| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * fs/f2fs/segment.c |
| * |
| * Copyright (c) 2012 Samsung Electronics Co., Ltd. |
| * http://www.samsung.com/ |
| */ |
| #include <linux/fs.h> |
| #include <linux/f2fs_fs.h> |
| #include <linux/bio.h> |
| #include <linux/blkdev.h> |
| #include <linux/prefetch.h> |
| #include <linux/kthread.h> |
| #include <linux/swap.h> |
| #include <linux/timer.h> |
| #include <linux/freezer.h> |
| #include <linux/sched/signal.h> |
| |
| #include "f2fs.h" |
| #include "segment.h" |
| #include "node.h" |
| #include "gc.h" |
| #include "trace.h" |
| #include <trace/events/f2fs.h> |
| |
| #define __reverse_ffz(x) __reverse_ffs(~(x)) |
| |
| static struct kmem_cache *discard_entry_slab; |
| static struct kmem_cache *discard_cmd_slab; |
| static struct kmem_cache *sit_entry_set_slab; |
| static struct kmem_cache *inmem_entry_slab; |
| |
| static unsigned long __reverse_ulong(unsigned char *str) |
| { |
| unsigned long tmp = 0; |
| int shift = 24, idx = 0; |
| |
| #if BITS_PER_LONG == 64 |
| shift = 56; |
| #endif |
| while (shift >= 0) { |
| tmp |= (unsigned long)str[idx++] << shift; |
| shift -= BITS_PER_BYTE; |
| } |
| return tmp; |
| } |
| |
| /* |
| * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since |
| * MSB and LSB are reversed in a byte by f2fs_set_bit. |
| */ |
| static inline unsigned long __reverse_ffs(unsigned long word) |
| { |
| int num = 0; |
| |
| #if BITS_PER_LONG == 64 |
| if ((word & 0xffffffff00000000UL) == 0) |
| num += 32; |
| else |
| word >>= 32; |
| #endif |
| if ((word & 0xffff0000) == 0) |
| num += 16; |
| else |
| word >>= 16; |
| |
| if ((word & 0xff00) == 0) |
| num += 8; |
| else |
| word >>= 8; |
| |
| if ((word & 0xf0) == 0) |
| num += 4; |
| else |
| word >>= 4; |
| |
| if ((word & 0xc) == 0) |
| num += 2; |
| else |
| word >>= 2; |
| |
| if ((word & 0x2) == 0) |
| num += 1; |
| return num; |
| } |
| |
| /* |
| * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because |
| * f2fs_set_bit makes MSB and LSB reversed in a byte. |
| * @size must be integral times of unsigned long. |
| * Example: |
| * MSB <--> LSB |
| * f2fs_set_bit(0, bitmap) => 1000 0000 |
| * f2fs_set_bit(7, bitmap) => 0000 0001 |
| */ |
| static unsigned long __find_rev_next_bit(const unsigned long *addr, |
| unsigned long size, unsigned long offset) |
| { |
| const unsigned long *p = addr + BIT_WORD(offset); |
| unsigned long result = size; |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| |
| size -= (offset & ~(BITS_PER_LONG - 1)); |
| offset %= BITS_PER_LONG; |
| |
| while (1) { |
| if (*p == 0) |
| goto pass; |
| |
| tmp = __reverse_ulong((unsigned char *)p); |
| |
| tmp &= ~0UL >> offset; |
| if (size < BITS_PER_LONG) |
| tmp &= (~0UL << (BITS_PER_LONG - size)); |
| if (tmp) |
| goto found; |
| pass: |
| if (size <= BITS_PER_LONG) |
| break; |
| size -= BITS_PER_LONG; |
| offset = 0; |
| p++; |
| } |
| return result; |
| found: |
| return result - size + __reverse_ffs(tmp); |
| } |
| |
| static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, |
| unsigned long size, unsigned long offset) |
| { |
| const unsigned long *p = addr + BIT_WORD(offset); |
| unsigned long result = size; |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| |
| size -= (offset & ~(BITS_PER_LONG - 1)); |
| offset %= BITS_PER_LONG; |
| |
| while (1) { |
| if (*p == ~0UL) |
| goto pass; |
| |
| tmp = __reverse_ulong((unsigned char *)p); |
| |
| if (offset) |
| tmp |= ~0UL << (BITS_PER_LONG - offset); |
| if (size < BITS_PER_LONG) |
| tmp |= ~0UL >> size; |
| if (tmp != ~0UL) |
| goto found; |
| pass: |
| if (size <= BITS_PER_LONG) |
| break; |
| size -= BITS_PER_LONG; |
| offset = 0; |
| p++; |
| } |
| return result; |
| found: |
| return result - size + __reverse_ffz(tmp); |
| } |
| |
| bool f2fs_need_SSR(struct f2fs_sb_info *sbi) |
| { |
| int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); |
| int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); |
| int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); |
| |
| if (f2fs_lfs_mode(sbi)) |
| return false; |
| if (sbi->gc_mode == GC_URGENT) |
| return true; |
| if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) |
| return true; |
| |
| return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + |
| SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); |
| } |
| |
| void f2fs_register_inmem_page(struct inode *inode, struct page *page) |
| { |
| struct inmem_pages *new; |
| |
| f2fs_trace_pid(page); |
| |
| f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); |
| |
| new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); |
| |
| /* add atomic page indices to the list */ |
| new->page = page; |
| INIT_LIST_HEAD(&new->list); |
| |
| /* increase reference count with clean state */ |
| get_page(page); |
| mutex_lock(&F2FS_I(inode)->inmem_lock); |
| list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages); |
| inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); |
| mutex_unlock(&F2FS_I(inode)->inmem_lock); |
| |
| trace_f2fs_register_inmem_page(page, INMEM); |
| } |
| |
| static int __revoke_inmem_pages(struct inode *inode, |
| struct list_head *head, bool drop, bool recover, |
| bool trylock) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct inmem_pages *cur, *tmp; |
| int err = 0; |
| |
| list_for_each_entry_safe(cur, tmp, head, list) { |
| struct page *page = cur->page; |
| |
| if (drop) |
| trace_f2fs_commit_inmem_page(page, INMEM_DROP); |
| |
| if (trylock) { |
| /* |
| * to avoid deadlock in between page lock and |
| * inmem_lock. |
| */ |
| if (!trylock_page(page)) |
| continue; |
| } else { |
| lock_page(page); |
| } |
| |
| f2fs_wait_on_page_writeback(page, DATA, true, true); |
| |
| if (recover) { |
| struct dnode_of_data dn; |
| struct node_info ni; |
| |
| trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); |
| retry: |
| set_new_dnode(&dn, inode, NULL, NULL, 0); |
| err = f2fs_get_dnode_of_data(&dn, page->index, |
| LOOKUP_NODE); |
| if (err) { |
| if (err == -ENOMEM) { |
| congestion_wait(BLK_RW_ASYNC, |
| DEFAULT_IO_TIMEOUT); |
| cond_resched(); |
| goto retry; |
| } |
| err = -EAGAIN; |
| goto next; |
| } |
| |
| err = f2fs_get_node_info(sbi, dn.nid, &ni); |
| if (err) { |
| f2fs_put_dnode(&dn); |
| return err; |
| } |
| |
| if (cur->old_addr == NEW_ADDR) { |
| f2fs_invalidate_blocks(sbi, dn.data_blkaddr); |
| f2fs_update_data_blkaddr(&dn, NEW_ADDR); |
| } else |
| f2fs_replace_block(sbi, &dn, dn.data_blkaddr, |
| cur->old_addr, ni.version, true, true); |
| f2fs_put_dnode(&dn); |
| } |
| next: |
| /* we don't need to invalidate this in the sccessful status */ |
| if (drop || recover) { |
| ClearPageUptodate(page); |
| clear_cold_data(page); |
| } |
| f2fs_clear_page_private(page); |
| f2fs_put_page(page, 1); |
| |
| list_del(&cur->list); |
| kmem_cache_free(inmem_entry_slab, cur); |
| dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); |
| } |
| return err; |
| } |
| |
| void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure) |
| { |
| struct list_head *head = &sbi->inode_list[ATOMIC_FILE]; |
| struct inode *inode; |
| struct f2fs_inode_info *fi; |
| unsigned int count = sbi->atomic_files; |
| unsigned int looped = 0; |
| next: |
| spin_lock(&sbi->inode_lock[ATOMIC_FILE]); |
| if (list_empty(head)) { |
| spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); |
| return; |
| } |
| fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist); |
| inode = igrab(&fi->vfs_inode); |
| if (inode) |
| list_move_tail(&fi->inmem_ilist, head); |
| spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); |
| |
| if (inode) { |
| if (gc_failure) { |
| if (!fi->i_gc_failures[GC_FAILURE_ATOMIC]) |
| goto skip; |
| } |
| set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); |
| f2fs_drop_inmem_pages(inode); |
| skip: |
| iput(inode); |
| } |
| congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); |
| cond_resched(); |
| if (gc_failure) { |
| if (++looped >= count) |
| return; |
| } |
| goto next; |
| } |
| |
| void f2fs_drop_inmem_pages(struct inode *inode) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct f2fs_inode_info *fi = F2FS_I(inode); |
| |
| while (!list_empty(&fi->inmem_pages)) { |
| mutex_lock(&fi->inmem_lock); |
| __revoke_inmem_pages(inode, &fi->inmem_pages, |
| true, false, true); |
| mutex_unlock(&fi->inmem_lock); |
| } |
| |
| fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0; |
| |
| spin_lock(&sbi->inode_lock[ATOMIC_FILE]); |
| if (!list_empty(&fi->inmem_ilist)) |
| list_del_init(&fi->inmem_ilist); |
| if (f2fs_is_atomic_file(inode)) { |
| clear_inode_flag(inode, FI_ATOMIC_FILE); |
| sbi->atomic_files--; |
| } |
| spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); |
| } |
| |
| void f2fs_drop_inmem_page(struct inode *inode, struct page *page) |
| { |
| struct f2fs_inode_info *fi = F2FS_I(inode); |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct list_head *head = &fi->inmem_pages; |
| struct inmem_pages *cur = NULL; |
| |
| f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page)); |
| |
| mutex_lock(&fi->inmem_lock); |
| list_for_each_entry(cur, head, list) { |
| if (cur->page == page) |
| break; |
| } |
| |
| f2fs_bug_on(sbi, list_empty(head) || cur->page != page); |
| list_del(&cur->list); |
| mutex_unlock(&fi->inmem_lock); |
| |
| dec_page_count(sbi, F2FS_INMEM_PAGES); |
| kmem_cache_free(inmem_entry_slab, cur); |
| |
| ClearPageUptodate(page); |
| f2fs_clear_page_private(page); |
| f2fs_put_page(page, 0); |
| |
| trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE); |
| } |
| |
| static int __f2fs_commit_inmem_pages(struct inode *inode) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct f2fs_inode_info *fi = F2FS_I(inode); |
| struct inmem_pages *cur, *tmp; |
| struct f2fs_io_info fio = { |
| .sbi = sbi, |
| .ino = inode->i_ino, |
| .type = DATA, |
| .op = REQ_OP_WRITE, |
| .op_flags = REQ_SYNC | REQ_PRIO, |
| .io_type = FS_DATA_IO, |
| }; |
| struct list_head revoke_list; |
| bool submit_bio = false; |
| int err = 0; |
| |
| INIT_LIST_HEAD(&revoke_list); |
| |
| list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { |
| struct page *page = cur->page; |
| |
| lock_page(page); |
| if (page->mapping == inode->i_mapping) { |
| trace_f2fs_commit_inmem_page(page, INMEM); |
| |
| f2fs_wait_on_page_writeback(page, DATA, true, true); |
| |
| set_page_dirty(page); |
| if (clear_page_dirty_for_io(page)) { |
| inode_dec_dirty_pages(inode); |
| f2fs_remove_dirty_inode(inode); |
| } |
| retry: |
| fio.page = page; |
| fio.old_blkaddr = NULL_ADDR; |
| fio.encrypted_page = NULL; |
| fio.need_lock = LOCK_DONE; |
| err = f2fs_do_write_data_page(&fio); |
| if (err) { |
| if (err == -ENOMEM) { |
| congestion_wait(BLK_RW_ASYNC, |
| DEFAULT_IO_TIMEOUT); |
| cond_resched(); |
| goto retry; |
| } |
| unlock_page(page); |
| break; |
| } |
| /* record old blkaddr for revoking */ |
| cur->old_addr = fio.old_blkaddr; |
| submit_bio = true; |
| } |
| unlock_page(page); |
| list_move_tail(&cur->list, &revoke_list); |
| } |
| |
| if (submit_bio) |
| f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA); |
| |
| if (err) { |
| /* |
| * try to revoke all committed pages, but still we could fail |
| * due to no memory or other reason, if that happened, EAGAIN |
| * will be returned, which means in such case, transaction is |
| * already not integrity, caller should use journal to do the |
| * recovery or rewrite & commit last transaction. For other |
| * error number, revoking was done by filesystem itself. |
| */ |
| err = __revoke_inmem_pages(inode, &revoke_list, |
| false, true, false); |
| |
| /* drop all uncommitted pages */ |
| __revoke_inmem_pages(inode, &fi->inmem_pages, |
| true, false, false); |
| } else { |
| __revoke_inmem_pages(inode, &revoke_list, |
| false, false, false); |
| } |
| |
| return err; |
| } |
| |
| int f2fs_commit_inmem_pages(struct inode *inode) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct f2fs_inode_info *fi = F2FS_I(inode); |
| int err; |
| |
| f2fs_balance_fs(sbi, true); |
| |
| down_write(&fi->i_gc_rwsem[WRITE]); |
| |
| f2fs_lock_op(sbi); |
| set_inode_flag(inode, FI_ATOMIC_COMMIT); |
| |
| mutex_lock(&fi->inmem_lock); |
| err = __f2fs_commit_inmem_pages(inode); |
| mutex_unlock(&fi->inmem_lock); |
| |
| clear_inode_flag(inode, FI_ATOMIC_COMMIT); |
| |
| f2fs_unlock_op(sbi); |
| up_write(&fi->i_gc_rwsem[WRITE]); |
| |
| return err; |
| } |
| |
| /* |
| * This function balances dirty node and dentry pages. |
| * In addition, it controls garbage collection. |
| */ |
| void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) |
| { |
| if (time_to_inject(sbi, FAULT_CHECKPOINT)) { |
| f2fs_show_injection_info(sbi, FAULT_CHECKPOINT); |
| f2fs_stop_checkpoint(sbi, false); |
| } |
| |
| /* balance_fs_bg is able to be pending */ |
| if (need && excess_cached_nats(sbi)) |
| f2fs_balance_fs_bg(sbi, false); |
| |
| if (!f2fs_is_checkpoint_ready(sbi)) |
| return; |
| |
| /* |
| * We should do GC or end up with checkpoint, if there are so many dirty |
| * dir/node pages without enough free segments. |
| */ |
| if (has_not_enough_free_secs(sbi, 0, 0)) { |
| down_write(&sbi->gc_lock); |
| f2fs_gc(sbi, false, false, NULL_SEGNO); |
| } |
| } |
| |
| void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg) |
| { |
| if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) |
| return; |
| |
| /* try to shrink extent cache when there is no enough memory */ |
| if (!f2fs_available_free_memory(sbi, EXTENT_CACHE)) |
| f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); |
| |
| /* check the # of cached NAT entries */ |
| if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) |
| f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); |
| |
| if (!f2fs_available_free_memory(sbi, FREE_NIDS)) |
| f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); |
| else |
| f2fs_build_free_nids(sbi, false, false); |
| |
| if (!is_idle(sbi, REQ_TIME) && |
| (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi))) |
| return; |
| |
| /* checkpoint is the only way to shrink partial cached entries */ |
| if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) || |
| !f2fs_available_free_memory(sbi, INO_ENTRIES) || |
| excess_prefree_segs(sbi) || |
| excess_dirty_nats(sbi) || |
| excess_dirty_nodes(sbi) || |
| f2fs_time_over(sbi, CP_TIME)) { |
| if (test_opt(sbi, DATA_FLUSH) && from_bg) { |
| struct blk_plug plug; |
| |
| mutex_lock(&sbi->flush_lock); |
| |
| blk_start_plug(&plug); |
| f2fs_sync_dirty_inodes(sbi, FILE_INODE); |
| blk_finish_plug(&plug); |
| |
| mutex_unlock(&sbi->flush_lock); |
| } |
| f2fs_sync_fs(sbi->sb, true); |
| stat_inc_bg_cp_count(sbi->stat_info); |
| } |
| } |
| |
| static int __submit_flush_wait(struct f2fs_sb_info *sbi, |
| struct block_device *bdev) |
| { |
| struct bio *bio; |
| int ret; |
| |
| bio = f2fs_bio_alloc(sbi, 0, false); |
| if (!bio) |
| return -ENOMEM; |
| |
| bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; |
| bio_set_dev(bio, bdev); |
| ret = submit_bio_wait(bio); |
| bio_put(bio); |
| |
| trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), |
| test_opt(sbi, FLUSH_MERGE), ret); |
| return ret; |
| } |
| |
| static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) |
| { |
| int ret = 0; |
| int i; |
| |
| if (!f2fs_is_multi_device(sbi)) |
| return __submit_flush_wait(sbi, sbi->sb->s_bdev); |
| |
| for (i = 0; i < sbi->s_ndevs; i++) { |
| if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) |
| continue; |
| ret = __submit_flush_wait(sbi, FDEV(i).bdev); |
| if (ret) |
| break; |
| } |
| return ret; |
| } |
| |
| static int issue_flush_thread(void *data) |
| { |
| struct f2fs_sb_info *sbi = data; |
| struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; |
| wait_queue_head_t *q = &fcc->flush_wait_queue; |
| repeat: |
| if (kthread_should_stop()) |
| return 0; |
| |
| sb_start_intwrite(sbi->sb); |
| |
| if (!llist_empty(&fcc->issue_list)) { |
| struct flush_cmd *cmd, *next; |
| int ret; |
| |
| fcc->dispatch_list = llist_del_all(&fcc->issue_list); |
| fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); |
| |
| cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); |
| |
| ret = submit_flush_wait(sbi, cmd->ino); |
| atomic_inc(&fcc->issued_flush); |
| |
| llist_for_each_entry_safe(cmd, next, |
| fcc->dispatch_list, llnode) { |
| cmd->ret = ret; |
| complete(&cmd->wait); |
| } |
| fcc->dispatch_list = NULL; |
| } |
| |
| sb_end_intwrite(sbi->sb); |
| |
| wait_event_interruptible(*q, |
| kthread_should_stop() || !llist_empty(&fcc->issue_list)); |
| goto repeat; |
| } |
| |
| int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) |
| { |
| struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; |
| struct flush_cmd cmd; |
| int ret; |
| |
| if (test_opt(sbi, NOBARRIER)) |
| return 0; |
| |
| if (!test_opt(sbi, FLUSH_MERGE)) { |
| atomic_inc(&fcc->queued_flush); |
| ret = submit_flush_wait(sbi, ino); |
| atomic_dec(&fcc->queued_flush); |
| atomic_inc(&fcc->issued_flush); |
| return ret; |
| } |
| |
| if (atomic_inc_return(&fcc->queued_flush) == 1 || |
| f2fs_is_multi_device(sbi)) { |
| ret = submit_flush_wait(sbi, ino); |
| atomic_dec(&fcc->queued_flush); |
| |
| atomic_inc(&fcc->issued_flush); |
| return ret; |
| } |
| |
| cmd.ino = ino; |
| init_completion(&cmd.wait); |
| |
| llist_add(&cmd.llnode, &fcc->issue_list); |
| |
| /* update issue_list before we wake up issue_flush thread */ |
| smp_mb(); |
| |
| if (waitqueue_active(&fcc->flush_wait_queue)) |
| wake_up(&fcc->flush_wait_queue); |
| |
| if (fcc->f2fs_issue_flush) { |
| wait_for_completion(&cmd.wait); |
| atomic_dec(&fcc->queued_flush); |
| } else { |
| struct llist_node *list; |
| |
| list = llist_del_all(&fcc->issue_list); |
| if (!list) { |
| wait_for_completion(&cmd.wait); |
| atomic_dec(&fcc->queued_flush); |
| } else { |
| struct flush_cmd *tmp, *next; |
| |
| ret = submit_flush_wait(sbi, ino); |
| |
| llist_for_each_entry_safe(tmp, next, list, llnode) { |
| if (tmp == &cmd) { |
| cmd.ret = ret; |
| atomic_dec(&fcc->queued_flush); |
| continue; |
| } |
| tmp->ret = ret; |
| complete(&tmp->wait); |
| } |
| } |
| } |
| |
| return cmd.ret; |
| } |
| |
| int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) |
| { |
| dev_t dev = sbi->sb->s_bdev->bd_dev; |
| struct flush_cmd_control *fcc; |
| int err = 0; |
| |
| if (SM_I(sbi)->fcc_info) { |
| fcc = SM_I(sbi)->fcc_info; |
| if (fcc->f2fs_issue_flush) |
| return err; |
| goto init_thread; |
| } |
| |
| fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); |
| if (!fcc) |
| return -ENOMEM; |
| atomic_set(&fcc->issued_flush, 0); |
| atomic_set(&fcc->queued_flush, 0); |
| init_waitqueue_head(&fcc->flush_wait_queue); |
| init_llist_head(&fcc->issue_list); |
| SM_I(sbi)->fcc_info = fcc; |
| if (!test_opt(sbi, FLUSH_MERGE)) |
| return err; |
| |
| init_thread: |
| fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, |
| "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); |
| if (IS_ERR(fcc->f2fs_issue_flush)) { |
| err = PTR_ERR(fcc->f2fs_issue_flush); |
| kvfree(fcc); |
| SM_I(sbi)->fcc_info = NULL; |
| return err; |
| } |
| |
| return err; |
| } |
| |
| void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) |
| { |
| struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; |
| |
| if (fcc && fcc->f2fs_issue_flush) { |
| struct task_struct *flush_thread = fcc->f2fs_issue_flush; |
| |
| fcc->f2fs_issue_flush = NULL; |
| kthread_stop(flush_thread); |
| } |
| if (free) { |
| kvfree(fcc); |
| SM_I(sbi)->fcc_info = NULL; |
| } |
| } |
| |
| int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) |
| { |
| int ret = 0, i; |
| |
| if (!f2fs_is_multi_device(sbi)) |
| return 0; |
| |
| for (i = 1; i < sbi->s_ndevs; i++) { |
| if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) |
| continue; |
| ret = __submit_flush_wait(sbi, FDEV(i).bdev); |
| if (ret) |
| break; |
| |
| spin_lock(&sbi->dev_lock); |
| f2fs_clear_bit(i, (char *)&sbi->dirty_device); |
| spin_unlock(&sbi->dev_lock); |
| } |
| |
| return ret; |
| } |
| |
| static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, |
| enum dirty_type dirty_type) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| |
| /* need not be added */ |
| if (IS_CURSEG(sbi, segno)) |
| return; |
| |
| if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) |
| dirty_i->nr_dirty[dirty_type]++; |
| |
| if (dirty_type == DIRTY) { |
| struct seg_entry *sentry = get_seg_entry(sbi, segno); |
| enum dirty_type t = sentry->type; |
| |
| if (unlikely(t >= DIRTY)) { |
| f2fs_bug_on(sbi, 1); |
| return; |
| } |
| if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) |
| dirty_i->nr_dirty[t]++; |
| } |
| } |
| |
| static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, |
| enum dirty_type dirty_type) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| |
| if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) |
| dirty_i->nr_dirty[dirty_type]--; |
| |
| if (dirty_type == DIRTY) { |
| struct seg_entry *sentry = get_seg_entry(sbi, segno); |
| enum dirty_type t = sentry->type; |
| |
| if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) |
| dirty_i->nr_dirty[t]--; |
| |
| if (get_valid_blocks(sbi, segno, true) == 0) { |
| clear_bit(GET_SEC_FROM_SEG(sbi, segno), |
| dirty_i->victim_secmap); |
| #ifdef CONFIG_F2FS_CHECK_FS |
| clear_bit(segno, SIT_I(sbi)->invalid_segmap); |
| #endif |
| } |
| } |
| } |
| |
| /* |
| * Should not occur error such as -ENOMEM. |
| * Adding dirty entry into seglist is not critical operation. |
| * If a given segment is one of current working segments, it won't be added. |
| */ |
| static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| unsigned short valid_blocks, ckpt_valid_blocks; |
| |
| if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) |
| return; |
| |
| mutex_lock(&dirty_i->seglist_lock); |
| |
| valid_blocks = get_valid_blocks(sbi, segno, false); |
| ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno); |
| |
| if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || |
| ckpt_valid_blocks == sbi->blocks_per_seg)) { |
| __locate_dirty_segment(sbi, segno, PRE); |
| __remove_dirty_segment(sbi, segno, DIRTY); |
| } else if (valid_blocks < sbi->blocks_per_seg) { |
| __locate_dirty_segment(sbi, segno, DIRTY); |
| } else { |
| /* Recovery routine with SSR needs this */ |
| __remove_dirty_segment(sbi, segno, DIRTY); |
| } |
| |
| mutex_unlock(&dirty_i->seglist_lock); |
| } |
| |
| /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ |
| void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| unsigned int segno; |
| |
| mutex_lock(&dirty_i->seglist_lock); |
| for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { |
| if (get_valid_blocks(sbi, segno, false)) |
| continue; |
| if (IS_CURSEG(sbi, segno)) |
| continue; |
| __locate_dirty_segment(sbi, segno, PRE); |
| __remove_dirty_segment(sbi, segno, DIRTY); |
| } |
| mutex_unlock(&dirty_i->seglist_lock); |
| } |
| |
| block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) |
| { |
| int ovp_hole_segs = |
| (overprovision_segments(sbi) - reserved_segments(sbi)); |
| block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg; |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| block_t holes[2] = {0, 0}; /* DATA and NODE */ |
| block_t unusable; |
| struct seg_entry *se; |
| unsigned int segno; |
| |
| mutex_lock(&dirty_i->seglist_lock); |
| for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { |
| se = get_seg_entry(sbi, segno); |
| if (IS_NODESEG(se->type)) |
| holes[NODE] += sbi->blocks_per_seg - se->valid_blocks; |
| else |
| holes[DATA] += sbi->blocks_per_seg - se->valid_blocks; |
| } |
| mutex_unlock(&dirty_i->seglist_lock); |
| |
| unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE]; |
| if (unusable > ovp_holes) |
| return unusable - ovp_holes; |
| return 0; |
| } |
| |
| int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) |
| { |
| int ovp_hole_segs = |
| (overprovision_segments(sbi) - reserved_segments(sbi)); |
| if (unusable > F2FS_OPTION(sbi).unusable_cap) |
| return -EAGAIN; |
| if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && |
| dirty_segments(sbi) > ovp_hole_segs) |
| return -EAGAIN; |
| return 0; |
| } |
| |
| /* This is only used by SBI_CP_DISABLED */ |
| static unsigned int get_free_segment(struct f2fs_sb_info *sbi) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| unsigned int segno = 0; |
| |
| mutex_lock(&dirty_i->seglist_lock); |
| for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { |
| if (get_valid_blocks(sbi, segno, false)) |
| continue; |
| if (get_ckpt_valid_blocks(sbi, segno)) |
| continue; |
| mutex_unlock(&dirty_i->seglist_lock); |
| return segno; |
| } |
| mutex_unlock(&dirty_i->seglist_lock); |
| return NULL_SEGNO; |
| } |
| |
| static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, |
| struct block_device *bdev, block_t lstart, |
| block_t start, block_t len) |
| { |
| struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; |
| struct list_head *pend_list; |
| struct discard_cmd *dc; |
| |
| f2fs_bug_on(sbi, !len); |
| |
| pend_list = &dcc->pend_list[plist_idx(len)]; |
| |
| dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS); |
| INIT_LIST_HEAD(&dc->list); |
| dc->bdev = bdev; |
| dc->lstart = lstart; |
| dc->start = start; |
| dc->len = len; |
| dc->ref = 0; |
| dc->state = D_PREP; |
| dc->queued = 0; |
| dc->error = 0; |
| init_completion(&dc->wait); |
| list_add_tail(&dc->list, pend_list); |
| spin_lock_init(&dc->lock); |
| dc->bio_ref = 0; |
| atomic_inc(&dcc->discard_cmd_cnt); |
| dcc->undiscard_blks += len; |
| |
| return dc; |
| } |
| |
| static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi, |
| struct block_device *bdev, block_t lstart, |
| block_t start, block_t len, |
| struct rb_node *parent, struct rb_node **p, |
| bool leftmost) |
| { |
| struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; |
| struct discard_cmd *dc; |
| |
| dc = __create_discard_cmd(sbi, bdev, lstart, start, len); |
| |
| rb_link_node(&dc->rb_node, parent, p); |
| rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); |
| |
| return dc; |
| } |
| |
| static void __detach_discard_cmd(struct discard_cmd_control *dcc, |
| struct discard_cmd *dc) |
| { |
| if (dc->state == D_DONE) |
| atomic_sub(dc->queued, &dcc->queued_discard); |
| |
| list_del(&dc->list); |
| rb_erase_cached(&dc->rb_node, &dcc->root); |
| dcc->undiscard_blks -= dc->len; |
| |
| kmem_cache_free(discard_cmd_slab, dc); |
| |
| atomic_dec(&dcc->discard_cmd_cnt); |
| } |
| |
| static void __remove_discard_cmd(struct f2fs_sb_info *sbi, |
| struct discard_cmd *dc) |
| { |
| struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; |
| unsigned long flags; |
| |
| trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len); |
| |
| spin_lock_irqsave(&dc->lock, flags); |
| if (dc->bio_ref) { |
| spin_unlock_irqrestore(&dc->lock, flags); |
| return; |
| } |
| spin_unlock_irqrestore(&dc->lock, flags); |
| |
| f2fs_bug_on(sbi, dc->ref); |
| |
| if (dc->error == -EOPNOTSUPP) |
| dc->error = 0; |
| |
| if (dc->error) |
| printk_ratelimited( |
| "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d", |
| KERN_INFO, sbi->sb->s_id, |
| dc->lstart, dc->start, dc->len, dc->error); |
| __detach_discard_cmd(dcc, dc); |
| } |
| |
| static void f2fs_submit_discard_endio(struct bio *bio) |
| { |
| struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dc->lock, flags); |
| if (!dc->error) |
| dc->error = blk_status_to_errno(bio->bi_status); |
| dc->bio_ref--; |
| if (!dc->bio_ref && dc->state == D_SUBMIT) { |
| dc->state = D_DONE; |
| complete_all(&dc->wait); |
| } |
| spin_unlock_irqrestore(&dc->lock, flags); |
| bio_put(bio); |
| } |
| |
| static void __check_sit_bitmap(struct f2fs_sb_info *sbi, |
| block_t start, block_t end) |
| { |
| #ifdef CONFIG_F2FS_CHECK_FS |
| struct seg_entry *sentry; |
| unsigned int segno; |
| block_t blk = start; |
| unsigned long offset, size, max_blocks = sbi->blocks_per_seg; |
| unsigned long *map; |
| |
| while (blk < end) { |
| segno = GET_SEGNO(sbi, blk); |
| sentry = get_seg_entry(sbi, segno); |
| offset = GET_BLKOFF_FROM_SEG0(sbi, blk); |
| |
| if (end < START_BLOCK(sbi, segno + 1)) |
| size = GET_BLKOFF_FROM_SEG0(sbi, end); |
| else |
| size = max_blocks; |
| map = (unsigned long *)(sentry->cur_valid_map); |
| offset = __find_rev_next_bit(map, size, offset); |
| f2fs_bug_on(sbi, offset != size); |
| blk = START_BLOCK(sbi, segno + 1); |
| } |
| #endif |
| } |
| |
| static void __init_discard_policy(struct f2fs_sb_info *sbi, |
| struct discard_policy *dpolicy, |
| int discard_type, unsigned int granularity) |
| { |
| /* common policy */ |
| dpolicy->type = discard_type; |
| dpolicy->sync = true; |
| dpolicy->ordered = false; |
| dpolicy->granularity = granularity; |
| |
| dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST; |
| dpolicy->io_aware_gran = MAX_PLIST_NUM; |
| dpolicy->timeout = false; |
| |
| if (discard_type == DPOLICY_BG) { |
| dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; |
| dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; |
| dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; |
| dpolicy->io_aware = true; |
| dpolicy->sync = false; |
| dpolicy->ordered = true; |
| if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) { |
| dpolicy->granularity = 1; |
| dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME; |
| } |
| } else if (discard_type == DPOLICY_FORCE) { |
| dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; |
| dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; |
| dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; |
| dpolicy->io_aware = false; |
| } else if (discard_type == DPOLICY_FSTRIM) { |
| dpolicy->io_aware = false; |
| } else if (discard_type == DPOLICY_UMOUNT) { |
| dpolicy->io_aware = false; |
| /* we need to issue all to keep CP_TRIMMED_FLAG */ |
| dpolicy->granularity = 1; |
| dpolicy->timeout = true; |
| } |
| } |
| |
| static void __update_discard_tree_range(struct f2fs_sb_info *sbi, |
| struct block_device *bdev, block_t lstart, |
| block_t start, block_t len); |
| /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ |
| static int __submit_discard_cmd(struct f2fs_sb_info *sbi, |
| struct discard_policy *dpolicy, |
| struct discard_cmd *dc, |
| unsigned int *issued) |
| { |
| struct block_device *bdev = dc->bdev; |
| struct request_queue *q = bdev_get_queue(bdev); |
| unsigned int max_discard_blocks = |
| SECTOR_TO_BLOCK(q->limits.max_discard_sectors); |
| struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; |
| struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? |
| &(dcc->fstrim_list) : &(dcc->wait_list); |
| int flag = dpolicy->sync ? REQ_SYNC : 0; |
| block_t lstart, start, len, total_len; |
| int err = 0; |
| |
| if (dc->state != D_PREP) |
| return 0; |
| |
| if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) |
| return 0; |
| |
| trace_f2fs_issue_discard(bdev, dc->start, dc->len); |
| |
| lstart = dc->lstart; |
| start = dc->start; |
| len = dc->len; |
| total_len = len; |
| |
| dc->len = 0; |
| |
| while (total_len && *issued < dpolicy->max_requests && !err) { |
| struct bio *bio = NULL; |
| unsigned long flags; |
| bool last = true; |
| |
| if (len > max_discard_blocks) { |
| len = max_discard_blocks; |
| last = false; |
| } |
| |
| (*issued)++; |
| if (*issued == dpolicy->max_requests) |
| last = true; |
| |
| dc->len += len; |
| |
| if (time_to_inject(sbi, FAULT_DISCARD)) { |
| f2fs_show_injection_info(sbi, FAULT_DISCARD); |
| err = -EIO; |
| goto submit; |
| } |
| err = __blkdev_issue_discard(bdev, |
| SECTOR_FROM_BLOCK(start), |
| SECTOR_FROM_BLOCK(len), |
| GFP_NOFS, 0, &bio); |
| submit: |
| if (err) { |
| spin_lock_irqsave(&dc->lock, flags); |
| if (dc->state == D_PARTIAL) |
| dc->state = D_SUBMIT; |
| spin_unlock_irqrestore(&dc->lock, flags); |
| |
| break; |
| } |
| |
| f2fs_bug_on(sbi, !bio); |
| |
| /* |
| * should keep before submission to avoid D_DONE |
| * right away |
| */ |
| spin_lock_irqsave(&dc->lock, flags); |
| if (last) |
| dc->state = D_SUBMIT; |
| else |
| dc->state = D_PARTIAL; |
| dc->bio_ref++; |
| spin_unlock_irqrestore(&dc->lock, flags); |
