blob: bd2d184fa919bfa6cfeff1210e4ff2b4f9bb429f [file] [log] [blame]
/*
* Copyright (C) 2009 Samsung Electronics Ltd.
* Jaswinder Singh <jassi.brar@samsung.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/workqueue.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/spi/spi.h>
#include <linux/gpio.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
#include <linux/platform_data/spi-s3c64xx.h>
#include <linux/dma/dma-pl330.h>
#ifdef CONFIG_ARM64_EXYNOS_CPUIDLE
#include <soc/samsung/exynos-powermode.h>
#endif
#ifdef CONFIG_CPU_IDLE
#include <soc/samsung/exynos-pm.h>
#include <soc/samsung/exynos-cpupm.h>
#endif
#include "../pinctrl/core.h"
static LIST_HEAD(drvdata_list);
#define MAX_SPI_PORTS 22
#define SPI_AUTOSUSPEND_TIMEOUT (100)
/* Registers and bit-fields */
#define S3C64XX_SPI_CH_CFG 0x00
#define S3C64XX_SPI_CLK_CFG 0x04
#define S3C64XX_SPI_MODE_CFG 0x08
#define S3C64XX_SPI_SLAVE_SEL 0x0C
#define S3C64XX_SPI_INT_EN 0x10
#define S3C64XX_SPI_STATUS 0x14
#define S3C64XX_SPI_TX_DATA 0x18
#define S3C64XX_SPI_RX_DATA 0x1C
#define S3C64XX_SPI_PACKET_CNT 0x20
#define S3C64XX_SPI_PENDING_CLR 0x24
#define S3C64XX_SPI_SWAP_CFG 0x28
#define S3C64XX_SPI_FB_CLK 0x2C
#define S3C64XX_SPI_CH_HS_EN (1<<6) /* High Speed Enable */
#define S3C64XX_SPI_CH_SW_RST (1<<5)
#define S3C64XX_SPI_CH_SLAVE (1<<4)
#define S3C64XX_SPI_CPOL_L (1<<3)
#define S3C64XX_SPI_CPHA_B (1<<2)
#define S3C64XX_SPI_CH_RXCH_ON (1<<1)
#define S3C64XX_SPI_CH_TXCH_ON (1<<0)
#define S3C64XX_SPI_CLKSEL_SRCMSK (3<<9)
#define S3C64XX_SPI_CLKSEL_SRCSHFT 9
#define S3C64XX_SPI_ENCLK_ENABLE (1<<8)
#define S3C64XX_SPI_PSR_MASK 0xff
#define S3C64XX_SPI_MODE_CH_TSZ_BYTE (0<<29)
#define S3C64XX_SPI_MODE_CH_TSZ_HALFWORD (1<<29)
#define S3C64XX_SPI_MODE_CH_TSZ_WORD (2<<29)
#define S3C64XX_SPI_MODE_CH_TSZ_MASK (3<<29)
#define S3C64XX_SPI_MODE_BUS_TSZ_BYTE (0<<17)
#define S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD (1<<17)
#define S3C64XX_SPI_MODE_BUS_TSZ_WORD (2<<17)
#define S3C64XX_SPI_MODE_BUS_TSZ_MASK (3<<17)
#define S3C64XX_SPI_MODE_SELF_LOOPBACK (1<<3)
#define S3C64XX_SPI_MODE_RXDMA_ON (1<<2)
#define S3C64XX_SPI_MODE_TXDMA_ON (1<<1)
#define S3C64XX_SPI_MODE_4BURST (1<<0)
#define S3C64XX_SPI_SLAVE_NSC_CNT_2 (2<<4)
#define S3C64XX_SPI_SLAVE_NSC_CNT_1 (1<<4)
#define S3C64XX_SPI_SLAVE_AUTO (1<<1)
#define S3C64XX_SPI_SLAVE_SIG_INACT (1<<0)
#define S3C64XX_SPI_INT_TRAILING_EN (1<<6)
#define S3C64XX_SPI_INT_RX_OVERRUN_EN (1<<5)
#define S3C64XX_SPI_INT_RX_UNDERRUN_EN (1<<4)
#define S3C64XX_SPI_INT_TX_OVERRUN_EN (1<<3)
#define S3C64XX_SPI_INT_TX_UNDERRUN_EN (1<<2)
#define S3C64XX_SPI_INT_RX_FIFORDY_EN (1<<1)
#define S3C64XX_SPI_INT_TX_FIFORDY_EN (1<<0)
#define S3C64XX_SPI_ST_RX_OVERRUN_ERR (1<<5)
#define S3C64XX_SPI_ST_RX_UNDERRUN_ERR (1<<4)
#define S3C64XX_SPI_ST_TX_OVERRUN_ERR (1<<3)
#define S3C64XX_SPI_ST_TX_UNDERRUN_ERR (1<<2)
#define S3C64XX_SPI_ST_RX_FIFORDY (1<<1)
#define S3C64XX_SPI_ST_TX_FIFORDY (1<<0)
#define S3C64XX_SPI_PACKET_CNT_EN (1<<16)
#define S3C64XX_SPI_PACKET_CNT_MASK GENMASK(15, 0)
#define S3C64XX_SPI_PND_TX_UNDERRUN_CLR (1<<4)
#define S3C64XX_SPI_PND_TX_OVERRUN_CLR (1<<3)
#define S3C64XX_SPI_PND_RX_UNDERRUN_CLR (1<<2)
#define S3C64XX_SPI_PND_RX_OVERRUN_CLR (1<<1)
#define S3C64XX_SPI_PND_TRAILING_CLR (1<<0)
#define S3C64XX_SPI_SWAP_RX_HALF_WORD (1<<7)
#define S3C64XX_SPI_SWAP_RX_BYTE (1<<6)
#define S3C64XX_SPI_SWAP_RX_BIT (1<<5)
#define S3C64XX_SPI_SWAP_RX_EN (1<<4)
#define S3C64XX_SPI_SWAP_TX_HALF_WORD (1<<3)
#define S3C64XX_SPI_SWAP_TX_BYTE (1<<2)
#define S3C64XX_SPI_SWAP_TX_BIT (1<<1)
#define S3C64XX_SPI_SWAP_TX_EN (1<<0)
#define S3C64XX_SPI_FBCLK_MSK (3<<0)
#define FIFO_LVL_MASK(i) ((i)->port_conf->fifo_lvl_mask[i->port_id])
#define S3C64XX_SPI_ST_TX_DONE(v, i) (((v) & \
(1 << (i)->port_conf->tx_st_done)) ? 1 : 0)
#define TX_FIFO_LVL(v, i) (((v) >> 6) & FIFO_LVL_MASK(i))
#define RX_FIFO_LVL(v, i) (((v) >> (i)->port_conf->rx_lvl_offset) & \
FIFO_LVL_MASK(i))
#define S3C64XX_SPI_MAX_TRAILCNT 0x3ff
#define S3C64XX_SPI_TRAILCNT_OFF 19
#define S3C64XX_SPI_TRAILCNT S3C64XX_SPI_MAX_TRAILCNT
#define S3C64XX_SPI_DMA_4BURST_LEN 0x4
#define S3C64XX_SPI_DMA_1BURST_LEN 0x1
#define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
#define RXBUSY (1<<2)
#define TXBUSY (1<<3)
#define SPI_DBG_MODE (0x1 << 0)
#define SPI_LOOPBACK_MODE (0x1 << 1)
#define USI_CON (0xC4)
#define USI_OPTION (0xC8)
#define USI_RESET (0<<0)
#define USI_HWACG_CLKREQ_ON (1<<1)
#define USI_HWACG_CLKSTOP_ON (1<<2)
/* MAX SIZE of COUNT_VALUE in PACKET_CNT_REG */
#define S3C64XX_SPI_PACKET_CNT_MAX 0xffff
/**
* struct s3c64xx_spi_info - SPI Controller hardware info
* @fifo_lvl_mask: Bit-mask for {TX|RX}_FIFO_LVL bits in SPI_STATUS register.
* @rx_lvl_offset: Bit offset of RX_FIFO_LVL bits in SPI_STATUS regiter.
* @tx_st_done: Bit offset of TX_DONE bit in SPI_STATUS regiter.
* @high_speed: True, if the controller supports HIGH_SPEED_EN bit.
* @clk_from_cmu: True, if the controller does not include a clock mux and
* prescaler unit.
*
* The Samsung s3c64xx SPI controller are used on various Samsung SoC's but
* differ in some aspects such as the size of the fifo and spi bus clock
* setup. Such differences are specified to the driver using this structure
* which is provided as driver data to the driver.
