blob: 337066fb4c61a674a5493425cdf1b982f02fcd2b [file] [log] [blame]
/*
* Copyright (C) 2012-2013 Samsung Electronics Co., Ltd.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/************************************************************************/
/* */
/* PROJECT : exFAT & FAT12/16/32 File System */
/* FILE : core.c */
/* PURPOSE : sdFAT glue layer for supporting VFS */
/* */
/*----------------------------------------------------------------------*/
/* NOTES */
/* */
/* */
/************************************************************************/
#include <linux/version.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/time.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/pagemap.h>
#include <linux/mpage.h>
#include <linux/buffer_head.h>
#include <linux/exportfs.h>
#include <linux/mount.h>
#include <linux/vfs.h>
#include <linux/parser.h>
#include <linux/uio.h>
#include <linux/writeback.h>
#include <linux/log2.h>
#include <linux/hash.h>
#include <linux/backing-dev.h>
#include <linux/sched.h>
#include <linux/fs_struct.h>
#include <linux/namei.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/swap.h> /* for mark_page_accessed() */
#include <linux/vmalloc.h>
#include <asm/current.h>
#include <asm/unaligned.h>
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 16, 0)
#include <linux/iversion.h>
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(3, 10, 0)
#include <linux/aio.h>
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 10, 0)
#include <linux/random.h>
#endif
#if LINUX_VERSION_CODE < KERNEL_VERSION(3, 0, 0)
#error SDFAT only supports linux kernel version 3.0 or higher
#endif
#include "sdfat.h"
#include "version.h"
/* skip iterating emit_dots when dir is empty */
#define ITER_POS_FILLED_DOTS (2)
/* type index declare at sdfat.h */
const char *FS_TYPE_STR[] = {
"auto",
"exfat",
"vfat"
};
static struct kset *sdfat_kset;
static struct kmem_cache *sdfat_inode_cachep;
static int sdfat_default_codepage = CONFIG_SDFAT_DEFAULT_CODEPAGE;
static char sdfat_default_iocharset[] = CONFIG_SDFAT_DEFAULT_IOCHARSET;
static const char sdfat_iocharset_with_utf8[] = "iso8859-1";
#ifdef CONFIG_SDFAT_TRACE_SB_LOCK
static unsigned long __lock_jiffies;
#endif
static void sdfat_truncate(struct inode *inode, loff_t old_size);
static int sdfat_get_block(struct inode *inode, sector_t iblock,
struct buffer_head *bh_result, int create);
static struct inode *sdfat_iget(struct super_block *sb, loff_t i_pos);
static struct inode *sdfat_build_inode(struct super_block *sb, const FILE_ID_T *fid, loff_t i_pos);
static void sdfat_detach(struct inode *inode);
static void sdfat_attach(struct inode *inode, loff_t i_pos);
static inline unsigned long sdfat_hash(loff_t i_pos);
static int __sdfat_write_inode(struct inode *inode, int sync);
static int sdfat_sync_inode(struct inode *inode);
static int sdfat_write_inode(struct inode *inode, struct writeback_control *wbc);
static void sdfat_write_super(struct super_block *sb);
static void sdfat_write_failed(struct address_space *mapping, loff_t to);
static void sdfat_init_namebuf(DENTRY_NAMEBUF_T *nb);
static int sdfat_alloc_namebuf(DENTRY_NAMEBUF_T *nb);
static void sdfat_free_namebuf(DENTRY_NAMEBUF_T *nb);
/*************************************************************************
* INNER FUNCTIONS FOR FUNCTIONS WHICH HAS KERNEL VERSION DEPENDENCY
*************************************************************************/
static void __sdfat_writepage_end_io(struct bio *bio, int err);
static inline void __lock_super(struct super_block *sb);
static inline void __unlock_super(struct super_block *sb);
static int __sdfat_create(struct inode *dir, struct dentry *dentry);
static int __sdfat_symlink(struct inode *dir, struct dentry *dentry,
const char *target);
static int __sdfat_setattr(struct dentry *dentry, struct iattr *attr);
static int __sdfat_revalidate(struct dentry *dentry);
static int __sdfat_revalidate_ci(struct dentry *dentry, unsigned int flags);
static int __sdfat_file_fsync(struct file *filp, loff_t start, loff_t end, int datasync);
static struct dentry *__sdfat_lookup(struct inode *dir, struct dentry *dentry);
static int __sdfat_mkdir(struct inode *dir, struct dentry *dentry);
static int __sdfat_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry);
static int __sdfat_show_options(struct seq_file *m, struct super_block *sb);
static inline ssize_t __sdfat_blkdev_direct_IO(int rw, struct kiocb *iocb,
struct inode *inode, void *iov_u, loff_t offset,
unsigned long nr_segs);
static inline ssize_t __sdfat_direct_IO(int rw, struct kiocb *iocb,
struct inode *inode, void *iov_u, loff_t offset,
loff_t count, unsigned long nr_segs);
static int __sdfat_d_hash(const struct dentry *dentry, struct qstr *qstr);
static int __sdfat_d_hashi(const struct dentry *dentry, struct qstr *qstr);
static int __sdfat_cmp(const struct dentry *dentry, unsigned int len,
const char *str, const struct qstr *name);
static int __sdfat_cmpi(const struct dentry *dentry, unsigned int len,
const char *str, const struct qstr *name);
/*************************************************************************
* FUNCTIONS WHICH HAS KERNEL VERSION DEPENDENCY
*************************************************************************/
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 12, 0)
static void sdfat_setattr_copy(struct inode *inode, struct iattr *attr)
{
setattr_copy(&init_user_ns, inode, attr);
}
static u32 sdfat_make_inode_generation(void)
{
return prandom_u32();
}
#else
static void sdfat_setattr_copy(struct inode *inode, struct iattr *attr)
{
setattr_copy(inode, attr);
}
static u32 sdfat_make_inode_generation(void)
{
return (u32)get_seconds();
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 16, 0)
/* EMPTY */
#else
static inline void inode_set_iversion(struct inode *inode, u64 val)
{
inode->i_version = val;
}
static inline u64 inode_peek_iversion(struct inode *inode)
{
return inode->i_version;
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0)
/* EMPTY */
#else /* LINUX_VERSION_CODE < KERNEL_VERSION(4, 14, 0) */
static inline void bio_set_dev(struct bio *bio, struct block_device *bdev)
{
bio->bi_bdev = bdev;
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 10, 0)
static inline void __sdfat_clean_bdev_aliases(struct block_device *bdev, sector_t block)
{
clean_bdev_aliases(bdev, block, 1);
}
#else /* LINUX_VERSION_CODE < KERNEL_VERSION(4,10,0) */
static inline void __sdfat_clean_bdev_aliases(struct block_device *bdev, sector_t block)
{
unmap_underlying_metadata(bdev, block);
}
static inline int wbc_to_write_flags(struct writeback_control *wbc)
{
if (wbc->sync_mode == WB_SYNC_ALL)
return WRITE_SYNC;
return 0;
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 8, 0)
static inline void __sdfat_submit_bio_write(struct bio *bio,
struct writeback_control *wbc)
{
int write_flags = wbc_to_write_flags(wbc);
bio_set_op_attrs(bio, REQ_OP_WRITE, write_flags);
submit_bio(bio);
}
static inline unsigned int __sdfat_full_name_hash(const struct dentry *dentry, const char *name, unsigned int len)
{
return full_name_hash(dentry, name, len);
}
static inline unsigned long __sdfat_init_name_hash(const struct dentry *dentry)
{
return init_name_hash(dentry);
}
#else /* LINUX_VERSION_CODE < KERNEL_VERSION(4, 8, 0) */
static inline void __sdfat_submit_bio_write(struct bio *bio,
struct writeback_control *wbc)
{
int write_flags = wbc_to_write_flags(wbc);
submit_bio(WRITE | write_flags, bio);
}
static inline unsigned int __sdfat_full_name_hash(const struct dentry *unused, const char *name, unsigned int len)
{
return full_name_hash(name, len);
}
static inline unsigned long __sdfat_init_name_hash(const struct dentry *unused)
{
return init_name_hash();
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 21)
/* EMPTY */
#else /* LINUX_VERSION_CODE < KERNEL_VERSION(4, 4, 21) */
static inline void inode_lock(struct inode *inode)
{
mutex_lock(&inode->i_mutex);
}
static inline void inode_unlock(struct inode *inode)
{
mutex_unlock(&inode->i_mutex);
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 16, 0)
static inline int sdfat_remount_syncfs(struct super_block *sb)
{
sync_filesystem(sb);
return 0;
}
#else /* LINUX_VERSION_CODE < KERNEL_VERSION(3, 16, 0) */
static inline int sdfat_remount_syncfs(struct super_block *sb)
{
/*
* We don`t need to call sync_filesystem(sb),
* Because VFS calls it.
*/
return 0;
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 15, 0)
/* EMPTY */
#else /* LINUX_VERSION_CODE < KERNEL_VERSION(3, 15, 0) */
static inline void truncate_inode_pages_final(struct address_space *mapping)
{
truncate_inode_pages(mapping, 0);
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 14, 0)
static inline sector_t __sdfat_bio_sector(struct bio *bio)
{
return bio->bi_iter.bi_sector;
}
static inline void __sdfat_set_bio_iterate(struct bio *bio, sector_t sector,
unsigned int size, unsigned int idx, unsigned int done)
{
struct bvec_iter *iter = &(bio->bi_iter);
iter->bi_sector = sector;
iter->bi_size = size;
iter->bi_idx = idx;
iter->bi_bvec_done = done;
}
static void __sdfat_truncate_pagecache(struct inode *inode,
loff_t to, loff_t newsize)
{
truncate_pagecache(inode, newsize);
}
static int sdfat_d_hash(const struct dentry *dentry, struct qstr *qstr)
{
return __sdfat_d_hash(dentry, qstr);
}
static int sdfat_d_hashi(const struct dentry *dentry, struct qstr *qstr)
{
return __sdfat_d_hashi(dentry, qstr);
}
//instead of sdfat_readdir
static int sdfat_iterate(struct file *filp, struct dir_context *ctx)
{
struct inode *inode = filp->f_path.dentry->d_inode;
struct super_block *sb = inode->i_sb;
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
FS_INFO_T *fsi = &(sbi->fsi);
DIR_ENTRY_T de;
DENTRY_NAMEBUF_T *nb = &(de.NameBuf);
unsigned long inum;
loff_t cpos;
int err = 0, fake_offset = 0;
sdfat_init_namebuf(nb);
__lock_super(sb);
cpos = ctx->pos;
if ((fsi->vol_type == EXFAT) || (inode->i_ino == SDFAT_ROOT_INO)) {
if (!dir_emit_dots(filp, ctx))
goto out;
if (ctx->pos == ITER_POS_FILLED_DOTS) {
cpos = 0;
fake_offset = 1;
}
}
if (cpos & (DENTRY_SIZE - 1)) {
err = -ENOENT;
goto out;
}
/* name buffer should be allocated before use */
err = sdfat_alloc_namebuf(nb);
if (err)
goto out;
get_new:
SDFAT_I(inode)->fid.size = i_size_read(inode);
SDFAT_I(inode)->fid.rwoffset = cpos >> DENTRY_SIZE_BITS;
if (cpos >= SDFAT_I(inode)->fid.size)
goto end_of_dir;
err = fsapi_readdir(inode, &de);
if (err) {
// at least we tried to read a sector
// move cpos to next sector position (should be aligned)
if (err == -EIO) {
cpos += 1 << (sb->s_blocksize_bits);
cpos &= ~((u32)sb->s_blocksize-1);
}
err = -EIO;
goto end_of_dir;
}
cpos = SDFAT_I(inode)->fid.rwoffset << DENTRY_SIZE_BITS;
if (!nb->lfn[0])
goto end_of_dir;
if (!memcmp(nb->sfn, DOS_CUR_DIR_NAME, DOS_NAME_LENGTH)) {
inum = inode->i_ino;
} else if (!memcmp(nb->sfn, DOS_PAR_DIR_NAME, DOS_NAME_LENGTH)) {
inum = parent_ino(filp->f_path.dentry);
} else {
loff_t i_pos = ((loff_t) SDFAT_I(inode)->fid.start_clu << 32) |
((SDFAT_I(inode)->fid.rwoffset-1) & 0xffffffff);
struct inode *tmp = sdfat_iget(sb, i_pos);
if (tmp) {
inum = tmp->i_ino;
iput(tmp);
} else {
inum = iunique(sb, SDFAT_ROOT_INO);
}
}
/* Before calling dir_emit(), sb_lock should be released.
* Because page fault can occur in dir_emit() when the size of buffer given
* from user is larger than one page size
*/
__unlock_super(sb);
if (!dir_emit(ctx, nb->lfn, strlen(nb->lfn), inum,
(de.Attr & ATTR_SUBDIR) ? DT_DIR : DT_REG))
goto out_unlocked;
__lock_super(sb);
ctx->pos = cpos;
goto get_new;
end_of_dir:
if (!cpos && fake_offset)
cpos = ITER_POS_FILLED_DOTS;
ctx->pos = cpos;
out:
__unlock_super(sb);
out_unlocked:
/*
* To improve performance, free namebuf after unlock sb_lock.
* If namebuf is not allocated, this function do nothing
*/
sdfat_free_namebuf(nb);
return err;
}
#else /* LINUX_VERSION_CODE < KERNEL_VERSION(3, 14, 0) */
static inline sector_t __sdfat_bio_sector(struct bio *bio)
{
return bio->bi_sector;
}
static inline void __sdfat_set_bio_iterate(struct bio *bio, sector_t sector,
unsigned int size, unsigned int idx, unsigned int done)
{
bio->bi_sector = sector;
bio->bi_idx = idx;
bio->bi_size = size; //PAGE_SIZE;
}
static void __sdfat_truncate_pagecache(struct inode *inode,
loff_t to, loff_t newsize)
{
truncate_pagecache(inode, to, newsize);
}
static int sdfat_d_hash(const struct dentry *dentry,
const struct inode *inode, struct qstr *qstr)
{
return __sdfat_d_hash(dentry, qstr);
}
static int sdfat_d_hashi(const struct dentry *dentry,
const struct inode *inode, struct qstr *qstr)
{
return __sdfat_d_hashi(dentry, qstr);
}
static int sdfat_readdir(struct file *filp, void *dirent, filldir_t filldir)
{
struct inode *inode = filp->f_path.dentry->d_inode;
struct super_block *sb = inode->i_sb;
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
FS_INFO_T *fsi = &(sbi->fsi);
DIR_ENTRY_T de;
DENTRY_NAMEBUF_T *nb = &(de.NameBuf);
unsigned long inum;
loff_t cpos;
int err = 0, fake_offset = 0;
sdfat_init_namebuf(nb);
__lock_super(sb);
cpos = filp->f_pos;
/* Fake . and .. for the root directory. */
if ((fsi->vol_type == EXFAT) || (inode->i_ino == SDFAT_ROOT_INO)) {
while (cpos < ITER_POS_FILLED_DOTS) {
if (inode->i_ino == SDFAT_ROOT_INO)
inum = SDFAT_ROOT_INO;
else if (cpos == 0)
inum = inode->i_ino;
else /* (cpos == 1) */
inum = parent_ino(filp->f_path.dentry);
if (filldir(dirent, "..", cpos+1, cpos, inum, DT_DIR) < 0)
goto out;
cpos++;
filp->f_pos++;
}
if (cpos == ITER_POS_FILLED_DOTS) {
cpos = 0;
fake_offset = 1;
}
}
if (cpos & (DENTRY_SIZE - 1)) {
err = -ENOENT;
goto out;
}
/* name buffer should be allocated before use */
err = sdfat_alloc_namebuf(nb);
if (err)
goto out;
get_new:
SDFAT_I(inode)->fid.size = i_size_read(inode);
SDFAT_I(inode)->fid.rwoffset = cpos >> DENTRY_SIZE_BITS;
if (cpos >= SDFAT_I(inode)->fid.size)
goto end_of_dir;
err = fsapi_readdir(inode, &de);
if (err) {
// at least we tried to read a sector
// move cpos to next sector position (should be aligned)
if (err == -EIO) {
cpos += 1 << (sb->s_blocksize_bits);
cpos &= ~((u32)sb->s_blocksize-1);
}
err = -EIO;
goto end_of_dir;
}
cpos = SDFAT_I(inode)->fid.rwoffset << DENTRY_SIZE_BITS;
if (!nb->lfn[0])
goto end_of_dir;
if (!memcmp(nb->sfn, DOS_CUR_DIR_NAME, DOS_NAME_LENGTH)) {
inum = inode->i_ino;
} else if (!memcmp(nb->sfn, DOS_PAR_DIR_NAME, DOS_NAME_LENGTH)) {
inum = parent_ino(filp->f_path.dentry);
} else {
loff_t i_pos = ((loff_t) SDFAT_I(inode)->fid.start_clu << 32) |
((SDFAT_I(inode)->fid.rwoffset-1) & 0xffffffff);
struct inode *tmp = sdfat_iget(sb, i_pos);
if (tmp) {
inum = tmp->i_ino;
iput(tmp);
} else {
inum = iunique(sb, SDFAT_ROOT_INO);
}
}
/* Before calling dir_emit(), sb_lock should be released.
* Because page fault can occur in dir_emit() when the size of buffer given
* from user is larger than one page size
*/
__unlock_super(sb);
if (filldir(dirent, nb->lfn, strlen(nb->lfn), cpos, inum,
(de.Attr & ATTR_SUBDIR) ? DT_DIR : DT_REG) < 0)
goto out_unlocked;
__lock_super(sb);
filp->f_pos = cpos;
goto get_new;
end_of_dir:
if (!cpos && fake_offset)
cpos = ITER_POS_FILLED_DOTS;
filp->f_pos = cpos;
out:
__unlock_super(sb);
out_unlocked:
/*
* To improve performance, free namebuf after unlock sb_lock.
