| /* |
| * Scatterlist Cryptographic API. |
| * |
| * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> |
| * Copyright (c) 2002 David S. Miller (davem@redhat.com) |
| * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au> |
| * |
| * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no> |
| * and Nettle, by Niels Möller. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the Free |
| * Software Foundation; either version 2 of the License, or (at your option) |
| * any later version. |
| * |
| */ |
| #ifndef _LINUX_CRYPTO_H |
| #define _LINUX_CRYPTO_H |
| |
| #include <linux/atomic.h> |
| #include <linux/kernel.h> |
| #include <linux/list.h> |
| #include <linux/bug.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include <linux/uaccess.h> |
| #include <linux/completion.h> |
| |
| /* |
| * Autoloaded crypto modules should only use a prefixed name to avoid allowing |
| * arbitrary modules to be loaded. Loading from userspace may still need the |
| * unprefixed names, so retains those aliases as well. |
| * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3 |
| * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro |
| * expands twice on the same line. Instead, use a separate base name for the |
| * alias. |
| */ |
| #define MODULE_ALIAS_CRYPTO(name) \ |
| __MODULE_INFO(alias, alias_userspace, name); \ |
| __MODULE_INFO(alias, alias_crypto, "crypto-" name) |
| |
| /* |
| * Algorithm masks and types. |
| */ |
| #define CRYPTO_ALG_TYPE_MASK 0x0000000f |
| #define CRYPTO_ALG_TYPE_CIPHER 0x00000001 |
| #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002 |
| #define CRYPTO_ALG_TYPE_AEAD 0x00000003 |
| #define CRYPTO_ALG_TYPE_BLKCIPHER 0x00000004 |
| #define CRYPTO_ALG_TYPE_ABLKCIPHER 0x00000005 |
| #define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005 |
| #define CRYPTO_ALG_TYPE_GIVCIPHER 0x00000006 |
| #define CRYPTO_ALG_TYPE_DISKCIPHER 0x00000007 |
| #define CRYPTO_ALG_TYPE_KPP 0x00000008 |
| #define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a |
| #define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b |
| #define CRYPTO_ALG_TYPE_RNG 0x0000000c |
| #define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d |
| #define CRYPTO_ALG_TYPE_DIGEST 0x0000000e |
| #define CRYPTO_ALG_TYPE_HASH 0x0000000e |
| #define CRYPTO_ALG_TYPE_SHASH 0x0000000e |
| #define CRYPTO_ALG_TYPE_AHASH 0x0000000f |
| |
| #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e |
| #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e |
| #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK 0x0000000c |
| #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e |
| |
| #define CRYPTO_ALG_LARVAL 0x00000010 |
| #define CRYPTO_ALG_DEAD 0x00000020 |
| #define CRYPTO_ALG_DYING 0x00000040 |
| #define CRYPTO_ALG_ASYNC 0x00000080 |
| |
| /* |
| * Set this bit if and only if the algorithm requires another algorithm of |
| * the same type to handle corner cases. |
| */ |
| #define CRYPTO_ALG_NEED_FALLBACK 0x00000100 |
| |
| /* |
| * This bit is set for symmetric key ciphers that have already been wrapped |
| * with a generic IV generator to prevent them from being wrapped again. |
| */ |
| #define CRYPTO_ALG_GENIV 0x00000200 |
| |
| /* |
| * Set if the algorithm has passed automated run-time testing. Note that |
| * if there is no run-time testing for a given algorithm it is considered |
| * to have passed. |
| */ |
| |
| #define CRYPTO_ALG_TESTED 0x00000400 |
| |
| /* |
| * Set if the algorithm is an instance that is built from templates. |
| */ |
| #define CRYPTO_ALG_INSTANCE 0x00000800 |
| |
| /* Set this bit if the algorithm provided is hardware accelerated but |
| * not available to userspace via instruction set or so. |
| */ |
| #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000 |
| |
| /* |
| * Mark a cipher as a service implementation only usable by another |
| * cipher and never by a normal user of the kernel crypto API |
| */ |
| #define CRYPTO_ALG_INTERNAL 0x00002000 |
| |
| /* |
| * Set if the algorithm has a ->setkey() method but can be used without |
| * calling it first, i.e. there is a default key. |
| */ |
| #define CRYPTO_ALG_OPTIONAL_KEY 0x00004000 |
| |
| /* |
| * Don't trigger module loading |
| */ |
| #define CRYPTO_NOLOAD 0x00008000 |
| |
| /* |
| * Transform masks and values (for crt_flags). |
| */ |
| #define CRYPTO_TFM_NEED_KEY 0x00000001 |
| |
| #define CRYPTO_TFM_REQ_MASK 0x000fff00 |
| #define CRYPTO_TFM_RES_MASK 0xfff00000 |
| |
| #define CRYPTO_TFM_REQ_WEAK_KEY 0x00000100 |
| #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200 |
| #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400 |
| #define CRYPTO_TFM_RES_WEAK_KEY 0x00100000 |
| #define CRYPTO_TFM_RES_BAD_KEY_LEN 0x00200000 |
| #define CRYPTO_TFM_RES_BAD_KEY_SCHED 0x00400000 |
| #define CRYPTO_TFM_RES_BAD_BLOCK_LEN 0x00800000 |
| #define CRYPTO_TFM_RES_BAD_FLAGS 0x01000000 |
| |
| /* |
| * Miscellaneous stuff. |
| */ |
| #define CRYPTO_MAX_ALG_NAME 128 |
| |
| /* |
| * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual |
| * declaration) is used to ensure that the crypto_tfm context structure is |
| * aligned correctly for the given architecture so that there are no alignment |
| * faults for C data types. In particular, this is required on platforms such |
| * as arm where pointers are 32-bit aligned but there are data types such as |
| * u64 which require 64-bit alignment. |
| */ |
| #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN |
| |
| #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN))) |
| |
| struct scatterlist; |
| struct crypto_ablkcipher; |
| struct crypto_async_request; |
| struct crypto_blkcipher; |
| struct crypto_tfm; |
| struct crypto_type; |
| struct skcipher_givcrypt_request; |
| |
| typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err); |
| |
| /** |
| * DOC: Block Cipher Context Data Structures |
| * |
| * These data structures define the operating context for each block cipher |
| * type. |
| */ |
| |
| struct crypto_async_request { |
| struct list_head list; |
| crypto_completion_t complete; |
| void *data; |
| struct crypto_tfm *tfm; |
| |
| u32 flags; |
| }; |
| |
| struct ablkcipher_request { |
| struct crypto_async_request base; |
| |
| unsigned int nbytes; |
| |
| void *info; |
| |
| struct scatterlist *src; |
| struct scatterlist *dst; |
| |
| void *__ctx[] CRYPTO_MINALIGN_ATTR; |
| }; |
| |
| struct blkcipher_desc { |
| struct crypto_blkcipher *tfm; |
| void *info; |
| u32 flags; |
| }; |
| |
| struct cipher_desc { |
| struct crypto_tfm *tfm; |
| void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); |
| unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst, |
| const u8 *src, unsigned int nbytes); |
| void *info; |
| }; |
| |
| /** |
| * DOC: Block Cipher Algorithm Definitions |
| * |
| * These data structures define modular crypto algorithm implementations, |
| * managed via crypto_register_alg() and crypto_unregister_alg(). |
| */ |
| |
| /** |
| * struct ablkcipher_alg - asynchronous block cipher definition |
| * @min_keysize: Minimum key size supported by the transformation. This is the |
| * smallest key length supported by this transformation algorithm. |
| * This must be set to one of the pre-defined values as this is |
| * not hardware specific. Possible values for this field can be |
| * found via git grep "_MIN_KEY_SIZE" include/crypto/ |
| * @max_keysize: Maximum key size supported by the transformation. This is the |
| * largest key length supported by this transformation algorithm. |
