if (rold->type == NOT_INIT) |
| /* explored state can't have used this */ |
| return true; |
| if (rcur->type == NOT_INIT) |
| return false; |
| switch (rold->type) { |
| case SCALAR_VALUE: |
| if (rcur->type == SCALAR_VALUE) { |
| /* new val must satisfy old val knowledge */ |
| return range_within(rold, rcur) && |
| tnum_in(rold->var_off, rcur->var_off); |
| } else { |
| /* We're trying to use a pointer in place of a scalar. |
| * Even if the scalar was unbounded, this could lead to |
| * pointer leaks because scalars are allowed to leak |
| * while pointers are not. We could make this safe in |
| * special cases if root is calling us, but it's |
| * probably not worth the hassle. |
| */ |
| return false; |
| } |
| case PTR_TO_MAP_VALUE: |
| /* If the new min/max/var_off satisfy the old ones and |
| * everything else matches, we are OK. |
| * We don't care about the 'id' value, because nothing |
| * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL) |
| */ |
| return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 && |
| range_within(rold, rcur) && |
| tnum_in(rold->var_off, rcur->var_off); |
| case PTR_TO_MAP_VALUE_OR_NULL: |
| /* a PTR_TO_MAP_VALUE could be safe to use as a |
| * PTR_TO_MAP_VALUE_OR_NULL into the same map. |
| * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL- |
| * checked, doing so could have affected others with the same |
| * id, and we can't check for that because we lost the id when |
| * we converted to a PTR_TO_MAP_VALUE. |
| */ |
| if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL) |
| return false; |
| if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id))) |
| return false; |
| /* Check our ids match any regs they're supposed to */ |
| return check_ids(rold->id, rcur->id, idmap); |
| case PTR_TO_PACKET: |
| if (rcur->type != PTR_TO_PACKET) |
| return false; |
| /* We must have at least as much range as the old ptr |
| * did, so that any accesses which were safe before are |
| * still safe. This is true even if old range < old off, |
| * since someone could have accessed through (ptr - k), or |
| * even done ptr -= k in a register, to get a safe access. |
| */ |
| if (rold->range > rcur->range) |
| return false; |
| /* If the offsets don't match, we can't trust our alignment; |
| * nor can we be sure that we won't fall out of range. |
| */ |
| if (rold->off != rcur->off) |
| return false; |
| /* id relations must be preserved */ |
| if (rold->id && !check_ids(rold->id, rcur->id, idmap)) |
| return false; |
| /* new val must satisfy old val knowledge */ |
| return range_within(rold, rcur) && |
| tnum_in(rold->var_off, rcur->var_off); |
| case PTR_TO_CTX: |
| case CONST_PTR_TO_MAP: |
| case PTR_TO_STACK: |
| case PTR_TO_PACKET_END: |
| /* Only valid matches are exact, which memcmp() above |
| * would have accepted |
| */ |
| default: |
| /* Don't know what's going on, just say it's not safe */ |
| return false; |
| } |
| |
| /* Shouldn't get here; if we do, say it's not safe */ |
| WARN_ON_ONCE(1); |
| return false; |
| } |
| |
| static bool stacksafe(struct bpf_verifier_state *old, |
| struct bpf_verifier_state *cur, |
| struct idpair *idmap) |
| { |
| int i, spi; |
| |
| /* if explored stack has more populated slots than current stack |
| * such stacks are not equivalent |
| */ |
| if (old->allocated_stack > cur->allocated_stack) |
| return false; |
| |
| /* walk slots of the explored stack and ignore any additional |
| * slots in the current stack, since explored(safe) state |
| * didn't use them |
| */ |
| for (i = 0; i < old->allocated_stack; i++) { |
| spi = i / BPF_REG_SIZE; |
| |
| if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID) |
| continue; |
| if (old->stack[spi].slot_type[i % BPF_REG_SIZE] != |
| cur->stack[spi].slot_type[i % BPF_REG_SIZE]) |
| /* Ex: old explored (safe) state has STACK_SPILL in |
| * this stack slot, but current has has STACK_MISC -> |
| * this verifier states are not equivalent, |
| * return false to continue verification of this path |
| */ |
| return false; |
| if (i % BPF_REG_SIZE) |
| continue; |
| if (old->stack[spi].slot_type[0] != STACK_SPILL) |
| continue; |
| if (!regsafe(&old->stack[spi].spilled_ptr, |
| &cur->stack[spi].spilled_ptr, |
| idmap)) |
| /* when explored and current stack slot are both storing |
| * spilled registers, check that stored pointers types |
| * are the same as well. |
| * Ex: explored safe path could have stored |
| * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8} |
| * but current path has stored: |
| * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16} |
| * such verifier states are not equivalent. |
| * return false to continue verification of this path |
| */ |
| return false; |
| } |
| return true; |
| } |
| |
| /* compare two verifier states |
| * |
| * all states stored in state_list are known to be valid, since |
| * verifier reached 'bpf_exit' instruction through them |
| * |
| * this function is called when verifier exploring different branches of |
| * execution popped from the state stack. If it sees an old state that has |
| * more strict register state and more strict stack state then this execution |
| * branch doesn't need to be explored further, since verifier already |
| * concluded that more strict state leads to valid finish. |
| * |
| * Therefore two states are equivalent if register state is more conservative |
| * and explored stack state is more conservative than the current one. |
| * Example: |
| * explored current |
| * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) |
| * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) |
| * |
| * In other words if current stack state (one being explored) has more |
| * valid slots than old one that already passed validation, it means |
| * the verifier can stop exploring and conclude that current state is valid too |
| * |
| * Similarly with registers. If explored state has register type as invalid |
| * whereas register type in current state is meaningful, it means that |
| * the current state will reach 'bpf_exit' instruction safely |
| */ |
| static bool states_equal(struct bpf_verifier_env *env, |
| struct bpf_verifier_state *old, |
| struct bpf_verifier_state *cur) |
| { |
| struct idpair *idmap; |
| bool ret = false; |
| int i; |
| |
| /* Verification state from speculative execution simulation |
| * must never prune a non-speculative execution one. |
| */ |
| if (old->speculative && !cur->speculative) |
| return false; |
| |
| idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL); |
| /* If we failed to allocate the idmap, just say it's not safe */ |
| if (!idmap) |
| return false; |
| |
| for (i = 0; i < MAX_BPF_REG; i++) { |
| if (!regsafe(&old->regs[i], &cur->regs[i], idmap)) |
| goto out_free; |
| } |
| |
| if (!stacksafe(old, cur, idmap)) |
| goto out_free; |
| ret = true; |
| out_free: |
| kfree(idmap); |
| return ret; |
| } |
| |
| /* A write screens off any subsequent reads; but write marks come from the |
| * straight-line code between a state and its parent. When we arrive at a |
| * jump target (in the first iteration of the propagate_liveness() loop), |
| * we didn't arrive by the straight-line code, so read marks in state must |
| * propagate to parent regardless of state's write marks. |
| */ |
| static bool do_propagate_liveness(const struct bpf_verifier_state *state, |
| struct bpf_verifier_state *parent) |
| { |
| bool writes = parent == state->parent; /* Observe write marks */ |
| bool touched = false; /* any changes made? */ |
| int i; |
| |
| if (!parent) |
| return touched; |
| /* Propagate read liveness of registers... */ |
| BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); |
| /* We don't need to worry about FP liveness because it's read-only */ |
| for (i = 0; i < BPF_REG_FP; i++) { |
| if (parent->regs[i].live & REG_LIVE_READ) |
| continue; |
| if (writes && (state->regs[i].live & REG_LIVE_WRITTEN)) |
| continue; |
| if (state->regs[i].live & REG_LIVE_READ) { |
| parent->regs[i].live |= REG_LIVE_READ; |
| touched = true; |
| } |
| } |
| /* ... and stack slots */ |
| for (i = 0; i < state->allocated_stack / BPF_REG_SIZE && |
| i < parent->allocated_stack / BPF_REG_SIZE; i++) { |
| if (parent->stack[i].slot_type[0] != STACK_SPILL) |
| continue; |
| if (state->stack[i].slot_type[0] != STACK_SPILL) |
| continue; |
| if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ) |
| continue; |
| if (writes && |
| (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN)) |
| continue; |
| if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) { |
| parent->stack[i].spilled_ptr.live |= REG_LIVE_READ; |
| touched = true; |
| } |
| } |
| return touched; |
| } |
| |
| /* "parent" is "a state from which we reach the current state", but initially |
| * it is not the state->parent (i.e. "the state whose straight-line code leads |
| * to the current state"), instead it is the state that happened to arrive at |
| * a (prunable) equivalent of the current state. See comment above |
| * do_propagate_liveness() for consequences of this. |
| * This function is just a more efficient way of calling mark_reg_read() or |
| * mark_stack_slot_read() on each reg in "parent" that is read in "state", |
| * though it requires that parent != state->parent in the call arguments. |
| */ |
| static void propagate_liveness(const struct bpf_verifier_state *state, |
| struct bpf_verifier_state *parent) |
| { |
| while (do_propagate_liveness(state, parent)) { |
| /* Something changed, so we need to feed those changes onward */ |
| state = parent; |
| parent = state->parent; |
| } |
| } |
| |
| static int is_state_visited(struct bpf_verifier_env *env, int insn_idx) |
| { |
| struct bpf_verifier_state_list *new_sl; |
| struct bpf_verifier_state_list *sl; |
| struct bpf_verifier_state *cur = env->cur_state; |
| int i, err; |
| |
| sl = env->explored_states[insn_idx]; |
| if (!sl) |
| /* this 'insn_idx' instruction wasn't marked, so we will not |
| * be doing state search here |
| */ |
| return 0; |
| |
| while (sl != STATE_LIST_MARK) { |
| if (states_equal(env, &sl->state, cur)) { |
| /* reached equivalent register/stack state, |
| * prune the search. |
| * Registers read by the continuation are read by us. |
| * If we have any write marks in env->cur_state, they |
| * will prevent corresponding reads in the continuation |
| * from reaching our parent (an explored_state). Our |
| * own state will get the read marks recorded, but |
| * they'll be immediately forgotten as we're pruning |
| * this state and will pop a new one. |
| */ |
| propagate_liveness(&sl->state, cur); |
| return 1; |
| } |
| sl = sl->next; |
| } |
| |
| /* there were no equivalent states, remember current one. |
| * technically the current state is not proven to be safe yet, |
| * but it will either reach bpf_exit (which means it's safe) or |
| * it will be rejected. Since there are no loops, we won't be |
| * seeing this 'insn_idx' instruction again on the way to bpf_exit |
| */ |