| |
| atomic_inc(&dcc->queued_discard); |
| dc->queued++; |
| list_move_tail(&dc->list, wait_list); |
| |
| /* sanity check on discard range */ |
| __check_sit_bitmap(sbi, lstart, lstart + len); |
| |
| bio->bi_private = dc; |
| bio->bi_end_io = f2fs_submit_discard_endio; |
| bio->bi_opf |= flag; |
| submit_bio(bio); |
| |
| atomic_inc(&dcc->issued_discard); |
| |
| f2fs_update_iostat(sbi, FS_DISCARD, 1); |
| |
| lstart += len; |
| start += len; |
| total_len -= len; |
| len = total_len; |
| } |
| |
| if (!err && len) { |
| dcc->undiscard_blks -= len; |
| __update_discard_tree_range(sbi, bdev, lstart, start, len); |
| } |
| return err; |
| } |
| |
| static void __insert_discard_tree(struct f2fs_sb_info *sbi, |
| struct block_device *bdev, block_t lstart, |
| block_t start, block_t len, |
| struct rb_node **insert_p, |
| struct rb_node *insert_parent) |
| { |
| struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; |
| struct rb_node **p; |
| struct rb_node *parent = NULL; |
| bool leftmost = true; |
| |
| if (insert_p && insert_parent) { |
| parent = insert_parent; |
| p = insert_p; |
| goto do_insert; |
| } |
| |
| p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, |
| lstart, &leftmost); |
| do_insert: |
| __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, |
| p, leftmost); |
| } |
| |
| static void __relocate_discard_cmd(struct discard_cmd_control *dcc, |
| struct discard_cmd *dc) |
| { |
| list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]); |
| } |
| |
| static void __punch_discard_cmd(struct f2fs_sb_info *sbi, |
| struct discard_cmd *dc, block_t blkaddr) |
| { |
| struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; |
| struct discard_info di = dc->di; |
| bool modified = false; |
| |
| if (dc->state == D_DONE || dc->len == 1) { |
| __remove_discard_cmd(sbi, dc); |
| return; |
| } |
| |
| dcc->undiscard_blks -= di.len; |
| |
| if (blkaddr > di.lstart) { |
| dc->len = blkaddr - dc->lstart; |
| dcc->undiscard_blks += dc->len; |
| __relocate_discard_cmd(dcc, dc); |
| modified = true; |
| } |
| |
| if (blkaddr < di.lstart + di.len - 1) { |
| if (modified) { |
| __insert_discard_tree(sbi, dc->bdev, blkaddr + 1, |
| di.start + blkaddr + 1 - di.lstart, |
| di.lstart + di.len - 1 - blkaddr, |
| NULL, NULL); |
| } else { |
| dc->lstart++; |
| dc->len--; |
| dc->start++; |
| dcc->undiscard_blks += dc->len; |
| __relocate_discard_cmd(dcc, dc); |
| } |
| } |
| } |
| |
| static void __update_discard_tree_range(struct f2fs_sb_info *sbi, |
| struct block_device *bdev, block_t lstart, |
| block_t start, block_t len) |
| { |
| struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; |
| struct discard_cmd *prev_dc = NULL, *next_dc = NULL; |
| struct discard_cmd *dc; |
| struct discard_info di = {0}; |
| struct rb_node **insert_p = NULL, *insert_parent = NULL; |
| struct request_queue *q = bdev_get_queue(bdev); |
| unsigned int max_discard_blocks = |
| SECTOR_TO_BLOCK(q->limits.max_discard_sectors); |
| block_t end = lstart + len; |
| |
| dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, |
| NULL, lstart, |
| (struct rb_entry **)&prev_dc, |
| (struct rb_entry **)&next_dc, |
| &insert_p, &insert_parent, true, NULL); |
| if (dc) |
| prev_dc = dc; |
| |
| if (!prev_dc) { |
| di.lstart = lstart; |
| di.len = next_dc ? next_dc->lstart - lstart : len; |
| di.len = min(di.len, len); |
| di.start = start; |
| } |
| |
| while (1) { |
| struct rb_node *node; |
| bool merged = false; |
| struct discard_cmd *tdc = NULL; |
| |
| if (prev_dc) { |
| di.lstart = prev_dc->lstart + prev_dc->len; |
| if (di.lstart < lstart) |
| di.lstart = lstart; |
| if (di.lstart >= end) |
| break; |
| |
| if (!next_dc || next_dc->lstart > end) |
| di.len = end - di.lstart; |
| else |
| di.len = next_dc->lstart - di.lstart; |
| di.start = start + di.lstart - lstart; |
| } |
| |
| if (!di.len) |
| goto next; |
| |
| if (prev_dc && prev_dc->state == D_PREP && |
| prev_dc->bdev == bdev && |
| __is_discard_back_mergeable(&di, &prev_dc->di, |
| max_discard_blocks)) { |
| prev_dc->di.len += di.len; |
| dcc->undiscard_blks += di.len; |
| __relocate_discard_cmd(dcc, prev_dc); |
| di = prev_dc->di; |
| tdc = prev_dc; |
| merged = true; |
| } |
| |
| if (next_dc && next_dc->state == D_PREP && |
| next_dc->bdev == bdev && |
| __is_discard_front_mergeable(&di, &next_dc->di, |
| max_discard_blocks)) { |
| next_dc->di.lstart = di.lstart; |
| next_dc->di.len += di.len; |
| next_dc->di.start = di.start; |
| dcc->undiscard_blks += di.len; |
| __relocate_discard_cmd(dcc, next_dc); |
| if (tdc) |
| __remove_discard_cmd(sbi, tdc); |
| merged = true; |
| } |
| |
| if (!merged) { |
| __insert_discard_tree(sbi, bdev, di.lstart, di.start, |
| di.len, NULL, NULL); |
| } |
| next: |
| prev_dc = next_dc; |
| if (!prev_dc) |
| break; |
| |
| node = rb_next(&prev_dc->rb_node); |
| next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); |
| } |
| } |
| |
| static int __queue_discard_cmd(struct f2fs_sb_info *sbi, |
| struct block_device *bdev, block_t blkstart, block_t blklen) |
| { |
| block_t lblkstart = blkstart; |
| |
| if (!f2fs_bdev_support_discard(bdev)) |
| return 0; |
| |
| trace_f2fs_queue_discard(bdev, blkstart, blklen); |
| |
| if (f2fs_is_multi_device(sbi)) { |
| int devi = f2fs_target_device_index(sbi, blkstart); |
| |
| blkstart -= FDEV(devi).start_blk; |
| } |
| mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); |
| __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); |
| mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); |
| return 0; |
| } |
| |
| static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, |
| struct discard_policy *dpolicy) |
| { |
| struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; |
| struct discard_cmd *prev_dc = NULL, *next_dc = NULL; |
| struct rb_node **insert_p = NULL, *insert_parent = NULL; |
| struct discard_cmd *dc; |
| struct blk_plug plug; |
| unsigned int pos = dcc->next_pos; |
| unsigned int issued = 0; |
| bool io_interrupted = false; |
| |
| mutex_lock(&dcc->cmd_lock); |
| dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, |
| NULL, pos, |
| (struct rb_entry **)&prev_dc, |
| (struct rb_entry **)&next_dc, |
| &insert_p, &insert_parent, true, NULL); |
| if (!dc) |
| dc = next_dc; |
| |
| blk_start_plug(&plug); |
| |
| while (dc) { |
| struct rb_node *node; |
| int err = 0; |
| |
| if (dc->state != D_PREP) |
| goto next; |
| |
| if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { |
| io_interrupted = true; |
| break; |
| } |
| |
| dcc->next_pos = dc->lstart + dc->len; |
| err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); |
| |
| if (issued >= dpolicy->max_requests) |
| break; |
| next: |
| node = rb_next(&dc->rb_node); |
| if (err) |
| __remove_discard_cmd(sbi, dc); |
| dc = rb_entry_safe(node, struct discard_cmd, rb_node); |
| } |
| |
| blk_finish_plug(&plug); |
| |
| if (!dc) |
| dcc->next_pos = 0; |
| |
| mutex_unlock(&dcc->cmd_lock); |
| |
| if (!issued && io_interrupted) |
| issued = -1; |
| |
| return issued; |
| } |
| static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, |
| struct discard_policy *dpolicy); |
| |
| static int __issue_discard_cmd(struct f2fs_sb_info *sbi, |
| struct discard_policy *dpolicy) |
| { |
| struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; |
| struct list_head *pend_list; |
| struct discard_cmd *dc, *tmp; |
| struct blk_plug plug; |
| int i, issued; |
| bool io_interrupted = false; |
| |
| if (dpolicy->timeout) |
| f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT); |
| |
| retry: |
| issued = 0; |
| for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { |
| if (dpolicy->timeout && |
| f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) |
| break; |
| |
| if (i + 1 < dpolicy->granularity) |
| break; |
| |
| if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered) |
| return __issue_discard_cmd_orderly(sbi, dpolicy); |
| |
| pend_list = &dcc->pend_list[i]; |
| |
| mutex_lock(&dcc->cmd_lock); |
| if (list_empty(pend_list)) |
| goto next; |
| if (unlikely(dcc->rbtree_check)) |
| f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, |
| &dcc->root)); |
| blk_start_plug(&plug); |
| list_for_each_entry_safe(dc, tmp, pend_list, list) { |
| f2fs_bug_on(sbi, dc->state != D_PREP); |
| |
| if (dpolicy->timeout && |
| f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) |
| break; |
| |
| if (dpolicy->io_aware && i < dpolicy->io_aware_gran && |
| !is_idle(sbi, DISCARD_TIME)) { |
| io_interrupted = true; |
| break; |
| } |
| |
| __submit_discard_cmd(sbi, dpolicy, dc, &issued); |
| |
| if (issued >= dpolicy->max_requests) |
| break; |
| } |
| blk_finish_plug(&plug); |
| next: |
| mutex_unlock(&dcc->cmd_lock); |
| |
| if (issued >= dpolicy->max_requests || io_interrupted) |
| break; |
| } |
| |
| if (dpolicy->type == DPOLICY_UMOUNT && issued) { |
| __wait_all_discard_cmd(sbi, dpolicy); |
| goto retry; |
| } |
| |
| if (!issued && io_interrupted) |
| issued = -1; |
| |
| return issued; |
| } |
| |
| static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) |
| { |
| struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; |
| struct list_head *pend_list; |
| struct discard_cmd *dc, *tmp; |
| int i; |
| bool dropped = false; |
| |
| mutex_lock(&dcc->cmd_lock); |
| for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { |
| pend_list = &dcc->pend_list[i]; |
| list_for_each_entry_safe(dc, tmp, pend_list, list) { |
| f2fs_bug_on(sbi, dc->state != D_PREP); |
| __remove_discard_cmd(sbi, dc); |
| dropped = true; |
| } |
| } |
| mutex_unlock(&dcc->cmd_lock); |
| |
| return dropped; |
| } |
| |
| void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) |
| { |
| __drop_discard_cmd(sbi); |
| } |
| |
| static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, |
| struct discard_cmd *dc) |
| { |
| struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; |
| unsigned int len = 0; |
| |
| wait_for_completion_io(&dc->wait); |
| mutex_lock(&dcc->cmd_lock); |
| f2fs_bug_on(sbi, dc->state != D_DONE); |
| dc->ref--; |
| if (!dc->ref) { |
| if (!dc->error) |
| len = dc->len; |
| __remove_discard_cmd(sbi, dc); |
| } |
| mutex_unlock(&dcc->cmd_lock); |
| |
| return len; |
| } |
| |
| static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, |
| struct discard_policy *dpolicy, |
| block_t start, block_t end) |
| { |
| struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; |
| struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? |
| &(dcc->fstrim_list) : &(dcc->wait_list); |
| struct discard_cmd *dc, *tmp; |
| bool need_wait; |
| unsigned int trimmed = 0; |
| |
| next: |
| need_wait = false; |
| |
| mutex_lock(&dcc->cmd_lock); |
| list_for_each_entry_safe(dc, tmp, wait_list, list) { |
| if (dc->lstart + dc->len <= start || end <= dc->lstart) |
| continue; |
| if (dc->len < dpolicy->granularity) |
| continue; |
| if (dc->state == D_DONE && !dc->ref) { |
| wait_for_completion_io(&dc->wait); |
| if (!dc->error) |
| trimmed += dc->len; |
| __remove_discard_cmd(sbi, dc); |
| } else { |
| dc->ref++; |
| need_wait = true; |
| break; |
| } |
| } |
| mutex_unlock(&dcc->cmd_lock); |
| |
| if (need_wait) { |
| trimmed += __wait_one_discard_bio(sbi, dc); |
| goto next; |
| } |
| |
| return trimmed; |
| } |
| |
| static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, |
| struct discard_policy *dpolicy) |
| { |
| struct discard_policy dp; |
| unsigned int discard_blks; |
| |
| if (dpolicy) |
| return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); |
| |
| /* wait all */ |
| __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1); |
| discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); |
| __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1); |
| discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); |
| |
| return discard_blks; |
| } |
| |
| /* This should be covered by global mutex, &sit_i->sentry_lock */ |
| static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) |
| { |
| struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; |
| struct discard_cmd *dc; |
| bool need_wait = false; |
| |
| mutex_lock(&dcc->cmd_lock); |
| dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root, |
| NULL, blkaddr); |
| if (dc) { |
| if (dc->state == D_PREP) { |
| __punch_discard_cmd(sbi, dc, blkaddr); |
| } else { |
| dc->ref++; |
| need_wait = true; |
| } |
| } |
| mutex_unlock(&dcc->cmd_lock); |
| |
| if (need_wait) |
| __wait_one_discard_bio(sbi, dc); |
| } |
| |
| void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) |
| { |
| struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; |
| |
| if (dcc && dcc->f2fs_issue_discard) { |
| struct task_struct *discard_thread = dcc->f2fs_issue_discard; |
| |
| dcc->f2fs_issue_discard = NULL; |
| kthread_stop(discard_thread); |
| } |
| } |
| |
| /* This comes from f2fs_put_super */ |
| bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) |
| { |
| struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; |
| struct discard_policy dpolicy; |
| bool dropped; |
| |
| __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, |
| dcc->discard_granularity); |
| __issue_discard_cmd(sbi, &dpolicy); |
| dropped = __drop_discard_cmd(sbi); |
| |
| /* just to make sure there is no pending discard commands */ |
| __wait_all_discard_cmd(sbi, NULL); |
| |
| f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); |
| return dropped; |
| } |
| |
| static int issue_discard_thread(void *data) |
| { |
| struct f2fs_sb_info *sbi = data; |
| struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; |
| wait_queue_head_t *q = &dcc->discard_wait_queue; |
| struct discard_policy dpolicy; |
| unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME; |
| int issued; |
| |
| set_freezable(); |
| |
| do { |
| __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, |
| dcc->discard_granularity); |
| |
| wait_event_interruptible_timeout(*q, |
| kthread_should_stop() || freezing(current) || |
| dcc->discard_wake, |
| msecs_to_jiffies(wait_ms)); |
| |
| if (dcc->discard_wake) |
| dcc->discard_wake = 0; |
| |
| /* clean up pending candidates before going to sleep */ |
| if (atomic_read(&dcc->queued_discard)) |
| __wait_all_discard_cmd(sbi, NULL); |
| |
| if (try_to_freeze()) |
| continue; |
| if (f2fs_readonly(sbi->sb)) |
| continue; |
| if (kthread_should_stop()) |
| return 0; |
| if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { |
| wait_ms = dpolicy.max_interval; |
| continue; |
| } |
| |
| if (sbi->gc_mode == GC_URGENT) |
| __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1); |
| |
| sb_start_intwrite(sbi->sb); |
| |
| issued = __issue_discard_cmd(sbi, &dpolicy); |
| if (issued > 0) { |
| __wait_all_discard_cmd(sbi, &dpolicy); |
| wait_ms = dpolicy.min_interval; |
| } else if (issued == -1){ |
| wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); |
| if (!wait_ms) |
| wait_ms = dpolicy.mid_interval; |
| } else { |
| wait_ms = dpolicy.max_interval; |
| } |
| |
| sb_end_intwrite(sbi->sb); |
| |
| } while (!kthread_should_stop()); |
| return 0; |
| } |
| |
| #ifdef CONFIG_BLK_DEV_ZONED |
| static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, |
| struct block_device *bdev, block_t blkstart, block_t blklen) |
| { |
| sector_t sector, nr_sects; |
| block_t lblkstart = blkstart; |
| int devi = 0; |
| |
| if (f2fs_is_multi_device(sbi)) { |
| devi = f2fs_target_device_index(sbi, blkstart); |
| if (blkstart < FDEV(devi).start_blk || |
| blkstart > FDEV(devi).end_blk) { |
| f2fs_err(sbi, "Invalid block %x", blkstart); |
| return -EIO; |
| } |
| blkstart -= FDEV(devi).start_blk; |
| } |
| |
| /* For sequential zones, reset the zone write pointer */ |
| if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { |
| sector = SECTOR_FROM_BLOCK(blkstart); |
| nr_sects = SECTOR_FROM_BLOCK(blklen); |
| |
| if (sector & (bdev_zone_sectors(bdev) - 1) || |
| nr_sects != bdev_zone_sectors(bdev)) { |
| f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", |
| devi, sbi->s_ndevs ? FDEV(devi).path : "", |
| blkstart, blklen); |
| return -EIO; |
| } |
| trace_f2fs_issue_reset_zone(bdev, blkstart); |