* If namebuf is not allocated, this function do nothing
*/
sdfat_free_namebuf(nb);
return err;
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 9, 0)
/* EMPTY */
#else /* LINUX_VERSION_CODE < KERNEL_VERSION(3, 9, 0) */
static inline struct inode *file_inode(const struct file *f)
{
return f->f_dentry->d_inode;
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0)
static inline int __is_sb_dirty(struct super_block *sb)
{
return SDFAT_SB(sb)->s_dirt;
}
static inline void __set_sb_clean(struct super_block *sb)
{
SDFAT_SB(sb)->s_dirt = 0;
}
/* Workqueue wrapper for sdfat_write_super () */
static void __write_super_delayed(struct work_struct *work)
{
struct sdfat_sb_info *sbi;
struct super_block *sb;
sbi = container_of(work, struct sdfat_sb_info, write_super_work.work);
sb = sbi->host_sb;
/* XXX: Is this needed? */
if (!sb || !down_read_trylock(&sb->s_umount)) {
DMSG("%s: skip delayed work(write_super).\n", __func__);
return;
}
DMSG("%s: do delayed_work(write_super).\n", __func__);
spin_lock(&sbi->work_lock);
sbi->write_super_queued = 0;
spin_unlock(&sbi->work_lock);
sdfat_write_super(sb);
up_read(&sb->s_umount);
}
static void setup_sdfat_sync_super_wq(struct super_block *sb)
{
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
mutex_init(&sbi->s_lock);
spin_lock_init(&sbi->work_lock);
INIT_DELAYED_WORK(&sbi->write_super_work, __write_super_delayed);
sbi->host_sb = sb;
}
static inline bool __cancel_delayed_work_sync(struct sdfat_sb_info *sbi)
{
return cancel_delayed_work_sync(&sbi->write_super_work);
}
static inline void lock_super(struct super_block *sb)
{
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
mutex_lock(&sbi->s_lock);
}
static inline void unlock_super(struct super_block *sb)
{
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
mutex_unlock(&sbi->s_lock);
}
static int sdfat_revalidate(struct dentry *dentry, unsigned int flags)
{
if (flags & LOOKUP_RCU)
return -ECHILD;
return __sdfat_revalidate(dentry);
}
static int sdfat_revalidate_ci(struct dentry *dentry, unsigned int flags)
{
if (flags & LOOKUP_RCU)
return -ECHILD;
return __sdfat_revalidate_ci(dentry, flags);
}
static struct inode *sdfat_iget(struct super_block *sb, loff_t i_pos)
{
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
struct sdfat_inode_info *info;
struct hlist_head *head = sbi->inode_hashtable + sdfat_hash(i_pos);
struct inode *inode = NULL;
spin_lock(&sbi->inode_hash_lock);
hlist_for_each_entry(info, head, i_hash_fat) {
BUG_ON(info->vfs_inode.i_sb != sb);
if (i_pos != info->i_pos)
continue;
inode = igrab(&info->vfs_inode);
if (inode)
break;
}
spin_unlock(&sbi->inode_hash_lock);
return inode;
}
#else /* LINUX_VERSION_CODE < KERNEL_VERSION(3, 7, 0) */
static inline int __is_sb_dirty(struct super_block *sb)
{
return sb->s_dirt;
}
static inline void __set_sb_clean(struct super_block *sb)
{
sb->s_dirt = 0;
}
static void setup_sdfat_sync_super_wq(struct super_block *sb)
{
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
sbi->host_sb = sb;
}
static inline bool __cancel_delayed_work_sync(struct sdfat_sb_info *sbi)
{
/* DO NOTHING */
return 0;
}
static inline void clear_inode(struct inode *inode)
{
end_writeback(inode);
}
static int sdfat_revalidate(struct dentry *dentry, struct nameidata *nd)
{
if (nd && nd->flags & LOOKUP_RCU)
return -ECHILD;
return __sdfat_revalidate(dentry);
}
static int sdfat_revalidate_ci(struct dentry *dentry, struct nameidata *nd)
{
if (nd && nd->flags & LOOKUP_RCU)
return -ECHILD;
return __sdfat_revalidate_ci(dentry, nd ? nd->flags : 0);
}
static struct inode *sdfat_iget(struct super_block *sb, loff_t i_pos)
{
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
struct sdfat_inode_info *info;
struct hlist_node *node;
struct hlist_head *head = sbi->inode_hashtable + sdfat_hash(i_pos);
struct inode *inode = NULL;
spin_lock(&sbi->inode_hash_lock);
hlist_for_each_entry(info, node, head, i_hash_fat) {
BUG_ON(info->vfs_inode.i_sb != sb);
if (i_pos != info->i_pos)
continue;
inode = igrab(&info->vfs_inode);
if (inode)
break;
}
spin_unlock(&sbi->inode_hash_lock);
return inode;
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0)
static struct dentry *sdfat_lookup(struct inode *dir, struct dentry *dentry,
unsigned int flags)
{
return __sdfat_lookup(dir, dentry);
}
#else /* LINUX_VERSION_CODE < KERNEL_VERSION(3, 6, 0) */
static struct dentry *sdfat_lookup(struct inode *dir, struct dentry *dentry,
struct nameidata *nd)
{
return __sdfat_lookup(dir, dentry);
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0)
/* NOTHING NOW */
#else /* LINUX_VERSION_CODE < KERNEL_VERSION(3, 5, 0) */
#define GLOBAL_ROOT_UID (0)
#define GLOBAL_ROOT_GID (0)
static inline bool uid_eq(uid_t left, uid_t right)
{
return left == right;
}
static inline bool gid_eq(gid_t left, gid_t right)
{
return left == right;
}
static inline uid_t from_kuid_munged(struct user_namespace *to, uid_t kuid)
{
return kuid;
}
static inline gid_t from_kgid_munged(struct user_namespace *to, gid_t kgid)
{
return kgid;
}
static inline uid_t make_kuid(struct user_namespace *from, uid_t uid)
{
return uid;
}
static inline gid_t make_kgid(struct user_namespace *from, gid_t gid)
{
return gid;
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 4, 0)
static struct dentry *__d_make_root(struct inode *root_inode)
{
return d_make_root(root_inode);
}
static void __sdfat_do_truncate(struct inode *inode, loff_t old, loff_t new)
{
down_write(&SDFAT_I(inode)->truncate_lock);
truncate_setsize(inode, new);
sdfat_truncate(inode, old);
up_write(&SDFAT_I(inode)->truncate_lock);
}
static sector_t sdfat_aop_bmap(struct address_space *mapping, sector_t block)
{
sector_t blocknr;
/* sdfat_get_cluster() assumes the requested blocknr isn't truncated. */
down_read(&SDFAT_I(mapping->host)->truncate_lock);
blocknr = generic_block_bmap(mapping, block, sdfat_get_block);
up_read(&SDFAT_I(mapping->host)->truncate_lock);
return blocknr;
}
static int sdfat_show_options(struct seq_file *m, struct dentry *root)
{
return __sdfat_show_options(m, root->d_sb);
}
#else /* LINUX_VERSION_CODE < KERNEL_VERSION(3, 4, 0) */
static inline void set_nlink(struct inode *inode, unsigned int nlink)
{
inode->i_nlink = nlink;
}
static struct dentry *__d_make_root(struct inode *root_inode)
{
return d_alloc_root(root_inode);
}
static void __sdfat_do_truncate(struct inode *inode, loff_t old, loff_t new)
{
truncate_setsize(inode, new);
sdfat_truncate(inode, old);
}
static sector_t sdfat_aop_bmap(struct address_space *mapping, sector_t block)
{
sector_t blocknr;
/* sdfat_get_cluster() assumes the requested blocknr isn't truncated. */
down_read(&mapping->host->i_alloc_sem);
blocknr = generic_block_bmap(mapping, block, sdfat_get_block);
up_read(&mapping->host->i_alloc_sem);
return blocknr;
}
static int sdfat_show_options(struct seq_file *m, struct vfsmount *mnt)
{
return __sdfat_show_options(m, mnt->mnt_sb);
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 1, 0)
#define __sdfat_generic_file_fsync(filp, start, end, datasync) \
generic_file_fsync(filp, start, end, datasync)
static int sdfat_file_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
{
return __sdfat_file_fsync(filp, start, end, datasync);
}
#else /* LINUX_VERSION_CODE < KERNEL_VERSION(3, 1, 0) */
#define __sdfat_generic_file_fsync(filp, start, end, datasync) \
generic_file_fsync(filp, datasync)
static int sdfat_file_fsync(struct file *filp, int datasync)
{
return __sdfat_file_fsync(filp, 0, 0, datasync);
}
#endif
/*************************************************************************
* MORE FUNCTIONS WHICH HAS KERNEL VERSION DEPENDENCY
*************************************************************************/
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 12, 0)
static int sdfat_getattr(struct user_namespace *mnt_uerns,
const struct path *path, struct kstat *stat,
unsigned int request_mask, unsigned int query_flags)
{
struct inode *inode = d_backing_inode(path->dentry);
generic_fillattr(&init_user_ns, inode, stat);
stat->blksize = SDFAT_SB(inode->i_sb)->fsi.cluster_size;
return 0;
}
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(4, 11, 0)
static int sdfat_getattr(const struct path *path, struct kstat *stat,
u32 request_mask, unsigned int query_flags)
{
struct inode *inode = d_backing_inode(path->dentry);
generic_fillattr(inode, stat);
stat->blksize = SDFAT_SB(inode->i_sb)->fsi.cluster_size;
return 0;
}
#else /* LINUX_VERSION_CODE < KERNEL_VERSION(4, 11, 0) */
static int sdfat_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
{
struct inode *inode = dentry->d_inode;
generic_fillattr(inode, stat);
stat->blksize = SDFAT_SB(inode->i_sb)->fsi.cluster_size;
return 0;
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 12, 0)
static int sdfat_setattr_prepare(struct dentry *dentry, struct iattr *attr)
{
return setattr_prepare(&init_user_ns, dentry, attr);
}
static int sdfat_rename(struct user_namespace *mnt_userns,
struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry,
unsigned int flags)
{
/*
* The VFS already checks for existence, so for local filesystems
* the RENAME_NOREPLACE implementation is equivalent to plain rename.
* Don't support any other flags
*/
if (flags & ~RENAME_NOREPLACE)
return -EINVAL;
return __sdfat_rename(old_dir, old_dentry, new_dir, new_dentry);
}
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(4, 9, 0)
static int sdfat_setattr_prepare(struct dentry *dentry, struct iattr *attr)
{
return setattr_prepare(dentry, attr);
}
static int sdfat_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry,
unsigned int flags)
{
/*
* The VFS already checks for existence, so for local filesystems
* the RENAME_NOREPLACE implementation is equivalent to plain rename.
* Don't support any other flags
*/
if (flags & ~RENAME_NOREPLACE)
return -EINVAL;
return __sdfat_rename(old_dir, old_dentry, new_dir, new_dentry);
}
#else
static int sdfat_setattr_prepare(struct dentry *dentry, struct iattr *attr)
{
struct inode *inode = dentry->d_inode;
return inode_change_ok(inode, attr);
}
static int sdfat_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry)
{
return __sdfat_rename(old_dir, old_dentry, new_dir, new_dentry);
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 12, 0)
static int sdfat_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
struct dentry *dentry, umode_t mode)
{
return __sdfat_mkdir(dir, dentry);
}
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(3, 4, 0)
static int sdfat_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
{
return __sdfat_mkdir(dir, dentry);
}
#else
static int sdfat_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
return __sdfat_mkdir(dir, dentry);
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 13, 0)
static void sdfat_writepage_end_io(struct bio *bio)
{
__sdfat_writepage_end_io(bio, blk_status_to_errno(bio->bi_status));
}
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(4, 3, 0)
static void sdfat_writepage_end_io(struct bio *bio)
{
__sdfat_writepage_end_io(bio, bio->bi_error);
}
#else /* LINUX_VERSION_CODE < KERNEL_VERSION(4, 3, 0) */
static void sdfat_writepage_end_io(struct bio *bio, int err)
{
if (test_bit(BIO_UPTODATE, &bio->bi_flags))
err = 0;
__sdfat_writepage_end_io(bio, err);
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 8, 0)
static int sdfat_cmp(const struct dentry *dentry,
unsigned int len, const char *str, const struct qstr *name)
{
return __sdfat_cmp(dentry, len, str, name);
}
static int sdfat_cmpi(const struct dentry *dentry,
unsigned int len, const char *str, const struct qstr *name)
{
return __sdfat_cmpi(dentry, len, str, name);
}
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(3, 14, 0)
static int sdfat_cmp(const struct dentry *parent, const struct dentry *dentry,
unsigned int len, const char *str, const struct qstr *name)
{
return __sdfat_cmp(dentry, len, str, name);
}
static int sdfat_cmpi(const struct dentry *parent, const struct dentry *dentry,
unsigned int len, const char *str, const struct qstr *name)
{
return __sdfat_cmpi(dentry, len, str, name);
}
#else
static int sdfat_cmp(const struct dentry *parent, const struct inode *pinode,
const struct dentry *dentry, const struct inode *inode,
unsigned int len, const char *str, const struct qstr *name)
{
return __sdfat_cmp(dentry, len, str, name);
}
static int sdfat_cmpi(const struct dentry *parent, const struct inode *pinode,
const struct dentry *dentry, const struct inode *inode,
unsigned int len, const char *str, const struct qstr *name)
{
return __sdfat_cmpi(dentry, len, str, name);
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 7, 0)
static ssize_t sdfat_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
size_t count = iov_iter_count(iter);
int rw = iov_iter_rw(iter);
loff_t offset = iocb->ki_pos;
return __sdfat_direct_IO(rw, iocb, inode,
(void *)iter, offset, count, 0 /* UNUSED */);
}
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)
static ssize_t sdfat_direct_IO(struct kiocb *iocb,
struct iov_iter *iter,
loff_t offset)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
size_t count = iov_iter_count(iter);
int rw = iov_iter_rw(iter);
return __sdfat_direct_IO(rw, iocb, inode,
(void *)iter, offset, count, 0 /* UNUSED */);
}
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(3, 16, 0)
static ssize_t sdfat_direct_IO(int rw, struct kiocb *iocb,
struct iov_iter *iter,
loff_t offset)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
size_t count = iov_iter_count(iter);
return __sdfat_direct_IO(rw, iocb, inode,
(void *)iter, offset, count, 0 /* UNUSED */);
}
#else
static ssize_t sdfat_direct_IO(int rw, struct kiocb *iocb,
const struct iovec *iov, loff_t offset, unsigned long nr_segs)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
size_t count = iov_length(iov, nr_segs);
return __sdfat_direct_IO(rw, iocb, inode,
(void *)iov, offset, count, nr_segs);
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 7, 0)
static inline ssize_t __sdfat_blkdev_direct_IO(int unused, struct kiocb *iocb,
struct inode *inode, void *iov_u, loff_t unused_1,
unsigned long nr_segs)
{
struct iov_iter *iter = (struct iov_iter *)iov_u;
return blockdev_direct_IO(iocb, inode, iter, sdfat_get_block);
}
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)
static inline ssize_t __sdfat_blkdev_direct_IO(int unused, struct kiocb *iocb,
struct inode *inode, void *iov_u, loff_t offset,
unsigned long nr_segs)
{
struct iov_iter *iter = (struct iov_iter *)iov_u;
return blockdev_direct_IO(iocb, inode, iter, offset, sdfat_get_block);
}
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(3, 16, 0)
static inline ssize_t __sdfat_blkdev_direct_IO(int rw, struct kiocb *iocb,
struct inode *inode, void *iov_u, loff_t offset,
unsigned long nr_segs)
{
struct iov_iter *iter = (struct iov_iter *)iov_u;
return blockdev_direct_IO(rw, iocb, inode, iter,
offset, sdfat_get_block);
}
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(3, 4, 0)
static inline ssize_t __sdfat_blkdev_direct_IO(int rw, struct kiocb *iocb,
struct inode *inode, void *iov_u, loff_t offset,
unsigned long nr_segs)
{
const struct iovec *iov = (const struct iovec *)iov_u;
return blockdev_direct_IO(rw, iocb, inode, iov,
offset, nr_segs, sdfat_get_block);
}
#else
static inline ssize_t __sdfat_blkdev_direct_IO(int rw, struct kiocb *iocb,
struct inode *inode, void *iov_u, loff_t offset,
unsigned long nr_segs)
{
const struct iovec *iov = (const struct iovec *)iov_u;
return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
offset, nr_segs, sdfat_get_block, NULL);
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 5, 0)
static const char *sdfat_follow_link(struct dentry *dentry, struct inode *inode, struct delayed_call *done)
{
struct sdfat_inode_info *ei = SDFAT_I(inode);
return (char *)(ei->target);
}
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(4, 2, 0)
static const char *sdfat_follow_link(struct dentry *dentry, void **cookie)
{
struct sdfat_inode_info *ei = SDFAT_I(dentry->d_inode);
return *cookie = (char *)(ei->target);
}
#else
static void *sdfat_follow_link(struct dentry *dentry, struct nameidata *nd)
{
struct sdfat_inode_info *ei = SDFAT_I(dentry->d_inode);
nd_set_link(nd, (char *)(ei->target));
return NULL;
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 12, 0)
static int sdfat_symlink(struct user_namespace *mnt_userns,
struct inode *dir, struct dentry *dentry,
const char *target)
{
return __sdfat_symlink(dir, dentry, target);
}
static int sdfat_setattr(struct user_namespace *mnt_userns,
struct dentry *dentry, struct iattr *attr)
{
return __sdfat_setattr(dentry, attr);
}
#else
static int sdfat_symlink(struct inode *dir, struct dentry *dentry,
const char *target)
{
return __sdfat_symlink(dir, dentry, target);
}
static int sdfat_setattr(struct dentry *dentry, struct iattr *attr)
{
return __sdfat_setattr(dentry, attr);
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 12, 0)
static int sdfat_create(struct user_namespace *mnt_userns, struct inode *dir,
struct dentry *dentry, umode_t mode, bool excl)
{
return __sdfat_create(dir, dentry);
}
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0)
static int sdfat_create(struct inode *dir, struct dentry *dentry, umode_t mode,
bool excl)
{
return __sdfat_create(dir, dentry);
}
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(3, 4, 0)
static int sdfat_create(struct inode *dir, struct dentry *dentry, umode_t mode,
struct nameidata *nd)
{
return __sdfat_create(dir, dentry);
}
#else
static int sdfat_create(struct inode *dir, struct dentry *dentry, int mode,
struct nameidata *nd)
{
return __sdfat_create(dir, dentry);
}
#endif
/*************************************************************************
* WRAP FUNCTIONS FOR DEBUGGING
*************************************************************************/
#ifdef CONFIG_SDFAT_TRACE_SB_LOCK
static inline void __lock_super(struct super_block *sb)
{
lock_super(sb);
__lock_jiffies = jiffies;
}
static inline void __unlock_super(struct super_block *sb)
{
int time = ((jiffies - __lock_jiffies) * 1000 / HZ);
/* FIXME : error message should be modified */
if (time > 10)
EMSG("lock_super in %s (%d ms)\n", __func__, time);
unlock_super(sb);
}
#else /* CONFIG_SDFAT_TRACE_SB_LOCK */
static inline void __lock_super(struct super_block *sb)
{
lock_super(sb);
}
static inline void __unlock_super(struct super_block *sb)
{
unlock_super(sb);
}
#endif /* CONFIG_SDFAT_TRACE_SB_LOCK */
/*************************************************************************
* NORMAL FUNCTIONS
*************************************************************************/
static inline loff_t sdfat_make_i_pos(FILE_ID_T *fid)
{
return ((loff_t) fid->dir.dir << 32) | (fid->entry & 0xffffffff);
}
/*======================================================================*/
/* Directory Entry Name Buffer Operations */
/*======================================================================*/
static void sdfat_init_namebuf(DENTRY_NAMEBUF_T *nb)
{
nb->lfn = NULL;
nb->sfn = NULL;
nb->lfnbuf_len = 0;
nb->sfnbuf_len = 0;
}
static int sdfat_alloc_namebuf(DENTRY_NAMEBUF_T *nb)
{
nb->lfn = __getname();
if (!nb->lfn)
return -ENOMEM;
nb->sfn = nb->lfn + MAX_VFSNAME_BUF_SIZE;
nb->lfnbuf_len = MAX_VFSNAME_BUF_SIZE;
nb->sfnbuf_len = MAX_VFSNAME_BUF_SIZE;
return 0;
}
static void sdfat_free_namebuf(DENTRY_NAMEBUF_T *nb)
{
if (!nb->lfn)
return;
__putname(nb->lfn);
sdfat_init_namebuf(nb);
}
/*======================================================================*/
/* Directory Entry Operations */
/*======================================================================*/
#define SDFAT_DSTATE_LOCKED (void *)(0xCAFE2016)
#define SDFAT_DSTATE_UNLOCKED (void *)(0x00000000)
static inline void __lock_d_revalidate(struct dentry *dentry)
{
spin_lock(&dentry->d_lock);
dentry->d_fsdata = SDFAT_DSTATE_LOCKED;
spin_unlock(&dentry->d_lock);
}
static inline void __unlock_d_revalidate(struct dentry *dentry)
{
spin_lock(&dentry->d_lock);
dentry->d_fsdata = SDFAT_DSTATE_UNLOCKED;
spin_unlock(&dentry->d_lock);
}
/* __check_dstate_locked requires dentry->d_lock */
static inline int __check_dstate_locked(struct dentry *dentry)
{
if (dentry->d_fsdata == SDFAT_DSTATE_LOCKED)
return 1;
return 0;
}
/*
* If new entry was created in the parent, it could create the 8.3
* alias (the shortname of logname). So, the parent may have the
* negative-dentry which matches the created 8.3 alias.
*
* If it happened, the negative dentry isn't actually negative
* anymore. So, drop it.
*/
static int __sdfat_revalidate_common(struct dentry *dentry)
{
int ret = 1;
spin_lock(&dentry->d_lock);
if ((!dentry->d_inode) && (!__check_dstate_locked(dentry) &&
(dentry->d_time !=
(unsigned long)inode_peek_iversion(dentry->d_parent->d_inode)))) {
ret = 0;
}
spin_unlock(&dentry->d_lock);
return ret;
}
static int __sdfat_revalidate(struct dentry *dentry)
{
/* This is not negative dentry. Always valid. */
if (dentry->d_inode)
return 1;
return __sdfat_revalidate_common(dentry);
}
static int __sdfat_revalidate_ci(struct dentry *dentry, unsigned int flags)
{
/*
* This is not negative dentry. Always valid.
*
* Note, rename() to existing directory entry will have ->d_inode,
* and will use existing name which isn't specified name by user.
*
* We may be able to drop this positive dentry here. But dropping
* positive dentry isn't good idea. So it's unsupported like
* rename("filename", "FILENAME") for now.
*/
if (dentry->d_inode)
return 1;
#if 0 /* Blocked below code for lookup_one_len() called by stackable FS */
/*
* This may be nfsd (or something), anyway, we can't see the
* intent of this. So, since this can be for creation, drop it.
*/
if (!flags)
return 0;
#endif
/*
* Drop the negative dentry, in order to make sure to use the
* case sensitive name which is specified by user if this is
* for creation.
*/
if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
return 0;
return __sdfat_revalidate_common(dentry);
}
/* returns the length of a struct qstr, ignoring trailing dots */
static unsigned int __sdfat_striptail_len(unsigned int len, const char *name)
{
while (len && name[len - 1] == '.')
len--;
return len;
}
static unsigned int sdfat_striptail_len(const struct qstr *qstr)
{
return __sdfat_striptail_len(qstr->len, qstr->name);
}
/*
* Compute the hash for the sdfat name corresponding to the dentry.
* Note: if the name is invalid, we leave the hash code unchanged so
* that the existing dentry can be used. The sdfat fs routines will
* return ENOENT or EINVAL as appropriate.
*/
static int __sdfat_d_hash(const struct dentry *dentry, struct qstr *qstr)
{
unsigned int len = sdfat_striptail_len(qstr);
qstr->hash = __sdfat_full_name_hash(dentry, qstr->name, len);
return 0;
}
/*
* Compute the hash for the sdfat name corresponding to the dentry.