| new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL); |
| if (!new_sl) |
| return -ENOMEM; |
| |
| /* add new state to the head of linked list */ |
| err = copy_verifier_state(&new_sl->state, cur); |
| if (err) { |
| free_verifier_state(&new_sl->state, false); |
| kfree(new_sl); |
| return err; |
| } |
| new_sl->next = env->explored_states[insn_idx]; |
| env->explored_states[insn_idx] = new_sl; |
| /* connect new state to parentage chain */ |
| cur->parent = &new_sl->state; |
| /* clear write marks in current state: the writes we did are not writes |
| * our child did, so they don't screen off its reads from us. |
| * (There are no read marks in current state, because reads always mark |
| * their parent and current state never has children yet. Only |
| * explored_states can get read marks.) |
| */ |
| for (i = 0; i < BPF_REG_FP; i++) |
| cur->regs[i].live = REG_LIVE_NONE; |
| for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++) |
| if (cur->stack[i].slot_type[0] == STACK_SPILL) |
| cur->stack[i].spilled_ptr.live = REG_LIVE_NONE; |
| return 0; |
| } |
| |
| static int ext_analyzer_insn_hook(struct bpf_verifier_env *env, |
| int insn_idx, int prev_insn_idx) |
| { |
| if (env->analyzer_ops && env->analyzer_ops->insn_hook) |
| return env->analyzer_ops->insn_hook(env, insn_idx, |
| prev_insn_idx); |
| if (env->dev_ops && env->dev_ops->insn_hook) |
| return env->dev_ops->insn_hook(env, insn_idx, prev_insn_idx); |
| |
| return 0; |
| } |
| |
| static int do_check(struct bpf_verifier_env *env) |
| { |
| struct bpf_verifier_state *state; |
| struct bpf_insn *insns = env->prog->insnsi; |
| struct bpf_reg_state *regs; |
| int insn_cnt = env->prog->len; |
| int insn_processed = 0; |
| bool do_print_state = false; |
| |
| state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL); |
| if (!state) |
| return -ENOMEM; |
| env->cur_state = state; |
| init_reg_state(state->regs); |
| state->parent = NULL; |
| for (;;) { |
| struct bpf_insn *insn; |
| u8 class; |
| int err; |
| |
| if (env->insn_idx >= insn_cnt) { |
| verbose("invalid insn idx %d insn_cnt %d\n", |
| env->insn_idx, insn_cnt); |
| return -EFAULT; |
| } |
| |
| insn = &insns[env->insn_idx]; |
| class = BPF_CLASS(insn->code); |
| |
| if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) { |
| verbose("BPF program is too large. Processed %d insn\n", |
| insn_processed); |
| return -E2BIG; |
| } |
| |
| err = is_state_visited(env, env->insn_idx); |
| if (err < 0) |
| return err; |
| if (err == 1) { |
| /* found equivalent state, can prune the search */ |
| if (verifier_log.level) { |
| if (do_print_state) |
| verbose("\nfrom %d to %d%s: safe\n", |
| env->prev_insn_idx, env->insn_idx, |
| env->cur_state->speculative ? |
| " (speculative execution)" : ""); |
| else |
| verbose("%d: safe\n", env->insn_idx); |
| } |
| goto process_bpf_exit; |
| } |
| |
| if (need_resched()) |
| cond_resched(); |
| |
| if (verifier_log.level > 1 || |
| (verifier_log.level && do_print_state)) { |
| if (verifier_log.level > 1) |
| verbose("%d:", env->insn_idx); |
| else |
| verbose("\nfrom %d to %d%s:", |
| env->prev_insn_idx, env->insn_idx, |
| env->cur_state->speculative ? |
| " (speculative execution)" : ""); |
| print_verifier_state(env->cur_state); |
| do_print_state = false; |
| } |
| |
| if (verifier_log.level) { |
| verbose("%d: ", env->insn_idx); |
| print_bpf_insn(env, insn); |
| } |
| |
| err = ext_analyzer_insn_hook(env, env->insn_idx, env->prev_insn_idx); |
| if (err) |
| return err; |
| |
| regs = cur_regs(env); |
| env->insn_aux_data[env->insn_idx].seen = true; |
| if (class == BPF_ALU || class == BPF_ALU64) { |
| err = check_alu_op(env, insn); |
| if (err) |
| return err; |
| |
| } else if (class == BPF_LDX) { |
| enum bpf_reg_type *prev_src_type, src_reg_type; |
| |
| /* check for reserved fields is already done */ |
| |
| /* check src operand */ |
| err = check_reg_arg(env, insn->src_reg, SRC_OP); |
| if (err) |
| return err; |
| |
| err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK); |
| if (err) |
| return err; |
| |
| src_reg_type = regs[insn->src_reg].type; |
| |
| /* check that memory (src_reg + off) is readable, |
| * the state of dst_reg will be updated by this func |
| */ |
| err = check_mem_access(env, env->insn_idx, insn->src_reg, |
| insn->off, BPF_SIZE(insn->code), |
| BPF_READ, insn->dst_reg, false); |
| if (err) |
| return err; |
| |
| prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type; |
| |
| if (*prev_src_type == NOT_INIT) { |
| /* saw a valid insn |
| * dst_reg = *(u32 *)(src_reg + off) |
| * save type to validate intersecting paths |
| */ |
| *prev_src_type = src_reg_type; |
| |
| } else if (src_reg_type != *prev_src_type && |
| (src_reg_type == PTR_TO_CTX || |
| *prev_src_type == PTR_TO_CTX)) { |
| /* ABuser program is trying to use the same insn |
| * dst_reg = *(u32*) (src_reg + off) |
| * with different pointer types: |
| * src_reg == ctx in one branch and |
| * src_reg == stack|map in some other branch. |
| * Reject it. |
| */ |
| verbose("same insn cannot be used with different pointers\n"); |
| return -EINVAL; |
| } |
| |
| } else if (class == BPF_STX) { |
| enum bpf_reg_type *prev_dst_type, dst_reg_type; |
| |
| if (BPF_MODE(insn->code) == BPF_XADD) { |
| err = check_xadd(env, env->insn_idx, insn); |
| if (err) |
| return err; |
| env->insn_idx++; |
| continue; |
| } |
| |
| /* check src1 operand */ |
| err = check_reg_arg(env, insn->src_reg, SRC_OP); |
| if (err) |
| return err; |
| /* check src2 operand */ |