| * This must be set to one of the pre-defined values as this is |
| * not hardware specific. Possible values for this field can be |
| * found via git grep "_MAX_KEY_SIZE" include/crypto/ |
| * @setkey: Set key for the transformation. This function is used to either |
| * program a supplied key into the hardware or store the key in the |
| * transformation context for programming it later. Note that this |
| * function does modify the transformation context. This function can |
| * be called multiple times during the existence of the transformation |
| * object, so one must make sure the key is properly reprogrammed into |
| * the hardware. This function is also responsible for checking the key |
| * length for validity. In case a software fallback was put in place in |
| * the @cra_init call, this function might need to use the fallback if |
| * the algorithm doesn't support all of the key sizes. |
| * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt |
| * the supplied scatterlist containing the blocks of data. The crypto |
| * API consumer is responsible for aligning the entries of the |
| * scatterlist properly and making sure the chunks are correctly |
| * sized. In case a software fallback was put in place in the |
| * @cra_init call, this function might need to use the fallback if |
| * the algorithm doesn't support all of the key sizes. In case the |
| * key was stored in transformation context, the key might need to be |
| * re-programmed into the hardware in this function. This function |
| * shall not modify the transformation context, as this function may |
| * be called in parallel with the same transformation object. |
| * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt |
| * and the conditions are exactly the same. |
| * @givencrypt: Update the IV for encryption. With this function, a cipher |
| * implementation may provide the function on how to update the IV |
| * for encryption. |
| * @givdecrypt: Update the IV for decryption. This is the reverse of |
| * @givencrypt . |
| * @geniv: The transformation implementation may use an "IV generator" provided |
| * by the kernel crypto API. Several use cases have a predefined |
| * approach how IVs are to be updated. For such use cases, the kernel |
| * crypto API provides ready-to-use implementations that can be |
| * referenced with this variable. |
| * @ivsize: IV size applicable for transformation. The consumer must provide an |
| * IV of exactly that size to perform the encrypt or decrypt operation. |
| * |
| * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are |
| * mandatory and must be filled. |
| */ |
| struct ablkcipher_alg { |
| int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key, |
| unsigned int keylen); |
| int (*encrypt)(struct ablkcipher_request *req); |
| int (*decrypt)(struct ablkcipher_request *req); |
| int (*givencrypt)(struct skcipher_givcrypt_request *req); |
| int (*givdecrypt)(struct skcipher_givcrypt_request *req); |
| |
| const char *geniv; |
| |
| unsigned int min_keysize; |
| unsigned int max_keysize; |
| unsigned int ivsize; |
| }; |
| |
| /** |
| * struct blkcipher_alg - synchronous block cipher definition |
| * @min_keysize: see struct ablkcipher_alg |
| * @max_keysize: see struct ablkcipher_alg |
| * @setkey: see struct ablkcipher_alg |
| * @encrypt: see struct ablkcipher_alg |
| * @decrypt: see struct ablkcipher_alg |
| * @geniv: see struct ablkcipher_alg |
| * @ivsize: see struct ablkcipher_alg |
| * |
| * All fields except @geniv and @ivsize are mandatory and must be filled. |
| */ |
| struct blkcipher_alg { |
| int (*setkey)(struct crypto_tfm *tfm, const u8 *key, |
| unsigned int keylen); |
| int (*encrypt)(struct blkcipher_desc *desc, |
| struct scatterlist *dst, struct scatterlist *src, |
| unsigned int nbytes); |
| int (*decrypt)(struct blkcipher_desc *desc, |
| struct scatterlist *dst, struct scatterlist *src, |
| unsigned int nbytes); |
| |
| const char *geniv; |
| |
| unsigned int min_keysize; |
| unsigned int max_keysize; |
| unsigned int ivsize; |
| }; |
| |
| /** |
| * struct cipher_alg - single-block symmetric ciphers definition |
| * @cia_min_keysize: Minimum key size supported by the transformation. This is |
| * the smallest key length supported by this transformation |
| * algorithm. This must be set to one of the pre-defined |
| * values as this is not hardware specific. Possible values |
| * for this field can be found via git grep "_MIN_KEY_SIZE" |
| * include/crypto/ |
| * @cia_max_keysize: Maximum key size supported by the transformation. This is |
| * the largest key length supported by this transformation |
| * algorithm. This must be set to one of the pre-defined values |
| * as this is not hardware specific. Possible values for this |
| * field can be found via git grep "_MAX_KEY_SIZE" |
| * include/crypto/ |
| * @cia_setkey: Set key for the transformation. This function is used to either |
| * program a supplied key into the hardware or store the key in the |
| * transformation context for programming it later. Note that this |
| * function does modify the transformation context. This function |
| * can be called multiple times during the existence of the |
| * transformation object, so one must make sure the key is properly |
| * reprogrammed into the hardware. This function is also |
| * responsible for checking the key length for validity. |
| * @cia_encrypt: Encrypt a single block. This function is used to encrypt a |
| * single block of data, which must be @cra_blocksize big. This |
| * always operates on a full @cra_blocksize and it is not possible |
| * to encrypt a block of smaller size. The supplied buffers must |
| * therefore also be at least of @cra_blocksize size. Both the |
| * input and output buffers are always aligned to @cra_alignmask. |
| * In case either of the input or output buffer supplied by user |
| * of the crypto API is not aligned to @cra_alignmask, the crypto |
| * API will re-align the buffers. The re-alignment means that a |
| * new buffer will be allocated, the data will be copied into the |
| * new buffer, then the processing will happen on the new buffer, |
| * then the data will be copied back into the original buffer and |
| * finally the new buffer will be freed. In case a software |
| * fallback was put in place in the @cra_init call, this function |
| * might need to use the fallback if the algorithm doesn't support |
| * all of the key sizes. In case the key was stored in |
| * transformation context, the key might need to be re-programmed |
| * into the hardware in this function. This function shall not |
| * modify the transformation context, as this function may be |
| * called in parallel with the same transformation object. |
| * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to |
| * @cia_encrypt, and the conditions are exactly the same. |
| * |
| * All fields are mandatory and must be filled. |
| */ |
| struct cipher_alg { |
| unsigned int cia_min_keysize; |
| unsigned int cia_max_keysize; |
| int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key, |
| unsigned int keylen); |
| void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); |
| void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); |
| }; |
| |
| struct compress_alg { |
| int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src, |
| unsigned int slen, u8 *dst, unsigned int *dlen); |
| int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src, |
| unsigned int slen, u8 *dst, unsigned int *dlen); |
