blob: fb8a4d5864f38d29199e37a690bc243769693538 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* fs/verity/verify.c: data verification functions, i.e. hooks for ->readpages()
*
* Copyright 2019 Google LLC
*/
#include "fsverity_private.h"
#include <crypto/hash.h>
#include <linux/bio.h>
#include <linux/ratelimit.h>
static struct workqueue_struct *fsverity_read_workqueue;
/**
* hash_at_level() - compute the location of the block's hash at the given level
*
* @params: (in) the Merkle tree parameters
* @dindex: (in) the index of the data block being verified
* @level: (in) the level of hash we want (0 is leaf level)
* @hindex: (out) the index of the hash block containing the wanted hash
* @hoffset: (out) the byte offset to the wanted hash within the hash block
*/
static void hash_at_level(const struct merkle_tree_params *params,
pgoff_t dindex, unsigned int level, pgoff_t *hindex,
unsigned int *hoffset)
{
pgoff_t position;
/* Offset of the hash within the level's region, in hashes */
position = dindex >> (level * params->log_arity);
/* Index of the hash block in the tree overall */
*hindex = params->level_start[level] + (position >> params->log_arity);
/* Offset of the wanted hash (in bytes) within the hash block */
*hoffset = (position & ((1 << params->log_arity) - 1)) <<
(params->log_blocksize - params->log_arity);
}
/* Extract a hash from a hash page */
static void extract_hash(struct page *hpage, unsigned int hoffset,
unsigned int hsize, u8 *out)
{
void *virt = kmap_atomic(hpage);
memcpy(out, virt + hoffset, hsize);
kunmap_atomic(virt);
}
static inline int cmp_hashes(const struct fsverity_info *vi,
const u8 *want_hash, const u8 *real_hash,
pgoff_t index, int level)
{
const unsigned int hsize = vi->tree_params.digest_size;
if (memcmp(want_hash, real_hash, hsize) == 0)
return 0;
fsverity_err(vi->inode,
"FILE CORRUPTED! index=%lu, level=%d, want_hash=%s:%*phN, real_hash=%s:%*phN",
index, level,
vi->tree_params.hash_alg->name, hsize, want_hash,
vi->tree_params.hash_alg->name, hsize, real_hash);
return -EBADMSG;
}
/*
* Verify a single data page against the file's Merkle tree.
*
* In principle, we need to verify the entire path to the root node. However,
* for efficiency the filesystem may cache the hash pages. Therefore we need
* only ascend the tree until an already-verified page is seen, as indicated by
* the PageChecked bit being set; then verify the path to that page.
*
* This code currently only supports the case where the verity block size is
* equal to PAGE_SIZE. Doing otherwise would be possible but tricky, since we
* wouldn't be able to use the PageChecked bit.
*
* Note that multiple processes may race to verify a hash page and mark it
* Checked, but it doesn't matter; the result will be the same either way.
*
* Return: true if the page is valid, else false.
*/
static bool verify_page(struct inode *inode, const struct fsverity_info *vi,
struct ahash_request *req, struct page *data_page,
unsigned long level0_ra_pages)
{
const struct merkle_tree_params *params = &vi->tree_params;
const unsigned int hsize = params->digest_size;
const pgoff_t index = data_page->index;
int level;
u8 _want_hash[FS_VERITY_MAX_DIGEST_SIZE];
const u8 *want_hash;
u8 real_hash[FS_VERITY_MAX_DIGEST_SIZE];
struct page *hpages[FS_VERITY_MAX_LEVELS];
unsigned int hoffsets[FS_VERITY_MAX_LEVELS];
int err;
if (WARN_ON_ONCE(!PageLocked(data_page) || PageUptodate(data_page)))
return false;
pr_debug_ratelimited("Verifying data page %lu...\n", index);
/*
* Starting at the leaf level, ascend the tree saving hash pages along
* the way until we find a verified hash page, indicated by PageChecked;
* or until we reach the root.
*/
for (level = 0; level < params->num_levels; level++) {
pgoff_t hindex;
unsigned int hoffset;
struct page *hpage;
hash_at_level(params, index, level, &hindex, &hoffset);
pr_debug_ratelimited("Level %d: hindex=%lu, hoffset=%u\n",
level, hindex, hoffset);
hpage = inode->i_sb->s_vop->read_merkle_tree_page(inode, hindex,
level == 0 ? level0_ra_pages : 0);
if (IS_ERR(hpage)) {
err = PTR_ERR(hpage);
fsverity_err(inode,
"Error %d reading Merkle tree page %lu",
err, hindex);
goto out;
}
if (PageChecked(hpage)) {
extract_hash(hpage, hoffset, hsize, _want_hash);
want_hash = _want_hash;
put_page(hpage);
pr_debug_ratelimited("Hash page already checked, want %s:%*phN\n",
params->hash_alg->name,
hsize, want_hash);
goto descend;
}
pr_debug_ratelimited("Hash page not yet checked\n");
hpages[level] = hpage;
hoffsets[level] = hoffset;
}
want_hash = vi->root_hash;
pr_debug("Want root hash: %s:%*phN\n",
params->hash_alg->name, hsize, want_hash);
descend:
/* Descend the tree verifying hash pages */
for (; level > 0; level--) {
struct page *hpage = hpages[level - 1];
unsigned int hoffset = hoffsets[level - 1];
err = fsverity_hash_page(params, inode, req, hpage, real_hash);
if (err)
goto out;
err = cmp_hashes(vi, want_hash, real_hash, index, level - 1);
if (err)
goto out;
SetPageChecked(hpage);
extract_hash(hpage, hoffset, hsize, _want_hash);
want_hash = _want_hash;
put_page(hpage);
pr_debug("Verified hash page at level %d, now want %s:%*phN\n",
level - 1, params->hash_alg->name, hsize, want_hash);
}
/* Finally, verify the data page */
err = fsverity_hash_page(params, inode, req, data_page, real_hash);
if (err)
goto out;
err = cmp_hashes(vi, want_hash, real_hash, index, -1);
out:
for (; level > 0; level--)
put_page(hpages[level - 1]);
return err == 0;
}
/**
* fsverity_verify_page() - verify a data page
* @page: the page to verity
*
* Verify a page that has just been read from a verity file. The page must be a
* pagecache page that is still locked and not yet uptodate.