| err = check_reg_arg(env, insn->dst_reg, SRC_OP); |
| if (err) |
| return err; |
| |
| dst_reg_type = regs[insn->dst_reg].type; |
| |
| /* check that memory (dst_reg + off) is writeable */ |
| err = check_mem_access(env, env->insn_idx, insn->dst_reg, |
| insn->off, BPF_SIZE(insn->code), |
| BPF_WRITE, insn->src_reg, false); |
| if (err) |
| return err; |
| |
| prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type; |
| |
| if (*prev_dst_type == NOT_INIT) { |
| *prev_dst_type = dst_reg_type; |
| } else if (dst_reg_type != *prev_dst_type && |
| (dst_reg_type == PTR_TO_CTX || |
| *prev_dst_type == PTR_TO_CTX)) { |
| verbose("same insn cannot be used with different pointers\n"); |
| return -EINVAL; |
| } |
| |
| } else if (class == BPF_ST) { |
| if (BPF_MODE(insn->code) != BPF_MEM || |
| insn->src_reg != BPF_REG_0) { |
| verbose("BPF_ST uses reserved fields\n"); |
| return -EINVAL; |
| } |
| /* check src operand */ |
| err = check_reg_arg(env, insn->dst_reg, SRC_OP); |
| if (err) |
| return err; |
| |
| if (is_ctx_reg(env, insn->dst_reg)) { |
| verbose("BPF_ST stores into R%d context is not allowed\n", |
| insn->dst_reg); |
| return -EACCES; |
| } |
| |
| /* check that memory (dst_reg + off) is writeable */ |
| err = check_mem_access(env, env->insn_idx, insn->dst_reg, |
| insn->off, BPF_SIZE(insn->code), |
| BPF_WRITE, -1, false); |
| if (err) |
| return err; |
| |
| } else if (class == BPF_JMP) { |
| u8 opcode = BPF_OP(insn->code); |
| |
| if (opcode == BPF_CALL) { |
| if (BPF_SRC(insn->code) != BPF_K || |
| insn->off != 0 || |
| insn->src_reg != BPF_REG_0 || |
| insn->dst_reg != BPF_REG_0) { |
| verbose("BPF_CALL uses reserved fields\n"); |
| return -EINVAL; |
| } |
| |
| err = check_call(env, insn->imm, env->insn_idx); |
| if (err) |
| return err; |
| |
| } else if (opcode == BPF_JA) { |
| if (BPF_SRC(insn->code) != BPF_K || |
| insn->imm != 0 || |
| insn->src_reg != BPF_REG_0 || |
| insn->dst_reg != BPF_REG_0) { |
| verbose("BPF_JA uses reserved fields\n"); |
| return -EINVAL; |
| } |
| |
| env->insn_idx += insn->off + 1; |
| continue; |
| |
| } else if (opcode == BPF_EXIT) { |
| if (BPF_SRC(insn->code) != BPF_K || |
| insn->imm != 0 || |
| insn->src_reg != BPF_REG_0 || |
| insn->dst_reg != BPF_REG_0) { |
| verbose("BPF_EXIT uses reserved fields\n"); |
| return -EINVAL; |
| } |
| |
| /* eBPF calling convetion is such that R0 is used |
| * to return the value from eBPF program. |
| * Make sure that it's readable at this time |
| * of bpf_exit, which means that program wrote |
| * something into it earlier |
| */ |
| err = check_reg_arg(env, BPF_REG_0, SRC_OP); |
| if (err) |
| return err; |
| |
| if (is_pointer_value(env, BPF_REG_0)) { |
| verbose("R0 leaks addr as return value\n"); |
| return -EACCES; |
| } |
| |
| err = check_return_code(env); |
| if (err) |
| return err; |
| process_bpf_exit: |
| err = pop_stack(env, &env->prev_insn_idx, &env->insn_idx); |
| if (err < 0) { |
| if (err != -ENOENT) |
| return err; |
| break; |
| } else { |
| do_print_state = true; |
| continue; |
| } |
| } else { |
| err = check_cond_jmp_op(env, insn, &env->insn_idx); |
| if (err) |
| return err; |
| } |
| } else if (class == BPF_LD) { |
| u8 mode = BPF_MODE(insn->code); |
| |
| if (mode == BPF_ABS || mode == BPF_IND) { |
| err = check_ld_abs(env, insn); |
| if (err) |
| return err; |
| |
| } else if (mode == BPF_IMM) { |
| err = check_ld_imm(env, insn); |
| if (err) |
| return err; |
| |
| env->insn_idx++; |
| env->insn_aux_data[env->insn_idx].seen = true; |
| } else { |
| verbose("invalid BPF_LD mode\n"); |
| return -EINVAL; |
| } |
| } else { |
| verbose("unknown insn class %d\n", class); |
| return -EINVAL; |
| } |
| |
| env->insn_idx++; |
| } |
| |
| verbose("processed %d insns, stack depth %d\n", |
| insn_processed, env->prog->aux->stack_depth); |
| return 0; |
| } |
| |
| static int check_map_prealloc(struct bpf_map *map) |
| { |
| return (map->map_type != BPF_MAP_TYPE_HASH && |
| map->map_type != BPF_MAP_TYPE_PERCPU_HASH && |
| map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) || |
| !(map->map_flags & BPF_F_NO_PREALLOC); |
| } |
| |
| static int check_map_prog_compatibility(struct bpf_map *map, |
| struct bpf_prog *prog) |
| |
| { |
| /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use |
| * preallocated hash maps, since doing memory allocation |
| * in overflow_handler can crash depending on where nmi got |
| * triggered. |
| */ |
| if (prog->type == BPF_PROG_TYPE_PERF_EVENT) { |
| if (!check_map_prealloc(map)) { |
| verbose("perf_event programs can only use preallocated hash map\n"); |
| return -EINVAL; |
| } |
| if (map->inner_map_meta && |
| !check_map_prealloc(map->inner_map_meta)) { |
| verbose("perf_event programs can only use preallocated inner hash map\n"); |
| return -EINVAL; |
| } |
| } |
| return 0; |
| } |
| |
| /* look for pseudo eBPF instructions that access map FDs and |
| * replace them with actual map pointers |
| */ |
| static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env) |
| { |
| struct bpf_insn *insn = env->prog->insnsi; |
| int insn_cnt = env->prog->len; |
| int i, j, err; |
| |
| err = bpf_prog_calc_tag(env->prog); |
| if (err) |
| return err; |
| |
| for (i = 0; i < insn_cnt; i++, insn++) { |
| if (BPF_CLASS(insn->code) == BPF_LDX && |
| (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) { |
| verbose("BPF_LDX uses reserved fields\n"); |
| return -EINVAL; |
| } |
| |
| if (BPF_CLASS(insn->code) == BPF_STX && |
| ((BPF_MODE(insn->code) != BPF_MEM && |
| BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) { |
| verbose("BPF_STX uses reserved fields\n"); |
| return -EINVAL; |
| } |
| |
| if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { |
| struct bpf_map *map; |
| struct fd f; |
| |
| if (i == insn_cnt - 1 || insn[1].code != 0 || |
| insn[1].dst_reg != 0 || insn[1].src_reg != 0 || |
| insn[1].off != 0) { |
| verbose("invalid bpf_ld_imm64 insn\n"); |
| return -EINVAL; |
| } |
| |
| if (insn->src_reg == 0) |
| /* valid generic load 64-bit imm */ |
| goto next_insn; |
| |
| if (insn->src_reg != BPF_PSEUDO_MAP_FD) { |
| verbose("unrecognized bpf_ld_imm64 insn\n"); |
| return -EINVAL; |
| } |
| |
| f = fdget(insn->imm); |
| map = __bpf_map_get(f); |
| if (IS_ERR(map)) { |
| verbose("fd %d is not pointing to valid bpf_map\n", |
| insn->imm); |
| return PTR_ERR(map); |
| } |
| |
| err = check_map_prog_compatibility(map, env->prog); |
| if (err) { |
| fdput(f); |
| return err; |
| } |
| |
| /* store map pointer inside BPF_LD_IMM64 instruction */ |
| insn[0].imm = (u32) (unsigned long) map; |
| insn[1].imm = ((u64) (unsigned long) map) >> 32; |
| |
| /* check whether we recorded this map already */ |
| for (j = 0; j < env->used_map_cnt; j++) |
| if (env->used_maps[j] == map) { |
| fdput(f); |
| goto next_insn; |
| } |
| |
| if (env->used_map_cnt >= MAX_USED_MAPS) { |
| fdput(f); |
| return -E2BIG; |
| } |
| |
| /* hold the map. If the program is rejected by verifier, |
| * the map will be released by release_maps() or it |
| * will be used by the valid program until it's unloaded |
| * and all maps are released in free_used_maps() |
| */ |
| map = bpf_map_inc(map, false); |
| if (IS_ERR(map)) { |
| fdput(f); |
| return PTR_ERR(map); |
| } |
| env->used_maps[env->used_map_cnt++] = map; |
| |
| fdput(f); |
| next_insn: |
| insn++; |
| i++; |
| } |
| } |
| |
| /* now all pseudo BPF_LD_IMM64 instructions load valid |
| * 'struct bpf_map *' into a register instead of user map_fd. |
| * These pointers will be used later by verifier to validate map access. |
| */ |
| return 0; |
| } |
| |
| /* drop refcnt of maps used by the rejected program */ |
| static void release_maps(struct bpf_verifier_env *env) |
| { |
| int i; |
| |
| for (i = 0; i < env->used_map_cnt; i++) |
| bpf_map_put(env->used_maps[i]); |
| } |
| |
| /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ |
| static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env) |
| { |
| struct bpf_insn *insn = env->prog->insnsi; |
| int insn_cnt = env->prog->len; |
| int i; |
| |
| for (i = 0; i < insn_cnt; i++, insn++) |
| if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) |
| insn->src_reg = 0; |
| } |
| |
| /* single env->prog->insni[off] instruction was replaced with the range |
| * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying |
| * [0, off) and [off, end) to new locations, so the patched range stays zero |
| */ |
| static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len, |
| u32 off, u32 cnt) |
| { |
| struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data; |
| int i; |
| |
| if (cnt == 1) |
| return 0; |
| new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len); |
| if (!new_data) |
| return -ENOMEM; |
| memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off); |
| memcpy(new_data + off + cnt - 1, old_data + off, |
| sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1)); |
| for (i = off; i < off + cnt - 1; i++) |
| new_data[i].seen = true; |
| env->insn_aux_data = new_data; |
| vfree(old_data); |
| return 0; |
| } |
| |
| static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off, |
| const struct bpf_insn *patch, u32 len) |
| { |
| struct bpf_prog *new_prog; |
| |
| new_prog = bpf_patch_insn_single(env->prog, off, patch, len); |
| if (!new_prog) |
| return NULL; |
| if (adjust_insn_aux_data(env, new_prog->len, off, len)) |
| return NULL; |
| return new_prog; |
| } |
| |
| /* The verifier does more data flow analysis than llvm and will not explore |
| * branches that are dead at run time. Malicious programs can have dead code |
| * too. Therefore replace all dead at-run-time code with nops. |
| */ |
| static void sanitize_dead_code(struct bpf_verifier_env *env) |
| { |
| struct bpf_insn_aux_data *aux_data = env->insn_aux_data; |
| struct bpf_insn nop = BPF_MOV64_REG(BPF_REG_0, BPF_REG_0); |
| struct bpf_insn *insn = env->prog->insnsi; |
| const int insn_cnt = env->prog->len; |
| int i; |
| |
| for (i = 0; i < insn_cnt; i++) { |
| if (aux_data[i].seen) |
| continue; |
| memcpy(insn + i, &nop, sizeof(nop)); |
| } |
| } |
| |
| /* convert load instructions that access fields of 'struct __sk_buff' |
| * into sequence of instructions that access fields of 'struct sk_buff' |
| */ |
| static int convert_ctx_accesses(struct bpf_verifier_env *env) |
| { |
| const struct bpf_verifier_ops *ops = env->prog->aux->ops; |
| int i, cnt, size, ctx_field_size, delta = 0; |
| const int insn_cnt = env->prog->len; |
| struct bpf_insn insn_buf[16], *insn; |
| struct bpf_prog *new_prog; |
| enum bpf_access_type type; |
| bool is_narrower_load; |
| u32 target_size; |
| |
| if (ops->gen_prologue) { |
| cnt = ops->gen_prologue(insn_buf, env->seen_direct_write, |
| env->prog); |
| if (cnt >= ARRAY_SIZE(insn_buf)) { |
| verbose("bpf verifier is misconfigured\n"); |
| return -EINVAL; |
| } else if (cnt) { |
| new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt); |
| if (!new_prog) |
| return -ENOMEM; |
| |
| env->prog = new_prog; |
| delta += cnt - 1; |