*/
struct s3c64xx_spi_port_config {
int fifo_lvl_mask[MAX_SPI_PORTS];
int rx_lvl_offset;
int tx_st_done;
bool high_speed;
bool clk_from_cmu;
};
static ssize_t
spi_dbg_show(struct device *dev, struct device_attribute *attr, char *buf)
{
ssize_t ret = 0;
ret += snprintf(buf + ret, PAGE_SIZE - ret,
"SPI Debug Mode Configuration.\n");
ret += snprintf(buf + ret, PAGE_SIZE - ret,
"0 : Change loopback & DBG mode.\n");
ret += snprintf(buf + ret, PAGE_SIZE - ret,
"1 : Change DBG mode.\n");
ret += snprintf(buf + ret, PAGE_SIZE - ret,
"2 : Change Normal mode.\n");
if (ret < PAGE_SIZE - 1) {
ret += snprintf(buf+ret, PAGE_SIZE-ret, "\n");
} else {
buf[PAGE_SIZE-2] = '\n';
buf[PAGE_SIZE-1] = '\0';
ret = PAGE_SIZE-1;
}
return ret;
}
static ssize_t
spi_dbg_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct spi_master *master = dev_get_drvdata(dev);
struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
struct s3c64xx_spi_info *check_sci;
int ret, input_cmd;
ret = sscanf(buf, "%d", &input_cmd);
list_for_each_entry(check_sci, &drvdata_list, node) {
if (check_sci != sci)
continue;
switch(input_cmd) {
case 0:
printk(KERN_ERR "Change SPI%d to Loopback(DBG) mode\n",
sdd->port_id);
sci->dbg_mode = SPI_DBG_MODE | SPI_LOOPBACK_MODE;
break;
case 1:
printk(KERN_ERR "Change SPI%d to DBG mode\n",
sdd->port_id);
sci->dbg_mode = SPI_DBG_MODE;
break;
case 2:
printk(KERN_ERR "Change SPI%d to normal mode\n",
sdd->port_id);
sci->dbg_mode = 0;
break;
default:
printk(KERN_ERR "Wrong Command!(0/1/2)\n");
}
}
return count;
}
static DEVICE_ATTR(spi_dbg, 0640, spi_dbg_show, spi_dbg_store);
static void s3c64xx_spi_dump_reg(struct s3c64xx_spi_driver_data *sdd)
{
void __iomem *regs = sdd->regs;
struct device *dev = &sdd->pdev->dev;
dev_err(dev, "Register dump for SPI\n"
" CH_CFG 0x%08x\n"
" MODE_CFG 0x%08x\n"
" CS_REG 0x%08x\n"
" STATUS 0x%08x\n"
" PACKET_CNT 0x%08x\n"
, readl(regs + S3C64XX_SPI_CH_CFG)
, readl(regs + S3C64XX_SPI_MODE_CFG)
, readl(regs + S3C64XX_SPI_SLAVE_SEL)
, readl(regs + S3C64XX_SPI_STATUS)
, readl(regs + S3C64XX_SPI_PACKET_CNT)
);
}
static void flush_fifo(struct s3c64xx_spi_driver_data *sdd)
{
void __iomem *regs = sdd->regs;
unsigned long loops;
u32 val;
val = readl(regs + S3C64XX_SPI_CH_CFG);
val &= ~(S3C64XX_SPI_CH_RXCH_ON | S3C64XX_SPI_CH_TXCH_ON);
writel(val, regs + S3C64XX_SPI_CH_CFG);
writel(0, regs + S3C64XX_SPI_PACKET_CNT);
val = readl(regs + S3C64XX_SPI_CH_CFG);
val |= S3C64XX_SPI_CH_SW_RST;
val &= ~S3C64XX_SPI_CH_HS_EN;
writel(val, regs + S3C64XX_SPI_CH_CFG);
/* Flush TxFIFO*/
loops = msecs_to_loops(1);
do {
val = readl(regs + S3C64XX_SPI_STATUS);
} while (TX_FIFO_LVL(val, sdd) && loops--);
if (loops == 0)
dev_warn(&sdd->pdev->dev, "Timed out flushing TX FIFO\n");
/* Flush RxFIFO*/
loops = msecs_to_loops(1);
do {
val = readl(regs + S3C64XX_SPI_STATUS);
if (RX_FIFO_LVL(val, sdd))
readl(regs + S3C64XX_SPI_RX_DATA);
else
break;
} while (loops--);
if (loops == 0)
dev_warn(&sdd->pdev->dev, "Timed out flushing RX FIFO\n");
val = readl(regs + S3C64XX_SPI_CH_CFG);
val &= ~S3C64XX_SPI_CH_SW_RST;
writel(val, regs + S3C64XX_SPI_CH_CFG);
val = readl(regs + S3C64XX_SPI_MODE_CFG);
val &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
writel(val, regs + S3C64XX_SPI_MODE_CFG);
}
static void s3c64xx_spi_dmacb(void *data)
{
struct s3c64xx_spi_driver_data *sdd;
struct s3c64xx_spi_dma_data *dma = data;
unsigned long flags;
if (dma->direction == DMA_DEV_TO_MEM)
sdd = container_of(data,
struct s3c64xx_spi_driver_data, rx_dma);
else
sdd = container_of(data,
struct s3c64xx_spi_driver_data, tx_dma);
spin_lock_irqsave(&sdd->lock, flags);
if (dma->direction == DMA_DEV_TO_MEM) {
sdd->state &= ~RXBUSY;
if (!(sdd->state & TXBUSY))
complete(&sdd->xfer_completion);
} else {
sdd->state &= ~TXBUSY;
if (!(sdd->state & RXBUSY))
complete(&sdd->xfer_completion);
}
spin_unlock_irqrestore(&sdd->lock, flags);
}
/* FIXME: remove this section once arch/arm/mach-s3c64xx uses dmaengine */
static struct s3c2410_dma_client s3c64xx_spi_dma_client = {
.name = "samsung-spi-dma",
};
static void prepare_dma(struct s3c64xx_spi_dma_data *dma,
unsigned len, dma_addr_t buf)
{
struct s3c64xx_spi_driver_data *sdd;
struct samsung_dma_prep info;
struct samsung_dma_config config;
u32 modecfg;
if (dma->direction == DMA_DEV_TO_MEM) {
sdd = container_of((void *)dma,
struct s3c64xx_spi_driver_data, rx_dma);
config.direction = sdd->rx_dma.direction;
config.fifo = sdd->sfr_start + S3C64XX_SPI_RX_DATA;
config.width = sdd->cur_bpw / 8;
modecfg = readl(sdd->regs + S3C64XX_SPI_MODE_CFG);
config.maxburst = modecfg & S3C64XX_SPI_MODE_4BURST ?
S3C64XX_SPI_DMA_4BURST_LEN :
S3C64XX_SPI_DMA_1BURST_LEN;
#ifdef CONFIG_ARM64
sdd->ops->config((unsigned long)sdd->rx_dma.ch, &config);
#else
sdd->ops->config((enum dma_ch)sdd->rx_dma.ch, &config);
#endif
} else {
sdd = container_of((void *)dma,
struct s3c64xx_spi_driver_data, tx_dma);
config.direction = sdd->tx_dma.direction;
config.fifo = sdd->sfr_start + S3C64XX_SPI_TX_DATA;
config.width = sdd->cur_bpw / 8;
modecfg = readl(sdd->regs + S3C64XX_SPI_MODE_CFG);
config.maxburst = modecfg & S3C64XX_SPI_MODE_4BURST ?
S3C64XX_SPI_DMA_4BURST_LEN :
S3C64XX_SPI_DMA_1BURST_LEN;
#ifdef CONFIG_ARM64
sdd->ops->config((unsigned long)sdd->tx_dma.ch, &config);
#else
sdd->ops->config((enum dma_ch)sdd->tx_dma.ch, &config);
#endif
}
info.cap = DMA_SLAVE;
info.len = len;
info.fp = s3c64xx_spi_dmacb;
info.fp_param = dma;
info.direction = dma->direction;
info.buf = buf;
#ifdef CONFIG_ARM64
sdd->ops->prepare((unsigned long)dma->ch, &info);
sdd->ops->trigger((unsigned long)dma->ch);
#else
sdd->ops->prepare((enum dma_ch)dma->ch, &info);
sdd->ops->trigger((enum dma_ch)dma->ch);
#endif
}
static int acquire_dma(struct s3c64xx_spi_driver_data *sdd)
{
struct samsung_dma_req req;
struct device *dev = &sdd->pdev->dev;
sdd->ops = samsung_dma_get_ops();
req.cap = DMA_SLAVE;
req.client = &s3c64xx_spi_dma_client;
if (sdd->rx_dma.ch == NULL)
sdd->rx_dma.ch = (void *)sdd->ops->request(sdd->rx_dma.dmach,
&req, dev, "rx");
if (sdd->tx_dma.ch == NULL)
sdd->tx_dma.ch = (void *)sdd->ops->request(sdd->tx_dma.dmach,
&req, dev, "tx");
return 1;
}
static void exynos_usi_init(struct s3c64xx_spi_driver_data *sdd);
static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd, int channel);
static int s3c64xx_spi_prepare_transfer(struct spi_master *spi)
{
struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
#ifdef CONFIG_PM
int ret;
#endif
#ifndef CONFIG_PM
if (sci->dma_mode == DMA_MODE) {
/* Acquire DMA channels */
while (!acquire_dma(sdd))
usleep_range(10000, 11000);
}
#endif
#ifdef CONFIG_PM
ret = pm_runtime_get_sync(&sdd->pdev->dev);
if(ret < 0)
return ret;
#endif
if (sci->need_hw_init) {
exynos_usi_init(sdd);
s3c64xx_spi_hwinit(sdd, sdd->port_id);
}
return 0;
}
static int s3c64xx_spi_unprepare_transfer(struct spi_master *spi)
{
struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
#ifdef CONFIG_PM
int ret;
#endif
#ifndef CONFIG_PM
struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
/* Free DMA channels */
if (sci->dma_mode == DMA_MODE) {
#ifdef CONFIG_ARM64
sdd->ops->release((unsigned long)sdd->rx_dma.ch,
&s3c64xx_spi_dma_client);
sdd->ops->release((unsigned long)sdd->tx_dma.ch,
&s3c64xx_spi_dma_client);
#else
sdd->ops->release((enum dma_ch)sdd->rx_dma.ch,
&s3c64xx_spi_dma_client);
sdd->ops->release((enum dma_ch)sdd->tx_dma.ch,
&s3c64xx_spi_dma_client);
#endif
sdd->rx_dma.ch = NULL;
sdd->tx_dma.ch = NULL;
}
#endif
#ifdef CONFIG_PM
pm_runtime_mark_last_busy(&sdd->pdev->dev);
ret = pm_runtime_put_autosuspend(&sdd->pdev->dev);
if(ret < 0)
return ret;
#endif
return 0;
}
static void s3c64xx_spi_dma_stop(struct s3c64xx_spi_driver_data *sdd,
struct s3c64xx_spi_dma_data *dma)
{
#ifdef CONFIG_ARM64
sdd->ops->stop((unsigned long)dma->ch);
#else
sdd->ops->stop((enum dma_ch)dma->ch);
#endif
}
static void s3c64xx_dma_debug(struct s3c64xx_spi_driver_data *sdd,
struct s3c64xx_spi_dma_data *dma)
{
#ifdef CONFIG_ARM64
sdd->ops->debug((unsigned long)dma->ch);
#else
sdd->ops->debug((enum dma_ch)dma->ch);
#endif
}
static void enable_datapath(struct s3c64xx_spi_driver_data *sdd,
struct spi_device *spi,
struct spi_transfer *xfer, int dma_mode)
{
void __iomem *regs = sdd->regs;
u32 modecfg, chcfg, dma_burst_len, packet_cnt_en;
chcfg = readl(regs + S3C64XX_SPI_CH_CFG);
chcfg &= ~S3C64XX_SPI_CH_TXCH_ON;
modecfg = readl(regs + S3C64XX_SPI_MODE_CFG);
modecfg &= ~S3C64XX_SPI_MODE_4BURST;
if (dma_mode) {
chcfg &= ~S3C64XX_SPI_CH_RXCH_ON;
dma_burst_len = (sdd->cur_bpw / 8) * S3C64XX_SPI_DMA_4BURST_LEN;
if (!(xfer->len % dma_burst_len))
modecfg |= S3C64XX_SPI_MODE_4BURST;
} else {
/* Always shift in data in FIFO, even if xfer is Tx only,
* this helps setting PCKT_CNT value for generating clocks
* as exactly needed.
