blob: 381621f5944d8915bf471e1e2ac89c582f5ccb16 [file] [log] [blame]
/*
* drivers/soc/samsung/exynos-topology.c
*
* Copyright (C) 2018 Samsung Electronics.
*
* Based on the arm64 version written by Mark Brown in turn based on
* arch/arm64/kernel/topology.c
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#include <linux/arch_topology.h>
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/init.h>
#include <linux/percpu.h>
#include <linux/node.h>
#include <linux/nodemask.h>
#include <linux/of.h>
#include <linux/sched.h>
#include <linux/sched/topology.h>
#include <linux/sched/energy.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <asm/cpu.h>
#include <asm/cputype.h>
#include <asm/topology.h>
struct cpu_energy_level {
int core;
int coregroup;
int cluster;
} cpu_energy_level[NR_CPUS];
static int __init get_cpu_for_node(struct device_node *node)
{
struct device_node *cpu_node;
int cpu;
cpu_node = of_parse_phandle(node, "cpu", 0);
if (!cpu_node)
return -1;
for_each_possible_cpu(cpu) {
if (of_get_cpu_node(cpu, NULL) == cpu_node) {
topology_parse_cpu_capacity(cpu_node, cpu);
of_node_put(cpu_node);
return cpu;
}
}
pr_crit("Unable to find CPU node for %pOF\n", cpu_node);
of_node_put(cpu_node);
return -1;
}
static int __init parse_core(struct device_node *core, int cluster_id, int cluster_elvl,
int coregroup_id, int coregroup_elvl, int core_id)
{
int cpu;
int core_elvl = 0;
cpu = get_cpu_for_node(core);
if (cpu < 0) {
pr_err("%pOF: Can't get CPU for leaf core\n", core);
return 0;
}
cpu_topology[cpu].cluster_id = cluster_id;
cpu_topology[cpu].coregroup_id = coregroup_id;
cpu_topology[cpu].core_id = core_id;
if (coregroup_elvl != -1)
coregroup_elvl++;
if (cluster_elvl != -1)
cluster_elvl++;
cpu_energy_level[cpu].core = core_elvl;
cpu_energy_level[cpu].coregroup = coregroup_elvl;
cpu_energy_level[cpu].cluster = cluster_elvl;
return 0;
}
static int __init parse_coregroup(struct device_node *coregroup, int cluster_id, int cluster_elvl,
int coregroup_id)
{
char name[10];
bool has_cores = false;
struct device_node *c;
int core_id;
int coregroup_elvl = 0;
int ret;
if (cluster_elvl != -1)
cluster_elvl++;
core_id = 0;
do {
snprintf(name, sizeof(name), "core%d", core_id);
c = of_get_child_by_name(coregroup, name);
if (c) {
has_cores = true;
ret = parse_core(c, cluster_id, cluster_elvl,
coregroup_id, coregroup_elvl, core_id++);
of_node_put(c);
if (ret != 0)
return ret;
}
} while (c);
if (!has_cores)
pr_warn("%pOF: empty coregroup\n", coregroup);
return 0;
}
static int __init parse_cluster(struct device_node *cluster, int cluster_id)
{
char name[20];
bool leaf = true;
bool has_cores = false;
struct device_node *c;
int coregroup_id, core_id;
int cluster_elvl = 0;
int ret;
/* First check for child coregroup */
coregroup_id = 0;
do {
snprintf(name, sizeof(name), "coregroup%d", coregroup_id);
c = of_get_child_by_name(cluster, name);
if (c) {
leaf = false;
ret = parse_coregroup(c, cluster_id, cluster_elvl,
coregroup_id++);
of_node_put(c);
if (ret != 0)
return ret;
}
} while (c);
/* Cluster shouldn't have child coregroup and core simultaneously */
if (!leaf)
return 0;
/* If cluster doesn't have coregroup, check for cores */
core_id = 0;
do {
snprintf(name, sizeof(name), "core%d", core_id);
c = of_get_child_by_name(cluster, name);
if (c) {
has_cores = true;
ret = parse_core(c, cluster_id, cluster_elvl,
coregroup_id, -1, core_id++);
of_node_put(c);
if (ret != 0)
return ret;
}
} while (c);
if (!has_cores)
pr_warn("%pOF: empty cluster\n", cluster);
return 0;
}
static int __init parse_dt_topology(void)
{
char name[10];
bool has_cluster = false;
struct device_node *map, *cluster;
int cluster_id;
int cpu;
int ret;
/*
* When topology is provided cpu-map is essentially a root
* cluster with restricted subnodes.