| }; |
| |
| |
| #define cra_ablkcipher cra_u.ablkcipher |
| #define cra_blkcipher cra_u.blkcipher |
| #define cra_cipher cra_u.cipher |
| #define cra_compress cra_u.compress |
| |
| /** |
| * struct crypto_alg - definition of a cryptograpic cipher algorithm |
| * @cra_flags: Flags describing this transformation. See include/linux/crypto.h |
| * CRYPTO_ALG_* flags for the flags which go in here. Those are |
| * used for fine-tuning the description of the transformation |
| * algorithm. |
| * @cra_blocksize: Minimum block size of this transformation. The size in bytes |
| * of the smallest possible unit which can be transformed with |
| * this algorithm. The users must respect this value. |
| * In case of HASH transformation, it is possible for a smaller |
| * block than @cra_blocksize to be passed to the crypto API for |
| * transformation, in case of any other transformation type, an |
| * error will be returned upon any attempt to transform smaller |
| * than @cra_blocksize chunks. |
| * @cra_ctxsize: Size of the operational context of the transformation. This |
| * value informs the kernel crypto API about the memory size |
| * needed to be allocated for the transformation context. |
| * @cra_alignmask: Alignment mask for the input and output data buffer. The data |
| * buffer containing the input data for the algorithm must be |
| * aligned to this alignment mask. The data buffer for the |
| * output data must be aligned to this alignment mask. Note that |
| * the Crypto API will do the re-alignment in software, but |
| * only under special conditions and there is a performance hit. |
| * The re-alignment happens at these occasions for different |
| * @cra_u types: cipher -- For both input data and output data |
| * buffer; ahash -- For output hash destination buf; shash -- |
| * For output hash destination buf. |
| * This is needed on hardware which is flawed by design and |
| * cannot pick data from arbitrary addresses. |
| * @cra_priority: Priority of this transformation implementation. In case |
| * multiple transformations with same @cra_name are available to |
| * the Crypto API, the kernel will use the one with highest |
| * @cra_priority. |
| * @cra_name: Generic name (usable by multiple implementations) of the |
| * transformation algorithm. This is the name of the transformation |
| * itself. This field is used by the kernel when looking up the |
| * providers of particular transformation. |
| * @cra_driver_name: Unique name of the transformation provider. This is the |
| * name of the provider of the transformation. This can be any |
| * arbitrary value, but in the usual case, this contains the |
| * name of the chip or provider and the name of the |
| * transformation algorithm. |
| * @cra_type: Type of the cryptographic transformation. This is a pointer to |
| * struct crypto_type, which implements callbacks common for all |
| * transformation types. There are multiple options: |
| * &crypto_blkcipher_type, &crypto_ablkcipher_type, |
| * &crypto_ahash_type, &crypto_rng_type. |
| * This field might be empty. In that case, there are no common |
| * callbacks. This is the case for: cipher, compress, shash. |
| * @cra_u: Callbacks implementing the transformation. This is a union of |
| * multiple structures. Depending on the type of transformation selected |
| * by @cra_type and @cra_flags above, the associated structure must be |
| * filled with callbacks. This field might be empty. This is the case |
| * for ahash, shash. |
| * @cra_init: Initialize the cryptographic transformation object. This function |
| * is used to initialize the cryptographic transformation object. |
| * This function is called only once at the instantiation time, right |
| * after the transformation context was allocated. In case the |
| * cryptographic hardware has some special requirements which need to |
| * be handled by software, this function shall check for the precise |
| * requirement of the transformation and put any software fallbacks |
| * in place. |
| * @cra_exit: Deinitialize the cryptographic transformation object. This is a |
| * counterpart to @cra_init, used to remove various changes set in |
| * @cra_init. |
| * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE |
| * @cra_list: internally used |
| * @cra_users: internally used |
| * @cra_refcnt: internally used |
| * @cra_destroy: internally used |
| * |
| * The struct crypto_alg describes a generic Crypto API algorithm and is common |
| * for all of the transformations. Any variable not documented here shall not |
| * be used by a cipher implementation as it is internal to the Crypto API. |
| */ |
| struct crypto_alg { |
| struct list_head cra_list; |
| struct list_head cra_users; |
| |
| u32 cra_flags; |
| unsigned int cra_blocksize; |
| unsigned int cra_ctxsize; |
| unsigned int cra_alignmask; |
| |
| int cra_priority; |
| atomic_t cra_refcnt; |
| |
| char cra_name[CRYPTO_MAX_ALG_NAME]; |
| char cra_driver_name[CRYPTO_MAX_ALG_NAME]; |
| |
| const struct crypto_type *cra_type; |
| |
| union { |
| struct ablkcipher_alg ablkcipher; |
| struct blkcipher_alg blkcipher; |
| struct cipher_alg cipher; |
| struct compress_alg compress; |
| } cra_u; |
| |
| int (*cra_init)(struct crypto_tfm *tfm); |
| void (*cra_exit)(struct crypto_tfm *tfm); |
| void (*cra_destroy)(struct crypto_alg *alg); |
| |
| struct module *cra_module; |
| } CRYPTO_MINALIGN_ATTR; |
| |
| /* |
| * A helper struct for waiting for completion of async crypto ops |
| */ |
| struct crypto_wait { |
| struct completion completion; |
| int err; |
| }; |
| |
| /* |
| * Macro for declaring a crypto op async wait object on stack |
| */ |
| #define DECLARE_CRYPTO_WAIT(_wait) \ |
| struct crypto_wait _wait = { \ |
| COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 } |
| |
| /* |
| * Async ops completion helper functioons |
| */ |
| void crypto_req_done(struct crypto_async_request *req, int err); |
| |
| static inline int crypto_wait_req(int err, struct crypto_wait *wait) |
| { |
| switch (err) { |
| case -EINPROGRESS: |
| case -EBUSY: |
| wait_for_completion(&wait->completion); |
| reinit_completion(&wait->completion); |
| err = wait->err; |
| break; |
| }; |
| |
| return err; |
| } |
| |
| static inline void crypto_init_wait(struct crypto_wait *wait) |
| { |
| init_completion(&wait->completion); |
| } |
| |
| /* |
| * Algorithm registration interface. |
| */ |
| int crypto_register_alg(struct crypto_alg *alg); |
| int crypto_unregister_alg(struct crypto_alg *alg); |
| int crypto_register_algs(struct crypto_alg *algs, int count); |
| int crypto_unregister_algs(struct crypto_alg *algs, int count); |
| |
| /* |
| * Algorithm query interface. |
| */ |
| int crypto_has_alg(const char *name, u32 type, u32 mask); |
| |
| /* |
| * Transforms: user-instantiated objects which encapsulate algorithms |
| * and core processing logic. Managed via crypto_alloc_*() and |
| * crypto_free_*(), as well as the various helpers below. |
| */ |
| |
| struct ablkcipher_tfm { |
| int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key, |
| unsigned int keylen); |
| int (*encrypt)(struct ablkcipher_request *req); |
| int (*decrypt)(struct ablkcipher_request *req); |
| |
| struct crypto_ablkcipher *base; |
| |
| unsigned int ivsize; |
| unsigned int reqsize; |
| }; |
| |
| struct blkcipher_tfm { |
| void *iv; |
| int (*setkey)(struct crypto_tfm *tfm, const u8 *key, |
| unsigned int keylen); |
| int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst, |