*/
chcfg |= S3C64XX_SPI_CH_RXCH_ON;
packet_cnt_en = readl(regs + S3C64XX_SPI_PACKET_CNT);
packet_cnt_en &= ~S3C64XX_SPI_PACKET_CNT_EN;
writel(packet_cnt_en, regs + S3C64XX_SPI_PACKET_CNT);
writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff),
regs + S3C64XX_SPI_PACKET_CNT);
packet_cnt_en = readl(regs + S3C64XX_SPI_PACKET_CNT);
packet_cnt_en |= S3C64XX_SPI_PACKET_CNT_EN;
writel(packet_cnt_en, regs + S3C64XX_SPI_PACKET_CNT);
}
writel(modecfg, regs + S3C64XX_SPI_MODE_CFG);
modecfg = readl(regs + S3C64XX_SPI_MODE_CFG);
modecfg &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
if (xfer->tx_buf != NULL) {
sdd->state |= TXBUSY;
chcfg |= S3C64XX_SPI_CH_TXCH_ON;
if (dma_mode) {
modecfg |= S3C64XX_SPI_MODE_TXDMA_ON;
prepare_dma(&sdd->tx_dma, xfer->len, xfer->tx_dma);
} else {
switch (sdd->cur_bpw) {
case 32:
iowrite32_rep(regs + S3C64XX_SPI_TX_DATA,
xfer->tx_buf, xfer->len / 4);
break;
case 16:
iowrite16_rep(regs + S3C64XX_SPI_TX_DATA,
xfer->tx_buf, xfer->len / 2);
break;
default:
iowrite8_rep(regs + S3C64XX_SPI_TX_DATA,
xfer->tx_buf, xfer->len);
break;
}
}
}
if (xfer->rx_buf != NULL) {
sdd->state |= RXBUSY;
if (sdd->port_conf->high_speed && sdd->cur_speed >= 30000000UL
&& !(sdd->cur_mode & SPI_CPHA))
chcfg |= S3C64XX_SPI_CH_HS_EN;
if (dma_mode) {
modecfg |= S3C64XX_SPI_MODE_RXDMA_ON;
chcfg |= S3C64XX_SPI_CH_RXCH_ON;
writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
| S3C64XX_SPI_PACKET_CNT_EN,
regs + S3C64XX_SPI_PACKET_CNT);
prepare_dma(&sdd->rx_dma, xfer->len, xfer->rx_dma);
}
}
writel(modecfg, regs + S3C64XX_SPI_MODE_CFG);
writel(chcfg, regs + S3C64XX_SPI_CH_CFG);
}
static inline void enable_cs(struct s3c64xx_spi_driver_data *sdd,
struct spi_device *spi)
{
struct s3c64xx_spi_csinfo *cs;
if (sdd->tgl_spi != NULL) { /* If last device toggled after mssg */
if (sdd->tgl_spi != spi) { /* if last mssg on diff device */
/* Deselect the last toggled device */
cs = sdd->tgl_spi->controller_data;
if(cs->line != 0)
gpio_set_value(cs->line,
spi->mode & SPI_CS_HIGH ? 0 : 1);
/* Quiese the signals */
writel(spi->mode & SPI_CS_HIGH ?
0 : S3C64XX_SPI_SLAVE_SIG_INACT,
sdd->regs + S3C64XX_SPI_SLAVE_SEL);
}
sdd->tgl_spi = NULL;
}
cs = spi->controller_data;
if(cs->line != 0)
gpio_set_value(cs->line, spi->mode & SPI_CS_HIGH ? 1 : 0);
if (cs->cs_mode == AUTO_CS_MODE) {
/* Set auto chip selection */
writel(readl(sdd->regs + S3C64XX_SPI_SLAVE_SEL)
| S3C64XX_SPI_SLAVE_AUTO
| S3C64XX_SPI_SLAVE_NSC_CNT_2,
sdd->regs + S3C64XX_SPI_SLAVE_SEL);
} else {
/* Start the signals */
writel(spi->mode & SPI_CS_HIGH ?
S3C64XX_SPI_SLAVE_SIG_INACT : 0,
sdd->regs + S3C64XX_SPI_SLAVE_SEL);
}
}
static int wait_for_xfer(struct s3c64xx_spi_driver_data *sdd,
struct spi_transfer *xfer, int dma_mode)
{
void __iomem *regs = sdd->regs;
unsigned long val;
int ms;
/* millisecs to xfer 'len' bytes @ 'cur_speed' */
ms = xfer->len * 8 * 1000 / sdd->cur_speed;
ms = (ms * 10) + 30; /* some tolerance */
ms = max(ms, 100); /* minimum timeout */
if (dma_mode) {
val = msecs_to_jiffies(ms) + 10;
val = wait_for_completion_timeout(&sdd->xfer_completion, val);
} else {
u32 status;
val = msecs_to_loops(ms);
do {
status = readl(regs + S3C64XX_SPI_STATUS);
} while (RX_FIFO_LVL(status, sdd) < xfer->len && --val);
}
if (!val)
return -EIO;
if (dma_mode) {
u32 status;
/*
* DmaTx returns after simply writing data in the FIFO,
* w/o waiting for real transmission on the bus to finish.
* DmaRx returns only after Dma read data from FIFO which
* needs bus transmission to finish, so we don't worry if
* Xfer involved Rx(with or without Tx).
*/
if (xfer->rx_buf == NULL) {
val = msecs_to_loops(10);
status = readl(regs + S3C64XX_SPI_STATUS);
while ((TX_FIFO_LVL(status, sdd)
|| !S3C64XX_SPI_ST_TX_DONE(status, sdd))
&& --val) {
cpu_relax();
status = readl(regs + S3C64XX_SPI_STATUS);
}
if (!val)
return -EIO;
}
} else {
/* If it was only Tx */
if (xfer->rx_buf == NULL) {
sdd->state &= ~TXBUSY;
return 0;
}
switch (sdd->cur_bpw) {
case 32:
ioread32_rep(regs + S3C64XX_SPI_RX_DATA,
xfer->rx_buf, xfer->len / 4);
break;
case 16:
ioread16_rep(regs + S3C64XX_SPI_RX_DATA,
xfer->rx_buf, xfer->len / 2);
break;
default:
ioread8_rep(regs + S3C64XX_SPI_RX_DATA,
xfer->rx_buf, xfer->len);
break;
}
sdd->state &= ~RXBUSY;
}
return 0;
}
static inline void disable_cs(struct s3c64xx_spi_driver_data *sdd,
struct spi_device *spi)
{
struct s3c64xx_spi_csinfo *cs = spi->controller_data;
if (sdd->tgl_spi == spi)
sdd->tgl_spi = NULL;
if(cs->line != 0)
gpio_set_value(cs->line, spi->mode & SPI_CS_HIGH ? 0 : 1);
if (cs->cs_mode != AUTO_CS_MODE) {
/* Quiese the signals */
writel(spi->mode & SPI_CS_HIGH
? 0 : S3C64XX_SPI_SLAVE_SIG_INACT,
sdd->regs + S3C64XX_SPI_SLAVE_SEL);
}
}
static void s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd)
{
struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
void __iomem *regs = sdd->regs;
u32 val;
int ret;
/* Disable Clock */
if (!sdd->port_conf->clk_from_cmu) {
val = readl(regs + S3C64XX_SPI_CLK_CFG);
val &= ~S3C64XX_SPI_ENCLK_ENABLE;
writel(val, regs + S3C64XX_SPI_CLK_CFG);
}
/* Set Polarity and Phase */
val = readl(regs + S3C64XX_SPI_CH_CFG);
val &= ~(S3C64XX_SPI_CH_SLAVE |
S3C64XX_SPI_CPOL_L |
S3C64XX_SPI_CPHA_B);
if (sdd->cur_mode & SPI_CPOL)
val |= S3C64XX_SPI_CPOL_L;
if (sdd->cur_mode & SPI_CPHA)
val |= S3C64XX_SPI_CPHA_B;
writel(val, regs + S3C64XX_SPI_CH_CFG);
/* Set Channel & DMA Mode */
val = readl(regs + S3C64XX_SPI_MODE_CFG);
val &= ~(S3C64XX_SPI_MODE_BUS_TSZ_MASK
| S3C64XX_SPI_MODE_CH_TSZ_MASK);
switch (sdd->cur_bpw) {
case 32:
val |= S3C64XX_SPI_MODE_BUS_TSZ_WORD;
val |= S3C64XX_SPI_MODE_CH_TSZ_WORD;
if (sci->swap_mode == SWAP_MODE) {
writel(S3C64XX_SPI_SWAP_TX_EN |
S3C64XX_SPI_SWAP_TX_BYTE |
S3C64XX_SPI_SWAP_TX_HALF_WORD |
S3C64XX_SPI_SWAP_RX_EN |
S3C64XX_SPI_SWAP_RX_BYTE |
S3C64XX_SPI_SWAP_RX_HALF_WORD,
regs + S3C64XX_SPI_SWAP_CFG);
}
break;
case 16:
val |= S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD;
val |= S3C64XX_SPI_MODE_CH_TSZ_HALFWORD;
if (sci->swap_mode == SWAP_MODE) {
writel(S3C64XX_SPI_SWAP_TX_EN |
S3C64XX_SPI_SWAP_TX_BYTE |
S3C64XX_SPI_SWAP_RX_EN |
S3C64XX_SPI_SWAP_RX_BYTE,
regs + S3C64XX_SPI_SWAP_CFG);
}
break;
default:
val |= S3C64XX_SPI_MODE_BUS_TSZ_BYTE;
val |= S3C64XX_SPI_MODE_CH_TSZ_BYTE;
if (sci->swap_mode == SWAP_MODE)
writel(0, regs + S3C64XX_SPI_SWAP_CFG);
break;
}
if (sci->dbg_mode & SPI_LOOPBACK_MODE) {
dev_err(&sdd->pdev->dev, "Change Loopback mode!\n");
val |= S3C64XX_SPI_MODE_SELF_LOOPBACK;
}
writel(val, regs + S3C64XX_SPI_MODE_CFG);
if (sdd->port_conf->clk_from_cmu) {
/* There is a quarter-multiplier before the SPI */
ret = clk_set_rate(sdd->src_clk, sdd->cur_speed * 4);
if (ret < 0)
dev_err(&sdd->pdev->dev, "SPI clk set failed\n");