*/
map = of_find_node_by_path("/cpus/cpu-map");
if (!map) {
pr_err("No CPU information found in DT\n");
return 0;
}
init_sched_energy_costs();
cluster_id = 0;
do {
snprintf(name, sizeof(name), "cluster%d", cluster_id);
cluster = of_get_child_by_name(map, name);
if (cluster) {
has_cluster = true;
ret = parse_cluster(cluster, cluster_id++);
of_node_put(cluster);
if (ret != 0)
goto out_map;
}
} while (cluster);
if (!has_cluster) {
pr_err("%pOF: cpu-map children should be clusters\n", map);
ret = -EINVAL;
goto out_map;
}
topology_normalize_cpu_scale();
/*
* Check that all cores are in the topology; the SMP code will
* only mark cores described in the DT as possible.
*/
for_each_possible_cpu(cpu)
if (cpu_topology[cpu].cluster_id == -1)
ret = -EINVAL;
out_map:
of_node_put(map);
return ret;
}
/*
* cpu topology table
*/
struct cpu_topology cpu_topology[NR_CPUS];
EXPORT_SYMBOL_GPL(cpu_topology);
const struct cpumask *cpu_coregroup_mask(int cpu)
{
return &cpu_topology[cpu].core_sibling;
}
const struct cpumask *cpu_cluster_mask(int cpu)
{
return &cpu_topology[cpu].cluster_sibling;
}
static void update_siblings_masks(unsigned int cpuid)
{
struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
int cpu;
/* update core and thread sibling masks */
for_each_possible_cpu(cpu) {
cpu_topo = &cpu_topology[cpu];
if (cpuid_topo->cluster_id != cpu_topo->cluster_id)
continue;
cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling);
if (cpu != cpuid)
cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling);
if (cpuid_topo->coregroup_id != cpu_topo->coregroup_id)
continue;
cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
if (cpu != cpuid)
cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
if (cpuid_topo->core_id != cpu_topo->core_id)
continue;
cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
if (cpu != cpuid)
cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
}
}
void store_cpu_topology(unsigned int cpuid)
{
struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
if (cpuid_topo->cluster_id == -1) {
pr_err("CPU topology isn't composed properly\n");
BUG_ON(cpuid_topo->cluster_id);
}
pr_debug("CPU%u: cluster %d coregroup %d core %d\n", cpuid,
cpuid_topo->cluster_id, cpuid_topo->coregroup_id, cpuid_topo->core_id);
update_siblings_masks(cpuid);
topology_detect_flags();
}
static int core_flags(void)
{
return cpu_core_flags() | topology_core_flags();
}
static int cluster_flags(void)
{
return cpu_core_flags() | topology_cluster_flags();
}
static int cpu_flags(void)
{
return topology_cpu_flags();
}
#ifdef CONFIG_SIMPLIFIED_ENERGY_MODEL
#define use_simplified 1
#else
#define use_simplified 0
#endif
static inline
const struct sched_group_energy * const cpu_core_energy(int cpu)
{
struct sched_group_energy *sge;
unsigned long capacity;
int max_cap_idx;
int level = cpu_energy_level[cpu].core;
if (use_simplified)
return NULL;
if (level < 0)
return NULL;
sge = sge_array[cpu][level];
if (!sge) {
pr_warn("Invalid sched_group_energy for CPU%d\n", cpu);
return NULL;
}
max_cap_idx = sge->nr_cap_states - 1;
capacity = sge->cap_states[max_cap_idx].cap;
printk_deferred("cpu=%d set cpu scale %lu from energy model\n",