* Note: if the name is invalid, we leave the hash code unchanged so
* that the existing dentry can be used. The sdfat fs routines will
* return ENOENT or EINVAL as appropriate.
*/
static int __sdfat_d_hashi(const struct dentry *dentry, struct qstr *qstr)
{
struct nls_table *t = SDFAT_SB(dentry->d_sb)->nls_io;
const unsigned char *name;
unsigned int len;
unsigned long hash;
name = qstr->name;
len = sdfat_striptail_len(qstr);
hash = __sdfat_init_name_hash(dentry);
while (len--)
hash = partial_name_hash(nls_tolower(t, *name++), hash);
qstr->hash = end_name_hash(hash);
return 0;
}
/*
* Case sensitive compare of two sdfat names.
*/
static int __sdfat_cmp(const struct dentry *dentry, unsigned int len,
const char *str, const struct qstr *name)
{
unsigned int alen, blen;
/* A filename cannot end in '.' or we treat it like it has none */
alen = sdfat_striptail_len(name);
blen = __sdfat_striptail_len(len, str);
if (alen == blen) {
if (strncmp(name->name, str, alen) == 0)
return 0;
}
return 1;
}
/*
* Case insensitive compare of two sdfat names.
*/
static int __sdfat_cmpi(const struct dentry *dentry, unsigned int len,
const char *str, const struct qstr *name)
{
struct nls_table *t = SDFAT_SB(dentry->d_sb)->nls_io;
unsigned int alen, blen;
/* A filename cannot end in '.' or we treat it like it has none */
alen = sdfat_striptail_len(name);
blen = __sdfat_striptail_len(len, str);
if (alen == blen) {
if (nls_strnicmp(t, name->name, str, alen) == 0)
return 0;
}
return 1;
}
static const struct dentry_operations sdfat_dentry_ops = {
.d_revalidate = sdfat_revalidate,
.d_hash = sdfat_d_hash,
.d_compare = sdfat_cmp,
};
static const struct dentry_operations sdfat_ci_dentry_ops = {
.d_revalidate = sdfat_revalidate_ci,
.d_hash = sdfat_d_hashi,
.d_compare = sdfat_cmpi,
};
#ifdef CONFIG_SDFAT_DFR
/*----------------------------------------------------------------------*/
/* Defragmentation related */
/*----------------------------------------------------------------------*/
/**
* @fn defrag_cleanup_reqs
* @brief clean-up defrag info depending on error flag
* @return void
* @param sb super block
* @param error error flag
*/
static void defrag_cleanup_reqs(INOUT struct super_block *sb, IN int error)
{
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
struct defrag_info *sb_dfr = &(sbi->dfr_info);
struct defrag_info *ino_dfr = NULL, *tmp = NULL;
/* sdfat patch 0.96 : sbi->dfr_info crash problem */
__lock_super(sb);
/* Clean-up ino_dfr */
if (!error) {
list_for_each_entry_safe(ino_dfr, tmp, &sb_dfr->entry, entry) {
struct inode *inode = &(container_of(ino_dfr, struct sdfat_inode_info, dfr_info)->vfs_inode);
mutex_lock(&ino_dfr->lock);
atomic_set(&ino_dfr->stat, DFR_INO_STAT_IDLE);
list_del(&ino_dfr->entry);
ino_dfr->chunks = NULL;
ino_dfr->nr_chunks = 0;
INIT_LIST_HEAD(&ino_dfr->entry);
BUG_ON(!mutex_is_locked(&ino_dfr->lock));
mutex_unlock(&ino_dfr->lock);
iput(inode);
}
}
/* Clean-up sb_dfr */
sb_dfr->chunks = NULL;
sb_dfr->nr_chunks = 0;
INIT_LIST_HEAD(&sb_dfr->entry);
/* Clear dfr_new_clus page */
memset(sbi->dfr_new_clus, 0, PAGE_SIZE);
sbi->dfr_new_idx = 1;
memset(sbi->dfr_page_wb, 0, PAGE_SIZE);
sbi->dfr_hint_clus = sbi->dfr_hint_idx = sbi->dfr_reserved_clus = 0;
__unlock_super(sb);
}
/**
* @fn defrag_validate_pages
* @brief validate and mark dirty for victiim pages
* @return 0 on success, -errno otherwise
* @param inode inode
* @param chunk given chunk
* @remark protected by inode_lock and super_lock
*/
static int
defrag_validate_pages(
IN struct inode *inode,
IN struct defrag_chunk_info *chunk)
{
struct super_block *sb = inode->i_sb;
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
struct page *page = NULL;
unsigned int i_size = 0, page_off = 0, page_nr = 0;
int buf_i = 0, i = 0, err = 0;
i_size = i_size_read(inode);
page_off = chunk->f_clus * PAGES_PER_CLUS(sb);
page_nr = (i_size / PAGE_SIZE) + ((i_size % PAGE_SIZE) ? 1 : 0);
if ((i_size <= 0) || (page_nr <= 0)) {
dfr_err("inode %p, i_size %d, page_nr %d", inode, i_size, page_nr);
return -EINVAL;
}
/* Get victim pages
* and check its dirty/writeback/mapped state
*/
for (i = 0;
i < min((int)(page_nr - page_off), (int)(chunk->nr_clus * PAGES_PER_CLUS(sb)));
i++) {
page = find_get_page(inode->i_mapping, page_off + i);
if (page)
if (!trylock_page(page)) {
put_page(page);
page = NULL;
}
if (!page) {
dfr_debug("get/lock_page() failed, index %d", i);
err = -EINVAL;
goto error;
}
sbi->dfr_pagep[buf_i++] = page;
if (PageError(page) || !PageUptodate(page) || PageDirty(page) ||
PageWriteback(page) || page_mapped(page)) {
dfr_debug("page %p, err %d, uptodate %d, "
"dirty %d, wb %d, mapped %d",
page, PageError(page), PageUptodate(page),
PageDirty(page), PageWriteback(page),
page_mapped(page));
err = -EINVAL;
goto error;
}
set_bit((page->index & (PAGES_PER_CLUS(sb) - 1)),
(volatile unsigned long *)&(sbi->dfr_page_wb[chunk->new_idx + i / PAGES_PER_CLUS(sb)]));
page = NULL;
}
/**
* All pages in the chunks are valid.
*/
i_size -= (chunk->f_clus * (sbi->fsi.cluster_size));
BUG_ON(((i_size / PAGE_SIZE) + ((i_size % PAGE_SIZE) ? 1 : 0)) != (page_nr - page_off));
for (i = 0; i < buf_i; i++) {
struct buffer_head *bh = NULL, *head = NULL;
int bh_idx = 0;
page = sbi->dfr_pagep[i];
BUG_ON(!page);
/* Mark dirty in page */
set_page_dirty(page);
mark_page_accessed(page);
/* Attach empty BHs */
if (!page_has_buffers(page))
create_empty_buffers(page, 1 << inode->i_blkbits, 0);
/* Mark dirty in BHs */
bh = head = page_buffers(page);
BUG_ON(!bh && !i_size);
do {
if ((bh_idx >= 1) && (bh_idx >= (i_size >> inode->i_blkbits))) {
clear_buffer_dirty(bh);
} else {
if (PageUptodate(page))
if (!buffer_uptodate(bh))
set_buffer_uptodate(bh);
/* Set this bh as delay */
set_buffer_new(bh);
set_buffer_delay(bh);
mark_buffer_dirty(bh);
}
bh_idx++;
bh = bh->b_this_page;
} while (bh != head);
/* Mark this page accessed */
mark_page_accessed(page);
i_size -= PAGE_SIZE;
}
error:
/* Unlock and put refs for pages */
for (i = 0; i < buf_i; i++) {
BUG_ON(!sbi->dfr_pagep[i]);
unlock_page(sbi->dfr_pagep[i]);
put_page(sbi->dfr_pagep[i]);
}
memset(sbi->dfr_pagep, 0, sizeof(PAGE_SIZE));
return err;
}
/**
* @fn defrag_validate_reqs
* @brief validate defrag requests
* @return negative if all requests not valid, 0 otherwise
* @param sb super block
* @param chunks given chunks
*/
static int
defrag_validate_reqs(
IN struct super_block *sb,
INOUT struct defrag_chunk_info *chunks)
{
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
struct defrag_info *sb_dfr = &(sbi->dfr_info);
int i = 0, err = 0, err_cnt = 0;
/* Validate all reqs */
for (i = REQ_HEADER_IDX + 1; i < sb_dfr->nr_chunks; i++) {
struct defrag_chunk_info *chunk = NULL;
struct inode *inode = NULL;
struct defrag_info *ino_dfr = NULL;
chunk = &chunks[i];
/* Check inode */
__lock_super(sb);
inode = sdfat_iget(sb, chunk->i_pos);
if (!inode) {
dfr_debug("inode not found, i_pos %08llx", chunk->i_pos);
chunk->stat = DFR_CHUNK_STAT_ERR;
err_cnt++;
__unlock_super(sb);
continue;
}
__unlock_super(sb);
dfr_debug("req[%d] inode %p, i_pos %08llx, f_clus %d, "
"d_clus %08x, nr %d, prev %08x, next %08x",
i, inode, chunk->i_pos, chunk->f_clus, chunk->d_clus,
chunk->nr_clus, chunk->prev_clus, chunk->next_clus);
/**
* Lock ordering: inode_lock -> lock_super
*/
inode_lock(inode);
__lock_super(sb);
/* Check if enough buffers exist for chunk->new_idx */
if ((sbi->dfr_new_idx + chunk->nr_clus) >= (PAGE_SIZE / sizeof(int))) {
dfr_err("dfr_new_idx %d, chunk->nr_clus %d",
sbi->dfr_new_idx, chunk->nr_clus);
err = -ENOSPC;
goto unlock;
}
/* Reserve clusters for defrag with DA */
err = fsapi_dfr_reserve_clus(sb, chunk->nr_clus);
if (err)
goto unlock;
/* Check clusters */
err = fsapi_dfr_validate_clus(inode, chunk, 0);
if (err) {
fsapi_dfr_reserve_clus(sb, 0 - chunk->nr_clus);
dfr_debug("Cluster validation: err %d", err);
goto unlock;
}
/* Check pages */
err = defrag_validate_pages(inode, chunk);
if (err) {
fsapi_dfr_reserve_clus(sb, 0 - chunk->nr_clus);
dfr_debug("Page validation: err %d", err);
goto unlock;
}
/* Mark IGNORE flag to victim AU */
if (sbi->options.improved_allocation & SDFAT_ALLOC_SMART)
fsapi_dfr_mark_ignore(sb, chunk->d_clus);
ino_dfr = &(SDFAT_I(inode)->dfr_info);
mutex_lock(&ino_dfr->lock);
/* Update chunk info */
chunk->stat = DFR_CHUNK_STAT_REQ;
chunk->new_idx = sbi->dfr_new_idx;
/* Update ino_dfr info */
if (list_empty(&(ino_dfr->entry))) {
list_add_tail(&ino_dfr->entry, &sb_dfr->entry);
ino_dfr->chunks = chunk;
igrab(inode);
}
ino_dfr->nr_chunks++;
atomic_set(&ino_dfr->stat, DFR_INO_STAT_REQ);
BUG_ON(!mutex_is_locked(&ino_dfr->lock));
mutex_unlock(&ino_dfr->lock);
/* Reserved buffers for chunk->new_idx */
sbi->dfr_new_idx += chunk->nr_clus;
unlock:
if (err) {
chunk->stat = DFR_CHUNK_STAT_ERR;
err_cnt++;
}
iput(inode);
__unlock_super(sb);
inode_unlock(inode);
}
/* Return error if all chunks are invalid */
if (err_cnt == sb_dfr->nr_chunks - 1) {
dfr_debug("%s failed (err_cnt %d)", __func__, err_cnt);
return -ENXIO;
}
return 0;
}
/**
* @fn defrag_check_fs_busy
* @brief check if this module busy
* @return 0 when idle, 1 otherwise
* @param sb super block
* @param reserved_clus # of reserved clusters
* @param queued_pages # of queued pages
*/
static int
defrag_check_fs_busy(
IN struct super_block *sb,
OUT int *reserved_clus,
OUT int *queued_pages)
{
FS_INFO_T *fsi = &(SDFAT_SB(sb)->fsi);
int err = 0;
*reserved_clus = *queued_pages = 0;
__lock_super(sb);
*reserved_clus = fsi->reserved_clusters;
*queued_pages = atomic_read(&SDFAT_SB(sb)->stat_n_pages_queued);
if (*reserved_clus || *queued_pages)
err = 1;
__unlock_super(sb);
return err;
}
/**
* @fn sdfat_ioctl_defrag_req
* @brief ioctl to send defrag requests
* @return 0 on success, -errno otherwise
* @param inode inode
* @param uarg given requests
*/
static int
sdfat_ioctl_defrag_req(
IN struct inode *inode,
INOUT unsigned int *uarg)
{
struct super_block *sb = inode->i_sb;
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
struct defrag_info *sb_dfr = &(sbi->dfr_info);
struct defrag_chunk_header head;
struct defrag_chunk_info *chunks = NULL;
unsigned int len = 0;
int err = 0;
unsigned long timeout = 0;
/* Check overlapped defrag */
if (atomic_cmpxchg(&sb_dfr->stat, DFR_SB_STAT_IDLE, DFR_SB_STAT_REQ)) {
dfr_debug("sb_dfr->stat %d", atomic_read(&sb_dfr->stat));
return -EBUSY;
}
/* Check if defrag required */
__lock_super(sb);
if (!fsapi_dfr_check_dfr_required(sb, NULL, NULL, NULL)) {
dfr_debug("Not enough space left for defrag (err %d)", -ENOSPC);
atomic_set(&sb_dfr->stat, DFR_SB_STAT_IDLE);
__unlock_super(sb);
return -ENOSPC;
}
__unlock_super(sb);
/* Copy args */
memset(&head, 0, sizeof(struct defrag_chunk_header));
err = copy_from_user(&head, uarg, sizeof(struct defrag_chunk_info));
ERR_HANDLE(err);
/* If FS busy, cancel defrag */
if (!(head.mode == DFR_MODE_TEST)) {
int reserved_clus = 0, queued_pages = 0;
err = defrag_check_fs_busy(sb, &reserved_clus, &queued_pages);
if (err) {
dfr_debug("FS busy, cancel defrag (reserved_clus %d, queued_pages %d)",
reserved_clus, queued_pages);
err = -EBUSY;
goto error;
}
}
/* Total length is saved in the chunk header's nr_chunks field */
len = head.nr_chunks;
ERR_HANDLE2(!len, err, -EINVAL);
dfr_debug("IOC_DFR_REQ started (mode %d, nr_req %d)", head.mode, len - 1);
if (get_order(len * sizeof(struct defrag_chunk_info)) > MAX_ORDER) {
dfr_debug("len %d, sizeof(struct defrag_chunk_info) %lu, MAX_ORDER %d",
len, sizeof(struct defrag_chunk_info), MAX_ORDER);
err = -EINVAL;
goto error;
}
chunks = alloc_pages_exact(len * sizeof(struct defrag_chunk_info),
GFP_KERNEL | __GFP_ZERO);
ERR_HANDLE2(!chunks, err, -ENOMEM)
err = copy_from_user(chunks, uarg, len * sizeof(struct defrag_chunk_info));
ERR_HANDLE(err);
/* Initialize sb_dfr */
sb_dfr->chunks = chunks;
sb_dfr->nr_chunks = len;
/* Validate reqs & mark defrag/dirty */
err = defrag_validate_reqs(sb, sb_dfr->chunks);
ERR_HANDLE(err);
atomic_set(&sb_dfr->stat, DFR_SB_STAT_VALID);
/* Wait for defrag completion */
if (head.mode == DFR_MODE_ONESHOT)
timeout = 0;
else if (head.mode & DFR_MODE_BACKGROUND)
timeout = DFR_DEFAULT_TIMEOUT;
else
timeout = DFR_MIN_TIMEOUT;
dfr_debug("Wait for completion (timeout %ld)", timeout);
init_completion(&sbi->dfr_complete);
timeout = wait_for_completion_timeout(&sbi->dfr_complete, timeout);
if (!timeout) {
/* Force defrag_updat_fat() after timeout. */
dfr_debug("Force sync(), mode %d, left-timeout %ld", head.mode, timeout);
down_read(&sb->s_umount);
sync_inodes_sb(sb);
__lock_super(sb);
fsapi_dfr_update_fat_next(sb);
fsapi_sync_fs(sb, 1);
#ifdef CONFIG_SDFAT_DFR_DEBUG
/* SPO test */
fsapi_dfr_spo_test(sb, DFR_SPO_FAT_NEXT, __func__);
#endif
fsapi_dfr_update_fat_prev(sb, 1);
fsapi_sync_fs(sb, 1);
__unlock_super(sb);
up_read(&sb->s_umount);
}
#ifdef CONFIG_SDFAT_DFR_DEBUG
/* SPO test */
fsapi_dfr_spo_test(sb, DFR_SPO_NORMAL, __func__);
#endif
__lock_super(sb);
/* Send DISCARD to clean-ed AUs */
fsapi_dfr_check_discard(sb);
#ifdef CONFIG_SDFAT_DFR_DEBUG
/* SPO test */
fsapi_dfr_spo_test(sb, DFR_SPO_DISCARD, __func__);
#endif
/* Unmark IGNORE flag to all victim AUs */
fsapi_dfr_unmark_ignore_all(sb);
__unlock_super(sb);
err = copy_to_user(uarg, sb_dfr->chunks, sizeof(struct defrag_chunk_info) * len);
ERR_HANDLE(err);
error:
/* Clean-up sb_dfr & ino_dfr */
defrag_cleanup_reqs(sb, err);
if (chunks)
free_pages_exact(chunks, len * sizeof(struct defrag_chunk_info));
/* Set sb_dfr's state as IDLE */
atomic_set(&sb_dfr->stat, DFR_SB_STAT_IDLE);
dfr_debug("IOC_DFR_REQ done (err %d)", err);
return err;
}
/**
* @fn sdfat_ioctl_defrag_trav
* @brief ioctl to traverse given directory for defrag
* @return 0 on success, -errno otherwise
* @param inode inode
* @param uarg output buffer
*/
static int
sdfat_ioctl_defrag_trav(
IN struct inode *inode,
INOUT unsigned int *uarg)
{
struct super_block *sb = inode->i_sb;
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
struct defrag_info *sb_dfr = &(sbi->dfr_info);
struct defrag_trav_arg *args = (struct defrag_trav_arg *) sbi->dfr_pagep;
struct defrag_trav_header *header = (struct defrag_trav_header *) args;
int err = 0;
/* Check overlapped defrag */
if (atomic_cmpxchg(&sb_dfr->stat, DFR_SB_STAT_IDLE, DFR_SB_STAT_REQ)) {
dfr_debug("sb_dfr->stat %d", atomic_read(&sb_dfr->stat));
return -EBUSY;
}
/* Check if defrag required */
__lock_super(sb);
if (!fsapi_dfr_check_dfr_required(sb, NULL, NULL, NULL)) {
dfr_debug("Not enough space left for defrag (err %d)", -ENOSPC);
atomic_set(&sb_dfr->stat, DFR_SB_STAT_IDLE);
__unlock_super(sb);
return -ENOSPC;
}
__unlock_super(sb);
/* Copy args */
err = copy_from_user(args, uarg, PAGE_SIZE);
ERR_HANDLE(err);
/**
* Check args.
* ROOT directory has i_pos = 0 and start_clus = 0 .