} else {
/* Configure Clock */
val = readl(regs + S3C64XX_SPI_CLK_CFG);
val &= ~S3C64XX_SPI_PSR_MASK;
val |= ((clk_get_rate(sdd->src_clk) / sdd->cur_speed / 2 - 1)
& S3C64XX_SPI_PSR_MASK);
writel(val, regs + S3C64XX_SPI_CLK_CFG);
/* Enable Clock */
val = readl(regs + S3C64XX_SPI_CLK_CFG);
val |= S3C64XX_SPI_ENCLK_ENABLE;
writel(val, regs + S3C64XX_SPI_CLK_CFG);
}
if (sci->dbg_mode & SPI_DBG_MODE) {
dev_err(&sdd->pdev->dev, "SPI_MODE_%d", sdd->cur_mode & 0x3);
dev_err(&sdd->pdev->dev, "BTS : %d", sdd->cur_bpw);
}
}
#define XFER_DMAADDR_INVALID DMA_BIT_MASK(36)
static int s3c64xx_spi_dma_initialize(struct s3c64xx_spi_driver_data *sdd,
struct spi_message *msg)
{
struct spi_transfer *xfer;
/* First mark all xfer unmapped */
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
xfer->rx_dma = XFER_DMAADDR_INVALID;
xfer->tx_dma = XFER_DMAADDR_INVALID;
}
return 0;
}
static int s3c64xx_spi_map_one_msg(struct s3c64xx_spi_driver_data *sdd,
struct spi_message *msg, struct spi_transfer *xfer)
{
struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
struct device *dev = &sdd->pdev->dev;
if ((msg->is_dma_mapped) || (sci->dma_mode != DMA_MODE))
return 0;
if (xfer->len <= ((FIFO_LVL_MASK(sdd) >> 1) + 1))
return 0;
if (xfer->tx_buf != NULL) {
xfer->tx_dma = dma_map_single(dev,
(void *)xfer->tx_buf, xfer->len,
DMA_TO_DEVICE);
if (dma_mapping_error(dev, xfer->tx_dma)) {
dev_err(dev, "dma_map_single Tx failed\n");
xfer->tx_dma = XFER_DMAADDR_INVALID;
return -ENOMEM;
}
}
if (xfer->rx_buf != NULL) {
xfer->rx_dma = dma_map_single(dev, xfer->rx_buf,
xfer->len, DMA_FROM_DEVICE);
if (dma_mapping_error(dev, xfer->rx_dma)) {
dev_err(dev, "dma_map_single Rx failed\n");
dma_unmap_single(dev, xfer->tx_dma,
xfer->len, DMA_TO_DEVICE);
xfer->tx_dma = XFER_DMAADDR_INVALID;
xfer->rx_dma = XFER_DMAADDR_INVALID;
return -ENOMEM;
}
}
return 0;
}
static void s3c64xx_spi_unmap_one_msg(struct s3c64xx_spi_driver_data *sdd,
struct spi_message *msg, struct spi_transfer *xfer)
{
struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
struct device *dev = &sdd->pdev->dev;
if ((msg->is_dma_mapped) || (sci->dma_mode != DMA_MODE))
return;
if (xfer->len <= ((FIFO_LVL_MASK(sdd) >> 1) + 1))
return;
if (xfer->rx_buf != NULL
&& xfer->rx_dma != XFER_DMAADDR_INVALID)
dma_unmap_single(dev, xfer->rx_dma,
xfer->len, DMA_FROM_DEVICE);
if (xfer->tx_buf != NULL
&& xfer->tx_dma != XFER_DMAADDR_INVALID)
dma_unmap_single(dev, xfer->tx_dma,
xfer->len, DMA_TO_DEVICE);
}
static size_t s3c64xx_spi_max_transfer_size(struct spi_device *spi)
{
struct spi_controller *ctlr = spi->controller;
return ctlr->can_dma ? S3C64XX_SPI_PACKET_CNT_MASK : SIZE_MAX;
}
static int s3c64xx_spi_transfer_one_message(struct spi_master *master,
struct spi_message *msg)
{
struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
struct spi_device *spi = msg->spi;
struct s3c64xx_spi_csinfo *cs = spi->controller_data;
struct spi_transfer *xfer;
int status = 0, cs_toggle = 0;
const void *origin_tx_buf = NULL;
void *origin_rx_buf = NULL;
unsigned target_len = 0, origin_len = 0;
unsigned fifo_lvl = (FIFO_LVL_MASK(sdd) >> 1) + 1;
u32 speed;
u8 bpw;
/* If Master's(controller) state differs from that needed by Slave */
if (sdd->cur_speed != spi->max_speed_hz
|| sdd->cur_mode != spi->mode
|| sdd->cur_bpw != spi->bits_per_word) {
sdd->cur_bpw = spi->bits_per_word;
sdd->cur_speed = spi->max_speed_hz;
sdd->cur_mode = spi->mode;
s3c64xx_spi_config(sdd);
}
if (!(msg->is_dma_mapped) && (sci->dma_mode == DMA_MODE)){
s3c64xx_spi_dma_initialize(sdd, msg);
}
/* Configure feedback delay */
writel(cs->fb_delay & 0x3, sdd->regs + S3C64XX_SPI_FB_CLK);
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
unsigned long flags;
int use_dma;
reinit_completion(&sdd->xfer_completion);
/* Only BPW and Speed may change across transfers */
bpw = xfer->bits_per_word;
speed = xfer->speed_hz ? : spi->max_speed_hz;
if (xfer->len % (bpw / 8)) {
dev_err(&spi->dev,
"Xfer length(%u) not a multiple of word size(%u)\n",
xfer->len, bpw / 8);
status = -EIO;
goto out;
}
if (bpw != sdd->cur_bpw || speed != sdd->cur_speed) {
sdd->cur_bpw = bpw;
sdd->cur_speed = speed;
s3c64xx_spi_config(sdd);
}
/* verify cpu mode */
if (sci->dma_mode != DMA_MODE) {
use_dma = 0;
/* backup original tx, rx buf ptr & xfer length */
origin_tx_buf = xfer->tx_buf;
origin_rx_buf = xfer->rx_buf;
origin_len = xfer->len;
target_len = xfer->len;
if (xfer->len > fifo_lvl)
xfer->len = fifo_lvl;
} else {
/* backup original tx, rx buf ptr & xfer length */
origin_tx_buf = xfer->tx_buf;
origin_rx_buf = xfer->rx_buf;
origin_len = xfer->len;
target_len = xfer->len;
if (xfer->len > S3C64XX_SPI_PACKET_CNT_MAX * sdd->cur_bpw / 8)
xfer->len = S3C64XX_SPI_PACKET_CNT_MAX * sdd->cur_bpw / 8;
}
try_transfer:
if (sci->dma_mode == DMA_MODE) {
/* Map the transfer if needed */
if (s3c64xx_spi_map_one_msg(sdd, msg, xfer)) {
dev_err(&spi->dev,
"Xfer: Unable to map message buffers!\n");
status = -ENOMEM;
goto out;
}
/* Polling method for xfers not bigger than FIFO capacity */
if (xfer->len <= fifo_lvl) {
use_dma = 0;
} else {
use_dma = 1;
}
}
spin_lock_irqsave(&sdd->lock, flags);
/* Pending only which is to be done */
sdd->state &= ~RXBUSY;
sdd->state &= ~TXBUSY;
if (cs->cs_mode == AUTO_CS_MODE) {
/* Slave Select */
enable_cs(sdd, spi);
enable_datapath(sdd, spi, xfer, use_dma);
} else {
enable_datapath(sdd, spi, xfer, use_dma);
/* Slave Select */
enable_cs(sdd, spi);
}
spin_unlock_irqrestore(&sdd->lock, flags);
status = wait_for_xfer(sdd, xfer, use_dma);
if (status) {
dev_err(&spi->dev, "I/O Error: rx-%d tx-%d res:rx-%c tx-%c len-%d\n",
xfer->rx_buf ? 1 : 0, xfer->tx_buf ? 1 : 0,
(sdd->state & RXBUSY) ? 'f' : 'p',
(sdd->state & TXBUSY) ? 'f' : 'p',
xfer->len);
if (use_dma) {
if (xfer->tx_buf != NULL
&& (sdd->state & TXBUSY)) {
s3c64xx_dma_debug(sdd, &sdd->tx_dma);
s3c64xx_spi_dma_stop(sdd, &sdd->tx_dma);
}
if (xfer->rx_buf != NULL
&& (sdd->state & RXBUSY)) {
s3c64xx_dma_debug(sdd, &sdd->rx_dma);
s3c64xx_spi_dma_stop(sdd, &sdd->rx_dma);
}
}
s3c64xx_spi_dump_reg(sdd);
flush_fifo(sdd);
goto out;
}
if (xfer->delay_usecs)
udelay(xfer->delay_usecs);
if (xfer->cs_change) {
/* Hint that the next mssg is gonna be
for the same device */
if (list_is_last(&xfer->transfer_list,
&msg->transfers))
cs_toggle = 1;
}
msg->actual_length += xfer->len;
flush_fifo(sdd);
if (sci->dma_mode != DMA_MODE) {
target_len -= xfer->len;
if (xfer->tx_buf != NULL)
xfer->tx_buf += xfer->len;
if (xfer->rx_buf != NULL)
xfer->rx_buf += xfer->len;
if (target_len > 0) {
if (target_len > fifo_lvl)
xfer->len = fifo_lvl;
else
xfer->len = target_len;
goto try_transfer;
}
/* restore original tx, rx buf_ptr & xfer length */
xfer->tx_buf = origin_tx_buf;