| struct scatterlist *src, unsigned int nbytes); |
| int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst, |
| struct scatterlist *src, unsigned int nbytes); |
| }; |
| |
| struct cipher_tfm { |
| int (*cit_setkey)(struct crypto_tfm *tfm, |
| const u8 *key, unsigned int keylen); |
| void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); |
| void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src); |
| }; |
| |
| struct compress_tfm { |
| int (*cot_compress)(struct crypto_tfm *tfm, |
| const u8 *src, unsigned int slen, |
| u8 *dst, unsigned int *dlen); |
| int (*cot_decompress)(struct crypto_tfm *tfm, |
| const u8 *src, unsigned int slen, |
| u8 *dst, unsigned int *dlen); |
| }; |
| |
| #define crt_ablkcipher crt_u.ablkcipher |
| #define crt_blkcipher crt_u.blkcipher |
| #define crt_cipher crt_u.cipher |
| #define crt_compress crt_u.compress |
| |
| struct crypto_tfm { |
| |
| u32 crt_flags; |
| |
| union { |
| struct ablkcipher_tfm ablkcipher; |
| struct blkcipher_tfm blkcipher; |
| struct cipher_tfm cipher; |
| struct compress_tfm compress; |
| } crt_u; |
| |
| void (*exit)(struct crypto_tfm *tfm); |
| |
| struct crypto_alg *__crt_alg; |
| |
| void *__crt_ctx[] CRYPTO_MINALIGN_ATTR; |
| }; |
| |
| struct crypto_ablkcipher { |
| struct crypto_tfm base; |
| }; |
| |
| struct crypto_blkcipher { |
| struct crypto_tfm base; |
| }; |
| |
| struct crypto_cipher { |
| struct crypto_tfm base; |
| }; |
| |
| struct crypto_comp { |
| struct crypto_tfm base; |
| }; |
| |
| enum { |
| CRYPTOA_UNSPEC, |
| CRYPTOA_ALG, |
| CRYPTOA_TYPE, |
| CRYPTOA_U32, |
| __CRYPTOA_MAX, |
| }; |
| |
| #define CRYPTOA_MAX (__CRYPTOA_MAX - 1) |
| |
| /* Maximum number of (rtattr) parameters for each template. */ |
| #define CRYPTO_MAX_ATTRS 32 |
| |
| struct crypto_attr_alg { |
| char name[CRYPTO_MAX_ALG_NAME]; |
| }; |
| |
| struct crypto_attr_type { |
| u32 type; |
| u32 mask; |
| }; |
| |
| struct crypto_attr_u32 { |
| u32 num; |
| }; |
| |
| /* |
| * Transform user interface. |
| */ |
| |
| struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask); |
| void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm); |
| |
| static inline void crypto_free_tfm(struct crypto_tfm *tfm) |
| { |
| return crypto_destroy_tfm(tfm, tfm); |
| } |
| |
| int alg_test(const char *driver, const char *alg, u32 type, u32 mask); |
| |
| /* |
| * Transform helpers which query the underlying algorithm. |
| */ |
| static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm) |
| { |
| return tfm->__crt_alg->cra_name; |
| } |
| |
| static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm) |
| { |
| return tfm->__crt_alg->cra_driver_name; |
| } |
| |
| static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm) |
| { |
| return tfm->__crt_alg->cra_priority; |
| } |
| |
| static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm) |
| { |
| return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK; |
| } |
| |
| static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm) |
| { |
| return tfm->__crt_alg->cra_blocksize; |
| } |
| |
| static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm) |
| { |
| return tfm->__crt_alg->cra_alignmask; |
| } |
| |
| static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm) |
| { |
| return tfm->crt_flags; |
| } |
| |
| static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags) |
| { |
| tfm->crt_flags |= flags; |
| } |
| |
| static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags) |
| { |
| tfm->crt_flags &= ~flags; |
| } |
| |
| static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm) |
| { |
| return tfm->__crt_ctx; |
| } |
| |
| static inline unsigned int crypto_tfm_ctx_alignment(void) |
| { |
| struct crypto_tfm *tfm; |
| return __alignof__(tfm->__crt_ctx); |
| } |
| |
| /* |
| * API wrappers. |
| */ |
| static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast( |
| struct crypto_tfm *tfm) |
| { |
| return (struct crypto_ablkcipher *)tfm; |
| } |
| |
| static inline u32 crypto_skcipher_type(u32 type) |
| { |
| type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV); |
| type |= CRYPTO_ALG_TYPE_BLKCIPHER; |
| return type; |
| } |
| |
| static inline u32 crypto_skcipher_mask(u32 mask) |
| { |
| mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV); |
| mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK; |
| return mask; |
| } |
| |
| /** |
| * DOC: Asynchronous Block Cipher API |
| * |
| * Asynchronous block cipher API is used with the ciphers of type |
| * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto). |
| * |
| * Asynchronous cipher operations imply that the function invocation for a |
| * cipher request returns immediately before the completion of the operation. |
| * The cipher request is scheduled as a separate kernel thread and therefore |
| * load-balanced on the different CPUs via the process scheduler. To allow |
| * the kernel crypto API to inform the caller about the completion of a cipher |
| * request, the caller must provide a callback function. That function is |
| * invoked with the cipher handle when the request completes. |
| * |
| * To support the asynchronous operation, additional information than just the |
| * cipher handle must be supplied to the kernel crypto API. That additional |
| * information is given by filling in the ablkcipher_request data structure. |
| * |
| * For the asynchronous block cipher API, the state is maintained with the tfm |
| * cipher handle. A single tfm can be used across multiple calls and in |
| * parallel. For asynchronous block cipher calls, context data supplied and |
| * only used by the caller can be referenced the request data structure in |
| * addition to the IV used for the cipher request. The maintenance of such |
| * state information would be important for a crypto driver implementer to |
| * have, because when calling the callback function upon completion of the |
| * cipher operation, that callback function may need some information about |
| * which operation just finished if it invoked multiple in parallel. This |
| * state information is unused by the kernel crypto API. |
| */ |
| |
| static inline struct crypto_tfm *crypto_ablkcipher_tfm( |
| struct crypto_ablkcipher *tfm) |
| { |
| return &tfm->base; |
| } |
| |
| /** |
| * crypto_free_ablkcipher() - zeroize and free cipher handle |
| * @tfm: cipher handle to be freed |
| */ |
| static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm) |
| { |
| crypto_free_tfm(crypto_ablkcipher_tfm(tfm)); |
| } |
| |
| /** |
| * crypto_has_ablkcipher() - Search for the availability of an ablkcipher. |
| * @alg_name: is the cra_name / name or cra_driver_name / driver name of the |
| * ablkcipher |
| * @type: specifies the type of the cipher |
| * @mask: specifies the mask for the cipher |
| * |
| * Return: true when the ablkcipher is known to the kernel crypto API; false |
| * otherwise |
| */ |
| static inline int crypto_has_ablkcipher(const char *alg_name, u32 type, |
| u32 mask) |
| { |
| return crypto_has_alg(alg_name, crypto_skcipher_type(type), |
| crypto_skcipher_mask(mask)); |
| } |
| |
| static inline struct ablkcipher_tfm *crypto_ablkcipher_crt( |
| struct crypto_ablkcipher *tfm) |
| { |
| return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher; |
| } |
| |
| /** |
| * crypto_ablkcipher_ivsize() - obtain IV size |
| * @tfm: cipher handle |
| * |
| * The size of the IV for the ablkcipher referenced by the cipher handle is |
| * returned. This IV size may be zero if the cipher does not need an IV. |