*/
if (!(header->type & DFR_TRAV_TYPE_HEADER)) {
err = -EINVAL;
dfr_debug("type %d, i_pos %08llx, start_clus %08x",
header->type, header->i_pos, header->start_clus);
goto error;
}
/* If FS busy, cancel defrag */
if (!(header->type & DFR_TRAV_TYPE_TEST)) {
unsigned int reserved_clus = 0, queued_pages = 0;
err = defrag_check_fs_busy(sb, &reserved_clus, &queued_pages);
if (err) {
dfr_debug("FS busy, cancel defrag (reserved_clus %d, queued_pages %d)",
reserved_clus, queued_pages);
err = -EBUSY;
goto error;
}
}
/* Scan given directory and gather info */
inode_lock(inode);
__lock_super(sb);
err = fsapi_dfr_scan_dir(sb, (void *)args);
__unlock_super(sb);
inode_unlock(inode);
ERR_HANDLE(err);
/* Copy the result to user */
err = copy_to_user(uarg, args, PAGE_SIZE);
ERR_HANDLE(err);
error:
memset(sbi->dfr_pagep, 0, PAGE_SIZE);
atomic_set(&sb_dfr->stat, DFR_SB_STAT_IDLE);
return err;
}
/**
* @fn sdfat_ioctl_defrag_info
* @brief ioctl to get HW param info
* @return 0 on success, -errno otherwise
* @param sb super block
* @param uarg output buffer
*/
static int
sdfat_ioctl_defrag_info(
IN struct super_block *sb,
OUT unsigned int *uarg)
{
struct defrag_info_arg info_arg;
int err = 0;
memset(&info_arg, 0, sizeof(struct defrag_info_arg));
__lock_super(sb);
err = fsapi_dfr_get_info(sb, &info_arg);
__unlock_super(sb);
ERR_HANDLE(err);
dfr_debug("IOC_DFR_INFO: sec_per_au %d, hidden_sectors %d",
info_arg.sec_per_au, info_arg.hidden_sectors);
err = copy_to_user(uarg, &info_arg, sizeof(struct defrag_info_arg));
error:
return err;
}
#endif /* CONFIG_SDFAT_DFR */
static inline int __do_dfr_map_cluster(struct inode *inode, u32 clu_offset, unsigned int *clus_ptr)
{
#ifdef CONFIG_SDFAT_DFR
return fsapi_dfr_map_clus(inode, clu_offset, clus_ptr);
#else
return 0;
#endif
}
static inline int __check_dfr_on(struct inode *inode, loff_t start, loff_t end, const char *fname)
{
#ifdef CONFIG_SDFAT_DFR
struct defrag_info *ino_dfr = &(SDFAT_I(inode)->dfr_info);
if ((atomic_read(&ino_dfr->stat) == DFR_INO_STAT_REQ) &&
fsapi_dfr_check_dfr_on(inode, start, end, 0, fname))
return 1;
#endif
return 0;
}
static inline int __cancel_dfr_work(struct inode *inode, loff_t start, loff_t end, const char *fname)
{
#ifdef CONFIG_SDFAT_DFR
struct defrag_info *ino_dfr = &(SDFAT_I(inode)->dfr_info);
/* Cancel DEFRAG */
if (atomic_read(&ino_dfr->stat) == DFR_INO_STAT_REQ)
fsapi_dfr_check_dfr_on(inode, start, end, 1, fname);
#endif
return 0;
}
static inline int __dfr_writepage_end_io(struct page *page)
{
#ifdef CONFIG_SDFAT_DFR
struct defrag_info *ino_dfr = &(SDFAT_I(page->mapping->host)->dfr_info);
if (atomic_read(&ino_dfr->stat) == DFR_INO_STAT_REQ)
fsapi_dfr_writepage_endio(page);
#endif
return 0;
}
static inline void __init_dfr_info(struct inode *inode)
{
#ifdef CONFIG_SDFAT_DFR
memset(&(SDFAT_I(inode)->dfr_info), 0, sizeof(struct defrag_info));
INIT_LIST_HEAD(&(SDFAT_I(inode)->dfr_info.entry));
mutex_init(&(SDFAT_I(inode)->dfr_info.lock));
#endif
}
static inline int __alloc_dfr_mem_if_required(struct super_block *sb)
{
#ifdef CONFIG_SDFAT_DFR
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
if (!sbi->options.defrag)
return 0;
memset(&sbi->dfr_info, 0, sizeof(struct defrag_info));
INIT_LIST_HEAD(&(sbi->dfr_info.entry));
mutex_init(&(sbi->dfr_info.lock));
sbi->dfr_new_clus = kzalloc(PAGE_SIZE, GFP_KERNEL);
if (!sbi->dfr_new_clus) {
dfr_debug("error %d", -ENOMEM);
return -ENOMEM;
}
sbi->dfr_new_idx = 1;
sbi->dfr_page_wb = kzalloc(PAGE_SIZE, GFP_KERNEL);
if (!sbi->dfr_page_wb) {
dfr_debug("error %d", -ENOMEM);
return -ENOMEM;
}
sbi->dfr_pagep = alloc_pages_exact(sizeof(struct page *) *
PAGES_PER_AU(sb), GFP_KERNEL | __GFP_ZERO);
if (!sbi->dfr_pagep) {
dfr_debug("error %d", -ENOMEM);
return -ENOMEM;
}
#endif
return 0;
}
static void __free_dfr_mem_if_required(struct super_block *sb)
{
#ifdef CONFIG_SDFAT_DFR
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
if (sbi->dfr_pagep) {
free_pages_exact(sbi->dfr_pagep, sizeof(struct page *) * PAGES_PER_AU(sb));
sbi->dfr_pagep = NULL;
}
/* thanks for kfree */
kfree(sbi->dfr_page_wb);
sbi->dfr_page_wb = NULL;
kfree(sbi->dfr_new_clus);
sbi->dfr_new_clus = NULL;
#endif
}
static int sdfat_file_mmap(struct file *file, struct vm_area_struct *vm_struct)
{
__cancel_dfr_work(file->f_mapping->host,
(loff_t)vm_struct->vm_start,
(loff_t)(vm_struct->vm_end - 1),
__func__);
return generic_file_mmap(file, vm_struct);
}
static int sdfat_ioctl_volume_id(struct inode *dir)
{
struct sdfat_sb_info *sbi = SDFAT_SB(dir->i_sb);
FS_INFO_T *fsi = &(sbi->fsi);
return fsi->vol_id;
}
static int sdfat_dfr_ioctl(struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long arg)
{
#ifdef CONFIG_SDFAT_DFR
switch (cmd) {
case SDFAT_IOCTL_DFR_INFO: {
struct super_block *sb = inode->i_sb;
FS_INFO_T *fsi = &SDFAT_SB(sb)->fsi;
unsigned int __user *uarg = (unsigned int __user *) arg;
__lock_super(sb);
/* Check FS type (FAT32 only) */
if (fsi->vol_type != FAT32) {
dfr_err("Defrag not supported, vol_type %d", fsi->vol_type);
__unlock_super(sb);
return -EPERM;
}
/* Check if SB's defrag option enabled */
if (!(SDFAT_SB(sb)->options.defrag)) {
dfr_err("Defrag not supported, sbi->options.defrag %d", SDFAT_SB(sb)->options.defrag);
__unlock_super(sb);
return -EPERM;
}
/* Only IOCTL on mount-point allowed */
if (filp->f_path.mnt->mnt_root != filp->f_path.dentry) {
dfr_err("IOC_DFR_INFO only allowed on ROOT, root %p, dentry %p",
filp->f_path.mnt->mnt_root, filp->f_path.dentry);
__unlock_super(sb);
return -EPERM;
}
__unlock_super(sb);
return sdfat_ioctl_defrag_info(sb, uarg);
}
case SDFAT_IOCTL_DFR_TRAV: {
struct super_block *sb = inode->i_sb;
FS_INFO_T *fsi = &SDFAT_SB(sb)->fsi;
unsigned int __user *uarg = (unsigned int __user *) arg;
__lock_super(sb);
/* Check FS type (FAT32 only) */
if (fsi->vol_type != FAT32) {
dfr_err("Defrag not supported, vol_type %d", fsi->vol_type);
__unlock_super(sb);
return -EPERM;
}
/* Check if SB's defrag option enabled */
if (!(SDFAT_SB(sb)->options.defrag)) {
dfr_err("Defrag not supported, sbi->options.defrag %d", SDFAT_SB(sb)->options.defrag);
__unlock_super(sb);
return -EPERM;
}
__unlock_super(sb);
return sdfat_ioctl_defrag_trav(inode, uarg);
}
case SDFAT_IOCTL_DFR_REQ: {
struct super_block *sb = inode->i_sb;
FS_INFO_T *fsi = &SDFAT_SB(sb)->fsi;
unsigned int __user *uarg = (unsigned int __user *) arg;
__lock_super(sb);
/* Check if FS_ERROR occurred */
if (sb_rdonly(sb)) {
dfr_err("RDONLY partition (err %d)", -EPERM);
__unlock_super(sb);
return -EPERM;
}
/* Check FS type (FAT32 only) */
if (fsi->vol_type != FAT32) {
dfr_err("Defrag not supported, vol_type %d", fsi->vol_type);
__unlock_super(sb);
return -EINVAL;
}
/* Check if SB's defrag option enabled */
if (!(SDFAT_SB(sb)->options.defrag)) {
dfr_err("Defrag not supported, sbi->options.defrag %d", SDFAT_SB(sb)->options.defrag);
__unlock_super(sb);
return -EPERM;
}
/* Only IOCTL on mount-point allowed */
if (filp->f_path.mnt->mnt_root != filp->f_path.dentry) {
dfr_err("IOC_DFR_INFO only allowed on ROOT, root %p, dentry %p",
filp->f_path.mnt->mnt_root, filp->f_path.dentry);
__unlock_super(sb);
return -EINVAL;
}
__unlock_super(sb);
return sdfat_ioctl_defrag_req(inode, uarg);
}
#ifdef CONFIG_SDFAT_DFR_DEBUG
case SDFAT_IOCTL_DFR_SPO_FLAG: {
struct sdfat_sb_info *sbi = SDFAT_SB(inode->i_sb);
int ret = 0;
ret = get_user(sbi->dfr_spo_flag, (int __user *)arg);
dfr_debug("dfr_spo_flag %d", sbi->dfr_spo_flag);
return ret;
}
#endif /* CONFIG_SDFAT_DFR_DEBUG */
}
#endif /* CONFIG_SDFAT_DFR */
/* Inappropriate ioctl for device */
return -ENOTTY;
}
static int sdfat_dbg_ioctl(struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long arg)
{
#ifdef CONFIG_SDFAT_DBG_IOCTL
struct super_block *sb = inode->i_sb;
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
unsigned int flags;
switch (cmd) {
case SDFAT_IOC_GET_DEBUGFLAGS:
flags = sbi->debug_flags;
return put_user(flags, (int __user *)arg);
case SDFAT_IOC_SET_DEBUGFLAGS:
flags = 0;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (get_user(flags, (int __user *) arg))
return -EFAULT;
__lock_super(sb);
sbi->debug_flags = flags;
__unlock_super(sb);
return 0;
case SDFAT_IOCTL_PANIC:
panic("ioctl panic for test");
/* COULD NOT REACH HEAR */
return 0;
}
#endif /* CONFIG_SDFAT_DBG_IOCTL */
return -ENOTTY;
}
static long sdfat_generic_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
struct inode *inode = file_inode(filp);
int err;
if (cmd == SDFAT_IOCTL_GET_VOLUME_ID)
return sdfat_ioctl_volume_id(inode);
err = sdfat_dfr_ioctl(inode, filp, cmd, arg);
if (err != -ENOTTY)
return err;
/* -ENOTTY if inappropriate ioctl for device */
return sdfat_dbg_ioctl(inode, filp, cmd, arg);
}
static void __sdfat_writepage_end_io(struct bio *bio, int err)
{
struct page *page = bio->bi_io_vec->bv_page;
struct super_block *sb = page->mapping->host->i_sb;
ASSERT(bio->bi_vcnt == 1); /* Single page endio */
ASSERT(bio_data_dir(bio)); /* Write */
if (err) {
SetPageError(page);
mapping_set_error(page->mapping, err);
}
__dfr_writepage_end_io(page);
#ifdef CONFIG_SDFAT_TRACE_IO
{
//struct sdfat_sb_info *sbi = SDFAT_SB(bio->bi_bdev->bd_super);
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
sbi->stat_n_pages_written++;
if (page->mapping->host == sb->s_bdev->bd_inode)
sbi->stat_n_bdev_pages_written++;
/* 4 MB = 1024 pages => 0.4 sec (approx.)
* 32 KB = 64 pages => 0.025 sec
* Min. average latency b/w msgs. ~= 0.025 sec
*/
if ((sbi->stat_n_pages_written & 63) == 0) {
DMSG("STAT:%u, %u, %u, %u (Sector #: %u)\n",
sbi->stat_n_pages_added, sbi->stat_n_pages_written,
sbi->stat_n_bdev_pages_witten,
sbi->stat_n_pages_confused,
(unsigned int)__sdfat_bio_sector(bio));
}
}
#endif
end_page_writeback(page);
bio_put(bio);
// Update trace info.
atomic_dec(&SDFAT_SB(sb)->stat_n_pages_queued);
}
static int __support_write_inode_sync(struct super_block *sb)
{
#ifdef CONFIG_SDFAT_SUPPORT_DIR_SYNC
#ifdef CONFIG_SDFAT_DELAYED_META_DIRTY
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
if (sbi->fsi.vol_type != EXFAT)
return 0;
#endif
return 1;
#endif
return 0;
}
static int __sdfat_file_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
{
struct inode *inode = filp->f_mapping->host;
struct super_block *sb = inode->i_sb;
int res, err = 0;
res = __sdfat_generic_file_fsync(filp, start, end, datasync);
if (!__support_write_inode_sync(sb))
err = fsapi_sync_fs(sb, 1);
return res ? res : err;
}
static const struct file_operations sdfat_dir_operations = {
.llseek = generic_file_llseek,
.read = generic_read_dir,
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 14, 0)
.iterate = sdfat_iterate,
#else /* LINUX_VERSION_CODE < KERNEL_VERSION(3, 14, 0) */
.readdir = sdfat_readdir,
#endif
.fsync = sdfat_file_fsync,
.unlocked_ioctl = sdfat_generic_ioctl,
};
static int __sdfat_create(struct inode *dir, struct dentry *dentry)
{
struct super_block *sb = dir->i_sb;
struct inode *inode;
sdfat_timespec_t ts;
FILE_ID_T fid;
loff_t i_pos;
int err;
__lock_super(sb);
TMSG("%s entered\n", __func__);
ts = current_time(dir);
err = fsapi_create(dir, (u8 *) dentry->d_name.name, FM_REGULAR, &fid);
if (err)
goto out;
__lock_d_revalidate(dentry);
inode_inc_iversion(dir);
dir->i_ctime = dir->i_mtime = dir->i_atime = ts;
if (IS_DIRSYNC(dir))
(void) sdfat_sync_inode(dir);
else
mark_inode_dirty(dir);
i_pos = sdfat_make_i_pos(&fid);
inode = sdfat_build_inode(sb, &fid, i_pos);
if (IS_ERR(inode)) {
err = PTR_ERR(inode);
goto out;
}
inode_inc_iversion(inode);
inode->i_mtime = inode->i_atime = inode->i_ctime = ts;
/* timestamp is already written, so mark_inode_dirty() is unneeded. */
d_instantiate(dentry, inode);
out:
__unlock_d_revalidate(dentry);
__unlock_super(sb);
TMSG("%s exited with err(%d)\n", __func__, err);
if (!err)
sdfat_statistics_set_create(fid.flags);
return err;
}
static int sdfat_find(struct inode *dir, struct qstr *qname, FILE_ID_T *fid)
{
int err;
if (qname->len == 0)
return -ENOENT;
err = fsapi_lookup(dir, (u8 *) qname->name, fid);
if (err)
return -ENOENT;
return 0;
}
static int sdfat_d_anon_disconn(struct dentry *dentry)
{
return IS_ROOT(dentry) && (dentry->d_flags & DCACHE_DISCONNECTED);
}
static struct dentry *__sdfat_lookup(struct inode *dir, struct dentry *dentry)
{
struct super_block *sb = dir->i_sb;
struct inode *inode;
struct dentry *alias;
int err;
FILE_ID_T fid;
loff_t i_pos;
u64 ret;
mode_t i_mode;
__lock_super(sb);
TMSG("%s entered\n", __func__);
err = sdfat_find(dir, &dentry->d_name, &fid);
if (err) {
if (err == -ENOENT) {
inode = NULL;
goto out;
}
goto error;
}
i_pos = sdfat_make_i_pos(&fid);
inode = sdfat_build_inode(sb, &fid, i_pos);
if (IS_ERR(inode)) {
err = PTR_ERR(inode);
goto error;
}
i_mode = inode->i_mode;
if (S_ISLNK(i_mode) && !SDFAT_I(inode)->target) {
SDFAT_I(inode)->target = kmalloc((i_size_read(inode)+1), GFP_KERNEL);
if (!SDFAT_I(inode)->target) {
err = -ENOMEM;
goto error;
}
fsapi_read_link(dir, &fid, SDFAT_I(inode)->target, i_size_read(inode), &ret);
*(SDFAT_I(inode)->target + i_size_read(inode)) = '\0';
}
alias = d_find_alias(inode);
/*
* Checking "alias->d_parent == dentry->d_parent" to make sure
* FS is not corrupted (especially double linked dir).
*/
if (alias && alias->d_parent == dentry->d_parent &&
!sdfat_d_anon_disconn(alias)) {
/*
* Unhashed alias is able to exist because of revalidate()
* called by lookup_fast. You can easily make this status
* by calling create and lookup concurrently
* In such case, we reuse an alias instead of new dentry
*/
if (d_unhashed(alias)) {
BUG_ON(alias->d_name.hash_len != dentry->d_name.hash_len);
sdfat_msg(sb, KERN_INFO, "rehashed a dentry(%p) "
"in read lookup", alias);
d_drop(dentry);
d_rehash(alias);
} else if (!S_ISDIR(i_mode)) {
/*
* This inode has non anonymous-DCACHE_DISCONNECTED
* dentry. This means, the user did ->lookup() by an
* another name (longname vs 8.3 alias of it) in past.
*
* Switch to new one for reason of locality if possible.