xfer->rx_buf = origin_rx_buf;
xfer->len = origin_len;
} else {
s3c64xx_spi_unmap_one_msg(sdd, msg, xfer);
target_len -= xfer->len;
if (xfer->tx_buf != NULL)
xfer->tx_buf += xfer->len;
if (xfer->rx_buf != NULL)
xfer->rx_buf += xfer->len;
if (target_len > 0) {
if (target_len > S3C64XX_SPI_PACKET_CNT_MAX * sdd->cur_bpw / 8)
xfer->len = S3C64XX_SPI_PACKET_CNT_MAX * sdd->cur_bpw / 8;
else
xfer->len = target_len;
goto try_transfer;
}
/* restore original tx, rx buf_ptr & xfer length */
xfer->tx_buf = origin_tx_buf;
xfer->rx_buf = origin_rx_buf;
xfer->len = origin_len;
}
}
out:
if (!cs_toggle || status)
disable_cs(sdd, spi);
else
sdd->tgl_spi = spi;
if (sci->delay_usecs)
udelay(sci->delay_usecs);
msg->status = status;
spi_finalize_current_message(master);
return 0;
}
static struct s3c64xx_spi_csinfo *s3c64xx_get_slave_ctrldata(
struct spi_device *spi)
{
struct s3c64xx_spi_csinfo *cs;
struct device_node *slave_np, *data_np = NULL;
u32 fb_delay = 0;
u32 cs_mode = 0;
slave_np = spi->dev.of_node;
if (!slave_np) {
dev_err(&spi->dev, "device node not found\n");
return ERR_PTR(-EINVAL);
}
data_np = of_get_child_by_name(slave_np, "controller-data");
if (!data_np) {
dev_err(&spi->dev, "child node 'controller-data' not found\n");
return ERR_PTR(-EINVAL);
}
cs = kzalloc(sizeof(*cs), GFP_KERNEL);
if (!cs) {
dev_err(&spi->dev, "could not allocate memory for controller data\n");
of_node_put(data_np);
return ERR_PTR(-ENOMEM);
}
if (of_get_property(data_np, "cs-gpio", NULL)) {
cs->line = of_get_named_gpio(data_np, "cs-gpio", 0);
if (!gpio_is_valid(cs->line))
cs->line = 0;
} else {
cs->line = 0;
}
of_property_read_u32(data_np, "samsung,spi-feedback-delay", &fb_delay);
cs->fb_delay = fb_delay;
if (of_property_read_u32(data_np,
"samsung,spi-chip-select-mode", &cs_mode)) {
cs->cs_mode = AUTO_CS_MODE;
} else {
if (cs_mode)
cs->cs_mode = AUTO_CS_MODE;
else
cs->cs_mode = MANUAL_CS_MODE;
}
of_node_put(data_np);
return cs;
}
/*
* Here we only check the validity of requested configuration
* and save the configuration in a local data-structure.
* The controller is actually configured only just before we
* get a message to transfer.
*/
static int s3c64xx_spi_setup(struct spi_device *spi)
{
struct s3c64xx_spi_csinfo *cs = spi->controller_data;
struct s3c64xx_spi_driver_data *sdd;
struct s3c64xx_spi_info *sci;
struct spi_message *msg;
unsigned long flags;
int err;
sdd = spi_master_get_devdata(spi->master);
if (!cs && spi->dev.of_node) {
cs = s3c64xx_get_slave_ctrldata(spi);
spi->controller_data = cs;
}
if (IS_ERR_OR_NULL(cs)) {
dev_err(&spi->dev, "No CS for SPI(%d)\n", spi->chip_select);
return -ENODEV;
}
#ifdef CONFIG_ESE_SECURE
if (sdd->port_id == CONFIG_ESE_SECURE_SPI_PORT) {
dev_info(&spi->dev,
"spi configuration for secure channel is skipped(eSE)\n");
return 0;
}
#endif
#ifdef ENABLE_SENSORS_FPRINT_SECURE
if (sdd->port_id == CONFIG_SENSORS_FP_SPI_NUMBER) {
dev_info(&spi->dev,
"spi configuration for secure channel is skipped(FP)\n");
return 0;
}
#endif
if (!spi_get_ctldata(spi)) {
if(cs->line != 0) {
err = gpio_request_one(cs->line, GPIOF_OUT_INIT_HIGH,
dev_name(&spi->dev));
if (err) {
dev_err(&spi->dev,
"Failed to get /CS gpio [%d]: %d\n",
cs->line, err);
goto err_gpio_req;
}
}
spi_set_ctldata(spi, cs);
}
sci = sdd->cntrlr_info;
spin_lock_irqsave(&sdd->lock, flags);
list_for_each_entry(msg, &sdd->queue, queue) {
/* Is some mssg is already queued for this device */
if (msg->spi == spi) {
dev_err(&spi->dev,
"setup: attempt while mssg in queue!\n");
spin_unlock_irqrestore(&sdd->lock, flags);
err = -EBUSY;
goto err_msgq;
}
}
spin_unlock_irqrestore(&sdd->lock, flags);
if (spi->bits_per_word != 8
&& spi->bits_per_word != 16
&& spi->bits_per_word != 32) {
dev_err(&spi->dev, "setup: %dbits/wrd not supported!\n",
spi->bits_per_word);
err = -EINVAL;
goto setup_exit;
}
#ifdef CONFIG_PM
pm_runtime_get_sync(&sdd->pdev->dev);
#endif
/* Check if we can provide the requested rate */
if (!sdd->port_conf->clk_from_cmu) {
u32 psr, speed;
/* Max possible */
speed = (unsigned int)clk_get_rate(sdd->src_clk) / 2 / (0 + 1);
if (!speed) {
dev_err(&spi->dev, "clock rate of speed is 0\n");
err = -EINVAL;
goto setup_exit;
}
if (spi->max_speed_hz > speed)
spi->max_speed_hz = speed;
psr = (unsigned int)clk_get_rate(sdd->src_clk) / 2 / spi->max_speed_hz - 1;
psr &= S3C64XX_SPI_PSR_MASK;
if (psr == S3C64XX_SPI_PSR_MASK)
psr--;
speed = (unsigned int)clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
if (spi->max_speed_hz < speed) {
if (psr+1 < S3C64XX_SPI_PSR_MASK) {
psr++;
} else {
err = -EINVAL;
goto setup_exit;
}
}
speed = (unsigned int)clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
if (spi->max_speed_hz >= speed) {
spi->max_speed_hz = speed;
} else {
dev_err(&spi->dev, "Can't set %dHz transfer speed\n",
spi->max_speed_hz);
err = -EINVAL;
goto setup_exit;
}
}
disable_cs(sdd, spi);
#ifdef CONFIG_PM
pm_runtime_mark_last_busy(&sdd->pdev->dev);
pm_runtime_put_autosuspend(&sdd->pdev->dev);
#endif
if (sci->dbg_mode & SPI_DBG_MODE) {
dev_err(&spi->dev, "SPI feedback-delay : %d\n", cs->fb_delay);
dev_err(&spi->dev, "SPI clock : %u(%lu)\n",
sdd->cur_speed, clk_get_rate(sdd->src_clk));
dev_err(&spi->dev, "SPI %s CS mode", cs->cs_mode ? "AUTO" : "MANUAL");
}
return 0;
setup_exit:
/* setup() returns with device de-selected */
disable_cs(sdd, spi);
err_msgq:
gpio_free(cs->line);
spi_set_ctldata(spi, NULL);
err_gpio_req:
if (spi->dev.of_node)
kfree(cs);
return err;
}
static void s3c64xx_spi_cleanup(struct spi_device *spi)
{
struct s3c64xx_spi_csinfo *cs = spi_get_ctldata(spi);
if (cs) {
gpio_free(cs->line);
if (spi->dev.of_node)
kfree(cs);
}
spi_set_ctldata(spi, NULL);
}
static irqreturn_t s3c64xx_spi_irq(int irq, void *data)
{
struct s3c64xx_spi_driver_data *sdd = data;
struct spi_master *spi = sdd->master;
unsigned int val, clr = 0;
val = readl(sdd->regs + S3C64XX_SPI_STATUS);
if (val & S3C64XX_SPI_ST_RX_OVERRUN_ERR) {
clr = S3C64XX_SPI_PND_RX_OVERRUN_CLR;
dev_err(&spi->dev, "RX overrun\n");
}
if (val & S3C64XX_SPI_ST_RX_UNDERRUN_ERR) {
clr |= S3C64XX_SPI_PND_RX_UNDERRUN_CLR;
dev_err(&spi->dev, "RX underrun\n");
}
if (val & S3C64XX_SPI_ST_TX_OVERRUN_ERR) {
clr |= S3C64XX_SPI_PND_TX_OVERRUN_CLR;
dev_err(&spi->dev, "TX overrun\n");
}
if (val & S3C64XX_SPI_ST_TX_UNDERRUN_ERR) {
clr |= S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
dev_err(&spi->dev, "TX underrun\n");
}
/* Clear the pending irq by setting and then clearing it */
writel(clr, sdd->regs + S3C64XX_SPI_PENDING_CLR);
writel(0, sdd->regs + S3C64XX_SPI_PENDING_CLR);
return IRQ_HANDLED;
}
static void exynos_usi_init(struct s3c64xx_spi_driver_data *sdd)
{
void __iomem *regs = sdd->regs;
/* USI_RESET is active High signal.