| * |
| * Return: IV size in bytes |
| */ |
| static inline unsigned int crypto_ablkcipher_ivsize( |
| struct crypto_ablkcipher *tfm) |
| { |
| return crypto_ablkcipher_crt(tfm)->ivsize; |
| } |
| |
| /** |
| * crypto_ablkcipher_blocksize() - obtain block size of cipher |
| * @tfm: cipher handle |
| * |
| * The block size for the ablkcipher referenced with the cipher handle is |
| * returned. The caller may use that information to allocate appropriate |
| * memory for the data returned by the encryption or decryption operation |
| * |
| * Return: block size of cipher |
| */ |
| static inline unsigned int crypto_ablkcipher_blocksize( |
| struct crypto_ablkcipher *tfm) |
| { |
| return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm)); |
| } |
| |
| static inline unsigned int crypto_ablkcipher_alignmask( |
| struct crypto_ablkcipher *tfm) |
| { |
| return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm)); |
| } |
| |
| static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm) |
| { |
| return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm)); |
| } |
| |
| static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm, |
| u32 flags) |
| { |
| crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags); |
| } |
| |
| static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm, |
| u32 flags) |
| { |
| crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags); |
| } |
| |
| /** |
| * crypto_ablkcipher_setkey() - set key for cipher |
| * @tfm: cipher handle |
| * @key: buffer holding the key |
| * @keylen: length of the key in bytes |
| * |
| * The caller provided key is set for the ablkcipher referenced by the cipher |
| * handle. |
| * |
| * Note, the key length determines the cipher type. Many block ciphers implement |
| * different cipher modes depending on the key size, such as AES-128 vs AES-192 |
| * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 |
| * is performed. |
| * |
| * Return: 0 if the setting of the key was successful; < 0 if an error occurred |
| */ |
| static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm, |
| const u8 *key, unsigned int keylen) |
| { |
| struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm); |
| |
| return crt->setkey(crt->base, key, keylen); |
| } |
| |
| /** |
| * crypto_ablkcipher_reqtfm() - obtain cipher handle from request |
| * @req: ablkcipher_request out of which the cipher handle is to be obtained |
| * |
| * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request |
| * data structure. |
| * |
| * Return: crypto_ablkcipher handle |
| */ |
| static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm( |
| struct ablkcipher_request *req) |
| { |
| return __crypto_ablkcipher_cast(req->base.tfm); |
| } |
| |
| /** |
| * crypto_ablkcipher_encrypt() - encrypt plaintext |
| * @req: reference to the ablkcipher_request handle that holds all information |
| * needed to perform the cipher operation |
| * |
| * Encrypt plaintext data using the ablkcipher_request handle. That data |
| * structure and how it is filled with data is discussed with the |
| * ablkcipher_request_* functions. |
| * |
| * Return: 0 if the cipher operation was successful; < 0 if an error occurred |
| */ |
| static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req) |
| { |
| struct ablkcipher_tfm *crt = |
| crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req)); |
| return crt->encrypt(req); |
| } |
| |
| /** |
| * crypto_ablkcipher_decrypt() - decrypt ciphertext |
| * @req: reference to the ablkcipher_request handle that holds all information |
| * needed to perform the cipher operation |
| * |
| * Decrypt ciphertext data using the ablkcipher_request handle. That data |
| * structure and how it is filled with data is discussed with the |
| * ablkcipher_request_* functions. |
| * |
| * Return: 0 if the cipher operation was successful; < 0 if an error occurred |
| */ |
| static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req) |
| { |
| struct ablkcipher_tfm *crt = |
| crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req)); |
| return crt->decrypt(req); |
| } |
| |
| /** |
| * DOC: Asynchronous Cipher Request Handle |
| * |
| * The ablkcipher_request data structure contains all pointers to data |
| * required for the asynchronous cipher operation. This includes the cipher |
| * handle (which can be used by multiple ablkcipher_request instances), pointer |
| * to plaintext and ciphertext, asynchronous callback function, etc. It acts |
| * as a handle to the ablkcipher_request_* API calls in a similar way as |
| * ablkcipher handle to the crypto_ablkcipher_* API calls. |
| */ |
| |
| /** |
| * crypto_ablkcipher_reqsize() - obtain size of the request data structure |
| * @tfm: cipher handle |
| * |
| * Return: number of bytes |
| */ |
| static inline unsigned int crypto_ablkcipher_reqsize( |
| struct crypto_ablkcipher *tfm) |
| { |
| return crypto_ablkcipher_crt(tfm)->reqsize; |
| } |
| |
| /** |
| * ablkcipher_request_set_tfm() - update cipher handle reference in request |
| * @req: request handle to be modified |
| * @tfm: cipher handle that shall be added to the request handle |
| * |
| * Allow the caller to replace the existing ablkcipher handle in the request |
| * data structure with a different one. |
| */ |
| static inline void ablkcipher_request_set_tfm( |
| struct ablkcipher_request *req, struct crypto_ablkcipher *tfm) |
| { |
| req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base); |
| } |
| |
| static inline struct ablkcipher_request *ablkcipher_request_cast( |
| struct crypto_async_request *req) |
| { |
| return container_of(req, struct ablkcipher_request, base); |
| } |
| |
| /** |
| * ablkcipher_request_alloc() - allocate request data structure |
| * @tfm: cipher handle to be registered with the request |
| * @gfp: memory allocation flag that is handed to kmalloc by the API call. |
| * |
| * Allocate the request data structure that must be used with the ablkcipher |
| * encrypt and decrypt API calls. During the allocation, the provided ablkcipher |
| * handle is registered in the request data structure. |
| * |
| * Return: allocated request handle in case of success, or NULL if out of memory |
| */ |
| static inline struct ablkcipher_request *ablkcipher_request_alloc( |
| struct crypto_ablkcipher *tfm, gfp_t gfp) |
| { |
| struct ablkcipher_request *req; |
| |
| req = kmalloc(sizeof(struct ablkcipher_request) + |
| crypto_ablkcipher_reqsize(tfm), gfp); |
| |
| if (likely(req)) |
| ablkcipher_request_set_tfm(req, tfm); |
| |
| return req; |
| } |
| |
| /** |
| * ablkcipher_request_free() - zeroize and free request data structure |
| * @req: request data structure cipher handle to be freed |
| */ |
| static inline void ablkcipher_request_free(struct ablkcipher_request *req) |
| { |
| kzfree(req); |
| } |
| |
| /** |
| * ablkcipher_request_set_callback() - set asynchronous callback function |
| * @req: request handle |
| * @flags: specify zero or an ORing of the flags |
| * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and |
| * increase the wait queue beyond the initial maximum size; |
| * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep |
| * @compl: callback function pointer to be registered with the request handle |
| * @data: The data pointer refers to memory that is not used by the kernel |
| * crypto API, but provided to the callback function for it to use. Here, |
| * the caller can provide a reference to memory the callback function can |
