| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * fs/verity/hash_algs.c: fs-verity hash algorithms |
| * |
| * Copyright 2019 Google LLC |
| */ |
| |
| #include "fsverity_private.h" |
| |
| #include <crypto/hash.h> |
| #include <linux/scatterlist.h> |
| |
| /* The hash algorithms supported by fs-verity */ |
| struct fsverity_hash_alg fsverity_hash_algs[] = { |
| [FS_VERITY_HASH_ALG_SHA256] = { |
| .name = "sha256", |
| .digest_size = SHA256_DIGEST_SIZE, |
| .block_size = SHA256_BLOCK_SIZE, |
| }, |
| [FS_VERITY_HASH_ALG_SHA512] = { |
| .name = "sha512", |
| .digest_size = SHA512_DIGEST_SIZE, |
| .block_size = SHA512_BLOCK_SIZE, |
| }, |
| }; |
| |
| static DEFINE_MUTEX(fsverity_hash_alg_init_mutex); |
| |
| /** |
| * fsverity_get_hash_alg() - validate and prepare a hash algorithm |
| * @inode: optional inode for logging purposes |
| * @num: the hash algorithm number |
| * |
| * Get the struct fsverity_hash_alg for the given hash algorithm number, and |
| * ensure it has a hash transform ready to go. The hash transforms are |
| * allocated on-demand so that we don't waste resources unnecessarily, and |
| * because the crypto modules may be initialized later than fs/verity/. |
| * |
| * Return: pointer to the hash alg on success, else an ERR_PTR() |
| */ |
| struct fsverity_hash_alg *fsverity_get_hash_alg(const struct inode *inode, |
| unsigned int num) |
| { |
| struct fsverity_hash_alg *alg; |
| struct crypto_ahash *tfm; |
| int err; |
| |
| if (num >= ARRAY_SIZE(fsverity_hash_algs) || |
| !fsverity_hash_algs[num].name) { |
| fsverity_warn(inode, "Unknown hash algorithm number: %u", num); |
| return ERR_PTR(-EINVAL); |
| } |
| alg = &fsverity_hash_algs[num]; |
| |
| /* pairs with smp_store_release() below */ |
| if (likely(smp_load_acquire(&alg->tfm) != NULL)) |
| return alg; |
| |
| mutex_lock(&fsverity_hash_alg_init_mutex); |
| |
| if (alg->tfm != NULL) |
| goto out_unlock; |
| |
| /* |
| * Using the shash API would make things a bit simpler, but the ahash |
| * API is preferable as it allows the use of crypto accelerators. |
| */ |
| tfm = crypto_alloc_ahash(alg->name, 0, 0); |
| if (IS_ERR(tfm)) { |
| if (PTR_ERR(tfm) == -ENOENT) { |
| fsverity_warn(inode, |
| "Missing crypto API support for hash algorithm \"%s\"", |
| alg->name); |
| alg = ERR_PTR(-ENOPKG); |
| goto out_unlock; |
| } |
| fsverity_err(inode, |
| "Error allocating hash algorithm \"%s\": %ld", |
| alg->name, PTR_ERR(tfm)); |
| alg = ERR_CAST(tfm); |
| goto out_unlock; |
| } |
| |
| err = -EINVAL; |
| if (WARN_ON(alg->digest_size != crypto_ahash_digestsize(tfm))) |
| goto err_free_tfm; |
| if (WARN_ON(alg->block_size != crypto_ahash_blocksize(tfm))) |
| goto err_free_tfm; |
| |
| alg->req_pool = mempool_create_kmalloc_pool(1, |
| sizeof(struct ahash_request) + |
| crypto_ahash_reqsize(tfm)); |
| if (!alg->req_pool) { |
| err = -ENOMEM; |
| goto err_free_tfm; |
| } |
| |
| pr_info("%s using implementation \"%s\"\n", |
| alg->name, crypto_ahash_driver_name(tfm)); |
| |
| /* pairs with smp_load_acquire() above */ |
| smp_store_release(&alg->tfm, tfm); |
| goto out_unlock; |
| |
| err_free_tfm: |
| crypto_free_ahash(tfm); |
| alg = ERR_PTR(err); |
| out_unlock: |
| mutex_unlock(&fsverity_hash_alg_init_mutex); |
| return alg; |
| } |
| |
| /** |
| * fsverity_alloc_hash_request() - allocate a hash request object |