| } |
| } |
| |
| if (!ops->convert_ctx_access) |
| return 0; |
| |
| insn = env->prog->insnsi + delta; |
| |
| for (i = 0; i < insn_cnt; i++, insn++) { |
| if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) || |
| insn->code == (BPF_LDX | BPF_MEM | BPF_H) || |
| insn->code == (BPF_LDX | BPF_MEM | BPF_W) || |
| insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) |
| type = BPF_READ; |
| else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) || |
| insn->code == (BPF_STX | BPF_MEM | BPF_H) || |
| insn->code == (BPF_STX | BPF_MEM | BPF_W) || |
| insn->code == (BPF_STX | BPF_MEM | BPF_DW)) |
| type = BPF_WRITE; |
| else |
| continue; |
| |
| if (type == BPF_WRITE && |
| env->insn_aux_data[i + delta].sanitize_stack_off) { |
| struct bpf_insn patch[] = { |
| /* Sanitize suspicious stack slot with zero. |
| * There are no memory dependencies for this store, |
| * since it's only using frame pointer and immediate |
| * constant of zero |
| */ |
| BPF_ST_MEM(BPF_DW, BPF_REG_FP, |
| env->insn_aux_data[i + delta].sanitize_stack_off, |
| 0), |
| /* the original STX instruction will immediately |
| * overwrite the same stack slot with appropriate value |
| */ |
| *insn, |
| }; |
| |
| cnt = ARRAY_SIZE(patch); |
| new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt); |
| if (!new_prog) |
| return -ENOMEM; |
| |
| delta += cnt - 1; |
| env->prog = new_prog; |
| insn = new_prog->insnsi + i + delta; |
| continue; |
| } |
| |
| if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX) |
| continue; |
| |
| ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size; |
| size = BPF_LDST_BYTES(insn); |
| |
| /* If the read access is a narrower load of the field, |
| * convert to a 4/8-byte load, to minimum program type specific |
| * convert_ctx_access changes. If conversion is successful, |
| * we will apply proper mask to the result. |
| */ |
| is_narrower_load = size < ctx_field_size; |
| if (is_narrower_load) { |
| u32 off = insn->off; |
| u8 size_code; |
| |
| if (type == BPF_WRITE) { |
| verbose("bpf verifier narrow ctx access misconfigured\n"); |
| return -EINVAL; |
| } |
| |
| size_code = BPF_H; |
| if (ctx_field_size == 4) |
| size_code = BPF_W; |
| else if (ctx_field_size == 8) |
| size_code = BPF_DW; |
| |
| insn->off = off & ~(ctx_field_size - 1); |
| insn->code = BPF_LDX | BPF_MEM | size_code; |
| } |
| |
| target_size = 0; |
| cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog, |
| &target_size); |
| if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || |
| (ctx_field_size && !target_size)) { |
| verbose("bpf verifier is misconfigured\n"); |
| return -EINVAL; |
| } |
| |
| if (is_narrower_load && size < target_size) { |
| if (ctx_field_size <= 4) |
| insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, |
| (1 << size * 8) - 1); |
| else |
| insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, |
| (1 << size * 8) - 1); |
| } |
| |
| new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); |
| if (!new_prog) |
| return -ENOMEM; |
| |
| delta += cnt - 1; |
| |
| /* keep walking new program and skip insns we just inserted */ |
| env->prog = new_prog; |
| insn = new_prog->insnsi + i + delta; |
| } |
| |
| return 0; |
| } |
| |
| /* fixup insn->imm field of bpf_call instructions |
| * and inline eligible helpers as explicit sequence of BPF instructions |
| * |
| * this function is called after eBPF program passed verification |
| */ |
| static int fixup_bpf_calls(struct bpf_verifier_env *env) |
| { |
| struct bpf_prog *prog = env->prog; |
| struct bpf_insn *insn = prog->insnsi; |
| const struct bpf_func_proto *fn; |
| const int insn_cnt = prog->len; |
| struct bpf_insn insn_buf[16]; |
| struct bpf_prog *new_prog; |
| struct bpf_map *map_ptr; |
| int i, cnt, delta = 0; |
| struct bpf_insn_aux_data *aux; |
| |
| for (i = 0; i < insn_cnt; i++, insn++) { |
| if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) || |
| insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || |
| insn->code == (BPF_ALU | BPF_MOD | BPF_X) || |
| insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { |
| bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; |
| struct bpf_insn mask_and_div[] = { |
| BPF_MOV_REG(BPF_CLASS(insn->code), BPF_REG_AX, insn->src_reg), |
| /* [R,W]x div 0 -> 0 */ |
| BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, 2), |
| BPF_RAW_REG(*insn, insn->dst_reg, BPF_REG_AX), |
| BPF_JMP_IMM(BPF_JA, 0, 0, 1), |
| BPF_ALU_REG(BPF_CLASS(insn->code), BPF_XOR, insn->dst_reg, insn->dst_reg), |
| }; |
| struct bpf_insn mask_and_mod[] = { |
| BPF_MOV_REG(BPF_CLASS(insn->code), BPF_REG_AX, insn->src_reg), |
| BPF_JMP_IMM(BPF_JEQ, BPF_REG_AX, 0, 1 + (is64 ? 0 : 1)), |
| BPF_RAW_REG(*insn, insn->dst_reg, BPF_REG_AX), |
| BPF_JMP_IMM(BPF_JA, 0, 0, 1), |
| BPF_MOV32_REG(insn->dst_reg, insn->dst_reg), |
| }; |
| struct bpf_insn *patchlet; |
| |
| if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) || |
| insn->code == (BPF_ALU | BPF_DIV | BPF_X)) { |
| patchlet = mask_and_div; |
| cnt = ARRAY_SIZE(mask_and_div); |
| } else { |
| patchlet = mask_and_mod; |
| cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 2 : 0); |
| } |
| |
| new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt); |
| if (!new_prog) |
| return -ENOMEM; |
| |
| delta += cnt - 1; |
| env->prog = prog = new_prog; |
| insn = new_prog->insnsi + i + delta; |
| continue; |
| } |
| |
| if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) || |
| insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) { |