| * operate on. As the callback function is invoked asynchronously to the |
| * related functionality, it may need to access data structures of the |
| * related functionality which can be referenced using this pointer. The |
| * callback function can access the memory via the "data" field in the |
| * crypto_async_request data structure provided to the callback function. |
| * |
| * This function allows setting the callback function that is triggered once the |
| * cipher operation completes. |
| * |
| * The callback function is registered with the ablkcipher_request handle and |
| * must comply with the following template:: |
| * |
| * void callback_function(struct crypto_async_request *req, int error) |
| */ |
| static inline void ablkcipher_request_set_callback( |
| struct ablkcipher_request *req, |
| u32 flags, crypto_completion_t compl, void *data) |
| { |
| req->base.complete = compl; |
| req->base.data = data; |
| req->base.flags = flags; |
| } |
| |
| /** |
| * ablkcipher_request_set_crypt() - set data buffers |
| * @req: request handle |
| * @src: source scatter / gather list |
| * @dst: destination scatter / gather list |
| * @nbytes: number of bytes to process from @src |
| * @iv: IV for the cipher operation which must comply with the IV size defined |
| * by crypto_ablkcipher_ivsize |
| * |
| * This function allows setting of the source data and destination data |
| * scatter / gather lists. |
| * |
| * For encryption, the source is treated as the plaintext and the |
| * destination is the ciphertext. For a decryption operation, the use is |
| * reversed - the source is the ciphertext and the destination is the plaintext. |
| */ |
| static inline void ablkcipher_request_set_crypt( |
| struct ablkcipher_request *req, |
| struct scatterlist *src, struct scatterlist *dst, |
| unsigned int nbytes, void *iv) |
| { |
| req->src = src; |
| req->dst = dst; |
| req->nbytes = nbytes; |
| req->info = iv; |
| } |
| |
| /** |
| * DOC: Synchronous Block Cipher API |
| * |
| * The synchronous block cipher API is used with the ciphers of type |
| * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto) |
| * |
| * Synchronous calls, have a context in the tfm. But since a single tfm can be |
| * used in multiple calls and in parallel, this info should not be changeable |
| * (unless a lock is used). This applies, for example, to the symmetric key. |
| * However, the IV is changeable, so there is an iv field in blkcipher_tfm |
| * structure for synchronous blkcipher api. So, its the only state info that can |
| * be kept for synchronous calls without using a big lock across a tfm. |
| * |
| * The block cipher API allows the use of a complete cipher, i.e. a cipher |
| * consisting of a template (a block chaining mode) and a single block cipher |
| * primitive (e.g. AES). |
| * |
| * The plaintext data buffer and the ciphertext data buffer are pointed to |
| * by using scatter/gather lists. The cipher operation is performed |
| * on all segments of the provided scatter/gather lists. |
| * |
| * The kernel crypto API supports a cipher operation "in-place" which means that |
| * the caller may provide the same scatter/gather list for the plaintext and |
| * cipher text. After the completion of the cipher operation, the plaintext |
| * data is replaced with the ciphertext data in case of an encryption and vice |
| * versa for a decryption. The caller must ensure that the scatter/gather lists |
| * for the output data point to sufficiently large buffers, i.e. multiples of |
| * the block size of the cipher. |
| */ |
| |
| static inline struct crypto_blkcipher *__crypto_blkcipher_cast( |
| struct crypto_tfm *tfm) |
| { |
| return (struct crypto_blkcipher *)tfm; |
| } |
| |
| static inline struct crypto_blkcipher *crypto_blkcipher_cast( |
| struct crypto_tfm *tfm) |
| { |
| BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER); |
| return __crypto_blkcipher_cast(tfm); |
| } |
| |
| /** |
| * crypto_alloc_blkcipher() - allocate synchronous block cipher handle |
| * @alg_name: is the cra_name / name or cra_driver_name / driver name of the |
| * blkcipher cipher |
| * @type: specifies the type of the cipher |
| * @mask: specifies the mask for the cipher |
| * |
| * Allocate a cipher handle for a block cipher. The returned struct |
| * crypto_blkcipher is the cipher handle that is required for any subsequent |
| * API invocation for that block cipher. |
| * |
| * Return: allocated cipher handle in case of success; IS_ERR() is true in case |
| * of an error, PTR_ERR() returns the error code. |
| */ |
| static inline struct crypto_blkcipher *crypto_alloc_blkcipher( |
| const char *alg_name, u32 type, u32 mask) |
| { |
| type &= ~CRYPTO_ALG_TYPE_MASK; |
| type |= CRYPTO_ALG_TYPE_BLKCIPHER; |
| mask |= CRYPTO_ALG_TYPE_MASK; |
| |
| return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask)); |
| } |
| |
| static inline struct crypto_tfm *crypto_blkcipher_tfm( |
| struct crypto_blkcipher *tfm) |
| { |
| return &tfm->base; |
| } |
| |
| /** |
| * crypto_free_blkcipher() - zeroize and free the block cipher handle |
| * @tfm: cipher handle to be freed |
| */ |
| static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm) |
| { |
| crypto_free_tfm(crypto_blkcipher_tfm(tfm)); |
| } |
| |
| /** |
| * crypto_has_blkcipher() - Search for the availability of a block cipher |
| * @alg_name: is the cra_name / name or cra_driver_name / driver name of the |
| * block cipher |
| * @type: specifies the type of the cipher |
| * @mask: specifies the mask for the cipher |
| * |
| * Return: true when the block cipher is known to the kernel crypto API; false |
| * otherwise |
| */ |
| static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask) |
| { |
| type &= ~CRYPTO_ALG_TYPE_MASK; |
| type |= CRYPTO_ALG_TYPE_BLKCIPHER; |
| mask |= CRYPTO_ALG_TYPE_MASK; |
| |
| return crypto_has_alg(alg_name, type, mask); |
| } |
| |
| /** |
| * crypto_blkcipher_name() - return the name / cra_name from the cipher handle |
| * @tfm: cipher handle |
| * |
| * Return: The character string holding the name of the cipher |
| */ |
| static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm) |
| { |
| return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm)); |
| } |
| |
| static inline struct blkcipher_tfm *crypto_blkcipher_crt( |
| struct crypto_blkcipher *tfm) |
| { |
| return &crypto_blkcipher_tfm(tfm)->crt_blkcipher; |
| } |
| |
| static inline struct blkcipher_alg *crypto_blkcipher_alg( |
| struct crypto_blkcipher *tfm) |
| { |
| return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher; |
| } |
| |
| /** |
| * crypto_blkcipher_ivsize() - obtain IV size |
| * @tfm: cipher handle |
| * |
| * The size of the IV for the block cipher referenced by the cipher handle is |
| * returned. This IV size may be zero if the cipher does not need an IV. |
| * |
| * Return: IV size in bytes |
| */ |
| static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm) |
| { |
| return crypto_blkcipher_alg(tfm)->ivsize; |
| } |
| |
| /** |
| * crypto_blkcipher_blocksize() - obtain block size of cipher |
| * @tfm: cipher handle |
| * |
| * The block size for the block cipher referenced with the cipher handle is |
| * returned. The caller may use that information to allocate appropriate |
| * memory for the data returned by the encryption or decryption operation. |
| * |
| * Return: block size of cipher |
| */ |
| static inline unsigned int crypto_blkcipher_blocksize( |
| struct crypto_blkcipher *tfm) |