| return blkdev_reset_zones(bdev, sector, nr_sects, GFP_NOFS); |
| } |
| |
| /* For conventional zones, use regular discard if supported */ |
| return __queue_discard_cmd(sbi, bdev, lblkstart, blklen); |
| } |
| #endif |
| |
| static int __issue_discard_async(struct f2fs_sb_info *sbi, |
| struct block_device *bdev, block_t blkstart, block_t blklen) |
| { |
| #ifdef CONFIG_BLK_DEV_ZONED |
| if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) |
| return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); |
| #endif |
| return __queue_discard_cmd(sbi, bdev, blkstart, blklen); |
| } |
| |
| static int f2fs_issue_discard(struct f2fs_sb_info *sbi, |
| block_t blkstart, block_t blklen) |
| { |
| sector_t start = blkstart, len = 0; |
| struct block_device *bdev; |
| struct seg_entry *se; |
| unsigned int offset; |
| block_t i; |
| int err = 0; |
| |
| bdev = f2fs_target_device(sbi, blkstart, NULL); |
| |
| for (i = blkstart; i < blkstart + blklen; i++, len++) { |
| if (i != start) { |
| struct block_device *bdev2 = |
| f2fs_target_device(sbi, i, NULL); |
| |
| if (bdev2 != bdev) { |
| err = __issue_discard_async(sbi, bdev, |
| start, len); |
| if (err) |
| return err; |
| bdev = bdev2; |
| start = i; |
| len = 0; |
| } |
| } |
| |
| se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); |
| offset = GET_BLKOFF_FROM_SEG0(sbi, i); |
| |
| if (!f2fs_test_and_set_bit(offset, se->discard_map)) |
| sbi->discard_blks--; |
| } |
| |
| if (len) |
| err = __issue_discard_async(sbi, bdev, start, len); |
| return err; |
| } |
| |
| static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, |
| bool check_only) |
| { |
| int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); |
| int max_blocks = sbi->blocks_per_seg; |
| struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); |
| unsigned long *cur_map = (unsigned long *)se->cur_valid_map; |
| unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; |
| unsigned long *discard_map = (unsigned long *)se->discard_map; |
| unsigned long *dmap = SIT_I(sbi)->tmp_map; |
| unsigned int start = 0, end = -1; |
| bool force = (cpc->reason & CP_DISCARD); |
| struct discard_entry *de = NULL; |
| struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; |
| int i; |
| |
| if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi)) |
| return false; |
| |
| if (!force) { |
| if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || |
| SM_I(sbi)->dcc_info->nr_discards >= |
| SM_I(sbi)->dcc_info->max_discards) |
| return false; |
| } |
| |
| /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ |
| for (i = 0; i < entries; i++) |
| dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : |
| (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; |
| |
| while (force || SM_I(sbi)->dcc_info->nr_discards <= |
| SM_I(sbi)->dcc_info->max_discards) { |
| start = __find_rev_next_bit(dmap, max_blocks, end + 1); |
| if (start >= max_blocks) |
| break; |
| |
| end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); |
| if (force && start && end != max_blocks |
| && (end - start) < cpc->trim_minlen) |
| continue; |
| |
| if (check_only) |
| return true; |
| |
| if (!de) { |
| de = f2fs_kmem_cache_alloc(discard_entry_slab, |
| GFP_F2FS_ZERO); |
| de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); |
| list_add_tail(&de->list, head); |
| } |
| |
| for (i = start; i < end; i++) |
| __set_bit_le(i, (void *)de->discard_map); |
| |
| SM_I(sbi)->dcc_info->nr_discards += end - start; |
| } |
| return false; |
| } |
| |
| static void release_discard_addr(struct discard_entry *entry) |
| { |
| list_del(&entry->list); |
| kmem_cache_free(discard_entry_slab, entry); |
| } |
| |
| void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) |
| { |
| struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); |
| struct discard_entry *entry, *this; |
| |
| /* drop caches */ |
| list_for_each_entry_safe(entry, this, head, list) |
| release_discard_addr(entry); |
| } |
| |
| /* |
| * Should call f2fs_clear_prefree_segments after checkpoint is done. |
| */ |
| static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| unsigned int segno; |
| |
| mutex_lock(&dirty_i->seglist_lock); |
| for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) |
| __set_test_and_free(sbi, segno); |
| mutex_unlock(&dirty_i->seglist_lock); |
| } |
| |
| void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, |
| struct cp_control *cpc) |
| { |
| struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; |
| struct list_head *head = &dcc->entry_list; |
| struct discard_entry *entry, *this; |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; |
| unsigned int start = 0, end = -1; |
| unsigned int secno, start_segno; |
| bool force = (cpc->reason & CP_DISCARD); |
| bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); |
| |
| mutex_lock(&dirty_i->seglist_lock); |
| |
| while (1) { |
| int i; |
| |
| if (need_align && end != -1) |
| end--; |
| start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); |
| if (start >= MAIN_SEGS(sbi)) |
| break; |
| end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), |
| start + 1); |
| |
| if (need_align) { |
| start = rounddown(start, sbi->segs_per_sec); |
| end = roundup(end, sbi->segs_per_sec); |
| } |
| |
| for (i = start; i < end; i++) { |
| if (test_and_clear_bit(i, prefree_map)) |
| dirty_i->nr_dirty[PRE]--; |
| } |
| |
| if (!f2fs_realtime_discard_enable(sbi)) |
| continue; |
| |
| if (force && start >= cpc->trim_start && |
| (end - 1) <= cpc->trim_end) |
| continue; |
| |
| if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) { |
| f2fs_issue_discard(sbi, START_BLOCK(sbi, start), |
| (end - start) << sbi->log_blocks_per_seg); |
| continue; |
| } |
| next: |
| secno = GET_SEC_FROM_SEG(sbi, start); |
| start_segno = GET_SEG_FROM_SEC(sbi, secno); |
| if (!IS_CURSEC(sbi, secno) && |
| !get_valid_blocks(sbi, start, true)) |
| f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), |
| sbi->segs_per_sec << sbi->log_blocks_per_seg); |
| |
| start = start_segno + sbi->segs_per_sec; |
| if (start < end) |
| goto next; |
| else |
| end = start - 1; |
| } |
| mutex_unlock(&dirty_i->seglist_lock); |
| |
| /* send small discards */ |
| list_for_each_entry_safe(entry, this, head, list) { |
| unsigned int cur_pos = 0, next_pos, len, total_len = 0; |
| bool is_valid = test_bit_le(0, entry->discard_map); |
| |
| find_next: |
| if (is_valid) { |
| next_pos = find_next_zero_bit_le(entry->discard_map, |
| sbi->blocks_per_seg, cur_pos); |
| len = next_pos - cur_pos; |
| |
| if (f2fs_sb_has_blkzoned(sbi) || |
| (force && len < cpc->trim_minlen)) |
| goto skip; |
| |
| f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, |
| len); |
| total_len += len; |
| } else { |
| next_pos = find_next_bit_le(entry->discard_map, |
| sbi->blocks_per_seg, cur_pos); |
| } |
| skip: |
| cur_pos = next_pos; |
| is_valid = !is_valid; |
| |
| if (cur_pos < sbi->blocks_per_seg) |
| goto find_next; |
| |
| release_discard_addr(entry); |
| dcc->nr_discards -= total_len; |
| } |
| |
| wake_up_discard_thread(sbi, false); |
| } |
| |
| static int create_discard_cmd_control(struct f2fs_sb_info *sbi) |
| { |
| dev_t dev = sbi->sb->s_bdev->bd_dev; |
| struct discard_cmd_control *dcc; |
| int err = 0, i; |
| |
| if (SM_I(sbi)->dcc_info) { |
| dcc = SM_I(sbi)->dcc_info; |
| goto init_thread; |
| } |
| |
| dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); |
| if (!dcc) |
| return -ENOMEM; |
| |
| dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; |
| INIT_LIST_HEAD(&dcc->entry_list); |
| for (i = 0; i < MAX_PLIST_NUM; i++) |
| INIT_LIST_HEAD(&dcc->pend_list[i]); |
| INIT_LIST_HEAD(&dcc->wait_list); |
| INIT_LIST_HEAD(&dcc->fstrim_list); |
| mutex_init(&dcc->cmd_lock); |
| atomic_set(&dcc->issued_discard, 0); |
| atomic_set(&dcc->queued_discard, 0); |
| atomic_set(&dcc->discard_cmd_cnt, 0); |
| dcc->nr_discards = 0; |
| dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; |
| dcc->undiscard_blks = 0; |
| dcc->next_pos = 0; |
| dcc->root = RB_ROOT_CACHED; |
| dcc->rbtree_check = false; |
| |
| init_waitqueue_head(&dcc->discard_wait_queue); |
| SM_I(sbi)->dcc_info = dcc; |
| init_thread: |
| dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, |
| "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); |
| if (IS_ERR(dcc->f2fs_issue_discard)) { |
| err = PTR_ERR(dcc->f2fs_issue_discard); |
| kvfree(dcc); |
| SM_I(sbi)->dcc_info = NULL; |
| return err; |
| } |
| |
| return err; |
| } |
| |
| static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) |
| { |
| struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; |
| |
| if (!dcc) |
| return; |
| |
| f2fs_stop_discard_thread(sbi); |
| |
| /* |
| * Recovery can cache discard commands, so in error path of |
| * fill_super(), it needs to give a chance to handle them. |
| */ |
| if (unlikely(atomic_read(&dcc->discard_cmd_cnt))) |
| f2fs_issue_discard_timeout(sbi); |
| |
| kvfree(dcc); |
| SM_I(sbi)->dcc_info = NULL; |
| } |
| |
| static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| |
| if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { |
| sit_i->dirty_sentries++; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, |
| unsigned int segno, int modified) |
| { |
| struct seg_entry *se = get_seg_entry(sbi, segno); |
| se->type = type; |
| if (modified) |
| __mark_sit_entry_dirty(sbi, segno); |
| } |
| |
| static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) |
| { |
| struct seg_entry *se; |
| unsigned int segno, offset; |
| long int new_vblocks; |
| bool exist; |
| #ifdef CONFIG_F2FS_CHECK_FS |
| bool mir_exist; |
| #endif |
| |
| segno = GET_SEGNO(sbi, blkaddr); |
| |
| se = get_seg_entry(sbi, segno); |
| new_vblocks = se->valid_blocks + del; |
| offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); |
| |
| f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || |
| (new_vblocks > sbi->blocks_per_seg))); |
| |
| se->valid_blocks = new_vblocks; |
| se->mtime = get_mtime(sbi, false); |
| if (se->mtime > SIT_I(sbi)->max_mtime) |
| SIT_I(sbi)->max_mtime = se->mtime; |
| |
| /* Update valid block bitmap */ |
| if (del > 0) { |
| exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); |
| #ifdef CONFIG_F2FS_CHECK_FS |
| mir_exist = f2fs_test_and_set_bit(offset, |
| se->cur_valid_map_mir); |
| if (unlikely(exist != mir_exist)) { |
| f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", |
| blkaddr, exist); |
| f2fs_bug_on(sbi, 1); |
| } |
| #endif |
| if (unlikely(exist)) { |
| f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", |
| blkaddr); |
| f2fs_bug_on(sbi, 1); |
| se->valid_blocks--; |
| del = 0; |
| } |
| |
| if (!f2fs_test_and_set_bit(offset, se->discard_map)) |
| sbi->discard_blks--; |
| |
| /* |
| * SSR should never reuse block which is checkpointed |
| * or newly invalidated. |
| */ |
| if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { |
| if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) |
| se->ckpt_valid_blocks++; |
| } |
| } else { |
| exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); |
| #ifdef CONFIG_F2FS_CHECK_FS |
| mir_exist = f2fs_test_and_clear_bit(offset, |
| se->cur_valid_map_mir); |
| if (unlikely(exist != mir_exist)) { |
| f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", |
| blkaddr, exist); |
| f2fs_bug_on(sbi, 1); |
| } |
| #endif |
| if (unlikely(!exist)) { |
| f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", |
| blkaddr); |
| f2fs_bug_on(sbi, 1); |
| se->valid_blocks++; |
| del = 0; |
| } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { |
| /* |
| * If checkpoints are off, we must not reuse data that |
| * was used in the previous checkpoint. If it was used |
| * before, we must track that to know how much space we |
| * really have. |
| */ |
| if (f2fs_test_bit(offset, se->ckpt_valid_map)) { |
| spin_lock(&sbi->stat_lock); |
| sbi->unusable_block_count++; |
| spin_unlock(&sbi->stat_lock); |
| } |
| } |
| |
| if (f2fs_test_and_clear_bit(offset, se->discard_map)) |
| sbi->discard_blks++; |
| } |
| if (!f2fs_test_bit(offset, se->ckpt_valid_map)) |
| se->ckpt_valid_blocks += del; |
| |
| __mark_sit_entry_dirty(sbi, segno); |
| |
| /* update total number of valid blocks to be written in ckpt area */ |
| SIT_I(sbi)->written_valid_blocks += del; |
| |
| if (__is_large_section(sbi)) |
| get_sec_entry(sbi, segno)->valid_blocks += del; |
| } |
| |
| void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) |
| { |
| unsigned int segno = GET_SEGNO(sbi, addr); |
| struct sit_info *sit_i = SIT_I(sbi); |
| |
| f2fs_bug_on(sbi, addr == NULL_ADDR); |
| if (addr == NEW_ADDR || addr == COMPRESS_ADDR) |
| return; |
| |
| invalidate_mapping_pages(META_MAPPING(sbi), addr, addr); |
| |
| /* add it into sit main buffer */ |
| down_write(&sit_i->sentry_lock); |
| |
| update_sit_entry(sbi, addr, -1); |
| |
| /* add it into dirty seglist */ |
| locate_dirty_segment(sbi, segno); |
| |
| up_write(&sit_i->sentry_lock); |
| } |
| |
| bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| unsigned int segno, offset; |
| struct seg_entry *se; |
| bool is_cp = false; |
| |
| if (!__is_valid_data_blkaddr(blkaddr)) |
| return true; |
| |
| down_read(&sit_i->sentry_lock); |
| |
| segno = GET_SEGNO(sbi, blkaddr); |
| se = get_seg_entry(sbi, segno); |
| offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); |
| |
| if (f2fs_test_bit(offset, se->ckpt_valid_map)) |
| is_cp = true; |
| |
| up_read(&sit_i->sentry_lock); |
| |
| return is_cp; |
| } |
| |
| /* |
| * This function should be resided under the curseg_mutex lock |
| */ |
| static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, |
| struct f2fs_summary *sum) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| void *addr = curseg->sum_blk; |
| addr += curseg->next_blkoff * sizeof(struct f2fs_summary); |
| memcpy(addr, sum, sizeof(struct f2fs_summary)); |
| } |
| |
| /* |
| * Calculate the number of current summary pages for writing |
| */ |
| int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) |
| { |
| int valid_sum_count = 0; |
| int i, sum_in_page; |
| |
| for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { |
| if (sbi->ckpt->alloc_type[i] == SSR) |
| valid_sum_count += sbi->blocks_per_seg; |
| else { |
| if (for_ra) |
| valid_sum_count += le16_to_cpu( |
| F2FS_CKPT(sbi)->cur_data_blkoff[i]); |
| else |
| valid_sum_count += curseg_blkoff(sbi, i); |
| } |
| } |
| |
| sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - |
| SUM_FOOTER_SIZE) / SUMMARY_SIZE; |
| if (valid_sum_count <= sum_in_page) |
| return 1; |
| else if ((valid_sum_count - sum_in_page) <= |
| (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) |
| return 2; |
| return 3; |
| } |
| |
| /* |
| * Caller should put this summary page |
| */ |
| struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) |
| { |
| return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno)); |
| } |
| |
| void f2fs_update_meta_page(struct f2fs_sb_info *sbi, |
| void *src, block_t blk_addr) |
| { |
| struct page *page = f2fs_grab_meta_page(sbi, blk_addr); |
| |
| memcpy(page_address(page), src, PAGE_SIZE); |
| set_page_dirty(page); |
| f2fs_put_page(page, 1); |
| } |
| |
| static void write_sum_page(struct f2fs_sb_info *sbi, |
| struct f2fs_summary_block *sum_blk, block_t blk_addr) |
| { |
| f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); |
| } |
| |
| static void write_current_sum_page(struct f2fs_sb_info *sbi, |
| int type, block_t blk_addr) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| struct page *page = f2fs_grab_meta_page(sbi, blk_addr); |
| struct f2fs_summary_block *src = curseg->sum_blk; |
| struct f2fs_summary_block *dst; |
| |
| dst = (struct f2fs_summary_block *)page_address(page); |
| memset(dst, 0, PAGE_SIZE); |
| |
| mutex_lock(&curseg->curseg_mutex); |
| |
| down_read(&curseg->journal_rwsem); |
| memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); |
| up_read(&curseg->journal_rwsem); |
| |
| memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); |
| memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); |
| |