*/
d_move(alias, dentry);
}
iput(inode);
__unlock_super(sb);
TMSG("%s exited\n", __func__);
return alias;
}
dput(alias);
out:
/* initialize d_time even though it is positive dentry */
dentry->d_time = (unsigned long)inode_peek_iversion(dir);
__unlock_super(sb);
dentry = d_splice_alias(inode, dentry);
TMSG("%s exited\n", __func__);
return dentry;
error:
__unlock_super(sb);
TMSG("%s exited with err(%d)\n", __func__, err);
return ERR_PTR(err);
}
static int sdfat_unlink(struct inode *dir, struct dentry *dentry)
{
struct inode *inode = dentry->d_inode;
struct super_block *sb = dir->i_sb;
sdfat_timespec_t ts;
int err;
__lock_super(sb);
TMSG("%s entered\n", __func__);
ts = current_time(dir);
SDFAT_I(inode)->fid.size = i_size_read(inode);
__cancel_dfr_work(inode, 0, SDFAT_I(inode)->fid.size, __func__);
err = fsapi_unlink(dir, &(SDFAT_I(inode)->fid));
if (err)
goto out;
__lock_d_revalidate(dentry);
inode_inc_iversion(dir);
dir->i_mtime = dir->i_atime = ts;
if (IS_DIRSYNC(dir))
(void) sdfat_sync_inode(dir);
else
mark_inode_dirty(dir);
clear_nlink(inode);
inode->i_mtime = inode->i_atime = ts;
sdfat_detach(inode);
dentry->d_time = (unsigned long)inode_peek_iversion(dir);
out:
__unlock_d_revalidate(dentry);
__unlock_super(sb);
TMSG("%s exited with err(%d)\n", __func__, err);
return err;
}
static int __sdfat_symlink(struct inode *dir, struct dentry *dentry,
const char *target)
{
struct super_block *sb = dir->i_sb;
struct inode *inode;
sdfat_timespec_t ts;
FILE_ID_T fid;
loff_t i_pos;
int err;
u64 len = (u64) strlen(target);
u64 ret;
/* symlink option check */
if (!SDFAT_SB(sb)->options.symlink)
return -ENOTSUPP;
__lock_super(sb);
TMSG("%s entered\n", __func__);
ts = current_time(dir);
err = fsapi_create(dir, (u8 *) dentry->d_name.name, FM_SYMLINK, &fid);
if (err)
goto out;
err = fsapi_write_link(dir, &fid, (char *) target, len, &ret);
if (err) {
fsapi_remove(dir, &fid);
goto out;
}
__lock_d_revalidate(dentry);
inode_inc_iversion(dir);
dir->i_ctime = dir->i_mtime = dir->i_atime = ts;
if (IS_DIRSYNC(dir))
(void) sdfat_sync_inode(dir);
else
mark_inode_dirty(dir);
i_pos = sdfat_make_i_pos(&fid);
inode = sdfat_build_inode(sb, &fid, i_pos);
if (IS_ERR(inode)) {
err = PTR_ERR(inode);
goto out;
}
inode_inc_iversion(inode);
inode->i_mtime = inode->i_atime = inode->i_ctime = ts;
/* timestamp is already written, so mark_inode_dirty() is unneeded. */
SDFAT_I(inode)->target = kmalloc((len+1), GFP_KERNEL);
if (!SDFAT_I(inode)->target) {
err = -ENOMEM;
goto out;
}
memcpy(SDFAT_I(inode)->target, target, len+1);
d_instantiate(dentry, inode);
out:
__unlock_d_revalidate(dentry);
__unlock_super(sb);
TMSG("%s exited with err(%d)\n", __func__, err);
return err;
}
static int __sdfat_mkdir(struct inode *dir, struct dentry *dentry)
{
struct super_block *sb = dir->i_sb;
struct inode *inode;
sdfat_timespec_t ts;
FILE_ID_T fid;
loff_t i_pos;
int err;
__lock_super(sb);
TMSG("%s entered\n", __func__);
ts = current_time(dir);
err = fsapi_mkdir(dir, (u8 *) dentry->d_name.name, &fid);
if (err)
goto out;
__lock_d_revalidate(dentry);
inode_inc_iversion(dir);
dir->i_ctime = dir->i_mtime = dir->i_atime = ts;
if (IS_DIRSYNC(dir))
(void) sdfat_sync_inode(dir);
else
mark_inode_dirty(dir);
inc_nlink(dir);
i_pos = sdfat_make_i_pos(&fid);
inode = sdfat_build_inode(sb, &fid, i_pos);
if (IS_ERR(inode)) {
err = PTR_ERR(inode);
goto out;
}
inode_inc_iversion(inode);
inode->i_mtime = inode->i_atime = inode->i_ctime = ts;
/* timestamp is already written, so mark_inode_dirty() is unneeded. */
d_instantiate(dentry, inode);
out:
__unlock_d_revalidate(dentry);
__unlock_super(sb);
TMSG("%s exited with err(%d)\n", __func__, err);
if (!err)
sdfat_statistics_set_mkdir(fid.flags);
return err;
}
static int sdfat_rmdir(struct inode *dir, struct dentry *dentry)
{
struct inode *inode = dentry->d_inode;
struct super_block *sb = dir->i_sb;
sdfat_timespec_t ts;
int err;
__lock_super(sb);
TMSG("%s entered\n", __func__);
ts = current_time(dir);
SDFAT_I(inode)->fid.size = i_size_read(inode);
err = fsapi_rmdir(dir, &(SDFAT_I(inode)->fid));
if (err)
goto out;
__lock_d_revalidate(dentry);
inode_inc_iversion(dir);
dir->i_mtime = dir->i_atime = ts;
if (IS_DIRSYNC(dir))
(void) sdfat_sync_inode(dir);
else
mark_inode_dirty(dir);
drop_nlink(dir);
clear_nlink(inode);
inode->i_mtime = inode->i_atime = ts;
sdfat_detach(inode);
dentry->d_time = (unsigned long)inode_peek_iversion(dir);
out:
__unlock_d_revalidate(dentry);
__unlock_super(sb);
TMSG("%s exited with err(%d)\n", __func__, err);
return err;
}
static int __sdfat_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry)
{
struct inode *old_inode, *new_inode;
struct super_block *sb = old_dir->i_sb;
sdfat_timespec_t ts;
loff_t i_pos;
int err;
__lock_super(sb);
TMSG("%s entered\n", __func__);
old_inode = old_dentry->d_inode;
new_inode = new_dentry->d_inode;
ts = current_time(old_inode);
SDFAT_I(old_inode)->fid.size = i_size_read(old_inode);
__cancel_dfr_work(old_inode, 0, 1, __func__);
err = fsapi_rename(old_dir, &(SDFAT_I(old_inode)->fid), new_dir, new_dentry);
if (err)
goto out;
__lock_d_revalidate(old_dentry);
__lock_d_revalidate(new_dentry);
inode_inc_iversion(new_dir);
new_dir->i_ctime = new_dir->i_mtime = new_dir->i_atime = ts;
if (IS_DIRSYNC(new_dir))
(void) sdfat_sync_inode(new_dir);
else
mark_inode_dirty(new_dir);
i_pos = sdfat_make_i_pos(&(SDFAT_I(old_inode)->fid));
sdfat_detach(old_inode);
sdfat_attach(old_inode, i_pos);
if (IS_DIRSYNC(new_dir))
(void) sdfat_sync_inode(old_inode);
else
mark_inode_dirty(old_inode);
if ((S_ISDIR(old_inode->i_mode)) && (old_dir != new_dir)) {
drop_nlink(old_dir);
if (!new_inode)
inc_nlink(new_dir);
}
inode_inc_iversion(old_dir);
old_dir->i_ctime = old_dir->i_mtime = ts;
if (IS_DIRSYNC(old_dir))
(void) sdfat_sync_inode(old_dir);
else
mark_inode_dirty(old_dir);
if (new_inode) {
sdfat_detach(new_inode);
/* skip drop_nlink if new_inode already has been dropped */
if (new_inode->i_nlink) {
drop_nlink(new_inode);
if (S_ISDIR(new_inode->i_mode))
drop_nlink(new_inode);
} else {
EMSG("%s : abnormal access to an inode dropped\n",
__func__);
WARN_ON(new_inode->i_nlink == 0);
}
new_inode->i_ctime = ts;
#if 0
(void) sdfat_sync_inode(new_inode);
#endif
}
out:
__unlock_d_revalidate(old_dentry);
__unlock_d_revalidate(new_dentry);
__unlock_super(sb);
TMSG("%s exited with err(%d)\n", __func__, err);
return err;
}
static int sdfat_cont_expand(struct inode *inode, loff_t size)
{
struct address_space *mapping = inode->i_mapping;
loff_t start = i_size_read(inode), count = size - i_size_read(inode);
int err, err2;
err = generic_cont_expand_simple(inode, size);
if (err)
return err;
inode->i_ctime = inode->i_mtime = current_time(inode);
mark_inode_dirty(inode);
if (!IS_SYNC(inode))
return 0;
err = filemap_fdatawrite_range(mapping, start, start + count - 1);
err2 = sync_mapping_buffers(mapping);
err = (err)?(err):(err2);
err2 = write_inode_now(inode, 1);
err = (err)?(err):(err2);
if (err)
return err;
return filemap_fdatawait_range(mapping, start, start + count - 1);
}
static int sdfat_allow_set_time(struct sdfat_sb_info *sbi, struct inode *inode)
{
mode_t allow_utime = sbi->options.allow_utime;
if (!uid_eq(current_fsuid(), inode->i_uid)) {
if (in_group_p(inode->i_gid))
allow_utime >>= 3;
if (allow_utime & MAY_WRITE)
return 1;
}
/* use a default check */
return 0;
}
static int sdfat_sanitize_mode(const struct sdfat_sb_info *sbi,
struct inode *inode, umode_t *mode_ptr)
{
mode_t i_mode, mask, perm;
i_mode = inode->i_mode;
if (S_ISREG(i_mode) || S_ISLNK(i_mode))
mask = sbi->options.fs_fmask;
else
mask = sbi->options.fs_dmask;
perm = *mode_ptr & ~(S_IFMT | mask);
/* Of the r and x bits, all (subject to umask) must be present.*/
if ((perm & (S_IRUGO | S_IXUGO)) != (i_mode & (S_IRUGO | S_IXUGO)))
return -EPERM;
if (sdfat_mode_can_hold_ro(inode)) {
/* Of the w bits, either all (subject to umask) or none must be present. */
if ((perm & S_IWUGO) && ((perm & S_IWUGO) != (S_IWUGO & ~mask)))
return -EPERM;
} else {
/* If sdfat_mode_can_hold_ro(inode) is false, can't change w bits. */
if ((perm & S_IWUGO) != (S_IWUGO & ~mask))
return -EPERM;
}
*mode_ptr &= S_IFMT | perm;
return 0;
}
/*
* sdfat_block_truncate_page() zeroes out a mapping from file offset `from'
* up to the end of the block which corresponds to `from'.
* This is required during truncate to physically zeroout the tail end
* of that block so it doesn't yield old data if the file is later grown.
* Also, avoid causing failure from fsx for cases of "data past EOF"
*/
static int sdfat_block_truncate_page(struct inode *inode, loff_t from)
{
return block_truncate_page(inode->i_mapping, from, sdfat_get_block);
}
static int __sdfat_setattr(struct dentry *dentry, struct iattr *attr)
{
struct sdfat_sb_info *sbi = SDFAT_SB(dentry->d_sb);
struct inode *inode = dentry->d_inode;
unsigned int ia_valid;
int error;
loff_t old_size;
TMSG("%s entered\n", __func__);
if ((attr->ia_valid & ATTR_SIZE)
&& (attr->ia_size > i_size_read(inode))) {
error = sdfat_cont_expand(inode, attr->ia_size);
if (error || attr->ia_valid == ATTR_SIZE)
goto out;
attr->ia_valid &= ~ATTR_SIZE;
}
/* Check for setting the inode time. */
ia_valid = attr->ia_valid;
if ((ia_valid & (ATTR_MTIME_SET | ATTR_ATIME_SET | ATTR_TIMES_SET))
&& sdfat_allow_set_time(sbi, inode)) {
attr->ia_valid &= ~(ATTR_MTIME_SET | ATTR_ATIME_SET | ATTR_TIMES_SET);
}
error = sdfat_setattr_prepare(dentry, attr);
attr->ia_valid = ia_valid;
if (error)
goto out;
if (((attr->ia_valid & ATTR_UID) &&
(!uid_eq(attr->ia_uid, sbi->options.fs_uid))) ||
((attr->ia_valid & ATTR_GID) &&
(!gid_eq(attr->ia_gid, sbi->options.fs_gid))) ||
((attr->ia_valid & ATTR_MODE) &&
(attr->ia_mode & ~(S_IFREG | S_IFLNK | S_IFDIR | S_IRWXUGO)))) {
error = -EPERM;
goto out;
}
/*
* We don't return -EPERM here. Yes, strange, but this is too
* old behavior.
*/
if (attr->ia_valid & ATTR_MODE) {
if (sdfat_sanitize_mode(sbi, inode, &attr->ia_mode) < 0)
attr->ia_valid &= ~ATTR_MODE;
}
SDFAT_I(inode)->fid.size = i_size_read(inode);
/* patch 1.2.0 : fixed the problem of size mismatch. */
if (attr->ia_valid & ATTR_SIZE) {
error = sdfat_block_truncate_page(inode, attr->ia_size);
if (error)
goto out;
old_size = i_size_read(inode);
/* TO CHECK evicting directory works correctly */
MMSG("%s: inode(%p) truncate size (%llu->%llu)\n", __func__,
inode, (u64)old_size, (u64)attr->ia_size);
__sdfat_do_truncate(inode, old_size, attr->ia_size);
}
sdfat_setattr_copy(inode, attr);
mark_inode_dirty(inode);
out:
TMSG("%s exited with err(%d)\n", __func__, error);
return error;
}
static const struct inode_operations sdfat_dir_inode_operations = {
.create = sdfat_create,
.lookup = sdfat_lookup,
.unlink = sdfat_unlink,
.symlink = sdfat_symlink,
.mkdir = sdfat_mkdir,
.rmdir = sdfat_rmdir,
.rename = sdfat_rename,
.setattr = sdfat_setattr,
.getattr = sdfat_getattr,
#ifdef CONFIG_SDFAT_VIRTUAL_XATTR
.listxattr = sdfat_listxattr,
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 9, 0)
.setxattr = sdfat_setxattr,
.getxattr = sdfat_getxattr,
.removexattr = sdfat_removexattr,
#endif
#endif
};
/*======================================================================*/
/* File Operations */
/*======================================================================*/
static const struct inode_operations sdfat_symlink_inode_operations = {
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 10, 0)
.readlink = generic_readlink,
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 5, 0)
.get_link = sdfat_follow_link,
#else /* LINUX_VERSION_CODE < KERNEL_VERSION(4, 5, 0) */
.follow_link = sdfat_follow_link,
#endif
#ifdef CONFIG_SDFAT_VIRTUAL_XATTR
.listxattr = sdfat_listxattr,
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 9, 0)
.setxattr = sdfat_setxattr,
.getxattr = sdfat_getxattr,
.removexattr = sdfat_removexattr,
#endif
#endif
};
static int sdfat_file_release(struct inode *inode, struct file *filp)
{
struct super_block *sb = inode->i_sb;
/* Moved below code from sdfat_write_inode
* TO FIX size-mismatch problem.
*/
/* FIXME : Added bug_on to confirm that there is no size mismatch */
sdfat_debug_bug_on(SDFAT_I(inode)->fid.size != i_size_read(inode));
SDFAT_I(inode)->fid.size = i_size_read(inode);
fsapi_sync_fs(sb, 0);
return 0;
}
static const struct file_operations sdfat_file_operations = {
.llseek = generic_file_llseek,
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0)
.read_iter = generic_file_read_iter,
.write_iter = generic_file_write_iter,
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(3, 16, 0)
.read = new_sync_read,
.write = new_sync_write,
.read_iter = generic_file_read_iter,
.write_iter = generic_file_write_iter,
#else /* LINUX_VERSION_CODE < KERNEL_VERSION(3, 16, 0) */
.read = do_sync_read,
.write = do_sync_write,
.aio_read = generic_file_aio_read,
.aio_write = generic_file_aio_write,
#endif
.mmap = sdfat_file_mmap,
.release = sdfat_file_release,
.unlocked_ioctl = sdfat_generic_ioctl,
.fsync = sdfat_file_fsync,
.splice_read = generic_file_splice_read,
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 1, 0)
.splice_write = iter_file_splice_write,
#endif
};
static const struct address_space_operations sdfat_da_aops;
static const struct address_space_operations sdfat_aops;
static void sdfat_truncate(struct inode *inode, loff_t old_size)
{
struct super_block *sb = inode->i_sb;
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
FS_INFO_T *fsi = &(sbi->fsi);
unsigned int blocksize = 1 << inode->i_blkbits;
loff_t aligned_size;
int err;
__lock_super(sb);
if (SDFAT_I(inode)->fid.start_clu == 0) {
/* Stange statement:
* Empty start_clu != ~0 (not allocated)
*/
sdfat_fs_error(sb, "tried to truncate zeroed cluster.");
goto out;
}
sdfat_debug_check_clusters(inode);
__cancel_dfr_work(inode, (loff_t)i_size_read(inode), (loff_t)old_size, __func__);
err = fsapi_truncate(inode, old_size, i_size_read(inode));
if (err)
goto out;
inode->i_ctime = inode->i_mtime = current_time(inode);
if (IS_DIRSYNC(inode))
(void) sdfat_sync_inode(inode);
else
mark_inode_dirty(inode);
// FIXME: 확인 요망
// inode->i_blocks = ((SDFAT_I(inode)->i_size_ondisk + (fsi->cluster_size - 1))
inode->i_blocks = ((i_size_read(inode) + (fsi->cluster_size - 1)) &
~((loff_t)fsi->cluster_size - 1)) >> inode->i_blkbits;
out:
/*
* This protects against truncating a file bigger than it was then
* trying to write into the hole.
*
* comment by sh.hong:
* This seems to mean 'intra page/block' truncate and writing.
* I couldn't find a reason to change the values prior to fsapi_truncate
* Therefore, I switched the order of operations
* so that it's possible to utilize i_size_ondisk in fsapi_truncate
*/
aligned_size = i_size_read(inode);
if (aligned_size & (blocksize - 1)) {
aligned_size |= (blocksize - 1);
aligned_size++;
}
if (SDFAT_I(inode)->i_size_ondisk > i_size_read(inode))
SDFAT_I(inode)->i_size_ondisk = aligned_size;
sdfat_debug_check_clusters(inode);
if (SDFAT_I(inode)->i_size_aligned > i_size_read(inode))
SDFAT_I(inode)->i_size_aligned = aligned_size;
/* After truncation :
* 1) Delayed allocation is OFF
* i_size = i_size_ondisk <= i_size_aligned
* (useless size var.)
* (block-aligned)
* 2) Delayed allocation is ON
* i_size = i_size_ondisk = i_size_aligned
* (will be block-aligned after write)
* or
* i_size_ondisk < i_size <= i_size_aligned (block_aligned)
* (will be block-aligned after write)
*/
__unlock_super(sb);
}
static const struct inode_operations sdfat_file_inode_operations = {
.setattr = sdfat_setattr,
.getattr = sdfat_getattr,
#ifdef CONFIG_SDFAT_VIRTUAL_XATTR
.listxattr = sdfat_listxattr,
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 9, 0)
.setxattr = sdfat_setxattr,
.getxattr = sdfat_getxattr,
.removexattr = sdfat_removexattr,
#endif
#endif
};
/*======================================================================*/
/* Address Space Operations */
/*======================================================================*/
/* 2-level option flag */
#define BMAP_NOT_CREATE 0
#define BMAP_ADD_BLOCK 1
#define BMAP_ADD_CLUSTER 2
#define BLOCK_ADDED(bmap_ops) (bmap_ops)
static int sdfat_bmap(struct inode *inode, sector_t sector, sector_t *phys,
unsigned long *mapped_blocks, int *create)
{
struct super_block *sb = inode->i_sb;
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
FS_INFO_T *fsi = &(sbi->fsi);
const unsigned long blocksize = sb->s_blocksize;
const unsigned char blocksize_bits = sb->s_blocksize_bits;
sector_t last_block;
unsigned int cluster, clu_offset, sec_offset;
int err = 0;
*phys = 0;
*mapped_blocks = 0;
/* core code should handle EIO */
#if 0
if (fsi->prev_eio && BLOCK_ADDED(*create))
return -EIO;
#endif
if (((fsi->vol_type == FAT12) || (fsi->vol_type == FAT16)) &&
(inode->i_ino == SDFAT_ROOT_INO)) {
if (sector < (fsi->dentries_in_root >>
(sb->s_blocksize_bits - DENTRY_SIZE_BITS))) {
*phys = sector + fsi->root_start_sector;
*mapped_blocks = 1;
}
return 0;
}
last_block = (i_size_read(inode) + (blocksize - 1)) >> blocksize_bits;
if ((sector >= last_block) && (*create == BMAP_NOT_CREATE))
return 0;
/* Is this block already allocated? */
clu_offset = sector >> fsi->sect_per_clus_bits; /* cluster offset */
SDFAT_I(inode)->fid.size = i_size_read(inode);
if (unlikely(__check_dfr_on(inode,
(loff_t)((loff_t)clu_offset << fsi->cluster_size_bits),
(loff_t)((loff_t)(clu_offset + 1) << fsi->cluster_size_bits),
__func__))) {
err = __do_dfr_map_cluster(inode, clu_offset, &cluster);
} else {
if (*create & BMAP_ADD_CLUSTER)
err = fsapi_map_clus(inode, clu_offset, &cluster, 1);
else
err = fsapi_map_clus(inode, clu_offset, &cluster, ALLOC_NOWHERE);
}
if (err) {
if (err != -ENOSPC)
return -EIO;
return err;
}
/* FOR BIGDATA */
sdfat_statistics_set_rw(SDFAT_I(inode)->fid.flags,
clu_offset, *create & BMAP_ADD_CLUSTER);
if (!IS_CLUS_EOF(cluster)) {
/* sector offset in cluster */
sec_offset = sector & (fsi->sect_per_clus - 1);
*phys = CLUS_TO_SECT(fsi, cluster) + sec_offset;
*mapped_blocks = fsi->sect_per_clus - sec_offset;
}
#if 0
else {
/* Debug purpose (new clu needed) */
ASSERT((*create & BMAP_ADD_CLUSTER) == 0);
ASSERT(sector >= last_block);
}
#endif
if (sector < last_block)
*create = BMAP_NOT_CREATE;
#if 0
else if (sector >= last_block)
*create = non-zero;
if (iblock <= last mapped-block)
*phys != 0
*create = BMAP_NOT_CREATE
else if (iblock <= last cluster)
*phys != 0
*create = non-zero
#endif
return 0;
}
static int sdfat_da_prep_block(struct inode *inode, sector_t iblock,
struct buffer_head *bh_result, int create)
{
struct super_block *sb = inode->i_sb;
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
FS_INFO_T *fsi = &(sbi->fsi);
unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
unsigned long mapped_blocks;
sector_t phys;
loff_t pos;
int sec_offset;
int bmap_create = create ? BMAP_ADD_BLOCK : BMAP_NOT_CREATE;
int err = 0;
__lock_super(sb);
/* FAT32 only */
ASSERT(fsi->vol_type == FAT32);
err = sdfat_bmap(inode, iblock, &phys, &mapped_blocks, &bmap_create);
if (err) {
if (err != -ENOSPC)
sdfat_fs_error_ratelimit(sb, "%s: failed to bmap "
"(iblock:%u, err:%d)", __func__,
(u32)iblock, err);
goto unlock_ret;
}
sec_offset = iblock & (fsi->sect_per_clus - 1);
if (phys) {
/* the block in in the mapped cluster boundary */
max_blocks = min(mapped_blocks, max_blocks);
map_bh(bh_result, sb, phys);
BUG_ON(BLOCK_ADDED(bmap_create) && (sec_offset == 0));
} else if (create == 1) {
/* Not exist: new cluster needed */
if (!BLOCK_ADDED(bmap_create)) {
sector_t last_block;
last_block = (i_size_read(inode) + (sb->s_blocksize - 1))
>> sb->s_blocksize_bits;
sdfat_fs_error(sb, "%s: new cluster need, but "
"bmap_create == BMAP_NOT_CREATE(iblock:%lld, "
"last_block:%lld)", __func__,
(s64)iblock, (s64)last_block);
err = -EIO;
goto unlock_ret;
}
// Reserved Cluster (only if iblock is the first sector in a clu)
if (sec_offset == 0) {
err = fsapi_reserve_clus(inode);
if (err) {
if (err != -ENOSPC)
sdfat_fs_error_ratelimit(sb,
"%s: failed to bmap "
"(iblock:%u, err:%d)", __func__,
(u32)iblock, err);
goto unlock_ret;
}
}
// Delayed mapping
map_bh(bh_result, sb, ~((sector_t) 0xffff));
set_buffer_new(bh_result);
set_buffer_delay(bh_result);
} else {
/* get_block on non-existing addr. with create==0 */
/*
* CHECKME:
* i_size_aligned 보다 작으면 delay 매핑을 일단
* 켜줘야되는 게 아닌가?