| * @alg: the hash algorithm for which to allocate the request |
| * @gfp_flags: memory allocation flags |
| * |
| * This is mempool-backed, so this never fails if __GFP_DIRECT_RECLAIM is set in |
| * @gfp_flags. However, in that case this might need to wait for all |
| * previously-allocated requests to be freed. So to avoid deadlocks, callers |
| * must never need multiple requests at a time to make forward progress. |
| * |
| * Return: the request object on success; NULL on failure (but see above) |
| */ |
| struct ahash_request *fsverity_alloc_hash_request(struct fsverity_hash_alg *alg, |
| gfp_t gfp_flags) |
| { |
| struct ahash_request *req = mempool_alloc(alg->req_pool, gfp_flags); |
| |
| if (req) |
| ahash_request_set_tfm(req, alg->tfm); |
| return req; |
| } |
| |
| /** |
| * fsverity_free_hash_request() - free a hash request object |
| * @alg: the hash algorithm |
| * @req: the hash request object to free |
| */ |
| void fsverity_free_hash_request(struct fsverity_hash_alg *alg, |
| struct ahash_request *req) |
| { |
| if (req) { |
| ahash_request_zero(req); |
| mempool_free(req, alg->req_pool); |
| } |
| } |
| |
| /** |
| * fsverity_prepare_hash_state() - precompute the initial hash state |
| * @alg: hash algorithm |
| * @salt: a salt which is to be prepended to all data to be hashed |
| * @salt_size: salt size in bytes, possibly 0 |
| * |
| * Return: NULL if the salt is empty, otherwise the kmalloc()'ed precomputed |
| * initial hash state on success or an ERR_PTR() on failure. |
| */ |
| const u8 *fsverity_prepare_hash_state(struct fsverity_hash_alg *alg, |
| const u8 *salt, size_t salt_size) |
| { |
| u8 *hashstate = NULL; |
| struct ahash_request *req = NULL; |
| u8 *padded_salt = NULL; |
| size_t padded_salt_size; |
| struct scatterlist sg; |
| DECLARE_CRYPTO_WAIT(wait); |
| int err; |
| |
| if (salt_size == 0) |
| return NULL; |
| |
| hashstate = kmalloc(crypto_ahash_statesize(alg->tfm), GFP_KERNEL); |
| if (!hashstate) |
| return ERR_PTR(-ENOMEM); |
| |
| /* This allocation never fails, since it's mempool-backed. */ |
| req = fsverity_alloc_hash_request(alg, GFP_KERNEL); |
| |
| /* |
| * Zero-pad the salt to the next multiple of the input size of the hash |
| * algorithm's compression function, e.g. 64 bytes for SHA-256 or 128 |
| * bytes for SHA-512. This ensures that the hash algorithm won't have |
| * any bytes buffered internally after processing the salt, thus making |
| * salted hashing just as fast as unsalted hashing. |
| */ |
| padded_salt_size = round_up(salt_size, alg->block_size); |
| padded_salt = kzalloc(padded_salt_size, GFP_KERNEL); |
| if (!padded_salt) { |
| err = -ENOMEM; |
| goto err_free; |
| } |
| memcpy(padded_salt, salt, salt_size); |
| |
| sg_init_one(&sg, padded_salt, padded_salt_size); |
| ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP | |
| CRYPTO_TFM_REQ_MAY_BACKLOG, |
| crypto_req_done, &wait); |
| ahash_request_set_crypt(req, &sg, NULL, padded_salt_size); |
| |
| err = crypto_wait_req(crypto_ahash_init(req), &wait); |
| if (err) |
| goto err_free; |
| |
| err = crypto_wait_req(crypto_ahash_update(req), &wait); |
| if (err) |
| goto err_free; |
| |
| err = crypto_ahash_export(req, hashstate); |
| if (err) |
| goto err_free; |
| out: |
| fsverity_free_hash_request(alg, req); |
| kfree(padded_salt); |
| return hashstate; |
| |
| err_free: |
| kfree(hashstate); |
| hashstate = ERR_PTR(err); |