| mutex_unlock(&curseg->curseg_mutex); |
| |
| set_page_dirty(page); |
| f2fs_put_page(page, 1); |
| } |
| |
| static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| unsigned int segno = curseg->segno + 1; |
| struct free_segmap_info *free_i = FREE_I(sbi); |
| |
| if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) |
| return !test_bit(segno, free_i->free_segmap); |
| return 0; |
| } |
| |
| /* |
| * Find a new segment from the free segments bitmap to right order |
| * This function should be returned with success, otherwise BUG |
| */ |
| static void get_new_segment(struct f2fs_sb_info *sbi, |
| unsigned int *newseg, bool new_sec, int dir) |
| { |
| struct free_segmap_info *free_i = FREE_I(sbi); |
| unsigned int segno, secno, zoneno; |
| unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; |
| unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); |
| unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); |
| unsigned int left_start = hint; |
| bool init = true; |
| int go_left = 0; |
| int i; |
| |
| spin_lock(&free_i->segmap_lock); |
| |
| if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { |
| segno = find_next_zero_bit(free_i->free_segmap, |
| GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); |
| if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) |
| goto got_it; |
| } |
| find_other_zone: |
| secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); |
| if (secno >= MAIN_SECS(sbi)) { |
| if (dir == ALLOC_RIGHT) { |
| secno = find_next_zero_bit(free_i->free_secmap, |
| MAIN_SECS(sbi), 0); |
| f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); |
| } else { |
| go_left = 1; |
| left_start = hint - 1; |
| } |
| } |
| if (go_left == 0) |
| goto skip_left; |
| |
| while (test_bit(left_start, free_i->free_secmap)) { |
| if (left_start > 0) { |
| left_start--; |
| continue; |
| } |
| left_start = find_next_zero_bit(free_i->free_secmap, |
| MAIN_SECS(sbi), 0); |
| f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); |
| break; |
| } |
| secno = left_start; |
| skip_left: |
| segno = GET_SEG_FROM_SEC(sbi, secno); |
| zoneno = GET_ZONE_FROM_SEC(sbi, secno); |
| |
| /* give up on finding another zone */ |
| if (!init) |
| goto got_it; |
| if (sbi->secs_per_zone == 1) |
| goto got_it; |
| if (zoneno == old_zoneno) |
| goto got_it; |
| if (dir == ALLOC_LEFT) { |
| if (!go_left && zoneno + 1 >= total_zones) |
| goto got_it; |
| if (go_left && zoneno == 0) |
| goto got_it; |
| } |
| for (i = 0; i < NR_CURSEG_TYPE; i++) |
| if (CURSEG_I(sbi, i)->zone == zoneno) |
| break; |
| |
| if (i < NR_CURSEG_TYPE) { |
| /* zone is in user, try another */ |
| if (go_left) |
| hint = zoneno * sbi->secs_per_zone - 1; |
| else if (zoneno + 1 >= total_zones) |
| hint = 0; |
| else |
| hint = (zoneno + 1) * sbi->secs_per_zone; |
| init = false; |
| goto find_other_zone; |
| } |
| got_it: |
| /* set it as dirty segment in free segmap */ |
| f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); |
| __set_inuse(sbi, segno); |
| *newseg = segno; |
| spin_unlock(&free_i->segmap_lock); |
| } |
| |
| static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| struct summary_footer *sum_footer; |
| |
| curseg->segno = curseg->next_segno; |
| curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); |
| curseg->next_blkoff = 0; |
| curseg->next_segno = NULL_SEGNO; |
| |
| sum_footer = &(curseg->sum_blk->footer); |
| memset(sum_footer, 0, sizeof(struct summary_footer)); |
| if (IS_DATASEG(type)) |
| SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); |
| if (IS_NODESEG(type)) |
| SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); |
| __set_sit_entry_type(sbi, type, curseg->segno, modified); |
| } |
| |
| static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) |
| { |
| /* if segs_per_sec is large than 1, we need to keep original policy. */ |
| if (__is_large_section(sbi)) |
| return CURSEG_I(sbi, type)->segno; |
| |
| if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) |
| return 0; |
| |
| if (test_opt(sbi, NOHEAP) && |
| (type == CURSEG_HOT_DATA || IS_NODESEG(type))) |
| return 0; |
| |
| if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) |
| return SIT_I(sbi)->last_victim[ALLOC_NEXT]; |
| |
| /* find segments from 0 to reuse freed segments */ |
| if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) |
| return 0; |
| |
| return CURSEG_I(sbi, type)->segno; |
| } |
| |
| /* |
| * Allocate a current working segment. |
| * This function always allocates a free segment in LFS manner. |
| */ |
| static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| unsigned int segno = curseg->segno; |
| int dir = ALLOC_LEFT; |
| |
| write_sum_page(sbi, curseg->sum_blk, |
| GET_SUM_BLOCK(sbi, segno)); |
| if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) |
| dir = ALLOC_RIGHT; |
| |
| if (test_opt(sbi, NOHEAP)) |
| dir = ALLOC_RIGHT; |
| |
| segno = __get_next_segno(sbi, type); |
| get_new_segment(sbi, &segno, new_sec, dir); |
| curseg->next_segno = segno; |
| reset_curseg(sbi, type, 1); |
| curseg->alloc_type = LFS; |
| } |
| |
| static void __next_free_blkoff(struct f2fs_sb_info *sbi, |
| struct curseg_info *seg, block_t start) |
| { |
| struct seg_entry *se = get_seg_entry(sbi, seg->segno); |
| int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); |
| unsigned long *target_map = SIT_I(sbi)->tmp_map; |
| unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; |
| unsigned long *cur_map = (unsigned long *)se->cur_valid_map; |
| int i, pos; |
| |
| for (i = 0; i < entries; i++) |
| target_map[i] = ckpt_map[i] | cur_map[i]; |
| |
| pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); |
| |
| seg->next_blkoff = pos; |
| } |
| |
| /* |
| * If a segment is written by LFS manner, next block offset is just obtained |
| * by increasing the current block offset. However, if a segment is written by |
| * SSR manner, next block offset obtained by calling __next_free_blkoff |
| */ |
| static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, |
| struct curseg_info *seg) |
| { |
| if (seg->alloc_type == SSR) |
| __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); |
| else |
| seg->next_blkoff++; |
| } |
| |
| /* |
| * This function always allocates a used segment(from dirty seglist) by SSR |
| * manner, so it should recover the existing segment information of valid blocks |
| */ |
| static void change_curseg(struct f2fs_sb_info *sbi, int type) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| unsigned int new_segno = curseg->next_segno; |
| struct f2fs_summary_block *sum_node; |
| struct page *sum_page; |
| |
| write_sum_page(sbi, curseg->sum_blk, |
| GET_SUM_BLOCK(sbi, curseg->segno)); |
| __set_test_and_inuse(sbi, new_segno); |
| |
| mutex_lock(&dirty_i->seglist_lock); |
| __remove_dirty_segment(sbi, new_segno, PRE); |
| __remove_dirty_segment(sbi, new_segno, DIRTY); |
| mutex_unlock(&dirty_i->seglist_lock); |
| |
| reset_curseg(sbi, type, 1); |
| curseg->alloc_type = SSR; |
| __next_free_blkoff(sbi, curseg, 0); |
| |
| sum_page = f2fs_get_sum_page(sbi, new_segno); |
| f2fs_bug_on(sbi, IS_ERR(sum_page)); |
| sum_node = (struct f2fs_summary_block *)page_address(sum_page); |
| memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); |
| f2fs_put_page(sum_page, 1); |
| } |
| |
| static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; |
| unsigned segno = NULL_SEGNO; |
| int i, cnt; |
| bool reversed = false; |
| |
| /* f2fs_need_SSR() already forces to do this */ |
| if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) { |
| curseg->next_segno = segno; |
| return 1; |
| } |
| |
| /* For node segments, let's do SSR more intensively */ |
| if (IS_NODESEG(type)) { |
| if (type >= CURSEG_WARM_NODE) { |
| reversed = true; |
| i = CURSEG_COLD_NODE; |
| } else { |
| i = CURSEG_HOT_NODE; |
| } |
| cnt = NR_CURSEG_NODE_TYPE; |
| } else { |
| if (type >= CURSEG_WARM_DATA) { |
| reversed = true; |
| i = CURSEG_COLD_DATA; |
| } else { |
| i = CURSEG_HOT_DATA; |
| } |
| cnt = NR_CURSEG_DATA_TYPE; |
| } |
| |
| for (; cnt-- > 0; reversed ? i-- : i++) { |
| if (i == type) |
| continue; |
| if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) { |
| curseg->next_segno = segno; |
| return 1; |
| } |
| } |
| |
| /* find valid_blocks=0 in dirty list */ |
| if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { |
| segno = get_free_segment(sbi); |
| if (segno != NULL_SEGNO) { |
| curseg->next_segno = segno; |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * flush out current segment and replace it with new segment |
| * This function should be returned with success, otherwise BUG |
| */ |
| static void allocate_segment_by_default(struct f2fs_sb_info *sbi, |
| int type, bool force) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| |
| if (force) |
| new_curseg(sbi, type, true); |
| else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && |
| type == CURSEG_WARM_NODE) |
| new_curseg(sbi, type, false); |
| else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) && |
| likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) |
| new_curseg(sbi, type, false); |
| else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type)) |
| change_curseg(sbi, type); |
| else |
| new_curseg(sbi, type, false); |
| |
| stat_inc_seg_type(sbi, curseg); |
| } |
| |
| void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, |
| unsigned int start, unsigned int end) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| unsigned int segno; |
| |
| down_read(&SM_I(sbi)->curseg_lock); |
| mutex_lock(&curseg->curseg_mutex); |
| down_write(&SIT_I(sbi)->sentry_lock); |
| |
| segno = CURSEG_I(sbi, type)->segno; |
| if (segno < start || segno > end) |
| goto unlock; |
| |
| if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type)) |
| change_curseg(sbi, type); |
| else |
| new_curseg(sbi, type, true); |
| |
| stat_inc_seg_type(sbi, curseg); |
| |
| locate_dirty_segment(sbi, segno); |
| unlock: |
| up_write(&SIT_I(sbi)->sentry_lock); |
| |
| if (segno != curseg->segno) |
| f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", |
| type, segno, curseg->segno); |
| |
| mutex_unlock(&curseg->curseg_mutex); |
| up_read(&SM_I(sbi)->curseg_lock); |
| } |
| |
| void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi, int type) |
| { |
| struct curseg_info *curseg; |
| unsigned int old_segno; |
| int i; |
| |
| down_write(&SIT_I(sbi)->sentry_lock); |
| |
| for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { |
| if (type != NO_CHECK_TYPE && i != type) |
| continue; |
| |
| curseg = CURSEG_I(sbi, i); |
| if (type == NO_CHECK_TYPE || curseg->next_blkoff || |
| get_valid_blocks(sbi, curseg->segno, false) || |
| get_ckpt_valid_blocks(sbi, curseg->segno)) { |
| old_segno = curseg->segno; |
| SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); |
| locate_dirty_segment(sbi, old_segno); |
| } |
| } |
| |
| up_write(&SIT_I(sbi)->sentry_lock); |
| } |
| |
| static const struct segment_allocation default_salloc_ops = { |
| .allocate_segment = allocate_segment_by_default, |
| }; |
| |
| bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, |
| struct cp_control *cpc) |
| { |
| __u64 trim_start = cpc->trim_start; |
| bool has_candidate = false; |
| |
| down_write(&SIT_I(sbi)->sentry_lock); |
| for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { |
| if (add_discard_addrs(sbi, cpc, true)) { |
| has_candidate = true; |
| break; |
| } |
| } |
| up_write(&SIT_I(sbi)->sentry_lock); |
| |
| cpc->trim_start = trim_start; |
| return has_candidate; |
| } |
| |
| static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, |
| struct discard_policy *dpolicy, |
| unsigned int start, unsigned int end) |
| { |
| struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; |
| struct discard_cmd *prev_dc = NULL, *next_dc = NULL; |
| struct rb_node **insert_p = NULL, *insert_parent = NULL; |
| struct discard_cmd *dc; |
| struct blk_plug plug; |
| int issued; |
| unsigned int trimmed = 0; |
| |
| next: |
| issued = 0; |
| |
| mutex_lock(&dcc->cmd_lock); |
| if (unlikely(dcc->rbtree_check)) |
| f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, |
| &dcc->root)); |
| |
| dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, |
| NULL, start, |
| (struct rb_entry **)&prev_dc, |
| (struct rb_entry **)&next_dc, |
| &insert_p, &insert_parent, true, NULL); |
| if (!dc) |
| dc = next_dc; |
| |
| blk_start_plug(&plug); |
| |
| while (dc && dc->lstart <= end) { |
| struct rb_node *node; |
| int err = 0; |
| |
| if (dc->len < dpolicy->granularity) |
| goto skip; |
| |
| if (dc->state != D_PREP) { |
| list_move_tail(&dc->list, &dcc->fstrim_list); |
| goto skip; |
| } |
| |
| err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); |
| |
| if (issued >= dpolicy->max_requests) { |
| start = dc->lstart + dc->len; |
| |
| if (err) |
| __remove_discard_cmd(sbi, dc); |
| |
| blk_finish_plug(&plug); |
| mutex_unlock(&dcc->cmd_lock); |
| trimmed += __wait_all_discard_cmd(sbi, NULL); |
| congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); |
| goto next; |
| } |
| skip: |
| node = rb_next(&dc->rb_node); |
| if (err) |
| __remove_discard_cmd(sbi, dc); |
| dc = rb_entry_safe(node, struct discard_cmd, rb_node); |
| |
| if (fatal_signal_pending(current)) |
| break; |
| } |
| |
| blk_finish_plug(&plug); |
| mutex_unlock(&dcc->cmd_lock); |
| |
| return trimmed; |
| } |
| |
| int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) |
| { |
| __u64 start = F2FS_BYTES_TO_BLK(range->start); |
| __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; |
| unsigned int start_segno, end_segno; |
| block_t start_block, end_block; |
| struct cp_control cpc; |
| struct discard_policy dpolicy; |
| unsigned long long trimmed = 0; |
| int err = 0; |
| bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); |
| |
| if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) |
| return -EINVAL; |
| |
| if (end < MAIN_BLKADDR(sbi)) |
| goto out; |
| |
| if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { |
| f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); |
| return -EFSCORRUPTED; |
| } |
| |
| /* start/end segment number in main_area */ |
| start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); |
| end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : |
| GET_SEGNO(sbi, end); |
| if (need_align) { |
| start_segno = rounddown(start_segno, sbi->segs_per_sec); |
| end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1; |
| } |
| |
| cpc.reason = CP_DISCARD; |
| cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); |
| cpc.trim_start = start_segno; |
| cpc.trim_end = end_segno; |
| |
| if (sbi->discard_blks == 0) |
| goto out; |
| |
| down_write(&sbi->gc_lock); |
| err = f2fs_write_checkpoint(sbi, &cpc); |
| up_write(&sbi->gc_lock); |
| if (err) |
| goto out; |
| |
| /* |
| * We filed discard candidates, but actually we don't need to wait for |
| * all of them, since they'll be issued in idle time along with runtime |
| * discard option. User configuration looks like using runtime discard |
| * or periodic fstrim instead of it. |
| */ |
| if (f2fs_realtime_discard_enable(sbi)) |
| goto out; |
| |
| start_block = START_BLOCK(sbi, start_segno); |
| end_block = START_BLOCK(sbi, end_segno + 1); |
| |
| __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); |
| trimmed = __issue_discard_cmd_range(sbi, &dpolicy, |
| start_block, end_block); |
| |
| trimmed += __wait_discard_cmd_range(sbi, &dpolicy, |
| start_block, end_block); |
| out: |
| if (!err) |
| range->len = F2FS_BLK_TO_BYTES(trimmed); |
| return err; |
| } |
| |
| static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| if (curseg->next_blkoff < sbi->blocks_per_seg) |
| return true; |
| return false; |
| } |
| |
| int f2fs_rw_hint_to_seg_type(enum rw_hint hint) |
| { |
| switch (hint) { |
| case WRITE_LIFE_SHORT: |
| return CURSEG_HOT_DATA; |
| case WRITE_LIFE_EXTREME: |
| return CURSEG_COLD_DATA; |
| default: |
| return CURSEG_WARM_DATA; |
| } |
| } |
| |
| /* This returns write hints for each segment type. This hints will be |
| * passed down to block layer. There are mapping tables which depend on |