| const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X; |
| const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X; |
| struct bpf_insn insn_buf[16]; |
| struct bpf_insn *patch = &insn_buf[0]; |
| bool issrc, isneg, isimm; |
| u32 off_reg; |
| |
| aux = &env->insn_aux_data[i + delta]; |
| if (!aux->alu_state || |
| aux->alu_state == BPF_ALU_NON_POINTER) |
| continue; |
| |
| isneg = aux->alu_state & BPF_ALU_NEG_VALUE; |
| issrc = (aux->alu_state & BPF_ALU_SANITIZE) == |
| BPF_ALU_SANITIZE_SRC; |
| isimm = aux->alu_state & BPF_ALU_IMMEDIATE; |
| |
| off_reg = issrc ? insn->src_reg : insn->dst_reg; |
| if (isimm) { |
| *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); |
| } else { |
| if (isneg) |
| *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); |
| *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit); |
| *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg); |
| *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg); |
| *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0); |
| *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63); |
| *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg); |
| } |
| if (!issrc) |
| *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg); |
| insn->src_reg = BPF_REG_AX; |
| if (isneg) |
| insn->code = insn->code == code_add ? |
| code_sub : code_add; |
| *patch++ = *insn; |
| if (issrc && isneg && !isimm) |
| *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1); |
| cnt = patch - insn_buf; |
| |
| new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); |
| if (!new_prog) |
| return -ENOMEM; |
| |
| delta += cnt - 1; |
| env->prog = prog = new_prog; |
| insn = new_prog->insnsi + i + delta; |
| continue; |
| } |
| |
| if (insn->code != (BPF_JMP | BPF_CALL)) |
| continue; |
| |
| if (insn->imm == BPF_FUNC_get_route_realm) |
| prog->dst_needed = 1; |
| if (insn->imm == BPF_FUNC_get_prandom_u32) |
| bpf_user_rnd_init_once(); |
| if (insn->imm == BPF_FUNC_tail_call) { |
| /* If we tail call into other programs, we |
| * cannot make any assumptions since they can |
| * be replaced dynamically during runtime in |
| * the program array. |
| */ |
| prog->cb_access = 1; |
| env->prog->aux->stack_depth = MAX_BPF_STACK; |
| |
| /* mark bpf_tail_call as different opcode to avoid |
| * conditional branch in the interpeter for every normal |
| * call and to prevent accidental JITing by JIT compiler |
| * that doesn't support bpf_tail_call yet |
| */ |
| insn->imm = 0; |
| insn->code = BPF_JMP | BPF_TAIL_CALL; |
| |
| /* instead of changing every JIT dealing with tail_call |
| * emit two extra insns: |
| * if (index >= max_entries) goto out; |
| * index &= array->index_mask; |
| * to avoid out-of-bounds cpu speculation |
| */ |
| map_ptr = env->insn_aux_data[i + delta].map_ptr; |
| if (map_ptr == BPF_MAP_PTR_POISON) { |
| verbose("tail_call obusing map_ptr\n"); |
| return -EINVAL; |
| } |
| if (!map_ptr->unpriv_array) |
| continue; |
| insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3, |
| map_ptr->max_entries, 2); |
| insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3, |
| container_of(map_ptr, |
| struct bpf_array, |
| map)->index_mask); |
| insn_buf[2] = *insn; |
| cnt = 3; |
| new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); |
| if (!new_prog) |
| return -ENOMEM; |
| |
| delta += cnt - 1; |
| env->prog = prog = new_prog; |
| insn = new_prog->insnsi + i + delta; |
| continue; |
| } |
| |
| /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup |
| * handlers are currently limited to 64 bit only. |
| */ |
| if (ebpf_jit_enabled() && BITS_PER_LONG == 64 && |
| insn->imm == BPF_FUNC_map_lookup_elem) { |
| map_ptr = env->insn_aux_data[i + delta].map_ptr; |
| if (map_ptr == BPF_MAP_PTR_POISON || |
| !map_ptr->ops->map_gen_lookup) |
| goto patch_call_imm; |
| |
| cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf); |
| if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) { |
| verbose("bpf verifier is misconfigured\n"); |
| return -EINVAL; |
| } |
| |
| new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, |
| cnt); |
| if (!new_prog) |
| return -ENOMEM; |
| |
| delta += cnt - 1; |
| |
| /* keep walking new program and skip insns we just inserted */ |
| env->prog = prog = new_prog; |
| insn = new_prog->insnsi + i + delta; |
| continue; |
| } |
| |
| if (insn->imm == BPF_FUNC_redirect_map) { |
| /* Note, we cannot use prog directly as imm as subsequent |
| * rewrites would still change the prog pointer. The only |
| * stable address we can use is aux, which also works with |
| * prog clones during blinding. |
| */ |
| u64 addr = (unsigned long)prog->aux; |
| struct bpf_insn r4_ld[] = { |
| BPF_LD_IMM64(BPF_REG_4, addr), |
| *insn, |
| }; |
| cnt = ARRAY_SIZE(r4_ld); |
| |
| new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt); |
| if (!new_prog) |
| return -ENOMEM; |
| |
| delta += cnt - 1; |
| env->prog = prog = new_prog; |
| insn = new_prog->insnsi + i + delta; |
| } |
| patch_call_imm: |
| fn = prog->aux->ops->get_func_proto(insn->imm, env->prog); |
| /* all functions that have prototype and verifier allowed |
| * programs to call them, must be real in-kernel functions |
| */ |
| if (!fn->func) { |
| verbose("kernel subsystem misconfigured func %s#%d\n", |
| func_id_name(insn->imm), insn->imm); |
| return -EFAULT; |
| } |
| insn->imm = fn->func - __bpf_call_base; |
| } |
| |
| return 0; |
| } |
| |
| static void free_states(struct bpf_verifier_env *env) |