* - 0-fill 을 항상 하기에, FAT 에서는 문제 없음.
* 중간에 영역이 꽉 찼으면, 디스크에 내려가지 않고는
* invalidate 될 일이 없음
*/
goto unlock_ret;
}
/* Newly added blocks */
if (BLOCK_ADDED(bmap_create)) {
set_buffer_new(bh_result);
SDFAT_I(inode)->i_size_aligned += max_blocks << sb->s_blocksize_bits;
if (phys) {
/* i_size_ondisk changes if a block added in the existing cluster */
#define num_clusters(value) ((value) ? (s32)((value - 1) >> fsi->cluster_size_bits) + 1 : 0)
/* FOR GRACEFUL ERROR HANDLING */
if (num_clusters(SDFAT_I(inode)->i_size_aligned) !=
num_clusters(SDFAT_I(inode)->i_size_ondisk)) {
EMSG("%s: inode(%p) invalid size (create(%d) "
"bmap_create(%d) phys(%lld) aligned(%lld) "
"on_disk(%lld) iblock(%u) sec_off(%d))\n",
__func__, inode, create, bmap_create, (s64)phys,
(s64)SDFAT_I(inode)->i_size_aligned,
(s64)SDFAT_I(inode)->i_size_ondisk,
(u32)iblock,
(s32)sec_offset);
sdfat_debug_bug_on(1);
}
SDFAT_I(inode)->i_size_ondisk = SDFAT_I(inode)->i_size_aligned;
}
pos = (iblock + 1) << sb->s_blocksize_bits;
/* Debug purpose - defensive coding */
ASSERT(SDFAT_I(inode)->i_size_aligned == pos);
if (SDFAT_I(inode)->i_size_aligned < pos)
SDFAT_I(inode)->i_size_aligned = pos;
/* Debug end */
#ifdef CONFIG_SDFAT_TRACE_IO
/* New page added (ASSERTION: 8 blocks per page) */
if ((sec_offset & 7) == 0)
sbi->stat_n_pages_added++;
#endif
}
/* FOR GRACEFUL ERROR HANDLING */
if (i_size_read(inode) > SDFAT_I(inode)->i_size_aligned) {
sdfat_fs_error_ratelimit(sb, "%s: invalid size (inode(%p), "
"size(%llu) > aligned(%llu)\n", __func__, inode,
i_size_read(inode), SDFAT_I(inode)->i_size_aligned);
sdfat_debug_bug_on(1);
}
bh_result->b_size = max_blocks << sb->s_blocksize_bits;
unlock_ret:
__unlock_super(sb);
return err;
}
static int sdfat_get_block(struct inode *inode, sector_t iblock,
struct buffer_head *bh_result, int create)
{
struct super_block *sb = inode->i_sb;
unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
int err = 0;
unsigned long mapped_blocks;
sector_t phys;
loff_t pos;
int bmap_create = create ? BMAP_ADD_CLUSTER : BMAP_NOT_CREATE;
__lock_super(sb);
err = sdfat_bmap(inode, iblock, &phys, &mapped_blocks, &bmap_create);
if (err) {
if (err != -ENOSPC)
sdfat_fs_error_ratelimit(sb, "%s: failed to bmap "
"(inode:%p iblock:%u, err:%d)",
__func__, inode, (u32)iblock, err);
goto unlock_ret;
}
if (phys) {
max_blocks = min(mapped_blocks, max_blocks);
/* Treat newly added block / cluster */
if (BLOCK_ADDED(bmap_create) || buffer_delay(bh_result)) {
/* Update i_size_ondisk */
pos = (iblock + 1) << sb->s_blocksize_bits;
if (SDFAT_I(inode)->i_size_ondisk < pos) {
/* Debug purpose */
if ((pos - SDFAT_I(inode)->i_size_ondisk) > bh_result->b_size) {
/* This never happens without DA */
MMSG("Jumping get_block\n");
}
SDFAT_I(inode)->i_size_ondisk = pos;
sdfat_debug_check_clusters(inode);
}
if (BLOCK_ADDED(bmap_create)) {
/* Old way (w/o DA)
* create == 1 only if iblock > i_size
* (in block unit)
*/
/* 20130723 CHECK
* Truncate와 동시에 발생할 경우,
* i_size < (i_block 위치) 면서 buffer_delay()가
* 켜져있을 수 있다.
*
* 기존에 할당된 영역을 다시 쓸 뿐이므로 큰 문제
* 없지만, 그 경우, 미리 i_size_aligned 가 확장된
* 영역이어야 한다.
*/
/* FOR GRACEFUL ERROR HANDLING */
if (buffer_delay(bh_result) &&
(pos > SDFAT_I(inode)->i_size_aligned)) {
sdfat_fs_error(sb, "requested for bmap "
"out of range(pos:(%llu)>i_size_aligned(%llu)\n",
pos, SDFAT_I(inode)->i_size_aligned);
sdfat_debug_bug_on(1);
err = -EIO;
goto unlock_ret;
}
set_buffer_new(bh_result);
/*
* adjust i_size_aligned if i_size_ondisk is
* bigger than it. (i.e. non-DA)
*/
if (SDFAT_I(inode)->i_size_ondisk >
SDFAT_I(inode)->i_size_aligned) {
SDFAT_I(inode)->i_size_aligned =
SDFAT_I(inode)->i_size_ondisk;
}
}
if (buffer_delay(bh_result))
clear_buffer_delay(bh_result);
#if 0
/* Debug purpose */
if (SDFAT_I(inode)->i_size_ondisk >
SDFAT_I(inode)->i_size_aligned) {
/* Only after truncate
* and the two size variables should indicate
* same i_block
*/
unsigned int blocksize = 1 << inode->i_blkbits;
BUG_ON(SDFAT_I(inode)->i_size_ondisk -
SDFAT_I(inode)->i_size_aligned >= blocksize);
}
#endif
}
map_bh(bh_result, sb, phys);
}
bh_result->b_size = max_blocks << sb->s_blocksize_bits;
unlock_ret:
__unlock_super(sb);
return err;
}
static int sdfat_readpage(struct file *file, struct page *page)
{
int ret;
ret = mpage_readpage(page, sdfat_get_block);
return ret;
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 10, 0)
static void sdfat_readahead(struct readahead_control *rac)
{
mpage_readahead(rac, sdfat_get_block);
}
#else
static int sdfat_readpages(struct file *file, struct address_space *mapping,
struct list_head *pages, unsigned int nr_pages)
{
int ret;
ret = mpage_readpages(mapping, pages, nr_pages, sdfat_get_block);
return ret;
}
#endif
static inline void sdfat_submit_fullpage_bio(struct block_device *bdev,
sector_t sector, unsigned int length,
struct page *page, struct writeback_control *wbc)
{
/* Single page bio submit */
struct bio *bio;
BUG_ON((length > PAGE_SIZE) || (length == 0));
/*
* If __GFP_WAIT is set, then bio_alloc will always be able to allocate
* a bio. This is due to the mempool guarantees. To make this work, callers
* must never allocate more than 1 bio at a time from this pool.
*
* #define GFP_NOIO (__GFP_WAIT)
*/
bio = bio_alloc(GFP_NOIO, 1);
bio_set_dev(bio, bdev);
bio->bi_vcnt = 1;
bio->bi_io_vec[0].bv_page = page; /* Inline vec */
bio->bi_io_vec[0].bv_len = length; /* PAGE_SIZE */
bio->bi_io_vec[0].bv_offset = 0;
__sdfat_set_bio_iterate(bio, sector, length, 0, 0);
bio->bi_end_io = sdfat_writepage_end_io;
__sdfat_submit_bio_write(bio, wbc);
}
static int sdfat_writepage(struct page *page, struct writeback_control *wbc)
{
struct inode * const inode = page->mapping->host;
struct super_block *sb = inode->i_sb;
loff_t i_size = i_size_read(inode);
const pgoff_t end_index = i_size >> PAGE_SHIFT;
const unsigned int blocks_per_page = PAGE_SIZE >> inode->i_blkbits;
FS_INFO_T *fsi = &(SDFAT_SB(sb)->fsi);
struct buffer_head *bh, *head;
sector_t block, block_0, last_phys;
int ret;
unsigned int nr_blocks_towrite = blocks_per_page;
/* Don't distinguish 0-filled/clean block.
* Just write back the whole page
*/
if (fsi->cluster_size < PAGE_SIZE)
goto confused;
if (!PageUptodate(page)) {
MMSG("%s: Not up-to-date page -> block_write_full_page\n",
__func__);
goto confused;
}
if (page->index >= end_index) {
/* last page or outside i_size */
unsigned int offset = i_size & (PAGE_SIZE-1);
/* If a truncation is in progress */
if (page->index > end_index || !offset)
goto confused;
/* 0-fill after i_size */
zero_user_segment(page, offset, PAGE_SIZE);
}
if (!page_has_buffers(page)) {
MMSG("WP: No buffers -> block_write_full_page\n");
goto confused;
}
block = (sector_t)page->index << (PAGE_SHIFT - inode->i_blkbits);
block_0 = block; /* first block */
head = page_buffers(page);
bh = head;
last_phys = 0;
do {
BUG_ON(buffer_locked(bh));
if (!buffer_dirty(bh) || !buffer_uptodate(bh)) {
if (nr_blocks_towrite == blocks_per_page)
nr_blocks_towrite = (unsigned int) (block - block_0);
BUG_ON(nr_blocks_towrite >= blocks_per_page);
// !uptodate but dirty??
if (buffer_dirty(bh))
goto confused;
// Nothing to writeback in this block
bh = bh->b_this_page;
block++;
continue;
}
if (nr_blocks_towrite != blocks_per_page)
// Dirty -> Non-dirty -> Dirty again case
goto confused;
/* Map if needed */
if (!buffer_mapped(bh) || buffer_delay(bh)) {
BUG_ON(bh->b_size != (1 << (inode->i_blkbits)));
ret = sdfat_get_block(inode, block, bh, 1);
if (ret)
goto confused;
if (buffer_new(bh)) {
clear_buffer_new(bh);
__sdfat_clean_bdev_aliases(bh->b_bdev, bh->b_blocknr);
}
}
/* continuity check */
if (((last_phys + 1) != bh->b_blocknr) && (last_phys != 0)) {
DMSG("Non-contiguous block mapping in single page");
goto confused;
}
last_phys = bh->b_blocknr;
bh = bh->b_this_page;
block++;
} while (bh != head);
if (nr_blocks_towrite == 0) {
DMSG("Page dirty but no dirty bh? alloc_208\n");
goto confused;
}
/* Write-back */
do {
clear_buffer_dirty(bh);
bh = bh->b_this_page;
} while (bh != head);
BUG_ON(PageWriteback(page));
set_page_writeback(page);
/**
* Turn off MAPPED flag in victim's bh if defrag on.
* Another write_begin can starts after get_block for defrag victims called.
* In this case, write_begin calls get_block and get original block number
* and previous defrag will be canceled.
*/
if (unlikely(__check_dfr_on(inode,
(loff_t)(page->index << PAGE_SHIFT),
(loff_t)((page->index + 1) << PAGE_SHIFT),
__func__))) {
do {
clear_buffer_mapped(bh);
bh = bh->b_this_page;
} while (bh != head);
}
// Trace # of pages queued (Approx.)
atomic_inc(&SDFAT_SB(sb)->stat_n_pages_queued);
sdfat_submit_fullpage_bio(head->b_bdev,
head->b_blocknr << (sb->s_blocksize_bits - SECTOR_SIZE_BITS),
nr_blocks_towrite << inode->i_blkbits,
page, wbc);
unlock_page(page);
return 0;
confused:
#ifdef CONFIG_SDFAT_TRACE_IO
SDFAT_SB(sb)->stat_n_pages_confused++;
#endif
ret = block_write_full_page(page, sdfat_get_block, wbc);
return ret;
}
static int sdfat_da_writepages(struct address_space *mapping,
struct writeback_control *wbc)
{
MMSG("%s(inode:%p) with nr_to_write = 0x%08lx "
"(ku %d, bg %d, tag %d, rc %d )\n",
__func__, mapping->host, wbc->nr_to_write,
wbc->for_kupdate, wbc->for_background, wbc->tagged_writepages,
wbc->for_reclaim);
ASSERT(mapping->a_ops == &sdfat_da_aops);
#ifdef CONFIG_SDFAT_ALIGNED_MPAGE_WRITE
if (SDFAT_SB(mapping->host->i_sb)->options.adj_req)
return sdfat_mpage_writepages(mapping, wbc, sdfat_get_block);
#endif
return generic_writepages(mapping, wbc);
}
static int sdfat_writepages(struct address_space *mapping,
struct writeback_control *wbc)
{
MMSG("%s(inode:%p) with nr_to_write = 0x%08lx "
"(ku %d, bg %d, tag %d, rc %d )\n",
__func__, mapping->host, wbc->nr_to_write,
wbc->for_kupdate, wbc->for_background, wbc->tagged_writepages,
wbc->for_reclaim);
ASSERT(mapping->a_ops == &sdfat_aops);
#ifdef CONFIG_SDFAT_ALIGNED_MPAGE_WRITE
if (SDFAT_SB(mapping->host->i_sb)->options.adj_req)
return sdfat_mpage_writepages(mapping, wbc, sdfat_get_block);
#endif
return mpage_writepages(mapping, wbc, sdfat_get_block);
}
static void sdfat_write_failed(struct address_space *mapping, loff_t to)
{
struct inode *inode = mapping->host;
if (to > i_size_read(inode)) {
__sdfat_truncate_pagecache(inode, to, i_size_read(inode));
sdfat_truncate(inode, SDFAT_I(inode)->i_size_aligned);
}
}
static int sdfat_check_writable(struct super_block *sb)
{
if (fsapi_check_bdi_valid(sb))
return -EIO;
if (sb_rdonly(sb))
return -EROFS;
return 0;
}
static int __sdfat_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned int len,
unsigned int flags, struct page **pagep,
void **fsdata, get_block_t *get_block,
loff_t *bytes, const char *fname)
{
struct super_block *sb = mapping->host->i_sb;
int ret;
__cancel_dfr_work(mapping->host, pos, (loff_t)(pos + len), fname);
ret = sdfat_check_writable(sb);
if (unlikely(ret < 0))
return ret;
*pagep = NULL;
ret = cont_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
get_block, bytes);
if (ret < 0)
sdfat_write_failed(mapping, pos+len);
return ret;
}
static int sdfat_da_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned int len, unsigned int flags,
struct page **pagep, void **fsdata)
{
return __sdfat_write_begin(file, mapping, pos, len, flags,
pagep, fsdata, sdfat_da_prep_block,
&SDFAT_I(mapping->host)->i_size_aligned,
__func__);
}
static int sdfat_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned int len, unsigned int flags,
struct page **pagep, void **fsdata)
{
return __sdfat_write_begin(file, mapping, pos, len, flags,
pagep, fsdata, sdfat_get_block,
&SDFAT_I(mapping->host)->i_size_ondisk,
__func__);
}
static int sdfat_write_end(struct file *file, struct address_space *mapping,
loff_t pos, unsigned int len, unsigned int copied,
struct page *pagep, void *fsdata)
{
struct inode *inode = mapping->host;
FILE_ID_T *fid = &(SDFAT_I(inode)->fid);
int err;
err = generic_write_end(file, mapping, pos, len, copied, pagep, fsdata);
/* FOR GRACEFUL ERROR HANDLING */
if (SDFAT_I(inode)->i_size_aligned < i_size_read(inode)) {
sdfat_fs_error(inode->i_sb, "invalid size(size(%llu) "
"> aligned(%llu)\n", i_size_read(inode),
SDFAT_I(inode)->i_size_aligned);
sdfat_debug_bug_on(1);
}
if (err < len)
sdfat_write_failed(mapping, pos+len);
if (!(err < 0) && !(fid->attr & ATTR_ARCHIVE)) {
inode->i_mtime = inode->i_ctime = current_time(inode);
fid->attr |= ATTR_ARCHIVE;
mark_inode_dirty(inode);
}
return err;
}
static inline ssize_t __sdfat_direct_IO(int rw, struct kiocb *iocb,
struct inode *inode, void *iov_u, loff_t offset,
loff_t count, unsigned long nr_segs)
{
struct address_space *mapping = inode->i_mapping;
loff_t size = offset + count;
ssize_t ret;
if (rw == WRITE) {
/*
* FIXME: blockdev_direct_IO() doesn't use ->write_begin(),
* so we need to update the ->i_size_aligned to block boundary.
*
* But we must fill the remaining area or hole by nul for
* updating ->i_size_aligned
*
* Return 0, and fallback to normal buffered write.
*/
if (SDFAT_I(inode)->i_size_aligned < size)
return 0;
}
/*
* sdFAT need to use the DIO_LOCKING for avoiding the race
* condition of sdfat_get_block() and ->truncate().