| * the mount option 'whint_mode'. |
| * |
| * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET. |
| * |
| * 2) whint_mode=user-based. F2FS tries to pass down hints given by users. |
| * |
| * User F2FS Block |
| * ---- ---- ----- |
| * META WRITE_LIFE_NOT_SET |
| * HOT_NODE " |
| * WARM_NODE " |
| * COLD_NODE " |
| * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME |
| * extension list " " |
| * |
| * -- buffered io |
| * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME |
| * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT |
| * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET |
| * WRITE_LIFE_NONE " " |
| * WRITE_LIFE_MEDIUM " " |
| * WRITE_LIFE_LONG " " |
| * |
| * -- direct io |
| * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME |
| * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT |
| * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET |
| * WRITE_LIFE_NONE " WRITE_LIFE_NONE |
| * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM |
| * WRITE_LIFE_LONG " WRITE_LIFE_LONG |
| * |
| * 3) whint_mode=fs-based. F2FS passes down hints with its policy. |
| * |
| * User F2FS Block |
| * ---- ---- ----- |
| * META WRITE_LIFE_MEDIUM; |
| * HOT_NODE WRITE_LIFE_NOT_SET |
| * WARM_NODE " |
| * COLD_NODE WRITE_LIFE_NONE |
| * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME |
| * extension list " " |
| * |
| * -- buffered io |
| * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME |
| * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT |
| * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG |
| * WRITE_LIFE_NONE " " |
| * WRITE_LIFE_MEDIUM " " |
| * WRITE_LIFE_LONG " " |
| * |
| * -- direct io |
| * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME |
| * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT |
| * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET |
| * WRITE_LIFE_NONE " WRITE_LIFE_NONE |
| * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM |
| * WRITE_LIFE_LONG " WRITE_LIFE_LONG |
| */ |
| |
| enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, |
| enum page_type type, enum temp_type temp) |
| { |
| if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) { |
| if (type == DATA) { |
| if (temp == WARM) |
| return WRITE_LIFE_NOT_SET; |
| else if (temp == HOT) |
| return WRITE_LIFE_SHORT; |
| else if (temp == COLD) |
| return WRITE_LIFE_EXTREME; |
| } else { |
| return WRITE_LIFE_NOT_SET; |
| } |
| } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) { |
| if (type == DATA) { |
| if (temp == WARM) |
| return WRITE_LIFE_LONG; |
| else if (temp == HOT) |
| return WRITE_LIFE_SHORT; |
| else if (temp == COLD) |
| return WRITE_LIFE_EXTREME; |
| } else if (type == NODE) { |
| if (temp == WARM || temp == HOT) |
| return WRITE_LIFE_NOT_SET; |
| else if (temp == COLD) |
| return WRITE_LIFE_NONE; |
| } else if (type == META) { |
| return WRITE_LIFE_MEDIUM; |
| } |
| } |
| return WRITE_LIFE_NOT_SET; |
| } |
| |
| static int __get_segment_type_2(struct f2fs_io_info *fio) |
| { |
| if (fio->type == DATA) |
| return CURSEG_HOT_DATA; |
| else |
| return CURSEG_HOT_NODE; |
| } |
| |
| static int __get_segment_type_4(struct f2fs_io_info *fio) |
| { |
| if (fio->type == DATA) { |
| struct inode *inode = fio->page->mapping->host; |
| |
| if (S_ISDIR(inode->i_mode)) |
| return CURSEG_HOT_DATA; |
| else |
| return CURSEG_COLD_DATA; |
| } else { |
| if (IS_DNODE(fio->page) && is_cold_node(fio->page)) |
| return CURSEG_WARM_NODE; |
| else |
| return CURSEG_COLD_NODE; |
| } |
| } |
| |
| static int __get_segment_type_6(struct f2fs_io_info *fio) |
| { |
| if (fio->type == DATA) { |
| struct inode *inode = fio->page->mapping->host; |
| |
| if (is_cold_data(fio->page) || file_is_cold(inode) || |
| f2fs_compressed_file(inode)) |
| return CURSEG_COLD_DATA; |
| if (file_is_hot(inode) || |
| is_inode_flag_set(inode, FI_HOT_DATA) || |
| f2fs_is_atomic_file(inode) || |
| f2fs_is_volatile_file(inode)) |
| return CURSEG_HOT_DATA; |
| return f2fs_rw_hint_to_seg_type(inode->i_write_hint); |
| } else { |
| if (IS_DNODE(fio->page)) |
| return is_cold_node(fio->page) ? CURSEG_WARM_NODE : |
| CURSEG_HOT_NODE; |
| return CURSEG_COLD_NODE; |
| } |
| } |
| |
| static int __get_segment_type(struct f2fs_io_info *fio) |
| { |
| int type = 0; |
| |
| switch (F2FS_OPTION(fio->sbi).active_logs) { |
| case 2: |
| type = __get_segment_type_2(fio); |
| break; |
| case 4: |
| type = __get_segment_type_4(fio); |
| break; |
| case 6: |
| type = __get_segment_type_6(fio); |
| break; |
| default: |
| f2fs_bug_on(fio->sbi, true); |
| } |
| |
| if (IS_HOT(type)) |
| fio->temp = HOT; |
| else if (IS_WARM(type)) |
| fio->temp = WARM; |
| else |
| fio->temp = COLD; |
| return type; |
| } |
| |
| void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, |
| block_t old_blkaddr, block_t *new_blkaddr, |
| struct f2fs_summary *sum, int type, |
| struct f2fs_io_info *fio, bool add_list) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| struct curseg_info *curseg = CURSEG_I(sbi, type); |
| bool put_pin_sem = false; |
| |
| if (type == CURSEG_COLD_DATA) { |
| /* GC during CURSEG_COLD_DATA_PINNED allocation */ |
| if (down_read_trylock(&sbi->pin_sem)) { |
| put_pin_sem = true; |
| } else { |
| type = CURSEG_WARM_DATA; |
| curseg = CURSEG_I(sbi, type); |
| } |
| } else if (type == CURSEG_COLD_DATA_PINNED) { |
| type = CURSEG_COLD_DATA; |
| } |
| |
| /* |
| * We need to wait for node_write to avoid block allocation during |
| * checkpoint. This can only happen to quota writes which can cause |
| * the below discard race condition. |
| */ |
| if (IS_DATASEG(type)) |
| down_write(&sbi->node_write); |
| |
| down_read(&SM_I(sbi)->curseg_lock); |
| |
| mutex_lock(&curseg->curseg_mutex); |
| down_write(&sit_i->sentry_lock); |
| |
| *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); |
| |
| f2fs_wait_discard_bio(sbi, *new_blkaddr); |
| |
| /* |
| * __add_sum_entry should be resided under the curseg_mutex |
| * because, this function updates a summary entry in the |
| * current summary block. |
| */ |
| __add_sum_entry(sbi, type, sum); |
| |
| __refresh_next_blkoff(sbi, curseg); |
| |
| stat_inc_block_count(sbi, curseg); |
| |
| /* |
| * SIT information should be updated before segment allocation, |
| * since SSR needs latest valid block information. |
| */ |
| update_sit_entry(sbi, *new_blkaddr, 1); |
| if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) |
| update_sit_entry(sbi, old_blkaddr, -1); |
| |
| if (!__has_curseg_space(sbi, type)) |
| sit_i->s_ops->allocate_segment(sbi, type, false); |
| |
| /* |
| * segment dirty status should be updated after segment allocation, |
| * so we just need to update status only one time after previous |
| * segment being closed. |
| */ |
| locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); |
| locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); |
| |
| up_write(&sit_i->sentry_lock); |
| |
| if (page && IS_NODESEG(type)) { |
| fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); |
| |
| f2fs_inode_chksum_set(sbi, page); |
| } |
| |
| if (F2FS_IO_ALIGNED(sbi)) |
| fio->retry = false; |
| |
| if (add_list) { |
| struct f2fs_bio_info *io; |
| |
| INIT_LIST_HEAD(&fio->list); |
| fio->in_list = true; |
| io = sbi->write_io[fio->type] + fio->temp; |
| spin_lock(&io->io_lock); |
| list_add_tail(&fio->list, &io->io_list); |
| spin_unlock(&io->io_lock); |
| } |
| |
| mutex_unlock(&curseg->curseg_mutex); |
| |
| up_read(&SM_I(sbi)->curseg_lock); |
| |
| if (IS_DATASEG(type)) |
| up_write(&sbi->node_write); |
| |
| if (put_pin_sem) |
| up_read(&sbi->pin_sem); |
| } |
| |
| static void update_device_state(struct f2fs_io_info *fio) |
| { |
| struct f2fs_sb_info *sbi = fio->sbi; |
| unsigned int devidx; |
| |
| if (!f2fs_is_multi_device(sbi)) |
| return; |
| |
| devidx = f2fs_target_device_index(sbi, fio->new_blkaddr); |
| |
| /* update device state for fsync */ |
| f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO); |
| |
| /* update device state for checkpoint */ |
| if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { |
| spin_lock(&sbi->dev_lock); |
| f2fs_set_bit(devidx, (char *)&sbi->dirty_device); |
| spin_unlock(&sbi->dev_lock); |
| } |
| } |
| |
| static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) |
| { |
| int type = __get_segment_type(fio); |
| bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA); |
| |
| if (keep_order) |
| down_read(&fio->sbi->io_order_lock); |
| reallocate: |
| f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, |
| &fio->new_blkaddr, sum, type, fio, true); |
| if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) |
| invalidate_mapping_pages(META_MAPPING(fio->sbi), |
| fio->old_blkaddr, fio->old_blkaddr); |
| |
| /* writeout dirty page into bdev */ |
| f2fs_submit_page_write(fio); |
| if (fio->retry) { |
| fio->old_blkaddr = fio->new_blkaddr; |
| goto reallocate; |
| } |
| |
| update_device_state(fio); |
| |
| if (keep_order) |
| up_read(&fio->sbi->io_order_lock); |
| } |
| |
| void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, |
| enum iostat_type io_type) |
| { |
| struct f2fs_io_info fio = { |
| .sbi = sbi, |
| .type = META, |
| .temp = HOT, |
| .op = REQ_OP_WRITE, |
| .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, |
| .old_blkaddr = page->index, |
| .new_blkaddr = page->index, |
| .page = page, |
| .encrypted_page = NULL, |
| .in_list = false, |
| }; |
| |
| if (unlikely(page->index >= MAIN_BLKADDR(sbi))) |
| fio.op_flags &= ~REQ_META; |
| |
| set_page_writeback(page); |
| ClearPageError(page); |
| f2fs_submit_page_write(&fio); |
| |
| stat_inc_meta_count(sbi, page->index); |
| f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE); |
| } |
| |
| void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) |
| { |
| struct f2fs_summary sum; |
| |
| set_summary(&sum, nid, 0, 0); |
| do_write_page(&sum, fio); |
| |
| f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); |
| } |
| |
| void f2fs_outplace_write_data(struct dnode_of_data *dn, |
| struct f2fs_io_info *fio) |
| { |
| struct f2fs_sb_info *sbi = fio->sbi; |
| struct f2fs_summary sum; |
| |
| f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); |
| set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); |
| do_write_page(&sum, fio); |
| f2fs_update_data_blkaddr(dn, fio->new_blkaddr); |
| |
| f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE); |
| } |
| |
| int f2fs_inplace_write_data(struct f2fs_io_info *fio) |
| { |
| int err; |
| struct f2fs_sb_info *sbi = fio->sbi; |
| unsigned int segno; |
| |
| fio->new_blkaddr = fio->old_blkaddr; |
| /* i/o temperature is needed for passing down write hints */ |
| __get_segment_type(fio); |
| |
| segno = GET_SEGNO(sbi, fio->new_blkaddr); |
| |
| if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { |
| set_sbi_flag(sbi, SBI_NEED_FSCK); |
| f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.", |
| __func__, segno); |
| return -EFSCORRUPTED; |
| } |
| |
| stat_inc_inplace_blocks(fio->sbi); |
| |
| if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE))) |
| err = f2fs_merge_page_bio(fio); |
| else |
| err = f2fs_submit_page_bio(fio); |
| if (!err) { |
| update_device_state(fio); |
| f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); |
| } |
| |
| return err; |
| } |
| |
| static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, |
| unsigned int segno) |
| { |
| int i; |
| |
| for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { |
| if (CURSEG_I(sbi, i)->segno == segno) |
| break; |
| } |
| return i; |
| } |
| |
| void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, |
| block_t old_blkaddr, block_t new_blkaddr, |
| bool recover_curseg, bool recover_newaddr) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| struct curseg_info *curseg; |
| unsigned int segno, old_cursegno; |
| struct seg_entry *se; |
| int type; |
| unsigned short old_blkoff; |
| |
| segno = GET_SEGNO(sbi, new_blkaddr); |
| se = get_seg_entry(sbi, segno); |
| type = se->type; |
| |
| down_write(&SM_I(sbi)->curseg_lock); |
| |
| if (!recover_curseg) { |
| /* for recovery flow */ |
| if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { |
| if (old_blkaddr == NULL_ADDR) |
| type = CURSEG_COLD_DATA; |
| else |
| type = CURSEG_WARM_DATA; |
| } |
| } else { |
| if (IS_CURSEG(sbi, segno)) { |
| /* se->type is volatile as SSR allocation */ |
| type = __f2fs_get_curseg(sbi, segno); |
| f2fs_bug_on(sbi, type == NO_CHECK_TYPE); |
| } else { |
| type = CURSEG_WARM_DATA; |
| } |
| } |
| |
| f2fs_bug_on(sbi, !IS_DATASEG(type)); |
| curseg = CURSEG_I(sbi, type); |
| |
| mutex_lock(&curseg->curseg_mutex); |
| down_write(&sit_i->sentry_lock); |
| |
| old_cursegno = curseg->segno; |
| old_blkoff = curseg->next_blkoff; |
| |
| /* change the current segment */ |
| if (segno != curseg->segno) { |
| curseg->next_segno = segno; |
| change_curseg(sbi, type); |
| } |
| |
| curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); |
| __add_sum_entry(sbi, type, sum); |
| |
| if (!recover_curseg || recover_newaddr) |
| update_sit_entry(sbi, new_blkaddr, 1); |
| if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { |
| invalidate_mapping_pages(META_MAPPING(sbi), |
| old_blkaddr, old_blkaddr); |
| update_sit_entry(sbi, old_blkaddr, -1); |
| } |
| |
| locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); |
| locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); |
| |
| locate_dirty_segment(sbi, old_cursegno); |
| |
| if (recover_curseg) { |
| if (old_cursegno != curseg->segno) { |
| curseg->next_segno = old_cursegno; |
| change_curseg(sbi, type); |
| } |
| curseg->next_blkoff = old_blkoff; |
| } |
| |
| up_write(&sit_i->sentry_lock); |
| mutex_unlock(&curseg->curseg_mutex); |
| up_write(&SM_I(sbi)->curseg_lock); |
| } |
| |
| void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, |
| block_t old_addr, block_t new_addr, |
| unsigned char version, bool recover_curseg, |
| bool recover_newaddr) |
| { |
| struct f2fs_summary sum; |
| |
| set_summary(&sum, dn->nid, dn->ofs_in_node, version); |
| |
| f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, |
| recover_curseg, recover_newaddr); |
| |
| f2fs_update_data_blkaddr(dn, new_addr); |
| } |
| |
| void f2fs_wait_on_page_writeback(struct page *page, |
| enum page_type type, bool ordered, bool locked) |
| { |
| if (PageWriteback(page)) { |
| struct f2fs_sb_info *sbi = F2FS_P_SB(page); |
| |
| /* submit cached LFS IO */ |
| f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); |
| /* sbumit cached IPU IO */ |
| f2fs_submit_merged_ipu_write(sbi, NULL, page); |
| if (ordered) { |
| wait_on_page_writeback(page); |
| f2fs_bug_on(sbi, locked && PageWriteback(page)); |
| } else { |
| wait_for_stable_page(page); |
| } |
| } |
| } |
| |
| void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) |
| { |
| struct f2fs_sb_info *sbi = F2FS_I_SB(inode); |
| struct page *cpage; |
| |
| if (!f2fs_post_read_required(inode)) |
| return; |
| |
| if (!__is_valid_data_blkaddr(blkaddr)) |
| return; |
| |
| cpage = find_lock_page(META_MAPPING(sbi), blkaddr); |
| if (cpage) { |
| f2fs_wait_on_page_writeback(cpage, DATA, true, true); |
| f2fs_put_page(cpage, 1); |
| } |
| } |
| |
| void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, |
| block_t len) |
| { |
| block_t i; |
| |
| for (i = 0; i < len; i++) |
| f2fs_wait_on_block_writeback(inode, blkaddr + i); |
| } |
| |
| static int read_compacted_summaries(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); |
| struct curseg_info *seg_i; |
| unsigned char *kaddr; |
| struct page *page; |
| block_t start; |
| int i, j, offset; |
| |
| start = start_sum_block(sbi); |
| |
| page = f2fs_get_meta_page(sbi, start++); |
| if (IS_ERR(page)) |
| return PTR_ERR(page); |
| kaddr = (unsigned char *)page_address(page); |
| |
| /* Step 1: restore nat cache */ |
| seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); |
| memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); |
| |
| /* Step 2: restore sit cache */ |
| seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); |
| memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); |
| offset = 2 * SUM_JOURNAL_SIZE; |
| |
| /* Step 3: restore summary entries */ |
| for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { |
| unsigned short blk_off; |
| unsigned int segno; |
| |
| seg_i = CURSEG_I(sbi, i); |
| segno = le32_to_cpu(ckpt->cur_data_segno[i]); |
| blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); |
| seg_i->next_segno = segno; |
| reset_curseg(sbi, i, 0); |
| seg_i->alloc_type = ckpt->alloc_type[i]; |
| seg_i->next_blkoff = blk_off; |
| |
| if (seg_i->alloc_type == SSR) |
| blk_off = sbi->blocks_per_seg; |
| |
| for (j = 0; j < blk_off; j++) { |
| struct f2fs_summary *s; |
| s = (struct f2fs_summary *)(kaddr + offset); |
| seg_i->sum_blk->entries[j] = *s; |
| offset += SUMMARY_SIZE; |
| if (offset + SUMMARY_SIZE <= PAGE_SIZE - |
| SUM_FOOTER_SIZE) |
| continue; |
| |
| f2fs_put_page(page, 1); |
| page = NULL; |
| |
| page = f2fs_get_meta_page(sbi, start++); |
| if (IS_ERR(page)) |
| return PTR_ERR(page); |
| kaddr = (unsigned char *)page_address(page); |
| offset = 0; |
| } |
| } |
| f2fs_put_page(page, 1); |
| return 0; |
| } |
| |
| static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) |
| { |
| struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); |
| struct f2fs_summary_block *sum; |
| struct curseg_info *curseg; |
| struct page *new; |
| unsigned short blk_off; |
| unsigned int segno = 0; |
| block_t blk_addr = 0; |
| int err = 0; |
| |
| /* get segment number and block addr */ |
| if (IS_DATASEG(type)) { |
| segno = le32_to_cpu(ckpt->cur_data_segno[type]); |
| blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - |
| CURSEG_HOT_DATA]); |
| if (__exist_node_summaries(sbi)) |
| blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); |
| else |
| blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); |
| } else { |
| segno = le32_to_cpu(ckpt->cur_node_segno[type - |
| CURSEG_HOT_NODE]); |
| blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - |
| CURSEG_HOT_NODE]); |
| if (__exist_node_summaries(sbi)) |
| blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, |
| type - CURSEG_HOT_NODE); |
| else |
| blk_addr = GET_SUM_BLOCK(sbi, segno); |
| } |
| |
| new = f2fs_get_meta_page(sbi, blk_addr); |
| if (IS_ERR(new)) |
| return PTR_ERR(new); |
| sum = (struct f2fs_summary_block *)page_address(new); |
| |
| if (IS_NODESEG(type)) { |
| if (__exist_node_summaries(sbi)) { |
| struct f2fs_summary *ns = &sum->entries[0]; |
| int i; |
| for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { |
| ns->version = 0; |
| ns->ofs_in_node = 0; |
| } |
| } else { |
| err = f2fs_restore_node_summary(sbi, segno, sum); |
| if (err) |
| goto out; |
| } |
| } |
| |
| /* set uncompleted segment to curseg */ |
| curseg = CURSEG_I(sbi, type); |
| mutex_lock(&curseg->curseg_mutex); |
| |
| /* update journal info */ |
| down_write(&curseg->journal_rwsem); |
| memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); |
| up_write(&curseg->journal_rwsem); |
| |
| memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); |
| memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); |
| curseg->next_segno = segno; |
| reset_curseg(sbi, type, 0); |
| curseg->alloc_type = ckpt->alloc_type[type]; |
| curseg->next_blkoff = blk_off; |
| mutex_unlock(&curseg->curseg_mutex); |
| out: |
| f2fs_put_page(new, 1); |
| return err; |
| } |
| |
| static int restore_curseg_summaries(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; |
| struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; |
| int type = CURSEG_HOT_DATA; |
| int err; |
| |
| if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { |
| int npages = f2fs_npages_for_summary_flush(sbi, true); |
| |
| if (npages >= 2) |
| f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, |
| META_CP, true); |
| |
| /* restore for compacted data summary */ |
| err = read_compacted_summaries(sbi); |
| if (err) |
| return err; |
| type = CURSEG_HOT_NODE; |
| } |
| |
| if (__exist_node_summaries(sbi)) |
| f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), |
| NR_CURSEG_TYPE - type, META_CP, true); |
| |
| for (; type <= CURSEG_COLD_NODE; type++) { |
| err = read_normal_summaries(sbi, type); |
| if (err) |
| return err; |
| } |
| |
| /* sanity check for summary blocks */ |
| if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || |
| sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { |
| f2fs_err(sbi, "invalid journal entries nats %u sits %u\n", |
| nats_in_cursum(nat_j), sits_in_cursum(sit_j)); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) |
| { |
| struct page *page; |
| unsigned char *kaddr; |
| struct f2fs_summary *summary; |
| struct curseg_info *seg_i; |
| int written_size = 0; |
| int i, j; |
| |
| page = f2fs_grab_meta_page(sbi, blkaddr++); |
| kaddr = (unsigned char *)page_address(page); |
| memset(kaddr, 0, PAGE_SIZE); |
| |
| /* Step 1: write nat cache */ |
| seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); |
| memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); |
| written_size += SUM_JOURNAL_SIZE; |
| |
| /* Step 2: write sit cache */ |
| seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); |
| memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); |
| written_size += SUM_JOURNAL_SIZE; |
| |
| /* Step 3: write summary entries */ |
| for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { |
| unsigned short blkoff; |
| seg_i = CURSEG_I(sbi, i); |
| if (sbi->ckpt->alloc_type[i] == SSR) |
| blkoff = sbi->blocks_per_seg; |
| else |
| blkoff = curseg_blkoff(sbi, i); |
| |
| for (j = 0; j < blkoff; j++) { |
| if (!page) { |
| page = f2fs_grab_meta_page(sbi, blkaddr++); |
| kaddr = (unsigned char *)page_address(page); |
| memset(kaddr, 0, PAGE_SIZE); |
| written_size = 0; |
| } |
| summary = (struct f2fs_summary *)(kaddr + written_size); |
| *summary = seg_i->sum_blk->entries[j]; |
| written_size += SUMMARY_SIZE; |
| |
| if (written_size + SUMMARY_SIZE <= PAGE_SIZE - |
| SUM_FOOTER_SIZE) |
| continue; |
| |
| set_page_dirty(page); |
| f2fs_put_page(page, 1); |
| page = NULL; |
| } |
| } |
| if (page) { |
| set_page_dirty(page); |
| f2fs_put_page(page, 1); |
| } |
| } |
| |
| static void write_normal_summaries(struct f2fs_sb_info *sbi, |
| block_t blkaddr, int type) |
| { |
| int i, end; |
| if (IS_DATASEG(type)) |
| end = type + NR_CURSEG_DATA_TYPE; |
| else |
| end = type + NR_CURSEG_NODE_TYPE; |
| |
| for (i = type; i < end; i++) |
| write_current_sum_page(sbi, i, blkaddr + (i - type)); |
| } |
| |
| void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) |
| { |
| if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) |
| write_compacted_summaries(sbi, start_blk); |
| else |
| write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); |
| } |
| |
| void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) |
| { |
| write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); |
| } |
| |
| int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, |
| unsigned int val, int alloc) |
| { |
| int i; |
| |
| if (type == NAT_JOURNAL) { |
| for (i = 0; i < nats_in_cursum(journal); i++) { |
| if (le32_to_cpu(nid_in_journal(journal, i)) == val) |
| return i; |
| } |
| if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) |
| return update_nats_in_cursum(journal, 1); |
| } else if (type == SIT_JOURNAL) { |
| for (i = 0; i < sits_in_cursum(journal); i++) |
| if (le32_to_cpu(segno_in_journal(journal, i)) == val) |
| return i; |
| if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) |
| return update_sits_in_cursum(journal, 1); |
| } |
| return -1; |
| } |
| |
| static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, |
| unsigned int segno) |
| { |
| return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno)); |
| } |
| |
| static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, |
| unsigned int start) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| struct page *page; |
| pgoff_t src_off, dst_off; |
| |
| src_off = current_sit_addr(sbi, start); |
| dst_off = next_sit_addr(sbi, src_off); |
| |
| page = f2fs_grab_meta_page(sbi, dst_off); |
| seg_info_to_sit_page(sbi, page, start); |
| |
| set_page_dirty(page); |
| set_to_next_sit(sit_i, start); |
| |
| return page; |
| } |
| |
| static struct sit_entry_set *grab_sit_entry_set(void) |
| { |
| struct sit_entry_set *ses = |
| f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); |
| |
| ses->entry_cnt = 0; |
| INIT_LIST_HEAD(&ses->set_list); |
| return ses; |
| } |
| |
| static void release_sit_entry_set(struct sit_entry_set *ses) |
| { |
| list_del(&ses->set_list); |
| kmem_cache_free(sit_entry_set_slab, ses); |
| } |
| |
| static void adjust_sit_entry_set(struct sit_entry_set *ses, |
| struct list_head *head) |
| { |
| struct sit_entry_set *next = ses; |
| |
| if (list_is_last(&ses->set_list, head)) |
| return; |
| |
| list_for_each_entry_continue(next, head, set_list) |
| if (ses->entry_cnt <= next->entry_cnt) |
| break; |
| |
| list_move_tail(&ses->set_list, &next->set_list); |
| } |
| |
| static void add_sit_entry(unsigned int segno, struct list_head *head) |
| { |
| struct sit_entry_set *ses; |
| unsigned int start_segno = START_SEGNO(segno); |
| |
| list_for_each_entry(ses, head, set_list) { |
| if (ses->start_segno == start_segno) { |
| ses->entry_cnt++; |
| adjust_sit_entry_set(ses, head); |
| return; |
| } |
| } |
| |
| ses = grab_sit_entry_set(); |
| |
| ses->start_segno = start_segno; |
| ses->entry_cnt++; |
| list_add(&ses->set_list, head); |
| } |
| |
| static void add_sits_in_set(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_sm_info *sm_info = SM_I(sbi); |
| struct list_head *set_list = &sm_info->sit_entry_set; |
| unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; |
| unsigned int segno; |
| |
| for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) |
| add_sit_entry(segno, set_list); |
| } |
| |
| static void remove_sits_in_journal(struct f2fs_sb_info *sbi) |
| { |
| struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); |
| struct f2fs_journal *journal = curseg->journal; |
| int i; |
| |
| down_write(&curseg->journal_rwsem); |
| for (i = 0; i < sits_in_cursum(journal); i++) { |
| unsigned int segno; |
| bool dirtied; |
| |
| segno = le32_to_cpu(segno_in_journal(journal, i)); |
| dirtied = __mark_sit_entry_dirty(sbi, segno); |
| |
| if (!dirtied) |
| add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); |
| } |
| update_sits_in_cursum(journal, -i); |
| up_write(&curseg->journal_rwsem); |
| } |
| |
| /* |
| * CP calls this function, which flushes SIT entries including sit_journal, |
| * and moves prefree segs to free segs. |
| */ |
| void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| unsigned long *bitmap = sit_i->dirty_sentries_bitmap; |
| struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); |
| struct f2fs_journal *journal = curseg->journal; |
| struct sit_entry_set *ses, *tmp; |
| struct list_head *head = &SM_I(sbi)->sit_entry_set; |
| bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); |
| struct seg_entry *se; |
| |
| down_write(&sit_i->sentry_lock); |
| |
| if (!sit_i->dirty_sentries) |
| goto out; |
| |
| /* |
| * add and account sit entries of dirty bitmap in sit entry |
| * set temporarily |
| */ |
| add_sits_in_set(sbi); |
| |
| /* |
| * if there are no enough space in journal to store dirty sit |
| * entries, remove all entries from journal and add and account |
| * them in sit entry set. |
| */ |
| if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || |
| !to_journal) |
| remove_sits_in_journal(sbi); |
| |
| /* |
| * there are two steps to flush sit entries: |
| * #1, flush sit entries to journal in current cold data summary block. |
| * #2, flush sit entries to sit page. |
| */ |
| list_for_each_entry_safe(ses, tmp, head, set_list) { |
| struct page *page = NULL; |
| struct f2fs_sit_block *raw_sit = NULL; |
| unsigned int start_segno = ses->start_segno; |
| unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, |
| (unsigned long)MAIN_SEGS(sbi)); |
| unsigned int segno = start_segno; |
| |
| if (to_journal && |
| !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) |
| to_journal = false; |
| |
| if (to_journal) { |
| down_write(&curseg->journal_rwsem); |
| } else { |
| page = get_next_sit_page(sbi, start_segno); |
| raw_sit = page_address(page); |
| } |
| |
| /* flush dirty sit entries in region of current sit set */ |
| for_each_set_bit_from(segno, bitmap, end) { |
| int offset, sit_offset; |
| |
| se = get_seg_entry(sbi, segno); |
| #ifdef CONFIG_F2FS_CHECK_FS |
| if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, |
| SIT_VBLOCK_MAP_SIZE)) |
| f2fs_bug_on(sbi, 1); |
| #endif |
| |
| /* add discard candidates */ |
| if (!(cpc->reason & CP_DISCARD)) { |
| cpc->trim_start = segno; |
| add_discard_addrs(sbi, cpc, false); |
| } |
| |
| if (to_journal) { |
| offset = f2fs_lookup_journal_in_cursum(journal, |
| SIT_JOURNAL, segno, 1); |
| f2fs_bug_on(sbi, offset < 0); |
| segno_in_journal(journal, offset) = |
| cpu_to_le32(segno); |
| seg_info_to_raw_sit(se, |
| &sit_in_journal(journal, offset)); |
| check_block_count(sbi, segno, |
| &sit_in_journal(journal, offset)); |
| } else { |
| sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); |
| seg_info_to_raw_sit(se, |
| &raw_sit->entries[sit_offset]); |
| check_block_count(sbi, segno, |
| &raw_sit->entries[sit_offset]); |
| } |
| |
| __clear_bit(segno, bitmap); |
| sit_i->dirty_sentries--; |
| ses->entry_cnt--; |
| } |
| |
| if (to_journal) |
| up_write(&curseg->journal_rwsem); |
| else |
| f2fs_put_page(page, 1); |
| |
| f2fs_bug_on(sbi, ses->entry_cnt); |
| release_sit_entry_set(ses); |
| } |
| |
| f2fs_bug_on(sbi, !list_empty(head)); |
| f2fs_bug_on(sbi, sit_i->dirty_sentries); |
| out: |
| if (cpc->reason & CP_DISCARD) { |
| __u64 trim_start = cpc->trim_start; |
| |
| for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) |
| add_discard_addrs(sbi, cpc, false); |
| |
| cpc->trim_start = trim_start; |
| } |
| up_write(&sit_i->sentry_lock); |
| |
| set_prefree_as_free_segments(sbi); |
| } |
| |
| static int build_sit_info(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); |
| struct sit_info *sit_i; |
| unsigned int sit_segs, start; |
| char *src_bitmap, *bitmap; |
| unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size; |
| |
| /* allocate memory for SIT information */ |
| sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); |
| if (!sit_i) |
| return -ENOMEM; |
| |
| SM_I(sbi)->sit_info = sit_i; |
| |
| sit_i->sentries = |
| f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), |
| MAIN_SEGS(sbi)), |
| GFP_KERNEL); |
| if (!sit_i->sentries) |
| return -ENOMEM; |
| |
| main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); |
| sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size, |
| GFP_KERNEL); |
| if (!sit_i->dirty_sentries_bitmap) |
| return -ENOMEM; |
| |
| #ifdef CONFIG_F2FS_CHECK_FS |
| bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4; |
| #else |
| bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3; |
| #endif |
| sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); |
| if (!sit_i->bitmap) |
| return -ENOMEM; |
| |
| bitmap = sit_i->bitmap; |
| |
| for (start = 0; start < MAIN_SEGS(sbi); start++) { |
| sit_i->sentries[start].cur_valid_map = bitmap; |
| bitmap += SIT_VBLOCK_MAP_SIZE; |
| |
| sit_i->sentries[start].ckpt_valid_map = bitmap; |
| bitmap += SIT_VBLOCK_MAP_SIZE; |
| |
| #ifdef CONFIG_F2FS_CHECK_FS |
| sit_i->sentries[start].cur_valid_map_mir = bitmap; |
| bitmap += SIT_VBLOCK_MAP_SIZE; |
| #endif |
| |
| sit_i->sentries[start].discard_map = bitmap; |
| bitmap += SIT_VBLOCK_MAP_SIZE; |
| } |
| |
| sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); |
| if (!sit_i->tmp_map) |
| return -ENOMEM; |
| |
| if (__is_large_section(sbi)) { |
| sit_i->sec_entries = |
| f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), |
| MAIN_SECS(sbi)), |
| GFP_KERNEL); |
| if (!sit_i->sec_entries) |
| return -ENOMEM; |
| } |
| |
| /* get information related with SIT */ |
| sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; |