* Reset value of USI_RESET is 'h1 to drive stable value to PAD.
* Due to this feature, the USI_RESET must be cleared (set as '0')
* before transaction starts.
*/
#ifdef CONFIG_ESE_SECURE
if (sdd->port_id == CONFIG_ESE_SECURE_SPI_PORT)
return;
#endif
#ifdef ENABLE_SENSORS_FPRINT_SECURE
if (sdd->port_id == CONFIG_SENSORS_FP_SPI_NUMBER)
return;
#endif
writel(USI_RESET, regs + USI_CON);
}
static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd, int channel)
{
struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
void __iomem *regs = sdd->regs;
unsigned int val;
#ifdef CONFIG_ESE_SECURE
if (channel == CONFIG_ESE_SECURE_SPI_PORT)
return;
#endif
#ifdef ENABLE_SENSORS_FPRINT_SECURE
if (channel == CONFIG_SENSORS_FP_SPI_NUMBER)
return;
#endif
sdd->cur_speed = 0;
writel(S3C64XX_SPI_SLAVE_SIG_INACT, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
/* Disable Interrupts - we use Polling if not DMA mode */
writel(0, regs + S3C64XX_SPI_INT_EN);
if (!sdd->port_conf->clk_from_cmu)
writel(sci->src_clk_nr << S3C64XX_SPI_CLKSEL_SRCSHFT,
regs + S3C64XX_SPI_CLK_CFG);
writel(0, regs + S3C64XX_SPI_MODE_CFG);
writel(0, regs + S3C64XX_SPI_PACKET_CNT);
/* Clear any irq pending bits, should set and clear the bits */
val = S3C64XX_SPI_PND_RX_OVERRUN_CLR |
S3C64XX_SPI_PND_RX_UNDERRUN_CLR |
S3C64XX_SPI_PND_TX_OVERRUN_CLR |
S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
writel(val, regs + S3C64XX_SPI_PENDING_CLR);
writel(0, regs + S3C64XX_SPI_PENDING_CLR);
writel(0, regs + S3C64XX_SPI_SWAP_CFG);
val = readl(regs + S3C64XX_SPI_MODE_CFG);
val &= ~S3C64XX_SPI_MODE_4BURST;
val &= ~(S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
val |= (S3C64XX_SPI_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
writel(val, regs + S3C64XX_SPI_MODE_CFG);
flush_fifo(sdd);
sci->need_hw_init = 0;
}
#ifdef CONFIG_OF
static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
{
struct s3c64xx_spi_info *sci;
u32 temp;
const char *domain;
sci = devm_kzalloc(dev, sizeof(*sci), GFP_KERNEL);
if (!sci) {
dev_err(dev, "memory allocation for spi_info failed\n");
return ERR_PTR(-ENOMEM);
}
if (of_get_property(dev->of_node, "dma-mode", NULL))
sci->dma_mode = DMA_MODE;
else
sci->dma_mode = CPU_MODE;
if (of_get_property(dev->of_node, "swap-mode", NULL))
sci->swap_mode = SWAP_MODE;
else
sci->swap_mode = NO_SWAP_MODE;
if (of_get_property(dev->of_node, "secure-mode", NULL))
sci->secure_mode = SECURE_MODE;
else
sci->secure_mode = NONSECURE_MODE;
if (of_property_read_u32(dev->of_node, "samsung,spi-src-clk", &temp)) {
dev_warn(dev, "spi bus clock parent not specified, using clock at index 0 as parent\n");
sci->src_clk_nr = 0;
} else {
sci->src_clk_nr = temp;
}
if (of_property_read_u32(dev->of_node, "num-cs", &temp)) {
dev_warn(dev, "number of chip select lines not specified, assuming 1 chip select line\n");
sci->num_cs = 1;
} else {
sci->num_cs = temp;
}
if (of_property_read_u32(dev->of_node, "samsung,delay_usecs", &temp)) {
sci->delay_usecs = 0;
} else {
dev_info(dev, "set transfer delay %dus\n", temp);
sci->delay_usecs = temp;
}
sci->domain = DOMAIN_TOP;
if (!of_property_read_string(dev->of_node, "domain", &domain)) {
if (strncmp(domain, "isp", 3) == 0)
sci->domain = DOMAIN_ISP;
else if (strncmp(domain, "cam1", 4) == 0)
sci->domain = DOMAIN_CAM1;
}
return sci;
}
#else
static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
{
return dev_get_platdata(dev);
}
#endif
static const struct of_device_id s3c64xx_spi_dt_match[];
static inline struct s3c64xx_spi_port_config *s3c64xx_spi_get_port_config(
struct platform_device *pdev)
{
#ifdef CONFIG_OF
if (pdev->dev.of_node) {
const struct of_device_id *match;
match = of_match_node(s3c64xx_spi_dt_match, pdev->dev.of_node);
return (struct s3c64xx_spi_port_config *)match->data;
}
#endif
return (struct s3c64xx_spi_port_config *)
platform_get_device_id(pdev)->driver_data;
}
#ifdef CONFIG_CPU_IDLE
static int s3c64xx_spi_notifier(struct notifier_block *self,
unsigned long cmd, void *v)
{
struct s3c64xx_spi_info *sci;
switch (cmd) {
case LPA_EXIT:
list_for_each_entry(sci, &drvdata_list, node)
sci->need_hw_init = 1;
break;
}
return NOTIFY_OK;
}
static struct notifier_block s3c64xx_spi_notifier_block = {
.notifier_call = s3c64xx_spi_notifier,
};
#endif /* CONFIG_CPU_IDLE */
static int s3c64xx_spi_probe(struct platform_device *pdev)
{
struct resource *mem_res;
struct resource *res;
struct s3c64xx_spi_driver_data *sdd;
struct s3c64xx_spi_info *sci = dev_get_platdata(&pdev->dev);
struct spi_master *master;
int ret, irq;
char clk_name[16];
int fifosize;
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(36));
if (ret)
return ret;
if (!sci && pdev->dev.of_node) {
sci = s3c64xx_spi_parse_dt(&pdev->dev);
if (IS_ERR(sci))
return PTR_ERR(sci);
}
if (!sci) {
dev_err(&pdev->dev, "platform_data missing!\n");
return -ENODEV;
}
#if !defined(CONFIG_VIDEO_EXYNOS_FIMC_IS) && !defined(CONFIG_VIDEO_EXYNOS_FIMC_IS2)
if (sci->domain != DOMAIN_TOP)
return -ENODEV;
#endif
mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (mem_res == NULL) {
dev_err(&pdev->dev, "Unable to get SPI MEM resource\n");
return -ENXIO;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_warn(&pdev->dev, "Failed to get IRQ: %d\n", irq);
return irq;
}
master = spi_alloc_master(&pdev->dev,
sizeof(struct s3c64xx_spi_driver_data));
if (master == NULL) {
dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, master);
sdd = spi_master_get_devdata(master);
sdd->port_conf = s3c64xx_spi_get_port_config(pdev);
sdd->master = master;
sdd->cntrlr_info = sci;
sdd->pdev = pdev;
sdd->sfr_start = mem_res->start;
sdd->is_probed = 0;
sdd->ops = NULL;
#ifdef CONFIG_ARM64_EXYNOS_CPUIDLE
sdd->idle_ip_index = exynos_get_idle_ip_index(dev_name(&pdev->dev));
#endif
if (pdev->dev.of_node) {
ret = of_alias_get_id(pdev->dev.of_node, "spi");
if (ret < 0) {
dev_err(&pdev->dev, "failed to get alias id, errno %d\n",
ret);
goto err0;
}
pdev->id = sdd->port_id = ret;
} else {
sdd->port_id = pdev->id;
}
if(sdd->port_id >= MAX_SPI_PORTS) {
dev_err(&pdev->dev, "the port %d exceeded MAX_SPI_PORTS(%d)\n"
, sdd->port_id, MAX_SPI_PORTS);
goto err0;
}
sdd->cur_bpw = 8;
if (sci->dma_mode == DMA_MODE) {
if (!sdd->pdev->dev.of_node) {
res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
if (!res) {
dev_err(&pdev->dev,
"Unable to get SPI tx dma resource\n");
return -ENXIO;
}
sdd->tx_dma.dmach = res->start;
res = platform_get_resource(pdev, IORESOURCE_DMA, 1);
if (!res) {
dev_err(&pdev->dev,
"Unable to get SPI rx dma resource\n");
return -ENXIO;
}
sdd->rx_dma.dmach = res->start;
}
sdd->tx_dma.direction = DMA_MEM_TO_DEV;
sdd->rx_dma.direction = DMA_DEV_TO_MEM;
}
master->dev.of_node = pdev->dev.of_node;
master->bus_num = sdd->port_id;
master->setup = s3c64xx_spi_setup;
master->cleanup = s3c64xx_spi_cleanup;
master->prepare_transfer_hardware = s3c64xx_spi_prepare_transfer;
master->transfer_one_message = s3c64xx_spi_transfer_one_message;
master->max_transfer_size = s3c64xx_spi_max_transfer_size;
master->unprepare_transfer_hardware = s3c64xx_spi_unprepare_transfer;
master->num_chipselect = sci->num_cs;