*/
ret = __sdfat_blkdev_direct_IO(rw, iocb, inode, iov_u, offset, nr_segs);
if (ret < 0 && (rw & WRITE))
sdfat_write_failed(mapping, size);
return ret;
}
static const struct address_space_operations sdfat_aops = {
.readpage = sdfat_readpage,
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 10, 0)
.readahead = sdfat_readahead,
#else
.readpages = sdfat_readpages,
#endif
.writepage = sdfat_writepage,
.writepages = sdfat_writepages,
.write_begin = sdfat_write_begin,
.write_end = sdfat_write_end,
.direct_IO = sdfat_direct_IO,
.bmap = sdfat_aop_bmap
};
static const struct address_space_operations sdfat_da_aops = {
.readpage = sdfat_readpage,
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 10, 0)
.readahead = sdfat_readahead,
#else
.readpages = sdfat_readpages,
#endif
.writepage = sdfat_writepage,
.writepages = sdfat_da_writepages,
.write_begin = sdfat_da_write_begin,
.write_end = sdfat_write_end,
.direct_IO = sdfat_direct_IO,
.bmap = sdfat_aop_bmap
};
/*======================================================================*/
/* Super Operations */
/*======================================================================*/
static inline unsigned long sdfat_hash(loff_t i_pos)
{
return hash_32(i_pos, SDFAT_HASH_BITS);
}
static void sdfat_attach(struct inode *inode, loff_t i_pos)
{
struct sdfat_sb_info *sbi = SDFAT_SB(inode->i_sb);
struct hlist_head *head = sbi->inode_hashtable + sdfat_hash(i_pos);
spin_lock(&sbi->inode_hash_lock);
SDFAT_I(inode)->i_pos = i_pos;
hlist_add_head(&SDFAT_I(inode)->i_hash_fat, head);
spin_unlock(&sbi->inode_hash_lock);
}
static void sdfat_detach(struct inode *inode)
{
struct sdfat_sb_info *sbi = SDFAT_SB(inode->i_sb);
spin_lock(&sbi->inode_hash_lock);
hlist_del_init(&SDFAT_I(inode)->i_hash_fat);
SDFAT_I(inode)->i_pos = 0;
spin_unlock(&sbi->inode_hash_lock);
}
/* doesn't deal with root inode */
static int sdfat_fill_inode(struct inode *inode, const FILE_ID_T *fid)
{
struct sdfat_sb_info *sbi = SDFAT_SB(inode->i_sb);
FS_INFO_T *fsi = &(sbi->fsi);
DIR_ENTRY_T info;
u64 size = fid->size;
memcpy(&(SDFAT_I(inode)->fid), fid, sizeof(FILE_ID_T));
SDFAT_I(inode)->i_pos = 0;
SDFAT_I(inode)->target = NULL;
inode->i_uid = sbi->options.fs_uid;
inode->i_gid = sbi->options.fs_gid;
inode_inc_iversion(inode);
inode->i_generation = sdfat_make_inode_generation();
if (fsapi_read_inode(inode, &info) < 0) {
MMSG("%s: failed to read stat!\n", __func__);
return -EIO;
}
if (info.Attr & ATTR_SUBDIR) { /* directory */
inode->i_generation &= ~1;
inode->i_mode = sdfat_make_mode(sbi, info.Attr, S_IRWXUGO);
inode->i_op = &sdfat_dir_inode_operations;
inode->i_fop = &sdfat_dir_operations;
set_nlink(inode, info.NumSubdirs);
} else if (info.Attr & ATTR_SYMLINK) { /* symbolic link */
inode->i_op = &sdfat_symlink_inode_operations;
inode->i_generation |= 1;
inode->i_mode = sdfat_make_mode(sbi, info.Attr, S_IRWXUGO);
} else { /* regular file */
inode->i_generation |= 1;
inode->i_mode = sdfat_make_mode(sbi, info.Attr, S_IRWXUGO);
inode->i_op = &sdfat_file_inode_operations;
inode->i_fop = &sdfat_file_operations;
if (sbi->options.improved_allocation & SDFAT_ALLOC_DELAY)
inode->i_mapping->a_ops = &sdfat_da_aops;
else
inode->i_mapping->a_ops = &sdfat_aops;
inode->i_mapping->nrpages = 0;
}
/*
* Use fid->size instead of info.Size
* because info.Size means the value saved on disk
*/
i_size_write(inode, size);
/* ondisk and aligned size should be aligned with block size */
if (size & (inode->i_sb->s_blocksize - 1)) {
size |= (inode->i_sb->s_blocksize - 1);
size++;
}
SDFAT_I(inode)->i_size_aligned = size;
SDFAT_I(inode)->i_size_ondisk = size;
sdfat_debug_check_clusters(inode);
sdfat_save_attr(inode, info.Attr);
inode->i_blocks = ((i_size_read(inode) + (fsi->cluster_size - 1))
& ~((loff_t)fsi->cluster_size - 1)) >> inode->i_blkbits;
sdfat_time_fat2unix(sbi, &inode->i_mtime, &info.ModifyTimestamp);
sdfat_time_fat2unix(sbi, &inode->i_ctime, &info.CreateTimestamp);
sdfat_time_fat2unix(sbi, &inode->i_atime, &info.AccessTimestamp);
__init_dfr_info(inode);
return 0;
}
static struct inode *sdfat_build_inode(struct super_block *sb,
const FILE_ID_T *fid, loff_t i_pos) {
struct inode *inode;
int err;
inode = sdfat_iget(sb, i_pos);
if (inode)
goto out;
inode = new_inode(sb);
if (!inode) {
inode = ERR_PTR(-ENOMEM);
goto out;
}
inode->i_ino = iunique(sb, SDFAT_ROOT_INO);
inode_set_iversion(inode, 1);
err = sdfat_fill_inode(inode, fid);
if (err) {
iput(inode);
inode = ERR_PTR(err);
goto out;
}
sdfat_attach(inode, i_pos);
insert_inode_hash(inode);
out:
return inode;
}
static struct inode *sdfat_alloc_inode(struct super_block *sb)
{
struct sdfat_inode_info *ei;
ei = kmem_cache_alloc(sdfat_inode_cachep, GFP_NOFS);
if (!ei)
return NULL;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 4, 0)
init_rwsem(&ei->truncate_lock);
#endif
return &ei->vfs_inode;
}
static void sdfat_free_inode(struct inode *inode)
{
if (SDFAT_I(inode)->target) {
kfree(SDFAT_I(inode)->target);
SDFAT_I(inode)->target = NULL;
}
kmem_cache_free(sdfat_inode_cachep, SDFAT_I(inode));
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 4, 0)
/* Use free_inode instead of destroy_inode */
#define sdfat_destroy_inode (NULL)
#elif LINUX_VERSION_CODE >= KERNEL_VERSION(3, 13, 0)
static void sdfat_i_callback(struct rcu_head *head)
{
struct inode *inode = container_of(head, struct inode, i_rcu);
sdfat_free_inode(inode);
}
static void sdfat_destroy_inode(struct inode *inode)
{
call_rcu(&inode->i_rcu, sdfat_i_callback);
}
#else
static void sdfat_destroy_inode(struct inode *inode)
{
sdfat_free_inode(inode);
}
#endif
static int __sdfat_write_inode(struct inode *inode, int sync)
{
struct super_block *sb = inode->i_sb;
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
DIR_ENTRY_T info;
if (inode->i_ino == SDFAT_ROOT_INO)
return 0;
info.Attr = sdfat_make_attr(inode);
info.Size = i_size_read(inode);
sdfat_time_unix2fat(sbi, &inode->i_mtime, &info.ModifyTimestamp);
sdfat_time_unix2fat(sbi, &inode->i_ctime, &info.CreateTimestamp);
sdfat_time_unix2fat(sbi, &inode->i_atime, &info.AccessTimestamp);
if (!__support_write_inode_sync(sb))
sync = 0;
/* FIXME : Do we need handling error? */
return fsapi_write_inode(inode, &info, sync);
}
static int sdfat_sync_inode(struct inode *inode)
{
return __sdfat_write_inode(inode, 1);
}
static int sdfat_write_inode(struct inode *inode, struct writeback_control *wbc)
{
return __sdfat_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
}
static void sdfat_evict_inode(struct inode *inode)
{
truncate_inode_pages_final(&inode->i_data);
if (!inode->i_nlink) {
loff_t old_size = i_size_read(inode);
i_size_write(inode, 0);
SDFAT_I(inode)->fid.size = old_size;
__cancel_dfr_work(inode, 0, (loff_t)old_size, __func__);
/* TO CHECK evicting directory works correctly */
MMSG("%s: inode(%p) evict %s (size(%llu) to zero)\n",
__func__, inode,
S_ISDIR(inode->i_mode) ? "directory" : "file",
(u64)old_size);
fsapi_truncate(inode, old_size, 0);
}
invalidate_inode_buffers(inode);
clear_inode(inode);
fsapi_invalidate_extent(inode);
sdfat_detach(inode);
/* after end of this function, caller will remove inode hash */
/* remove_inode_hash(inode); */
}
static void sdfat_free_sb_info(struct sdfat_sb_info *sbi)
{
if (sbi->nls_disk) {
unload_nls(sbi->nls_disk);
sbi->nls_disk = NULL;
sbi->options.codepage = sdfat_default_codepage;
}
if (sbi->nls_io) {
unload_nls(sbi->nls_io);
sbi->nls_io = NULL;
}
if (sbi->options.iocharset != sdfat_default_iocharset) {
kfree(sbi->options.iocharset);
sbi->options.iocharset = sdfat_default_iocharset;
}
if (sbi->use_vmalloc) {
vfree(sbi);
return;
}
kfree(sbi);
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 13, 0)
static void delayed_free(struct rcu_head *p)
{
struct sdfat_sb_info *sbi = container_of(p, struct sdfat_sb_info, rcu);
sdfat_free_sb_info(sbi);
}
static void __sdfat_destroy_sb_info(struct super_block *sb)
{
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
call_rcu(&sbi->rcu, delayed_free);
}
#else
static void __sdfat_destroy_sb_info(struct super_block *sb)
{
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
sdfat_free_sb_info(sbi);
sb->s_fs_info = NULL;
}
#endif
static void sdfat_destroy_sb_info(struct super_block *sb)
{
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
kobject_del(&sbi->sb_kobj);
kobject_put(&sbi->sb_kobj);
__sdfat_destroy_sb_info(sb);
}
static void sdfat_put_super(struct super_block *sb)
{
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
int err;
sdfat_log_msg(sb, KERN_INFO, "trying to unmount(r%c)...",
sb_rdonly(sb) ? 'o' : 'w');
__cancel_delayed_work_sync(sbi);
if (__is_sb_dirty(sb))
sdfat_write_super(sb);
__free_dfr_mem_if_required(sb);
err = fsapi_umount(sb);
sdfat_destroy_sb_info(sb);
sdfat_log_msg(sb, KERN_INFO, "unmounted successfully! %s",
err ? "(with previous I/O errors)" : "");
}
static inline void __flush_delayed_meta(struct super_block *sb, s32 sync)
{
#ifdef CONFIG_SDFAT_DELAYED_META_DIRTY
fsapi_cache_flush(sb, sync);
#else
/* DO NOTHING */
#endif
}
static void sdfat_write_super(struct super_block *sb)
{
int time = 0;
__lock_super(sb);
__set_sb_clean(sb);
#ifdef CONFIG_SDFAT_DFR
if (atomic_read(&(SDFAT_SB(sb)->dfr_info.stat)) == DFR_SB_STAT_VALID)
fsapi_dfr_update_fat_next(sb);
#endif
/* flush delayed FAT/DIR dirty */
__flush_delayed_meta(sb, 0);
if (!sb_rdonly(sb))
fsapi_sync_fs(sb, 0);
__unlock_super(sb);
time = jiffies;
/* Issuing bdev requests is needed
* to guarantee DIR updates in time
* whether w/ or w/o delayed DIR dirty feature.
* (otherwise DIR updates could be delayed for 5 + 5 secs at max.)
*/
sync_blockdev(sb->s_bdev);
#if (defined(CONFIG_SDFAT_DFR) && defined(CONFIG_SDFAT_DFR_DEBUG))
/* SPO test */
fsapi_dfr_spo_test(sb, DFR_SPO_FAT_NEXT, __func__);
#endif
MMSG("BD: sdfat_write_super (bdev_sync for %ld ms)\n",
(jiffies - time) * 1000 / HZ);
}
static void __dfr_update_fat_next(struct super_block *sb)
{
#ifdef CONFIG_SDFAT_DFR
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
if (sbi->options.defrag &&
(atomic_read(&sbi->dfr_info.stat) == DFR_SB_STAT_VALID)) {
fsapi_dfr_update_fat_next(sb);
}
#endif
}
static void __dfr_update_fat_prev(struct super_block *sb, int wait)
{
#ifdef CONFIG_SDFAT_DFR
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
struct defrag_info *sb_dfr = &sbi->dfr_info;
/* static time available? */
static int time; /* initialized by zero */
int uevent = 0, total = 0, clean = 0, full = 0;
int spent = jiffies - time;
if (!(sbi->options.defrag && wait))
return;
__lock_super(sb);
/* Update FAT for defrag */
if (atomic_read(&(sbi->dfr_info.stat)) == DFR_SB_STAT_VALID) {
fsapi_dfr_update_fat_prev(sb, 0);
/* flush delayed FAT/DIR dirty */
__flush_delayed_meta(sb, 0);
/* Complete defrag req */
fsapi_sync_fs(sb, 1);
atomic_set(&sb_dfr->stat, DFR_SB_STAT_REQ);
complete_all(&sbi->dfr_complete);
} else if (((spent < 0) || (spent > DFR_DEFAULT_TIMEOUT)) &&
(atomic_read(&(sbi->dfr_info.stat)) == DFR_SB_STAT_IDLE)) {
uevent = fsapi_dfr_check_dfr_required(sb, &total, &clean, &full);
time = jiffies;
}
__unlock_super(sb);
if (uevent) {
kobject_uevent(&SDFAT_SB(sb)->sb_kobj, KOBJ_CHANGE);
dfr_debug("uevent for defrag_daemon, total_au %d, "
"clean_au %d, full_au %d", total, clean, full);
}
#endif
}
static int sdfat_sync_fs(struct super_block *sb, int wait)
{
int err = 0;
/* If there are some dirty buffers in the bdev inode */
if (__is_sb_dirty(sb)) {
__lock_super(sb);
__set_sb_clean(sb);
__dfr_update_fat_next(sb);
err = fsapi_sync_fs(sb, 1);
#if (defined(CONFIG_SDFAT_DFR) && defined(CONFIG_SDFAT_DFR_DEBUG))
/* SPO test */
fsapi_dfr_spo_test(sb, DFR_SPO_FAT_NEXT, __func__);
#endif
__unlock_super(sb);
}
__dfr_update_fat_prev(sb, wait);
return err;
}
static int sdfat_statfs(struct dentry *dentry, struct kstatfs *buf)
{
/*
* patch 1.2.2 :
* fixed the slow-call problem because of volume-lock contention.
*/
struct super_block *sb = dentry->d_sb;
u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
FS_INFO_T *fsi = &(SDFAT_SB(sb)->fsi);
VOL_INFO_T info;
/* fsapi_statfs will try to get a volume lock if needed */
if (fsapi_statfs(sb, &info))
return -EIO;
if (fsi->prev_eio)
sdfat_msg(sb, KERN_INFO, "called statfs with previous"
" I/O error(0x%02X).", fsi->prev_eio);
buf->f_type = sb->s_magic;
buf->f_bsize = info.ClusterSize;
buf->f_blocks = info.NumClusters;
buf->f_bfree = info.FreeClusters;
buf->f_bavail = info.FreeClusters;
buf->f_fsid.val[0] = (u32)id;
buf->f_fsid.val[1] = (u32)(id >> 32);
/* Unicode utf8 255 characters */
buf->f_namelen = MAX_NAME_LENGTH * MAX_CHARSET_SIZE;
return 0;
}
static int sdfat_remount(struct super_block *sb, int *flags, char *data)
{
unsigned long prev_sb_flags;
char *orig_data = kstrdup(data, GFP_KERNEL);
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
FS_INFO_T *fsi = &(sbi->fsi);
*flags |= SB_NODIRATIME;
prev_sb_flags = sb->s_flags;
sdfat_remount_syncfs(sb);
fsapi_set_vol_flags(sb, VOL_CLEAN, 1);
sdfat_log_msg(sb, KERN_INFO, "re-mounted(%s->%s), eio=0x%x, Opts: %s",
(prev_sb_flags & SB_RDONLY) ? "ro" : "rw",
(*flags & SB_RDONLY) ? "ro" : "rw",
fsi->prev_eio, orig_data);
kfree(orig_data);
return 0;
}
static int __sdfat_show_options(struct seq_file *m, struct super_block *sb)
{
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
struct sdfat_mount_options *opts = &sbi->options;
FS_INFO_T *fsi = &(sbi->fsi);
/* Show partition info */
seq_printf(m, ",fs=%s", sdfat_get_vol_type_str(fsi->vol_type));
if (fsi->prev_eio)
seq_printf(m, ",eio=0x%x", fsi->prev_eio);
if (!uid_eq(opts->fs_uid, GLOBAL_ROOT_UID))
seq_printf(m, ",uid=%u",
from_kuid_munged(&init_user_ns, opts->fs_uid));
if (!gid_eq(opts->fs_gid, GLOBAL_ROOT_GID))
seq_printf(m, ",gid=%u",
from_kgid_munged(&init_user_ns, opts->fs_gid));
seq_printf(m, ",fmask=%04o", opts->fs_fmask);
seq_printf(m, ",dmask=%04o", opts->fs_dmask);
if (opts->allow_utime)
seq_printf(m, ",allow_utime=%04o", opts->allow_utime);
if (sbi->nls_disk)
seq_printf(m, ",codepage=%s", sbi->nls_disk->charset);
if (sbi->nls_io)
seq_printf(m, ",iocharset=%s", sbi->nls_io->charset);
if (opts->utf8)
seq_puts(m, ",utf8");
if (sbi->fsi.vol_type != EXFAT)
seq_puts(m, ",shortname=winnt");
seq_printf(m, ",namecase=%u", opts->casesensitive);
if (opts->tz_utc)
seq_puts(m, ",tz=UTC");
if (opts->improved_allocation & SDFAT_ALLOC_DELAY)
seq_puts(m, ",delay");
if (opts->improved_allocation & SDFAT_ALLOC_SMART)
seq_printf(m, ",smart,ausize=%u", opts->amap_opt.sect_per_au);
if (opts->defrag)
seq_puts(m, ",defrag");
if (opts->adj_hidsect)
seq_puts(m, ",adj_hid");
if (opts->adj_req)
seq_puts(m, ",adj_req");
seq_printf(m, ",symlink=%u", opts->symlink);
seq_printf(m, ",bps=%ld", sb->s_blocksize);
if (opts->errors == SDFAT_ERRORS_CONT)
seq_puts(m, ",errors=continue");
else if (opts->errors == SDFAT_ERRORS_PANIC)
seq_puts(m, ",errors=panic");
else
seq_puts(m, ",errors=remount-ro");
if (opts->discard)
seq_puts(m, ",discard");
return 0;
}
static const struct super_operations sdfat_sops = {
.alloc_inode = sdfat_alloc_inode,
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 4, 0)
.free_inode = sdfat_free_inode,
#else
.destroy_inode = sdfat_destroy_inode,
#endif
.write_inode = sdfat_write_inode,
.evict_inode = sdfat_evict_inode,
.put_super = sdfat_put_super,
#if LINUX_VERSION_CODE < KERNEL_VERSION(3, 7, 0)
.write_super = sdfat_write_super,
#endif
.sync_fs = sdfat_sync_fs,
.statfs = sdfat_statfs,
.remount_fs = sdfat_remount,
.show_options = sdfat_show_options,
};
/*======================================================================*/
/* SYSFS Operations */
/*======================================================================*/
#define SDFAT_ATTR(name, mode, show, store) \
static struct sdfat_attr sdfat_attr_##name = __ATTR(name, mode, show, store)
struct sdfat_attr {
struct attribute attr;
ssize_t (*show)(struct sdfat_sb_info *, char *);
ssize_t (*store)(struct sdfat_sb_info *, const char *, size_t);
};
static ssize_t sdfat_attr_show(struct kobject *kobj, struct attribute *attr, char *buf)
{
struct sdfat_sb_info *sbi = container_of(kobj, struct sdfat_sb_info, sb_kobj);
struct sdfat_attr *a = container_of(attr, struct sdfat_attr, attr);
return a->show ? a->show(sbi, buf) : 0;
}
static ssize_t sdfat_attr_store(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t len)
{
struct sdfat_sb_info *sbi = container_of(kobj, struct sdfat_sb_info, sb_kobj);
struct sdfat_attr *a = container_of(attr, struct sdfat_attr, attr);
return a->store ? a->store(sbi, buf, len) : len;
}
static const struct sysfs_ops sdfat_attr_ops = {
.show = sdfat_attr_show,
.store = sdfat_attr_store,
};
static ssize_t type_show(struct sdfat_sb_info *sbi, char *buf)
{
FS_INFO_T *fsi = &(sbi->fsi);
return snprintf(buf, PAGE_SIZE, "%s\n", sdfat_get_vol_type_str(fsi->vol_type));
}
SDFAT_ATTR(type, 0444, type_show, NULL);
static ssize_t eio_show(struct sdfat_sb_info *sbi, char *buf)
{
FS_INFO_T *fsi = &(sbi->fsi);
return snprintf(buf, PAGE_SIZE, "0x%x\n", fsi->prev_eio);
}
SDFAT_ATTR(eio, 0444, eio_show, NULL);
static ssize_t fratio_show(struct sdfat_sb_info *sbi, char *buf)
{
unsigned int n_total_au = 0;
unsigned int n_clean_au = 0;
unsigned int n_full_au = 0;
unsigned int n_dirty_au = 0;
unsigned int fr = 0;
n_total_au = fsapi_get_au_stat(sbi->host_sb, VOL_AU_STAT_TOTAL);
n_clean_au = fsapi_get_au_stat(sbi->host_sb, VOL_AU_STAT_CLEAN);