| |
| /* setup SIT bitmap from ckeckpoint pack */ |
| sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP); |
| src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); |
| |
| sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); |
| if (!sit_i->sit_bitmap) |
| return -ENOMEM; |
| |
| #ifdef CONFIG_F2FS_CHECK_FS |
| sit_i->sit_bitmap_mir = kmemdup(src_bitmap, |
| sit_bitmap_size, GFP_KERNEL); |
| if (!sit_i->sit_bitmap_mir) |
| return -ENOMEM; |
| |
| sit_i->invalid_segmap = f2fs_kvzalloc(sbi, |
| main_bitmap_size, GFP_KERNEL); |
| if (!sit_i->invalid_segmap) |
| return -ENOMEM; |
| #endif |
| |
| /* init SIT information */ |
| sit_i->s_ops = &default_salloc_ops; |
| |
| sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); |
| sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; |
| sit_i->written_valid_blocks = 0; |
| sit_i->bitmap_size = sit_bitmap_size; |
| sit_i->dirty_sentries = 0; |
| sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; |
| sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); |
| sit_i->mounted_time = ktime_get_boottime_seconds(); |
| init_rwsem(&sit_i->sentry_lock); |
| return 0; |
| } |
| |
| static int build_free_segmap(struct f2fs_sb_info *sbi) |
| { |
| struct free_segmap_info *free_i; |
| unsigned int bitmap_size, sec_bitmap_size; |
| |
| /* allocate memory for free segmap information */ |
| free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); |
| if (!free_i) |
| return -ENOMEM; |
| |
| SM_I(sbi)->free_info = free_i; |
| |
| bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); |
| free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); |
| if (!free_i->free_segmap) |
| return -ENOMEM; |
| |
| sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); |
| free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); |
| if (!free_i->free_secmap) |
| return -ENOMEM; |
| |
| /* set all segments as dirty temporarily */ |
| memset(free_i->free_segmap, 0xff, bitmap_size); |
| memset(free_i->free_secmap, 0xff, sec_bitmap_size); |
| |
| /* init free segmap information */ |
| free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); |
| free_i->free_segments = 0; |
| free_i->free_sections = 0; |
| spin_lock_init(&free_i->segmap_lock); |
| return 0; |
| } |
| |
| static int build_curseg(struct f2fs_sb_info *sbi) |
| { |
| struct curseg_info *array; |
| int i; |
| |
| array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)), |
| GFP_KERNEL); |
| if (!array) |
| return -ENOMEM; |
| |
| SM_I(sbi)->curseg_array = array; |
| |
| for (i = 0; i < NR_CURSEG_TYPE; i++) { |
| mutex_init(&array[i].curseg_mutex); |
| array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); |
| if (!array[i].sum_blk) |
| return -ENOMEM; |
| init_rwsem(&array[i].journal_rwsem); |
| array[i].journal = f2fs_kzalloc(sbi, |
| sizeof(struct f2fs_journal), GFP_KERNEL); |
| if (!array[i].journal) |
| return -ENOMEM; |
| array[i].segno = NULL_SEGNO; |
| array[i].next_blkoff = 0; |
| } |
| return restore_curseg_summaries(sbi); |
| } |
| |
| static int build_sit_entries(struct f2fs_sb_info *sbi) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); |
| struct f2fs_journal *journal = curseg->journal; |
| struct seg_entry *se; |
| struct f2fs_sit_entry sit; |
| int sit_blk_cnt = SIT_BLK_CNT(sbi); |
| unsigned int i, start, end; |
| unsigned int readed, start_blk = 0; |
| int err = 0; |
| block_t total_node_blocks = 0; |
| |
| do { |
| readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES, |
| META_SIT, true); |
| |
| start = start_blk * sit_i->sents_per_block; |
| end = (start_blk + readed) * sit_i->sents_per_block; |
| |
| for (; start < end && start < MAIN_SEGS(sbi); start++) { |
| struct f2fs_sit_block *sit_blk; |
| struct page *page; |
| |
| se = &sit_i->sentries[start]; |
| page = get_current_sit_page(sbi, start); |
| if (IS_ERR(page)) |
| return PTR_ERR(page); |
| sit_blk = (struct f2fs_sit_block *)page_address(page); |
| sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; |
| f2fs_put_page(page, 1); |
| |
| err = check_block_count(sbi, start, &sit); |
| if (err) |
| return err; |
| seg_info_from_raw_sit(se, &sit); |
| if (IS_NODESEG(se->type)) |
| total_node_blocks += se->valid_blocks; |
| |
| /* build discard map only one time */ |
| if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { |
| memset(se->discard_map, 0xff, |
| SIT_VBLOCK_MAP_SIZE); |
| } else { |
| memcpy(se->discard_map, |
| se->cur_valid_map, |
| SIT_VBLOCK_MAP_SIZE); |
| sbi->discard_blks += |
| sbi->blocks_per_seg - |
| se->valid_blocks; |
| } |
| |
| if (__is_large_section(sbi)) |
| get_sec_entry(sbi, start)->valid_blocks += |
| se->valid_blocks; |
| } |
| start_blk += readed; |
| } while (start_blk < sit_blk_cnt); |
| |
| down_read(&curseg->journal_rwsem); |
| for (i = 0; i < sits_in_cursum(journal); i++) { |
| unsigned int old_valid_blocks; |
| |
| start = le32_to_cpu(segno_in_journal(journal, i)); |
| if (start >= MAIN_SEGS(sbi)) { |
| f2fs_err(sbi, "Wrong journal entry on segno %u", |
| start); |
| err = -EFSCORRUPTED; |
| break; |
| } |
| |
| se = &sit_i->sentries[start]; |
| sit = sit_in_journal(journal, i); |
| |
| old_valid_blocks = se->valid_blocks; |
| if (IS_NODESEG(se->type)) |
| total_node_blocks -= old_valid_blocks; |
| |
| err = check_block_count(sbi, start, &sit); |
| if (err) |
| break; |
| seg_info_from_raw_sit(se, &sit); |
| if (IS_NODESEG(se->type)) |
| total_node_blocks += se->valid_blocks; |
| |
| if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { |
| memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); |
| } else { |
| memcpy(se->discard_map, se->cur_valid_map, |
| SIT_VBLOCK_MAP_SIZE); |
| sbi->discard_blks += old_valid_blocks; |
| sbi->discard_blks -= se->valid_blocks; |
| } |
| |
| if (__is_large_section(sbi)) { |
| get_sec_entry(sbi, start)->valid_blocks += |
| se->valid_blocks; |
| get_sec_entry(sbi, start)->valid_blocks -= |
| old_valid_blocks; |
| } |
| } |
| up_read(&curseg->journal_rwsem); |
| |
| if (!err && total_node_blocks != valid_node_count(sbi)) { |
| f2fs_err(sbi, "SIT is corrupted node# %u vs %u", |
| total_node_blocks, valid_node_count(sbi)); |
| err = -EFSCORRUPTED; |
| } |
| |
| return err; |
| } |
| |
| static void init_free_segmap(struct f2fs_sb_info *sbi) |
| { |
| unsigned int start; |
| int type; |
| |
| for (start = 0; start < MAIN_SEGS(sbi); start++) { |
| struct seg_entry *sentry = get_seg_entry(sbi, start); |
| if (!sentry->valid_blocks) |
| __set_free(sbi, start); |
| else |
| SIT_I(sbi)->written_valid_blocks += |
| sentry->valid_blocks; |
| } |
| |
| /* set use the current segments */ |
| for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { |
| struct curseg_info *curseg_t = CURSEG_I(sbi, type); |
| __set_test_and_inuse(sbi, curseg_t->segno); |
| } |
| } |
| |
| static void init_dirty_segmap(struct f2fs_sb_info *sbi) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| struct free_segmap_info *free_i = FREE_I(sbi); |
| unsigned int segno = 0, offset = 0; |
| unsigned short valid_blocks; |
| |
| while (1) { |
| /* find dirty segment based on free segmap */ |
| segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); |
| if (segno >= MAIN_SEGS(sbi)) |
| break; |
| offset = segno + 1; |
| valid_blocks = get_valid_blocks(sbi, segno, false); |
| if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) |
| continue; |
| if (valid_blocks > sbi->blocks_per_seg) { |
| f2fs_bug_on(sbi, 1); |
| continue; |
| } |
| mutex_lock(&dirty_i->seglist_lock); |
| __locate_dirty_segment(sbi, segno, DIRTY); |
| mutex_unlock(&dirty_i->seglist_lock); |
| } |
| } |
| |
| static int init_victim_secmap(struct f2fs_sb_info *sbi) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); |
| |
| dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); |
| if (!dirty_i->victim_secmap) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static int build_dirty_segmap(struct f2fs_sb_info *sbi) |
| { |
| struct dirty_seglist_info *dirty_i; |
| unsigned int bitmap_size, i; |
| |
| /* allocate memory for dirty segments list information */ |
| dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), |
| GFP_KERNEL); |
| if (!dirty_i) |
| return -ENOMEM; |
| |
| SM_I(sbi)->dirty_info = dirty_i; |
| mutex_init(&dirty_i->seglist_lock); |
| |
| bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); |
| |
| for (i = 0; i < NR_DIRTY_TYPE; i++) { |
| dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, |
| GFP_KERNEL); |
| if (!dirty_i->dirty_segmap[i]) |
| return -ENOMEM; |
| } |
| |
| init_dirty_segmap(sbi); |
| return init_victim_secmap(sbi); |
| } |
| |
| static int sanity_check_curseg(struct f2fs_sb_info *sbi) |
| { |
| int i; |
| |
| /* |
| * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; |
| * In LFS curseg, all blkaddr after .next_blkoff should be unused. |
| */ |
| for (i = 0; i < NO_CHECK_TYPE; i++) { |
| struct curseg_info *curseg = CURSEG_I(sbi, i); |
| struct seg_entry *se = get_seg_entry(sbi, curseg->segno); |
| unsigned int blkofs = curseg->next_blkoff; |
| |
| if (f2fs_test_bit(blkofs, se->cur_valid_map)) |
| goto out; |
| |
| if (curseg->alloc_type == SSR) |
| continue; |
| |
| for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) { |
| if (!f2fs_test_bit(blkofs, se->cur_valid_map)) |
| continue; |
| out: |
| f2fs_err(sbi, |
| "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", |
| i, curseg->segno, curseg->alloc_type, |
| curseg->next_blkoff, blkofs); |
| return -EFSCORRUPTED; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * Update min, max modified time for cost-benefit GC algorithm |
| */ |
| static void init_min_max_mtime(struct f2fs_sb_info *sbi) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| unsigned int segno; |
| |
| down_write(&sit_i->sentry_lock); |
| |
| sit_i->min_mtime = ULLONG_MAX; |
| |
| for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { |
| unsigned int i; |
| unsigned long long mtime = 0; |
| |
| for (i = 0; i < sbi->segs_per_sec; i++) |
| mtime += get_seg_entry(sbi, segno + i)->mtime; |
| |
| mtime = div_u64(mtime, sbi->segs_per_sec); |
| |
| if (sit_i->min_mtime > mtime) |
| sit_i->min_mtime = mtime; |
| } |
| sit_i->max_mtime = get_mtime(sbi, false); |
| up_write(&sit_i->sentry_lock); |
| } |
| |
| int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); |
| struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); |
| struct f2fs_sm_info *sm_info; |
| int err; |
| |
| sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); |
| if (!sm_info) |
| return -ENOMEM; |
| |
| /* init sm info */ |
| sbi->sm_info = sm_info; |
| sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); |
| sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); |
| sm_info->segment_count = le32_to_cpu(raw_super->segment_count); |
| sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); |
| sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); |
| sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); |
| sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); |
| sm_info->rec_prefree_segments = sm_info->main_segments * |
| DEF_RECLAIM_PREFREE_SEGMENTS / 100; |
| if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) |
| sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; |
| |
| if (!f2fs_lfs_mode(sbi)) |
| sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; |
| sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; |
| sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; |
| sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec; |
| sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; |
| sm_info->min_ssr_sections = reserved_sections(sbi); |
| |
| INIT_LIST_HEAD(&sm_info->sit_entry_set); |
| |
| init_rwsem(&sm_info->curseg_lock); |
| |
| if (!f2fs_readonly(sbi->sb)) { |
| err = f2fs_create_flush_cmd_control(sbi); |
| if (err) |
| return err; |
| } |
| |
| err = create_discard_cmd_control(sbi); |
| if (err) |
| return err; |
| |
| err = build_sit_info(sbi); |
| if (err) |
| return err; |
| err = build_free_segmap(sbi); |
| if (err) |
| return err; |
| err = build_curseg(sbi); |
| if (err) |
| return err; |
| |
| /* reinit free segmap based on SIT */ |
| err = build_sit_entries(sbi); |
| if (err) |
| return err; |
| |
| init_free_segmap(sbi); |
| err = build_dirty_segmap(sbi); |
| if (err) |
| return err; |
| |
| err = sanity_check_curseg(sbi); |
| if (err) |
| return err; |
| |
| init_min_max_mtime(sbi); |
| return 0; |
| } |
| |
| static void discard_dirty_segmap(struct f2fs_sb_info *sbi, |
| enum dirty_type dirty_type) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| |
| mutex_lock(&dirty_i->seglist_lock); |
| kvfree(dirty_i->dirty_segmap[dirty_type]); |
| dirty_i->nr_dirty[dirty_type] = 0; |
| mutex_unlock(&dirty_i->seglist_lock); |
| } |
| |
| static void destroy_victim_secmap(struct f2fs_sb_info *sbi) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| kvfree(dirty_i->victim_secmap); |
| } |
| |
| static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) |
| { |
| struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); |
| int i; |
| |
| if (!dirty_i) |
| return; |
| |
| /* discard pre-free/dirty segments list */ |
| for (i = 0; i < NR_DIRTY_TYPE; i++) |
| discard_dirty_segmap(sbi, i); |
| |
| destroy_victim_secmap(sbi); |
| SM_I(sbi)->dirty_info = NULL; |
| kvfree(dirty_i); |
| } |
| |
| static void destroy_curseg(struct f2fs_sb_info *sbi) |
| { |
| struct curseg_info *array = SM_I(sbi)->curseg_array; |
| int i; |
| |
| if (!array) |
| return; |
| SM_I(sbi)->curseg_array = NULL; |
| for (i = 0; i < NR_CURSEG_TYPE; i++) { |
| kvfree(array[i].sum_blk); |
| kvfree(array[i].journal); |
| } |
| kvfree(array); |
| } |
| |
| static void destroy_free_segmap(struct f2fs_sb_info *sbi) |
| { |
| struct free_segmap_info *free_i = SM_I(sbi)->free_info; |
| if (!free_i) |
| return; |
| SM_I(sbi)->free_info = NULL; |
| kvfree(free_i->free_segmap); |
| kvfree(free_i->free_secmap); |
| kvfree(free_i); |
| } |
| |
| static void destroy_sit_info(struct f2fs_sb_info *sbi) |
| { |
| struct sit_info *sit_i = SIT_I(sbi); |
| |
| if (!sit_i) |
| return; |
| |
| if (sit_i->sentries) |
| kvfree(sit_i->bitmap); |
| kvfree(sit_i->tmp_map); |
| |
| kvfree(sit_i->sentries); |
| kvfree(sit_i->sec_entries); |
| kvfree(sit_i->dirty_sentries_bitmap); |
| |
| SM_I(sbi)->sit_info = NULL; |
| kvfree(sit_i->sit_bitmap); |
| #ifdef CONFIG_F2FS_CHECK_FS |
| kvfree(sit_i->sit_bitmap_mir); |
| kvfree(sit_i->invalid_segmap); |
| #endif |
| kvfree(sit_i); |
| } |
| |
| void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) |
| { |
| struct f2fs_sm_info *sm_info = SM_I(sbi); |
| |
| if (!sm_info) |
| return; |
| f2fs_destroy_flush_cmd_control(sbi, true); |
| destroy_discard_cmd_control(sbi); |
| destroy_dirty_segmap(sbi); |
| destroy_curseg(sbi); |
| destroy_free_segmap(sbi); |
| destroy_sit_info(sbi); |
| sbi->sm_info = NULL; |
| kvfree(sm_info); |
| } |
| |
| int __init f2fs_create_segment_manager_caches(void) |
| { |
| discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry", |
| sizeof(struct discard_entry)); |
| if (!discard_entry_slab) |
| goto fail; |
| |
| discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd", |
| sizeof(struct discard_cmd)); |
| if (!discard_cmd_slab) |
| goto destroy_discard_entry; |
| |
| sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set", |
| sizeof(struct sit_entry_set)); |
| if (!sit_entry_set_slab) |
| goto destroy_discard_cmd; |
| |
| inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry", |
| sizeof(struct inmem_pages)); |
| if (!inmem_entry_slab) |
| goto destroy_sit_entry_set; |
| return 0; |
| |
| destroy_sit_entry_set: |
| kmem_cache_destroy(sit_entry_set_slab); |
| destroy_discard_cmd: |
| kmem_cache_destroy(discard_cmd_slab); |
| destroy_discard_entry: |
| kmem_cache_destroy(discard_entry_slab); |
| fail: |
| return -ENOMEM; |
| } |
| |
| void f2fs_destroy_segment_manager_caches(void) |
| { |
| kmem_cache_destroy(sit_entry_set_slab); |
| kmem_cache_destroy(discard_cmd_slab); |
| kmem_cache_destroy(discard_entry_slab); |
| kmem_cache_destroy(inmem_entry_slab); |
| } |