cpu, capacity);
topology_set_cpu_scale(cpu, capacity);
return sge;
}
static inline
const struct sched_group_energy * const cpu_coregroup_energy(int cpu)
{
struct sched_group_energy *sge;
int level = cpu_energy_level[cpu].coregroup;
if (use_simplified)
return NULL;
if (level < 0)
return NULL;
sge = sge_array[cpu][level];
if (!sge) {
pr_warn("Invalid sched_group_energy for Coregroup%d\n", cpu);
return NULL;
}
return sge;
}
static inline
const struct sched_group_energy * const cpu_cluster_energy(int cpu)
{
struct sched_group_energy *sge;
int level = cpu_energy_level[cpu].cluster;
if (use_simplified)
return NULL;
if (level < 0)
return NULL;
sge = sge_array[cpu][level];
if (!sge) {
pr_warn("Invalid sched_group_energy for Cluster%d\n", cpu);
return NULL;
}
return sge;
}
static struct sched_domain_topology_level exynos_topology[NR_SD_LEVELS];
#ifdef CONFIG_SCHED_DEBUG
#define sd_init_name(topology, type) topology.name = #type
#else
#define sd_init_name(topology, type)
#endif
static void __init build_sched_topology(void)
{
struct cpu_topology *cpuid_topo, *cpu_topo = &cpu_topology[0];
bool cluster_level = false;
bool coregroup_level = false;
bool core_level = false;
int cpu;
int level = 0;
for_each_possible_cpu(cpu) {
cpuid_topo = &cpu_topology[cpu];
if (cpuid_topo->cluster_id != cpu_topo->cluster_id)
cluster_level = true;
if (cpuid_topo->coregroup_id != cpu_topo->coregroup_id)
coregroup_level = true;
if (cpuid_topo->core_id != cpu_topo->core_id)
core_level = true;
}
if (core_level) {
exynos_topology[level].mask = cpu_coregroup_mask;
exynos_topology[level].sd_flags = core_flags;
exynos_topology[level].energy = cpu_core_energy;
sd_init_name(exynos_topology[level], MC);
level++;
}
if (coregroup_level) {
exynos_topology[level].mask = cpu_cluster_mask;
exynos_topology[level].sd_flags = cluster_flags;
exynos_topology[level].energy = cpu_coregroup_energy;
sd_init_name(exynos_topology[level], DSU);
level++;
}
if (cluster_level) {
exynos_topology[level].mask = cpu_cpu_mask;
exynos_topology[level].sd_flags = cpu_flags;
exynos_topology[level].energy = cpu_cluster_energy;
sd_init_name(exynos_topology[level], DIE);
level++;
}
exynos_topology[level].mask = NULL;
}
static void __init reset_cpu_topology(void)
{
unsigned int cpu;
for_each_possible_cpu(cpu) {
struct cpu_topology *cpu_topo = &cpu_topology[cpu];
struct cpu_energy_level *cpu_elvl = &cpu_energy_level[cpu];
cpu_topo->core_id = 0;
cpu_topo->coregroup_id = -1;
cpu_topo->cluster_id = -1;
cpumask_clear(&cpu_topo->cluster_sibling);
cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling);
cpumask_clear(&cpu_topo->core_sibling);
cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
cpumask_clear(&cpu_topo->thread_sibling);
cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
cpu_elvl->core = -1;
cpu_elvl->coregroup = -1;
cpu_elvl->cluster = -1;
}
}
void __init init_cpu_topology(void)
{
reset_cpu_topology();
/*
* Discard anything that was parsed if we hit an error so we
* don't use partial information.
*/
if (of_have_populated_dt() && parse_dt_topology())
reset_cpu_topology();
else {
build_sched_topology();
set_sched_topology(exynos_topology);
}
}