| goto out; |
| } |
| |
| /** |
| * fsverity_hash_page() - hash a single data or hash page |
| * @params: the Merkle tree's parameters |
| * @inode: inode for which the hashing is being done |
| * @req: preallocated hash request |
| * @page: the page to hash |
| * @out: output digest, size 'params->digest_size' bytes |
| * |
| * Hash a single data or hash block, assuming block_size == PAGE_SIZE. |
| * The hash is salted if a salt is specified in the Merkle tree parameters. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| int fsverity_hash_page(const struct merkle_tree_params *params, |
| const struct inode *inode, |
| struct ahash_request *req, struct page *page, u8 *out) |
| { |
| struct scatterlist sg; |
| DECLARE_CRYPTO_WAIT(wait); |
| int err; |
| |
| if (WARN_ON(params->block_size != PAGE_SIZE)) |
| return -EINVAL; |
| |
| sg_init_table(&sg, 1); |
| sg_set_page(&sg, page, PAGE_SIZE, 0); |
| ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP | |
| CRYPTO_TFM_REQ_MAY_BACKLOG, |
| crypto_req_done, &wait); |
| ahash_request_set_crypt(req, &sg, out, PAGE_SIZE); |
| |
| if (params->hashstate) { |
| err = crypto_ahash_import(req, params->hashstate); |
| if (err) { |
| fsverity_err(inode, |
| "Error %d importing hash state", err); |
| return err; |
| } |
| err = crypto_ahash_finup(req); |
| } else { |
| err = crypto_ahash_digest(req); |
| } |
| |
| err = crypto_wait_req(err, &wait); |
| if (err) |
| fsverity_err(inode, "Error %d computing page hash", err); |
| return err; |
| } |
| |
| /** |
| * fsverity_hash_buffer() - hash some data |
| * @alg: the hash algorithm to use |
| * @data: the data to hash |
| * @size: size of data to hash, in bytes |
| * @out: output digest, size 'alg->digest_size' bytes |
| * |
| * Hash some data which is located in physically contiguous memory (i.e. memory |
| * allocated by kmalloc(), not by vmalloc()). No salt is used. |
| * |
| * Return: 0 on success, -errno on failure |
| */ |
| int fsverity_hash_buffer(struct fsverity_hash_alg *alg, |
| const void *data, size_t size, u8 *out) |
| { |
| struct ahash_request *req; |
| struct scatterlist sg; |
| DECLARE_CRYPTO_WAIT(wait); |
| int err; |
| |
| /* This allocation never fails, since it's mempool-backed. */ |
| req = fsverity_alloc_hash_request(alg, GFP_KERNEL); |
| |
| sg_init_one(&sg, data, size); |
| ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP | |
| CRYPTO_TFM_REQ_MAY_BACKLOG, |
| crypto_req_done, &wait); |
| ahash_request_set_crypt(req, &sg, out, size); |
| |
| err = crypto_wait_req(crypto_ahash_digest(req), &wait); |
| |
| fsverity_free_hash_request(alg, req); |
| return err; |
| } |
| |
| void __init fsverity_check_hash_algs(void) |
| { |
| size_t i; |
| |
| /* |
| * Sanity check the hash algorithms (could be a build-time check, but |
| * they're in an array) |
| */ |
| for (i = 0; i < ARRAY_SIZE(fsverity_hash_algs); i++) { |
| const struct fsverity_hash_alg *alg = &fsverity_hash_algs[i]; |
| |
| if (!alg->name) |
| continue; |
| |
| BUG_ON(alg->digest_size > FS_VERITY_MAX_DIGEST_SIZE); |
| |
| /* |
| * For efficiency, the implementation currently assumes the |
| * digest and block sizes are powers of 2. This limitation can |
| * be lifted if the code is updated to handle other values. |
| */ |
| BUG_ON(!is_power_of_2(alg->digest_size)); |
| BUG_ON(!is_power_of_2(alg->block_size)); |
| } |
| } |