| { |
| return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm)); |
| } |
| |
| static inline unsigned int crypto_blkcipher_alignmask( |
| struct crypto_blkcipher *tfm) |
| { |
| return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm)); |
| } |
| |
| static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm) |
| { |
| return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm)); |
| } |
| |
| static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm, |
| u32 flags) |
| { |
| crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags); |
| } |
| |
| static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm, |
| u32 flags) |
| { |
| crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags); |
| } |
| |
| /** |
| * crypto_blkcipher_setkey() - set key for cipher |
| * @tfm: cipher handle |
| * @key: buffer holding the key |
| * @keylen: length of the key in bytes |
| * |
| * The caller provided key is set for the block cipher referenced by the cipher |
| * handle. |
| * |
| * Note, the key length determines the cipher type. Many block ciphers implement |
| * different cipher modes depending on the key size, such as AES-128 vs AES-192 |
| * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 |
| * is performed. |
| * |
| * Return: 0 if the setting of the key was successful; < 0 if an error occurred |
| */ |
| static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm, |
| const u8 *key, unsigned int keylen) |
| { |
| return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm), |
| key, keylen); |
| } |
| |
| /** |
| * crypto_blkcipher_encrypt() - encrypt plaintext |
| * @desc: reference to the block cipher handle with meta data |
| * @dst: scatter/gather list that is filled by the cipher operation with the |
| * ciphertext |
| * @src: scatter/gather list that holds the plaintext |
| * @nbytes: number of bytes of the plaintext to encrypt. |
| * |
| * Encrypt plaintext data using the IV set by the caller with a preceding |
| * call of crypto_blkcipher_set_iv. |
| * |
| * The blkcipher_desc data structure must be filled by the caller and can |
| * reside on the stack. The caller must fill desc as follows: desc.tfm is filled |
| * with the block cipher handle; desc.flags is filled with either |
| * CRYPTO_TFM_REQ_MAY_SLEEP or 0. |
| * |
| * Return: 0 if the cipher operation was successful; < 0 if an error occurred |
| */ |
| static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc, |
| struct scatterlist *dst, |
| struct scatterlist *src, |
| unsigned int nbytes) |
| { |
| desc->info = crypto_blkcipher_crt(desc->tfm)->iv; |
| return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes); |
| } |
| |
| /** |
| * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV |
| * @desc: reference to the block cipher handle with meta data |
| * @dst: scatter/gather list that is filled by the cipher operation with the |
| * ciphertext |
| * @src: scatter/gather list that holds the plaintext |
| * @nbytes: number of bytes of the plaintext to encrypt. |
| * |
| * Encrypt plaintext data with the use of an IV that is solely used for this |
| * cipher operation. Any previously set IV is not used. |
| * |
| * The blkcipher_desc data structure must be filled by the caller and can |
| * reside on the stack. The caller must fill desc as follows: desc.tfm is filled |
| * with the block cipher handle; desc.info is filled with the IV to be used for |
| * the current operation; desc.flags is filled with either |
| * CRYPTO_TFM_REQ_MAY_SLEEP or 0. |
| * |
| * Return: 0 if the cipher operation was successful; < 0 if an error occurred |
| */ |
| static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc, |
| struct scatterlist *dst, |
| struct scatterlist *src, |
| unsigned int nbytes) |
| { |
| return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes); |
| } |
| |
| /** |
| * crypto_blkcipher_decrypt() - decrypt ciphertext |
| * @desc: reference to the block cipher handle with meta data |
| * @dst: scatter/gather list that is filled by the cipher operation with the |
| * plaintext |
| * @src: scatter/gather list that holds the ciphertext |
| * @nbytes: number of bytes of the ciphertext to decrypt. |
| * |
| * Decrypt ciphertext data using the IV set by the caller with a preceding |
| * call of crypto_blkcipher_set_iv. |
| * |
| * The blkcipher_desc data structure must be filled by the caller as documented |
| * for the crypto_blkcipher_encrypt call above. |
| * |
| * Return: 0 if the cipher operation was successful; < 0 if an error occurred |
| * |
| */ |
| static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc, |
| struct scatterlist *dst, |
| struct scatterlist *src, |
| unsigned int nbytes) |
| { |
| desc->info = crypto_blkcipher_crt(desc->tfm)->iv; |
| return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes); |
| } |
| |
| /** |
| * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV |
| * @desc: reference to the block cipher handle with meta data |
| * @dst: scatter/gather list that is filled by the cipher operation with the |
| * plaintext |
| * @src: scatter/gather list that holds the ciphertext |
| * @nbytes: number of bytes of the ciphertext to decrypt. |
| * |
| * Decrypt ciphertext data with the use of an IV that is solely used for this |
| * cipher operation. Any previously set IV is not used. |
| * |
| * The blkcipher_desc data structure must be filled by the caller as documented |
| * for the crypto_blkcipher_encrypt_iv call above. |
| * |
| * Return: 0 if the cipher operation was successful; < 0 if an error occurred |
| */ |
| static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc, |
| struct scatterlist *dst, |
| struct scatterlist *src, |
| unsigned int nbytes) |
| { |
| return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes); |
| } |
| |
| /** |
| * crypto_blkcipher_set_iv() - set IV for cipher |
| * @tfm: cipher handle |
| * @src: buffer holding the IV |
| * @len: length of the IV in bytes |
| * |
| * The caller provided IV is set for the block cipher referenced by the cipher |
| * handle. |
| */ |
| static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm, |
| const u8 *src, unsigned int len) |
| { |
| memcpy(crypto_blkcipher_crt(tfm)->iv, src, len); |
| } |
| |
| /** |
| * crypto_blkcipher_get_iv() - obtain IV from cipher |
| * @tfm: cipher handle |
| * @dst: buffer filled with the IV |
| * @len: length of the buffer dst |
| * |
| * The caller can obtain the IV set for the block cipher referenced by the |
| * cipher handle and store it into the user-provided buffer. If the buffer |
| * has an insufficient space, the IV is truncated to fit the buffer. |
| */ |
| static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm, |
| u8 *dst, unsigned int len) |
| { |
| memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len); |
| } |
| |
| /** |
| * DOC: Single Block Cipher API |
| * |
| * The single block cipher API is used with the ciphers of type |
| * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto). |
| * |
| * Using the single block cipher API calls, operations with the basic cipher |
| * primitive can be implemented. These cipher primitives exclude any block |
| * chaining operations including IV handling. |
| * |
| * The purpose of this single block cipher API is to support the implementation |
| * of templates or other concepts that only need to perform the cipher operation |
| * on one block at a time. Templates invoke the underlying cipher primitive |