*
* Return: true if the page is valid, else false.
*/
bool fsverity_verify_page(struct page *page)
{
struct inode *inode = page->mapping->host;
const struct fsverity_info *vi = inode->i_verity_info;
struct ahash_request *req;
bool valid;
/* This allocation never fails, since it's mempool-backed. */
req = fsverity_alloc_hash_request(vi->tree_params.hash_alg, GFP_NOFS);
valid = verify_page(inode, vi, req, page, 0);
fsverity_free_hash_request(vi->tree_params.hash_alg, req);
return valid;
}
EXPORT_SYMBOL_GPL(fsverity_verify_page);
#ifdef CONFIG_BLOCK
/**
* fsverity_verify_bio() - verify a 'read' bio that has just completed
* @bio: the bio to verify
*
* Verify a set of pages that have just been read from a verity file. The pages
* must be pagecache pages that are still locked and not yet uptodate. Pages
* that fail verification are set to the Error state. Verification is skipped
* for pages already in the Error state, e.g. due to fscrypt decryption failure.
*
* This is a helper function for use by the ->readpages() method of filesystems
* that issue bios to read data directly into the page cache. Filesystems that
* populate the page cache without issuing bios (e.g. non block-based
* filesystems) must instead call fsverity_verify_page() directly on each page.
* All filesystems must also call fsverity_verify_page() on holes.
*/
void fsverity_verify_bio(struct bio *bio)
{
struct inode *inode = bio->bi_io_vec->bv_page->mapping->host;
const struct fsverity_info *vi = inode->i_verity_info;
const struct merkle_tree_params *params = &vi->tree_params;
struct ahash_request *req;
struct bio_vec *bv;
int i;
unsigned long max_ra_pages = 0;
/* This allocation never fails, since it's mempool-backed. */
req = fsverity_alloc_hash_request(params->hash_alg, GFP_NOFS);
if (bio->bi_opf & REQ_RAHEAD) {
/*
* If this bio is for data readahead, then we also do readahead
* of the first (largest) level of the Merkle tree. Namely,
* when a Merkle tree page is read, we also try to piggy-back on
* some additional pages -- up to 1/4 the number of data pages.
*
* This improves sequential read performance, as it greatly
* reduces the number of I/O requests made to the Merkle tree.
*/
bio_for_each_segment_all(bv, bio, i)
max_ra_pages++;
max_ra_pages /= 4;
}
bio_for_each_segment_all(bv, bio, i) {
struct page *page = bv->bv_page;
unsigned long level0_index = page->index >> params->log_arity;
unsigned long level0_ra_pages =
min(max_ra_pages, params->level0_blocks - level0_index);
if (!PageError(page) &&
!verify_page(inode, vi, req, page, level0_ra_pages))
SetPageError(page);
}
fsverity_free_hash_request(params->hash_alg, req);
}
EXPORT_SYMBOL_GPL(fsverity_verify_bio);
#endif /* CONFIG_BLOCK */
/**
* fsverity_enqueue_verify_work() - enqueue work on the fs-verity workqueue
* @work: the work to enqueue
*
* Enqueue verification work for asynchronous processing.
*/
void fsverity_enqueue_verify_work(struct work_struct *work)
{
queue_work(fsverity_read_workqueue, work);
}
EXPORT_SYMBOL_GPL(fsverity_enqueue_verify_work);
int __init fsverity_init_workqueue(void)
{
/*
* Use a high-priority workqueue to prioritize verification work, which
* blocks reads from completing, over regular application tasks.
*
* For performance reasons, don't use an unbound workqueue. Using an
* unbound workqueue for crypto operations causes excessive scheduler
* latency on ARM64.
*/
fsverity_read_workqueue = alloc_workqueue("fsverity_read_queue",
WQ_HIGHPRI,
num_online_cpus());
if (!fsverity_read_workqueue)
return -ENOMEM;
return 0;
}
void __init fsverity_exit_workqueue(void)
{
destroy_workqueue(fsverity_read_workqueue);
fsverity_read_workqueue = NULL;
}