n_full_au = fsapi_get_au_stat(sbi->host_sb, VOL_AU_STAT_FULL);
n_dirty_au = n_total_au - (n_full_au + n_clean_au);
if (!n_dirty_au)
fr = 0;
else if (!n_clean_au)
fr = 100;
else
fr = (n_dirty_au * 100) / (n_clean_au + n_dirty_au);
return snprintf(buf, PAGE_SIZE, "%u\n", fr);
}
SDFAT_ATTR(fratio, 0444, fratio_show, NULL);
static ssize_t totalau_show(struct sdfat_sb_info *sbi, char *buf)
{
unsigned int n_au = 0;
n_au = fsapi_get_au_stat(sbi->host_sb, VOL_AU_STAT_TOTAL);
return snprintf(buf, PAGE_SIZE, "%u\n", n_au);
}
SDFAT_ATTR(totalau, 0444, totalau_show, NULL);
static ssize_t cleanau_show(struct sdfat_sb_info *sbi, char *buf)
{
unsigned int n_clean_au = 0;
n_clean_au = fsapi_get_au_stat(sbi->host_sb, VOL_AU_STAT_CLEAN);
return snprintf(buf, PAGE_SIZE, "%u\n", n_clean_au);
}
SDFAT_ATTR(cleanau, 0444, cleanau_show, NULL);
static ssize_t fullau_show(struct sdfat_sb_info *sbi, char *buf)
{
unsigned int n_full_au = 0;
n_full_au = fsapi_get_au_stat(sbi->host_sb, VOL_AU_STAT_FULL);
return snprintf(buf, PAGE_SIZE, "%u\n", n_full_au);
}
SDFAT_ATTR(fullau, 0444, fullau_show, NULL);
static struct attribute *sdfat_attrs[] = {
&sdfat_attr_type.attr,
&sdfat_attr_eio.attr,
&sdfat_attr_fratio.attr,
&sdfat_attr_totalau.attr,
&sdfat_attr_cleanau.attr,
&sdfat_attr_fullau.attr,
NULL,
};
static struct kobj_type sdfat_ktype = {
.default_attrs = sdfat_attrs,
.sysfs_ops = &sdfat_attr_ops,
};
static ssize_t version_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buff)
{
return snprintf(buff, PAGE_SIZE, "FS Version %s\n", SDFAT_VERSION);
}
static struct kobj_attribute version_attr = __ATTR_RO(version);
static struct attribute *attributes[] = {
&version_attr.attr,
NULL,
};
static struct attribute_group attr_group = {
.attrs = attributes,
};
/*======================================================================*/
/* Super Block Read Operations */
/*======================================================================*/
enum {
Opt_uid,
Opt_gid,
Opt_umask,
Opt_dmask,
Opt_fmask,
Opt_allow_utime,
Opt_codepage,
Opt_charset,
Opt_utf8,
Opt_namecase,
Opt_tz_utc,
Opt_adj_hidsect,
Opt_delay,
Opt_smart,
Opt_ausize,
Opt_packing,
Opt_defrag,
Opt_symlink,
Opt_debug,
Opt_err_cont,
Opt_err_panic,
Opt_err_ro,
Opt_err,
Opt_discard,
Opt_fs,
Opt_adj_req,
};
static const match_table_t sdfat_tokens = {
{Opt_uid, "uid=%u"},
{Opt_gid, "gid=%u"},
{Opt_umask, "umask=%o"},
{Opt_dmask, "dmask=%o"},
{Opt_fmask, "fmask=%o"},
{Opt_allow_utime, "allow_utime=%o"},
{Opt_codepage, "codepage=%u"},
{Opt_charset, "iocharset=%s"},
{Opt_utf8, "utf8"},
{Opt_namecase, "namecase=%u"},
{Opt_tz_utc, "tz=UTC"},
{Opt_adj_hidsect, "adj_hid"},
{Opt_delay, "delay"},
{Opt_smart, "smart"},
{Opt_ausize, "ausize=%u"},
{Opt_packing, "packing=%u"},
{Opt_defrag, "defrag"},
{Opt_symlink, "symlink=%u"},
{Opt_debug, "debug"},
{Opt_err_cont, "errors=continue"},
{Opt_err_panic, "errors=panic"},
{Opt_err_ro, "errors=remount-ro"},
{Opt_discard, "discard"},
{Opt_fs, "fs=%s"},
{Opt_adj_req, "adj_req"},
{Opt_err, NULL}
};
static int parse_options(struct super_block *sb, char *options, int silent,
int *debug, struct sdfat_mount_options *opts)
{
char *p;
substring_t args[MAX_OPT_ARGS];
int option, i;
char *tmpstr;
opts->fs_uid = current_uid();
opts->fs_gid = current_gid();
opts->fs_fmask = opts->fs_dmask = current->fs->umask;
opts->allow_utime = (unsigned short) -1;
opts->codepage = sdfat_default_codepage;
opts->iocharset = sdfat_default_iocharset;
opts->casesensitive = 0;
opts->utf8 = 0;
opts->adj_hidsect = 0;
opts->tz_utc = 0;
opts->improved_allocation = 0;
opts->amap_opt.pack_ratio = 0; // Default packing
opts->amap_opt.sect_per_au = 0;
opts->amap_opt.misaligned_sect = 0;
opts->symlink = 0;
opts->errors = SDFAT_ERRORS_RO;
opts->discard = 0;
*debug = 0;
if (!options)
goto out;
while ((p = strsep(&options, ",")) != NULL) {
int token;
if (!*p)
continue;
token = match_token(p, sdfat_tokens, args);
switch (token) {
case Opt_uid:
if (match_int(&args[0], &option))
return 0;
opts->fs_uid = make_kuid(current_user_ns(), option);
break;
case Opt_gid:
if (match_int(&args[0], &option))
return 0;
opts->fs_gid = make_kgid(current_user_ns(), option);
break;
case Opt_umask:
case Opt_dmask:
case Opt_fmask:
if (match_octal(&args[0], &option))
return 0;
if (token != Opt_dmask)
opts->fs_fmask = option;
if (token != Opt_fmask)
opts->fs_dmask = option;
break;
case Opt_allow_utime:
if (match_octal(&args[0], &option))
return 0;
opts->allow_utime = option & (S_IWGRP | S_IWOTH);
break;
case Opt_codepage:
if (match_int(&args[0], &option))
return 0;
opts->codepage = option;
break;
case Opt_charset:
if (opts->iocharset != sdfat_default_iocharset)
kfree(opts->iocharset);
tmpstr = match_strdup(&args[0]);
if (!tmpstr)
return -ENOMEM;
opts->iocharset = tmpstr;
break;
case Opt_namecase:
if (match_int(&args[0], &option))
return 0;
opts->casesensitive = (option > 0) ? 1:0;
break;
case Opt_utf8:
opts->utf8 = 1;
break;
case Opt_adj_hidsect:
opts->adj_hidsect = 1;
break;
case Opt_tz_utc:
opts->tz_utc = 1;
break;
case Opt_symlink:
if (match_int(&args[0], &option))
return 0;
opts->symlink = option > 0 ? 1 : 0;
break;
case Opt_delay:
opts->improved_allocation |= SDFAT_ALLOC_DELAY;
break;
case Opt_smart:
opts->improved_allocation |= SDFAT_ALLOC_SMART;
break;
case Opt_ausize:
if (match_int(&args[0], &option))
return -EINVAL;
if (!is_power_of_2(option))
return -EINVAL;
opts->amap_opt.sect_per_au = option;
IMSG("set AU size by option : %u sectors\n", option);
break;
case Opt_packing:
if (match_int(&args[0], &option))
return 0;
opts->amap_opt.pack_ratio = option;
break;
case Opt_defrag:
#ifdef CONFIG_SDFAT_DFR
opts->defrag = 1;
#else
IMSG("defragmentation config is not enabled. ignore\n");
#endif
break;
case Opt_err_cont:
opts->errors = SDFAT_ERRORS_CONT;
break;
case Opt_err_panic:
opts->errors = SDFAT_ERRORS_PANIC;
break;
case Opt_err_ro:
opts->errors = SDFAT_ERRORS_RO;
break;
case Opt_debug:
*debug = 1;
break;
case Opt_discard:
opts->discard = 1;
break;
case Opt_fs:
tmpstr = match_strdup(&args[0]);
if (!tmpstr)
return -ENOMEM;
for (i = 0; i < FS_TYPE_MAX; i++) {
if (!strcmp(tmpstr, FS_TYPE_STR[i])) {
opts->fs_type = (unsigned char)i;
sdfat_log_msg(sb, KERN_ERR,
"set fs-type by option : %s",
FS_TYPE_STR[i]);
break;
}
}
kfree(tmpstr);
if (i == FS_TYPE_MAX) {
sdfat_log_msg(sb, KERN_ERR,
"invalid fs-type, "
"only allow auto, exfat, vfat");
return -EINVAL;
}
break;
case Opt_adj_req:
#ifdef CONFIG_SDFAT_ALIGNED_MPAGE_WRITE
opts->adj_req = 1;
#else
IMSG("adjust request config is not enabled. ignore\n");
#endif
break;
default:
if (!silent) {
sdfat_msg(sb, KERN_ERR,
"unrecognized mount option \"%s\" "
"or missing value", p);
}
return -EINVAL;
}
}
out:
if (opts->allow_utime == (unsigned short) -1)
opts->allow_utime = ~opts->fs_dmask & (S_IWGRP | S_IWOTH);
if (opts->utf8 && strcmp(opts->iocharset, sdfat_iocharset_with_utf8)) {
sdfat_msg(sb, KERN_WARNING,
"utf8 enabled, \"iocharset=%s\" is recommended",
sdfat_iocharset_with_utf8);
}
if (opts->discard) {
struct request_queue *q = bdev_get_queue(sb->s_bdev);
if (!blk_queue_discard(q))
sdfat_msg(sb, KERN_WARNING,
"mounting with \"discard\" option, but "
"the device does not support discard");
opts->discard = 0;
}
return 0;
}
static void sdfat_hash_init(struct super_block *sb)
{
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
int i;
spin_lock_init(&sbi->inode_hash_lock);
for (i = 0; i < SDFAT_HASH_SIZE; i++)
INIT_HLIST_HEAD(&sbi->inode_hashtable[i]);
}
static int sdfat_read_root(struct inode *inode)
{
struct super_block *sb = inode->i_sb;
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
sdfat_timespec_t ts;
FS_INFO_T *fsi = &(sbi->fsi);
DIR_ENTRY_T info;
ts = current_time(inode);
SDFAT_I(inode)->fid.dir.dir = fsi->root_dir;
SDFAT_I(inode)->fid.dir.flags = 0x01;
SDFAT_I(inode)->fid.entry = -1;
SDFAT_I(inode)->fid.start_clu = fsi->root_dir;
SDFAT_I(inode)->fid.flags = 0x01;
SDFAT_I(inode)->fid.type = TYPE_DIR;
SDFAT_I(inode)->fid.version = 0;
SDFAT_I(inode)->fid.rwoffset = 0;
SDFAT_I(inode)->fid.hint_bmap.off = CLUS_EOF;
SDFAT_I(inode)->fid.hint_stat.eidx = 0;
SDFAT_I(inode)->fid.hint_stat.clu = fsi->root_dir;
SDFAT_I(inode)->fid.hint_femp.eidx = -1;
SDFAT_I(inode)->target = NULL;
if (fsapi_read_inode(inode, &info) < 0)
return -EIO;
inode->i_uid = sbi->options.fs_uid;
inode->i_gid = sbi->options.fs_gid;
inode_inc_iversion(inode);
inode->i_generation = 0;
inode->i_mode = sdfat_make_mode(sbi, ATTR_SUBDIR, S_IRWXUGO);
inode->i_op = &sdfat_dir_inode_operations;
inode->i_fop = &sdfat_dir_operations;
i_size_write(inode, info.Size);
SDFAT_I(inode)->fid.size = info.Size;
inode->i_blocks = ((i_size_read(inode) + (fsi->cluster_size - 1))
& ~((loff_t)fsi->cluster_size - 1)) >> inode->i_blkbits;
SDFAT_I(inode)->i_pos = ((loff_t) fsi->root_dir << 32) | 0xffffffff;
SDFAT_I(inode)->i_size_aligned = i_size_read(inode);
SDFAT_I(inode)->i_size_ondisk = i_size_read(inode);
sdfat_save_attr(inode, ATTR_SUBDIR);
inode->i_mtime = inode->i_atime = inode->i_ctime = ts;
set_nlink(inode, info.NumSubdirs + 2);
return 0;
}
static void setup_dops(struct super_block *sb)
{
if (SDFAT_SB(sb)->options.casesensitive == 0)
sb->s_d_op = &sdfat_ci_dentry_ops;
else
sb->s_d_op = &sdfat_dentry_ops;
}
static int sdfat_fill_super(struct super_block *sb, void *data, int silent)
{
struct inode *root_inode = NULL;
struct sdfat_sb_info *sbi;
int debug;
int err;
char buf[50];
struct block_device *bdev = sb->s_bdev;
dev_t bd_dev = bdev ? bdev->bd_dev : 0;
sdfat_log_msg(sb, KERN_INFO, "trying to mount(r%c)...",
sb_rdonly(sb) ? 'o' : 'w');
/*
* GFP_KERNEL is ok here, because while we do hold the
* supeblock lock, memory pressure can't call back into
* the filesystem, since we're only just about to mount
* it and have no inodes etc active!
*/
sbi = kzalloc(sizeof(struct sdfat_sb_info), GFP_KERNEL);
if (!sbi) {
sdfat_log_msg(sb, KERN_INFO,
"trying to alloc sbi with vzalloc()");
sbi = vzalloc(sizeof(struct sdfat_sb_info));
if (!sbi) {
sdfat_log_msg(sb, KERN_ERR, "failed to mount! (ENOMEM)");
return -ENOMEM;
}
sbi->use_vmalloc = 1;
}
mutex_init(&sbi->s_vlock);
sb->s_fs_info = sbi;
sb->s_flags |= SB_NODIRATIME;
sb->s_magic = SDFAT_SUPER_MAGIC;
sb->s_op = &sdfat_sops;
ratelimit_state_init(&sbi->ratelimit, DEFAULT_RATELIMIT_INTERVAL,
DEFAULT_RATELIMIT_BURST);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 0, 0)
sb->s_time_gran = NSEC_PER_SEC; /* the same with default */
sb->s_time_min = SDFAT_MIN_TIMESTAMP_SECS;
sb->s_time_max = SDFAT_MAX_TIMESTAMP_SECS;
#endif
err = parse_options(sb, data, silent, &debug, &sbi->options);
if (err) {
sdfat_log_msg(sb, KERN_ERR, "failed to parse options");
goto failed_mount;
}
setup_sdfat_xattr_handler(sb);
setup_sdfat_sync_super_wq(sb);
setup_dops(sb);
err = fsapi_mount(sb);
if (err) {
sdfat_log_msg(sb, KERN_ERR, "failed to recognize fat type");
goto failed_mount;
}
/* set up enough so that it can read an inode */
sdfat_hash_init(sb);
/*
* The low byte of FAT's first entry must have same value with
* media-field. But in real world, too many devices is
* writing wrong value. So, removed that validity check.
*
* if (FAT_FIRST_ENT(sb, media) != first)
*/
err = -EINVAL;
sprintf(buf, "cp%d", sbi->options.codepage);
sbi->nls_disk = load_nls(buf);
if (!sbi->nls_disk) {
sdfat_log_msg(sb, KERN_ERR, "codepage %s not found", buf);
goto failed_mount2;
}
sbi->nls_io = load_nls(sbi->options.iocharset);
if (!sbi->nls_io) {
sdfat_log_msg(sb, KERN_ERR, "IO charset %s not found",
sbi->options.iocharset);
goto failed_mount2;
}
err = __alloc_dfr_mem_if_required(sb);
if (err) {
sdfat_log_msg(sb, KERN_ERR, "failed to initialize a memory for "
"defragmentation");
goto failed_mount3;
}
err = -ENOMEM;
root_inode = new_inode(sb);
if (!root_inode) {
sdfat_log_msg(sb, KERN_ERR, "failed to allocate root inode.");
goto failed_mount3;
}
root_inode->i_ino = SDFAT_ROOT_INO;
inode_set_iversion(root_inode, 1);
err = sdfat_read_root(root_inode);
if (err) {
sdfat_log_msg(sb, KERN_ERR, "failed to initialize root inode.");
goto failed_mount3;
}
sdfat_attach(root_inode, SDFAT_I(root_inode)->i_pos);
insert_inode_hash(root_inode);
err = -ENOMEM;
sb->s_root = __d_make_root(root_inode);
if (!sb->s_root) {
sdfat_msg(sb, KERN_ERR, "failed to get the root dentry");
goto failed_mount3;
}
/*
* Initialize filesystem attributes (for sysfs)
* ex: /sys/fs/sdfat/mmcblk1[179:17]
*/
sbi->sb_kobj.kset = sdfat_kset;
err = kobject_init_and_add(&sbi->sb_kobj, &sdfat_ktype, NULL,
"%s[%d:%d]", sb->s_id, MAJOR(bd_dev), MINOR(bd_dev));
if (err) {
sdfat_msg(sb, KERN_ERR, "Unable to create sdfat attributes for"
" %s[%d:%d](%d)", sb->s_id,
MAJOR(bd_dev), MINOR(bd_dev), err);
goto failed_mount3;
}
sdfat_log_msg(sb, KERN_INFO, "mounted successfully!");
/* FOR BIGDATA */
sdfat_statistics_set_mnt(&sbi->fsi);
sdfat_statistics_set_vol_size(sb);
return 0;
failed_mount3:
__free_dfr_mem_if_required(sb);
failed_mount2:
fsapi_umount(sb);
failed_mount:
sdfat_log_msg(sb, KERN_INFO, "failed to mount! (%d)", err);
if (root_inode)
iput(root_inode);
sb->s_root = NULL;
if (sbi->nls_io)
unload_nls(sbi->nls_io);
if (sbi->nls_disk)
unload_nls(sbi->nls_disk);
if (sbi->options.iocharset != sdfat_default_iocharset)
kfree(sbi->options.iocharset);
sb->s_fs_info = NULL;
if (!sbi->use_vmalloc)
kfree(sbi);
else
vfree(sbi);
return err;
}
static struct dentry *sdfat_fs_mount(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data) {
return mount_bdev(fs_type, flags, dev_name, data, sdfat_fill_super);
}
static void init_once(void *foo)
{
struct sdfat_inode_info *ei = (struct sdfat_inode_info *)foo;
INIT_HLIST_NODE(&ei->i_hash_fat);
inode_init_once(&ei->vfs_inode);
}
static int __init sdfat_init_inodecache(void)
{
sdfat_inode_cachep = kmem_cache_create("sdfat_inode_cache",
sizeof(struct sdfat_inode_info),
0, (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD),
init_once);
if (!sdfat_inode_cachep)
return -ENOMEM;
return 0;
}
static void sdfat_destroy_inodecache(void)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 13, 0)
/*
* Make sure all delayed rcu free inodes are flushed before we
* destroy cache.
*/
rcu_barrier();
#endif
kmem_cache_destroy(sdfat_inode_cachep);
}
#ifdef CONFIG_SDFAT_DBG_IOCTL
static void sdfat_debug_kill_sb(struct super_block *sb)
{
struct sdfat_sb_info *sbi = SDFAT_SB(sb);
struct block_device *bdev = sb->s_bdev;
long flags;
if (sbi) {
flags = sbi->debug_flags;
if (flags & SDFAT_DEBUGFLAGS_INVALID_UMOUNT) {
/* invalidate_bdev drops all device cache include dirty.
* we use this to simulate device removal
*/
fsapi_cache_release(sb);
invalidate_bdev(bdev);
}
}
kill_block_super(sb);
}
#endif /* CONFIG_SDFAT_DBG_IOCTL */
static struct file_system_type sdfat_fs_type = {
.owner = THIS_MODULE,
.name = "sdfat",
.mount = sdfat_fs_mount,
#ifdef CONFIG_SDFAT_DBG_IOCTL
.kill_sb = sdfat_debug_kill_sb,
#else
.kill_sb = kill_block_super,
#endif /* CONFIG_SDFAT_DBG_IOCTL */
.fs_flags = FS_REQUIRES_DEV,
};
#ifdef CONFIG_SDFAT_USE_FOR_EXFAT
static struct file_system_type exfat_fs_type = {
.owner = THIS_MODULE,
.name = "exfat",
.mount = sdfat_fs_mount,
#ifdef CONFIG_SDFAT_DBG_IOCTL
.kill_sb = sdfat_debug_kill_sb,
#else
.kill_sb = kill_block_super,
#endif /* CONFIG_SDFAT_DBG_IOCTL */
.fs_flags = FS_REQUIRES_DEV,
};
#endif /* CONFIG_SDFAT_USE_FOR_EXFAT */
static int __init init_sdfat_fs(void)
{
int err;
sdfat_log_version();
err = fsapi_init();
if (err)
goto error;
sdfat_kset = kset_create_and_add("sdfat", NULL, fs_kobj);
if (!sdfat_kset) {
pr_err("[SDFAT] failed to create sdfat kset\n");
err = -ENOMEM;
goto error;
}
err = sysfs_create_group(&sdfat_kset->kobj, &attr_group);
if (err) {
pr_err("[SDFAT] failed to create sdfat version attributes\n");
goto error;
}
err = sdfat_statistics_init(sdfat_kset);
if (err)
goto error;
err = sdfat_uevent_init(sdfat_kset);
if (err)
goto error;
err = sdfat_init_inodecache();
if (err) {
pr_err("[SDFAT] failed to initialize inode cache\n");
goto error;
}
err = register_filesystem(&sdfat_fs_type);
if (err) {
pr_err("[SDFAT] failed to register filesystem\n");
goto error;
}
#ifdef CONFIG_SDFAT_USE_FOR_EXFAT
err = register_filesystem(&exfat_fs_type);
if (err) {
pr_err("[SDFAT] failed to register for exfat filesystem\n");
goto error;
}
#endif /* CONFIG_SDFAT_USE_FOR_EXFAT */
return 0;
error:
sdfat_uevent_uninit();
sdfat_statistics_uninit();
if (sdfat_kset) {
sysfs_remove_group(&sdfat_kset->kobj, &attr_group);
kset_unregister(sdfat_kset);
sdfat_kset = NULL;
}
sdfat_destroy_inodecache();
fsapi_shutdown();
pr_err("[SDFAT] failed to initialize FS driver(err:%d)\n", err);
return err;
}
static void __exit exit_sdfat_fs(void)
{
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 13, 0)
/*
* Make sure all delayed rcu free inodes are flushed before we
* destroy cache.
*/
rcu_barrier();
#endif
sdfat_uevent_uninit();
sdfat_statistics_uninit();
if (sdfat_kset) {
sysfs_remove_group(&sdfat_kset->kobj, &attr_group);
kset_unregister(sdfat_kset);
sdfat_kset = NULL;
}
sdfat_destroy_inodecache();
unregister_filesystem(&sdfat_fs_type);
#ifdef CONFIG_SDFAT_USE_FOR_EXFAT
unregister_filesystem(&exfat_fs_type);
#endif /* CONFIG_SDFAT_USE_FOR_EXFAT */
fsapi_shutdown();
}
module_init(init_sdfat_fs);
module_exit(exit_sdfat_fs);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("FAT/exFAT filesystem support");
MODULE_AUTHOR("Samsung Electronics Co., Ltd.");