| * block-wise and process either the input or the output data of these cipher |
| * operations. |
| */ |
| |
| static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm) |
| { |
| return (struct crypto_cipher *)tfm; |
| } |
| |
| static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm) |
| { |
| BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER); |
| return __crypto_cipher_cast(tfm); |
| } |
| |
| /** |
| * crypto_alloc_cipher() - allocate single block cipher handle |
| * @alg_name: is the cra_name / name or cra_driver_name / driver name of the |
| * single block cipher |
| * @type: specifies the type of the cipher |
| * @mask: specifies the mask for the cipher |
| * |
| * Allocate a cipher handle for a single block cipher. The returned struct |
| * crypto_cipher is the cipher handle that is required for any subsequent API |
| * invocation for that single block cipher. |
| * |
| * Return: allocated cipher handle in case of success; IS_ERR() is true in case |
| * of an error, PTR_ERR() returns the error code. |
| */ |
| static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name, |
| u32 type, u32 mask) |
| { |
| type &= ~CRYPTO_ALG_TYPE_MASK; |
| type |= CRYPTO_ALG_TYPE_CIPHER; |
| mask |= CRYPTO_ALG_TYPE_MASK; |
| |
| return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask)); |
| } |
| |
| static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm) |
| { |
| return &tfm->base; |
| } |
| |
| /** |
| * crypto_free_cipher() - zeroize and free the single block cipher handle |
| * @tfm: cipher handle to be freed |
| */ |
| static inline void crypto_free_cipher(struct crypto_cipher *tfm) |
| { |
| crypto_free_tfm(crypto_cipher_tfm(tfm)); |
| } |
| |
| /** |
| * crypto_has_cipher() - Search for the availability of a single block cipher |
| * @alg_name: is the cra_name / name or cra_driver_name / driver name of the |
| * single block cipher |
| * @type: specifies the type of the cipher |
| * @mask: specifies the mask for the cipher |
| * |
| * Return: true when the single block cipher is known to the kernel crypto API; |
| * false otherwise |
| */ |
| static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask) |
| { |
| type &= ~CRYPTO_ALG_TYPE_MASK; |
| type |= CRYPTO_ALG_TYPE_CIPHER; |
| mask |= CRYPTO_ALG_TYPE_MASK; |
| |
| return crypto_has_alg(alg_name, type, mask); |
| } |
| |
| static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm) |
| { |
| return &crypto_cipher_tfm(tfm)->crt_cipher; |
| } |
| |
| /** |
| * crypto_cipher_blocksize() - obtain block size for cipher |
| * @tfm: cipher handle |
| * |
| * The block size for the single block cipher referenced with the cipher handle |
| * tfm is returned. The caller may use that information to allocate appropriate |
| * memory for the data returned by the encryption or decryption operation |
| * |
| * Return: block size of cipher |
| */ |
| static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm) |
| { |
| return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm)); |
| } |
| |
| static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm) |
| { |
| return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm)); |
| } |
| |
| static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm) |
| { |
| return crypto_tfm_get_flags(crypto_cipher_tfm(tfm)); |
| } |
| |
| static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm, |
| u32 flags) |
| { |
| crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags); |
| } |
| |
| static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm, |
| u32 flags) |
| { |
| crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags); |
| } |
| |
| /** |
| * crypto_cipher_setkey() - set key for cipher |
| * @tfm: cipher handle |
| * @key: buffer holding the key |
| * @keylen: length of the key in bytes |
| * |
| * The caller provided key is set for the single block cipher referenced by the |
| * cipher handle. |
| * |
| * Note, the key length determines the cipher type. Many block ciphers implement |
| * different cipher modes depending on the key size, such as AES-128 vs AES-192 |
| * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 |
| * is performed. |
| * |
| * Return: 0 if the setting of the key was successful; < 0 if an error occurred |
| */ |
| static inline int crypto_cipher_setkey(struct crypto_cipher *tfm, |
| const u8 *key, unsigned int keylen) |
| { |
| return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm), |
| key, keylen); |
| } |
| |
| /** |
| * crypto_cipher_encrypt_one() - encrypt one block of plaintext |
| * @tfm: cipher handle |
| * @dst: points to the buffer that will be filled with the ciphertext |
| * @src: buffer holding the plaintext to be encrypted |
| * |
| * Invoke the encryption operation of one block. The caller must ensure that |
| * the plaintext and ciphertext buffers are at least one block in size. |
| */ |
| static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm, |
| u8 *dst, const u8 *src) |
| { |
| crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm), |
| dst, src); |
| } |
| |
| /** |
| * crypto_cipher_decrypt_one() - decrypt one block of ciphertext |
| * @tfm: cipher handle |
| * @dst: points to the buffer that will be filled with the plaintext |
| * @src: buffer holding the ciphertext to be decrypted |
| * |
| * Invoke the decryption operation of one block. The caller must ensure that |
| * the plaintext and ciphertext buffers are at least one block in size. |
| */ |
| static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm, |
| u8 *dst, const u8 *src) |
| { |
| crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm), |
| dst, src); |
| } |
| |
| static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm) |
| { |
| return (struct crypto_comp *)tfm; |
| } |
| |
| static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm) |
| { |
| BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) & |
| CRYPTO_ALG_TYPE_MASK); |
| return __crypto_comp_cast(tfm); |
| } |
| |
| static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name, |
| u32 type, u32 mask) |
| { |
| type &= ~CRYPTO_ALG_TYPE_MASK; |
| type |= CRYPTO_ALG_TYPE_COMPRESS; |
| mask |= CRYPTO_ALG_TYPE_MASK; |
| |
| return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask)); |
| } |
| |
| static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm) |
| { |
| return &tfm->base; |
| } |
| |
| static inline void crypto_free_comp(struct crypto_comp *tfm) |
| { |
| crypto_free_tfm(crypto_comp_tfm(tfm)); |
| } |
| |
| static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask) |
| { |
| type &= ~CRYPTO_ALG_TYPE_MASK; |
| type |= CRYPTO_ALG_TYPE_COMPRESS; |
| mask |= CRYPTO_ALG_TYPE_MASK; |
| |
| return crypto_has_alg(alg_name, type, mask); |
| } |
| |
| static inline const char *crypto_comp_name(struct crypto_comp *tfm) |
| { |
| return crypto_tfm_alg_name(crypto_comp_tfm(tfm)); |
| } |
| |
| static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm) |
| { |
| return &crypto_comp_tfm(tfm)->crt_compress; |
| } |
| |
| static inline int crypto_comp_compress(struct crypto_comp *tfm, |
| const u8 *src, unsigned int slen, |
| u8 *dst, unsigned int *dlen) |
| { |
| return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm), |
| src, slen, dst, dlen); |
| } |
| |
| static inline int crypto_comp_decompress(struct crypto_comp *tfm, |
| const u8 *src, unsigned int slen, |
| u8 *dst, unsigned int *dlen) |
| { |
| return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm), |
| src, slen, dst, dlen); |
| } |
| |
| #endif /* _LINUX_CRYPTO_H */ |
| |