| { |
| struct bpf_verifier_state_list *sl, *sln; |
| int i; |
| |
| if (!env->explored_states) |
| return; |
| |
| for (i = 0; i < env->prog->len; i++) { |
| sl = env->explored_states[i]; |
| |
| if (sl) |
| while (sl != STATE_LIST_MARK) { |
| sln = sl->next; |
| free_verifier_state(&sl->state, false); |
| kfree(sl); |
| sl = sln; |
| } |
| } |
| |
| kfree(env->explored_states); |
| } |
| |
| int bpf_check(struct bpf_prog **prog, union bpf_attr *attr) |
| { |
| struct bpf_verifier_log *log = &verifier_log; |
| struct bpf_verifier_env *env; |
| int ret = -EINVAL; |
| |
| /* 'struct bpf_verifier_env' can be global, but since it's not small, |
| * allocate/free it every time bpf_check() is called |
| */ |
| env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); |
| if (!env) |
| return -ENOMEM; |
| |
| env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) * |
| (*prog)->len); |
| ret = -ENOMEM; |
| if (!env->insn_aux_data) |
| goto err_free_env; |
| env->prog = *prog; |
| |
| /* grab the mutex to protect few globals used by verifier */ |
| mutex_lock(&bpf_verifier_lock); |
| |
| if (attr->log_level || attr->log_buf || attr->log_size) { |
| /* user requested verbose verifier output |
| * and supplied buffer to store the verification trace |
| */ |
| log->level = attr->log_level; |
| log->ubuf = (char __user *) (unsigned long) attr->log_buf; |
| log->len_total = attr->log_size; |
| log->len_used = 0; |
| |
| ret = -EINVAL; |
| /* log attributes have to be sane */ |
| if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 || |
| !log->level || !log->ubuf) |
| goto err_unlock; |
| |
| ret = -ENOMEM; |
| } else { |
| log->level = 0; |
| } |
| |
| env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT); |
| if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) |
| env->strict_alignment = true; |
| |
| if (env->prog->aux->offload) { |
| ret = bpf_prog_offload_verifier_prep(env); |
| if (ret) |
| goto err_unlock; |
| } |
| |
| ret = replace_map_fd_with_map_ptr(env); |
| if (ret < 0) |
| goto skip_full_check; |
| |
| env->explored_states = kcalloc(env->prog->len, |
| sizeof(struct bpf_verifier_state_list *), |
| GFP_USER); |
| ret = -ENOMEM; |
| if (!env->explored_states) |
| goto skip_full_check; |
| |
| ret = check_cfg(env); |
| if (ret < 0) |
| goto skip_full_check; |
| |
| env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); |
| |
| ret = do_check(env); |
| if (env->cur_state) { |
| free_verifier_state(env->cur_state, true); |
| env->cur_state = NULL; |
| } |
| |
| skip_full_check: |
| while (!pop_stack(env, NULL, NULL)); |
| free_states(env); |
| |
| if (ret == 0) |
| sanitize_dead_code(env); |
| |
| if (ret == 0) |
| /* program is valid, convert *(u32*)(ctx + off) accesses */ |
| ret = convert_ctx_accesses(env); |
| |
| if (ret == 0) |
| ret = fixup_bpf_calls(env); |
| |
| if (log->level && bpf_verifier_log_full(log)) { |
| ret = -ENOSPC; |
| } |
| |
| if (log->level && !log->ubuf) { |
| ret = -EFAULT; |
| goto err_release_maps; |
| } |
| |
| if (ret == 0 && env->used_map_cnt) { |
| /* if program passed verifier, update used_maps in bpf_prog_info */ |
| env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt, |
| sizeof(env->used_maps[0]), |
| GFP_KERNEL); |
| |
| if (!env->prog->aux->used_maps) { |
| ret = -ENOMEM; |
| goto err_release_maps; |
| } |
| |
| memcpy(env->prog->aux->used_maps, env->used_maps, |
| sizeof(env->used_maps[0]) * env->used_map_cnt); |
| env->prog->aux->used_map_cnt = env->used_map_cnt; |
| |
| /* program is valid. Convert pseudo bpf_ld_imm64 into generic |
| * bpf_ld_imm64 instructions |
| */ |
| convert_pseudo_ld_imm64(env); |
| } |
| |
| err_release_maps: |
| if (!env->prog->aux->used_maps) |
| /* if we didn't copy map pointers into bpf_prog_info, release |
| * them now. Otherwise free_used_maps() will release them. |
| */ |
| release_maps(env); |
| *prog = env->prog; |
| err_unlock: |
| mutex_unlock(&bpf_verifier_lock); |
| vfree(env->insn_aux_data); |
| err_free_env: |
| kfree(env); |
| return ret; |
| } |
| |
| int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops, |
| void *priv) |
| { |
| struct bpf_verifier_env *env; |
| int ret; |
| |
| env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL); |
| if (!env) |
| return -ENOMEM; |
| |
| env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) * |
| prog->len); |
| ret = -ENOMEM; |
| if (!env->insn_aux_data) |
| goto err_free_env; |
| env->prog = prog; |
| env->analyzer_ops = ops; |
| env->analyzer_priv = priv; |
| |
| /* grab the mutex to protect few globals used by verifier */ |
| mutex_lock(&bpf_verifier_lock); |
| |
| verifier_log.level = 0; |
| |
| env->strict_alignment = false; |
| if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) |
| env->strict_alignment = true; |
| |
| env->explored_states = kcalloc(env->prog->len, |
| sizeof(struct bpf_verifier_state_list *), |
| GFP_KERNEL); |
| ret = -ENOMEM; |
| if (!env->explored_states) |
| goto skip_full_check; |
| |
| ret = check_cfg(env); |
| if (ret < 0) |
| goto skip_full_check; |
| |
| env->allow_ptr_leaks = capable(CAP_SYS_ADMIN); |
| |
| ret = do_check(env); |
| if (env->cur_state) { |
| free_verifier_state(env->cur_state, true); |
| env->cur_state = NULL; |
| } |
| |
| skip_full_check: |
| while (!pop_stack(env, NULL, NULL)); |
| free_states(env); |
| |
| mutex_unlock(&bpf_verifier_lock); |
| vfree(env->insn_aux_data); |
| err_free_env: |
| kfree(env); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(bpf_analyzer); |