master->dma_alignment = 8;
master->bits_per_word_mask = BIT(32 - 1) | BIT(16 - 1) | BIT(8 - 1);
/* the spi->mode bits understood by this driver: */
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
sdd->regs = devm_ioremap_resource(&pdev->dev, mem_res);
if (IS_ERR(sdd->regs)) {
ret = PTR_ERR(sdd->regs);
goto err0;
}
if (sci->cfg_gpio && sci->cfg_gpio()) {
dev_err(&pdev->dev, "Unable to config gpio\n");
ret = -EBUSY;
goto err0;
}
/* Setup clocks */
sdd->clk = devm_clk_get(&pdev->dev, "gate_spi_clk");
if (IS_ERR(sdd->clk)) {
dev_err(&pdev->dev, "Unable to acquire clock 'spi'\n");
ret = PTR_ERR(sdd->clk);
goto err0;
}
sdd->src_clk = devm_clk_get(&pdev->dev, "ipclk_spi");
if (IS_ERR(sdd->src_clk)) {
dev_err(&pdev->dev,
"Unable to acquire clock '%s'\n", clk_name);
ret = PTR_ERR(sdd->src_clk);
goto err2;
}
#ifdef CONFIG_PM
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_enable(&pdev->dev);
pm_runtime_get_sync(&pdev->dev);
sdd->pinctrl = devm_pinctrl_get(&pdev->dev);
if (IS_ERR(sdd->pinctrl)) {
dev_warn(&pdev->dev, "Couldn't get pinctrl.\n");
sdd->pinctrl = NULL;
}
if (sdd->pinctrl) {
sdd->pin_def = pinctrl_lookup_state(sdd->pinctrl, PINCTRL_STATE_DEFAULT);
if (IS_ERR(sdd->pin_def)) {
dev_warn(&pdev->dev, "Not define default state.\n");
sdd->pin_def = NULL;
}
sdd->pin_idle = pinctrl_lookup_state(sdd->pinctrl, PINCTRL_STATE_IDLE);
if (IS_ERR(sdd->pin_idle)) {
dev_info(&pdev->dev, "Not use idle state.\n");
sdd->pin_idle = NULL;
}
}
#else
#ifdef CONFIG_ARM64_EXYNOS_CPUIDLE
exynos_update_ip_idle_status(sdd->idle_ip_index, 0);
#endif
if (clk_prepare_enable(sdd->clk)) {
dev_err(&pdev->dev, "Couldn't enable clock 'spi'\n");
ret = -EBUSY;
goto err0;
}
if (clk_prepare_enable(sdd->src_clk)) {
dev_err(&pdev->dev, "Couldn't enable clock '%s'\n", clk_name);
ret = -EBUSY;
goto err2;
}
#endif
if (of_property_read_u32(pdev->dev.of_node, "spi-clkoff-time",
(int *)&(sdd->spi_clkoff_time))) {
dev_err(&pdev->dev, "spi clkoff-time is empty(Default: 0ms)\n");
sdd->spi_clkoff_time = 0;
} else {
dev_err(&pdev->dev, "spi clkoff-time %d\n", sdd->spi_clkoff_time);
}
if (of_property_read_u32(pdev->dev.of_node,
"samsung,spi-fifosize", &fifosize)) {
dev_err(&pdev->dev, "PORT %d fifosize is not specified\n",
sdd->port_id);
ret = -EINVAL;
goto err3;
} else {
sdd->port_conf->fifo_lvl_mask[sdd->port_id] = (fifosize << 1) - 1;
dev_info(&pdev->dev, "PORT %d fifo_lvl_mask = 0x%x\n",
sdd->port_id, sdd->port_conf->fifo_lvl_mask[sdd->port_id]);
}
exynos_usi_init(sdd);
/* Setup Deufult Mode */
s3c64xx_spi_hwinit(sdd, sdd->port_id);
spin_lock_init(&sdd->lock);
init_completion(&sdd->xfer_completion);
INIT_LIST_HEAD(&sdd->queue);
ret = devm_request_irq(&pdev->dev, irq, s3c64xx_spi_irq, 0,
"spi-s3c64xx", sdd);
if (ret != 0) {
dev_err(&pdev->dev, "Failed to request IRQ %d: %d\n",
irq, ret);
goto err3;
}
if (1
#ifdef CONFIG_ESE_SECURE
&& (sdd->port_id != CONFIG_ESE_SECURE_SPI_PORT)
#endif
#ifdef ENABLE_SENSORS_FPRINT_SECURE
&& (sdd->port_id != CONFIG_SENSORS_FP_SPI_NUMBER)
#endif
) {
writel(S3C64XX_SPI_INT_RX_OVERRUN_EN | S3C64XX_SPI_INT_RX_UNDERRUN_EN |
S3C64XX_SPI_INT_TX_OVERRUN_EN | S3C64XX_SPI_INT_TX_UNDERRUN_EN,
sdd->regs + S3C64XX_SPI_INT_EN);
}
#ifdef CONFIG_PM
pm_runtime_mark_last_busy(&pdev->dev);
pm_runtime_put_sync(&pdev->dev);
#endif
if (spi_register_master(master)) {
dev_err(&pdev->dev, "cannot register SPI master\n");
ret = -EBUSY;
goto err3;
}
list_add_tail(&sci->node, &drvdata_list);
sdd->is_probed = 1;
#ifdef CONFIG_PM
if (sci->domain == DOMAIN_TOP)
pm_runtime_set_autosuspend_delay(&pdev->dev,
sdd->spi_clkoff_time);
else
pm_runtime_set_autosuspend_delay(&pdev->dev,
SPI_AUTOSUSPEND_TIMEOUT);
#endif
dev_dbg(&pdev->dev, "Samsung SoC SPI Driver loaded for Bus SPI-%d with %d Slaves attached\n",
sdd->port_id, master->num_chipselect);
dev_dbg(&pdev->dev, "\tIOmem=[%pR]\tFIFO %dbytes\tDMA=[Rx-%ld, Tx-%ld]\n",
mem_res, (FIFO_LVL_MASK(sdd) >> 1) + 1,
sdd->rx_dma.dmach, sdd->tx_dma.dmach);
ret = device_create_file(&pdev->dev, &dev_attr_spi_dbg);
if (ret < 0)
dev_err(&pdev->dev, "failed to create sysfs file.\n");
sci->dbg_mode = 0;
return 0;
err3:
#ifdef CONFIG_PM
pm_runtime_disable(&pdev->dev);
#endif
clk_disable_unprepare(sdd->src_clk);
err2:
clk_disable_unprepare(sdd->clk);
err0:
platform_set_drvdata(pdev, NULL);
spi_master_put(master);
return ret;
}
static int s3c64xx_spi_remove(struct platform_device *pdev)
{
struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
#ifdef CONFIG_PM
pm_runtime_disable(&pdev->dev);
#endif
spi_unregister_master(master);
writel(0, sdd->regs + S3C64XX_SPI_INT_EN);
clk_disable_unprepare(sdd->src_clk);
clk_disable_unprepare(sdd->clk);
#ifdef CONFIG_ARM64_EXYNOS_CPUIDLE
exynos_update_ip_idle_status(sdd->idle_ip_index, 1);
#endif
platform_set_drvdata(pdev, NULL);
spi_master_put(master);
return 0;
}
#ifdef CONFIG_PM
static void s3c64xx_spi_pin_ctrl(struct device *dev, int en)
{
struct spi_master *master = dev_get_drvdata(dev);
struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
struct pinctrl_state *pin_stat;
if (!sdd->pin_idle)
return;
pin_stat = en ? sdd->pin_def : sdd->pin_idle;
if (!IS_ERR(pin_stat)) {
sdd->pinctrl->state = NULL;
if (pinctrl_select_state(sdd->pinctrl, pin_stat))
dev_err(dev, "could not set pinctrl.\n");
} else {
dev_warn(dev, "pinctrl stat is null pointer.\n");
}
}
static int s3c64xx_spi_runtime_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
if (__clk_get_enable_count(sdd->clk))
clk_disable_unprepare(sdd->clk);
if (__clk_get_enable_count(sdd->src_clk))
clk_disable_unprepare(sdd->src_clk);
#ifdef CONFIG_ARM64_EXYNOS_CPUIDLE
exynos_update_ip_idle_status(sdd->idle_ip_index, 1);
#endif
/* Free DMA channels */
if (sci->dma_mode == DMA_MODE && sdd->is_probed && sdd->ops != NULL) {
#ifdef CONFIG_ARM64
sdd->ops->release((unsigned long)sdd->rx_dma.ch,
&s3c64xx_spi_dma_client);
sdd->ops->release((unsigned long)sdd->tx_dma.ch,
&s3c64xx_spi_dma_client);
#else
sdd->ops->release((enum dma_ch)sdd->rx_dma.ch,
&s3c64xx_spi_dma_client);
sdd->ops->release((enum dma_ch)sdd->tx_dma.ch,
&s3c64xx_spi_dma_client);
#endif
sdd->rx_dma.ch = NULL;
sdd->tx_dma.ch = NULL;
}
s3c64xx_spi_pin_ctrl(dev, 0);
return 0;
}
static int s3c64xx_spi_runtime_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
s3c64xx_spi_pin_ctrl(dev, 1);
if (sci->dma_mode == DMA_MODE && sdd->is_probed) {
/* Acquire DMA channels */
while (!acquire_dma(sdd))
usleep_range(10000, 11000);
}
if (sci->domain == DOMAIN_TOP) {
#ifdef CONFIG_ARM64_EXYNOS_CPUIDLE
exynos_update_ip_idle_status(sdd->idle_ip_index, 0);
#endif
clk_prepare_enable(sdd->src_clk);
clk_prepare_enable(sdd->clk);
}
#if defined(CONFIG_VIDEO_EXYNOS_FIMC_IS) || defined(CONFIG_VIDEO_EXYNOS_FIMC_IS2)
else if (sci->domain == DOMAIN_CAM1 || sci->domain == DOMAIN_ISP) {
#ifdef CONFIG_ARM64_EXYNOS_CPUIDLE
exynos_update_ip_idle_status(sdd->idle_ip_index, 0);
#endif
clk_prepare_enable(sdd->src_clk);
clk_prepare_enable(sdd->clk);
exynos_usi_init(sdd);
s3c64xx_spi_hwinit(sdd, sdd->port_id);
}
#endif
return 0;
}
#endif /* CONFIG_PM */
#ifdef CONFIG_PM_SLEEP
static int s3c64xx_spi_suspend_operation(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
#ifndef CONFIG_PM
struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
#endif
int ret = spi_master_suspend(master);
if (ret) {
dev_warn(dev, "cannot suspend master\n");
return ret;
}
#ifndef CONFIG_PM
if (sci->domain == DOMAIN_TOP) {
/* Disable the clock */
clk_disable_unprepare(sdd->src_clk);
clk_disable_unprepare(sdd->clk);
#ifdef CONFIG_ARM64_EXYNOS_CPUIDLE
exynos_update_ip_idle_status(sdd->idle_ip_index, 1);
#endif
}
#endif
if (!pm_runtime_status_suspended(dev))
s3c64xx_spi_runtime_suspend(dev);
sdd->cur_speed = 0; /* Output Clock is stopped */
return 0;
}
static int s3c64xx_spi_resume_operation(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
int ret;
if (!pm_runtime_status_suspended(dev))
s3c64xx_spi_runtime_resume(dev);
if (sci->domain == DOMAIN_TOP) {
/* Enable the clock */
#ifdef CONFIG_ARM64_EXYNOS_CPUIDLE
exynos_update_ip_idle_status(sdd->idle_ip_index, 0);
#endif
clk_prepare_enable(sdd->src_clk);
clk_prepare_enable(sdd->clk);
if (sci->cfg_gpio)
sci->cfg_gpio();
if (sci->secure_mode)
sci->need_hw_init = 1;
else {
exynos_usi_init(sdd);
s3c64xx_spi_hwinit(sdd, sdd->port_id);
}
#ifdef CONFIG_PM
/* Disable the clock */
clk_disable_unprepare(sdd->src_clk);
clk_disable_unprepare(sdd->clk);
#ifdef CONFIG_ARM64_EXYNOS_CPUIDLE
exynos_update_ip_idle_status(sdd->idle_ip_index, 1);
#endif
#endif
}
/* Start the queue running */
ret = spi_master_resume(master);
if (ret)
dev_err(dev, "problem starting queue (%d)\n", ret);
else
dev_dbg(dev, "resumed\n");
return ret;
}
static int s3c64xx_spi_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
if (sci->dma_mode != DMA_MODE)
return 0;
dev_dbg(dev, "spi suspend is handled in device suspend, dma mode = %d\n",
sci->dma_mode);
return s3c64xx_spi_suspend_operation(dev);
}
static int s3c64xx_spi_suspend_noirq(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
if (sci->dma_mode == DMA_MODE)
return 0;
dev_dbg(dev, "spi suspend is handled in suspend_noirq, dma mode = %d\n",
sci->dma_mode);
return s3c64xx_spi_suspend_operation(dev);
}
static int s3c64xx_spi_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
if (sci->dma_mode != DMA_MODE)
return 0;
dev_dbg(dev, "spi resume is handled in device resume, dma mode = %d\n",
sci->dma_mode);
return s3c64xx_spi_resume_operation(dev);
}
static int s3c64xx_spi_resume_noirq(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
if (sci->dma_mode == DMA_MODE)
return 0;
dev_dbg(dev, "spi resume is handled in resume_noirq, dma mode = %d\n",
sci->dma_mode);
return s3c64xx_spi_resume_operation(dev);
}
#else
static int s3c64xx_spi_suspend(struct device *dev)
{
return 0;
}
static int s3c64xx_spi_resume(struct device *dev)
{
return 0;
}
#endif /* CONFIG_PM_SLEEP */
static const struct dev_pm_ops s3c64xx_spi_pm = {
SET_SYSTEM_SLEEP_PM_OPS(s3c64xx_spi_suspend, s3c64xx_spi_resume)
SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(s3c64xx_spi_suspend_noirq, s3c64xx_spi_resume_noirq)
SET_RUNTIME_PM_OPS(s3c64xx_spi_runtime_suspend,
s3c64xx_spi_runtime_resume, NULL)
};
static struct s3c64xx_spi_port_config s3c2443_spi_port_config = {
.fifo_lvl_mask = { 0x7f },
.rx_lvl_offset = 13,
.tx_st_done = 21,
.high_speed = true,
};
static struct s3c64xx_spi_port_config s3c6410_spi_port_config = {
.fifo_lvl_mask = { 0x7f, 0x7F },
.rx_lvl_offset = 13,
.tx_st_done = 21,
};
static struct s3c64xx_spi_port_config s5pv210_spi_port_config = {
.fifo_lvl_mask = { 0x1ff, 0x7F },
.rx_lvl_offset = 15,
.tx_st_done = 25,
.high_speed = true,
};
static struct s3c64xx_spi_port_config exynos4_spi_port_config = {
.fifo_lvl_mask = { 0x1ff, 0x7F, 0x7F },
.rx_lvl_offset = 15,
.tx_st_done = 25,
.high_speed = true,
.clk_from_cmu = true,
};
static struct s3c64xx_spi_port_config exynos5_spi_port_config = {
.fifo_lvl_mask = { 0x1ff, 0x7F, 0x7F, 0x1ff, 0x1ff },
.rx_lvl_offset = 15,
.tx_st_done = 25,
.high_speed = true,
.clk_from_cmu = true,
};
static struct s3c64xx_spi_port_config exynos543x_spi_port_config = {
.fifo_lvl_mask = { 0x1ff, 0x7F, 0x7F, 0x7F, 0x7F, 0x1ff, 0x1ff },
.rx_lvl_offset = 15,
.tx_st_done = 25,
.high_speed = true,
.clk_from_cmu = true,
};
static struct s3c64xx_spi_port_config exynos742x_spi_port_config = {
.fifo_lvl_mask = { 0x1ff, 0x7F, 0x7F, 0x7F, 0x7F, 0x1ff, 0x1ff, 0x1ff },
.rx_lvl_offset = 15,
.tx_st_done = 25,
.high_speed = true,
.clk_from_cmu = true,
};
static struct s3c64xx_spi_port_config exynos758x_spi_port_config = {
.fifo_lvl_mask = { 0x1ff, 0x7F, 0x7F, 0x1ff, 0x1ff },
.rx_lvl_offset = 15,
.tx_st_done = 25,
.high_speed = true,
.clk_from_cmu = true,
};
static struct s3c64xx_spi_port_config exynos_spi_port_config = {
.fifo_lvl_mask = { 0, },
.rx_lvl_offset = 15,
.tx_st_done = 25,
.high_speed = true,
.clk_from_cmu = true,
};
static const struct platform_device_id s3c64xx_spi_driver_ids[] = {
{
.name = "s3c2443-spi",
.driver_data = (kernel_ulong_t)&s3c2443_spi_port_config,
}, {
.name = "s3c6410-spi",
.driver_data = (kernel_ulong_t)&s3c6410_spi_port_config,
}, {
.name = "s5pv210-spi",
.driver_data = (kernel_ulong_t)&s5pv210_spi_port_config,
}, {
.name = "exynos4210-spi",
.driver_data = (kernel_ulong_t)&exynos4_spi_port_config,
}, {
.name = "exynos5410-spi",
.driver_data = (kernel_ulong_t)&exynos5_spi_port_config,
}, {
.name = "exynos543x-spi",
.driver_data = (kernel_ulong_t)&exynos543x_spi_port_config,
}, {
.name = "exynos742x-spi",
.driver_data = (kernel_ulong_t)&exynos742x_spi_port_config,
}, {
.name = "exynos758x-spi",
.driver_data = (kernel_ulong_t)&exynos758x_spi_port_config,
}, {
.name = "exynos-spi",
.driver_data = (kernel_ulong_t)&exynos_spi_port_config,
},
{ },
};
#ifdef CONFIG_OF
static const struct of_device_id s3c64xx_spi_dt_match[] = {
{ .compatible = "samsung,exynos4210-spi",
.data = (void *)&exynos4_spi_port_config,
},
{ .compatible = "samsung,exynos5410-spi",
.data = (void *)&exynos5_spi_port_config,
},
{ .compatible = "samsung,exynos543x-spi",
.data = (void *)&exynos543x_spi_port_config,
},
{ .compatible = "samsung,exynos742x-spi",
.data = (void *)&exynos742x_spi_port_config,
},
{ .compatible = "samsung,exynos758x-spi",
.data = (void *)&exynos758x_spi_port_config,
},
{ .compatible = "samsung,exynos-spi",
.data = (void *)&exynos_spi_port_config,
},
{ },
};
MODULE_DEVICE_TABLE(of, s3c64xx_spi_dt_match);
#endif /* CONFIG_OF */
static struct platform_driver s3c64xx_spi_driver = {
.driver = {
.name = "s3c64xx-spi",
.pm = &s3c64xx_spi_pm,
.of_match_table = of_match_ptr(s3c64xx_spi_dt_match),
},
.remove = s3c64xx_spi_remove,
.id_table = s3c64xx_spi_driver_ids,
};
MODULE_ALIAS("platform:s3c64xx-spi");
static int __init s3c64xx_spi_init(void)
{
#ifdef CONFIG_CPU_IDLE
exynos_pm_register_notifier(&s3c64xx_spi_notifier_block);
#endif
return platform_driver_probe(&s3c64xx_spi_driver, s3c64xx_spi_probe);
}
subsys_initcall(s3c64xx_spi_init);
static void __exit s3c64xx_spi_exit(void)
{
platform_driver_unregister(&s3c64xx_spi_driver);
}
module_exit(s3c64xx_spi_exit);
MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
MODULE_DESCRIPTION("S3C64XX SPI Controller Driver");
MODULE_LICENSE("GPL");