| /* |
| * This file is provided under a dual BSD/GPLv2 license. When using or |
| * redistributing this file, you may do so under either license. |
| * |
| * GPL LICENSE SUMMARY |
| * |
| * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| * The full GNU General Public License is included in this distribution |
| * in the file called LICENSE.GPL. |
| * |
| * BSD LICENSE |
| * |
| * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * * Neither the name of Intel Corporation nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "isci.h" |
| #include "host.h" |
| #include "phy.h" |
| #include "scu_event_codes.h" |
| #include "probe_roms.h" |
| |
| #undef C |
| #define C(a) (#a) |
| static const char *phy_state_name(enum sci_phy_states state) |
| { |
| static const char * const strings[] = PHY_STATES; |
| |
| return strings[state]; |
| } |
| #undef C |
| |
| /* Maximum arbitration wait time in micro-seconds */ |
| #define SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME (700) |
| |
| enum sas_linkrate sci_phy_linkrate(struct isci_phy *iphy) |
| { |
| return iphy->max_negotiated_speed; |
| } |
| |
| static struct isci_host *phy_to_host(struct isci_phy *iphy) |
| { |
| struct isci_phy *table = iphy - iphy->phy_index; |
| struct isci_host *ihost = container_of(table, typeof(*ihost), phys[0]); |
| |
| return ihost; |
| } |
| |
| static struct device *sciphy_to_dev(struct isci_phy *iphy) |
| { |
| return &phy_to_host(iphy)->pdev->dev; |
| } |
| |
| static enum sci_status |
| sci_phy_transport_layer_initialization(struct isci_phy *iphy, |
| struct scu_transport_layer_registers __iomem *reg) |
| { |
| u32 tl_control; |
| |
| iphy->transport_layer_registers = reg; |
| |
| writel(SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX, |
| &iphy->transport_layer_registers->stp_rni); |
| |
| /* |
| * Hardware team recommends that we enable the STP prefetch for all |
| * transports |
| */ |
| tl_control = readl(&iphy->transport_layer_registers->control); |
| tl_control |= SCU_TLCR_GEN_BIT(STP_WRITE_DATA_PREFETCH); |
| writel(tl_control, &iphy->transport_layer_registers->control); |
| |
| return SCI_SUCCESS; |
| } |
| |
| static enum sci_status |
| sci_phy_link_layer_initialization(struct isci_phy *iphy, |
| struct scu_link_layer_registers __iomem *llr) |
| { |
| struct isci_host *ihost = iphy->owning_port->owning_controller; |
| struct sci_phy_user_params *phy_user; |
| struct sci_phy_oem_params *phy_oem; |
| int phy_idx = iphy->phy_index; |
| struct sci_phy_cap phy_cap; |
| u32 phy_configuration; |
| u32 parity_check = 0; |
| u32 parity_count = 0; |
| u32 llctl, link_rate; |
| u32 clksm_value = 0; |
| u32 sp_timeouts = 0; |
| |
| phy_user = &ihost->user_parameters.phys[phy_idx]; |
| phy_oem = &ihost->oem_parameters.phys[phy_idx]; |
| iphy->link_layer_registers = llr; |
| |
| /* Set our IDENTIFY frame data */ |
| #define SCI_END_DEVICE 0x01 |
| |
| writel(SCU_SAS_TIID_GEN_BIT(SMP_INITIATOR) | |
| SCU_SAS_TIID_GEN_BIT(SSP_INITIATOR) | |
| SCU_SAS_TIID_GEN_BIT(STP_INITIATOR) | |
| SCU_SAS_TIID_GEN_BIT(DA_SATA_HOST) | |
| SCU_SAS_TIID_GEN_VAL(DEVICE_TYPE, SCI_END_DEVICE), |
| &llr->transmit_identification); |
| |
| /* Write the device SAS Address */ |
| writel(0xFEDCBA98, &llr->sas_device_name_high); |
| writel(phy_idx, &llr->sas_device_name_low); |
| |
| /* Write the source SAS Address */ |
| writel(phy_oem->sas_address.high, &llr->source_sas_address_high); |
| writel(phy_oem->sas_address.low, &llr->source_sas_address_low); |
| |
| /* Clear and Set the PHY Identifier */ |
| writel(0, &llr->identify_frame_phy_id); |
| writel(SCU_SAS_TIPID_GEN_VALUE(ID, phy_idx), &llr->identify_frame_phy_id); |
| |
| /* Change the initial state of the phy configuration register */ |
| phy_configuration = readl(&llr->phy_configuration); |
| |
| /* Hold OOB state machine in reset */ |
| phy_configuration |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET); |
| writel(phy_configuration, &llr->phy_configuration); |
| |
| /* Configure the SNW capabilities */ |
| phy_cap.all = 0; |
| phy_cap.start = 1; |
| phy_cap.gen3_no_ssc = 1; |
| phy_cap.gen2_no_ssc = 1; |
| phy_cap.gen1_no_ssc = 1; |
| if (ihost->oem_parameters.controller.do_enable_ssc) { |
| struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe; |
| struct scu_afe_transceiver __iomem *xcvr = &afe->scu_afe_xcvr[phy_idx]; |
| struct isci_pci_info *pci_info = to_pci_info(ihost->pdev); |
| bool en_sas = false; |
| bool en_sata = false; |
| u32 sas_type = 0; |
| u32 sata_spread = 0x2; |
| u32 sas_spread = 0x2; |
| |
| phy_cap.gen3_ssc = 1; |
| phy_cap.gen2_ssc = 1; |
| phy_cap.gen1_ssc = 1; |
| |
| if (pci_info->orom->hdr.version < ISCI_ROM_VER_1_1) |
| en_sas = en_sata = true; |
| else { |
| sata_spread = ihost->oem_parameters.controller.ssc_sata_tx_spread_level; |
| sas_spread = ihost->oem_parameters.controller.ssc_sas_tx_spread_level; |
| |
| if (sata_spread) |
| en_sata = true; |
| |
| if (sas_spread) { |
| en_sas = true; |
| sas_type = ihost->oem_parameters.controller.ssc_sas_tx_type; |
| } |
| |
| } |
| |
| if (en_sas) { |
| u32 reg; |
| |
| reg = readl(&xcvr->afe_xcvr_control0); |
| reg |= (0x00100000 | (sas_type << 19)); |
| writel(reg, &xcvr->afe_xcvr_control0); |
| |
| reg = readl(&xcvr->afe_tx_ssc_control); |
| reg |= sas_spread << 8; |
| writel(reg, &xcvr->afe_tx_ssc_control); |
| } |
| |
| if (en_sata) { |
| u32 reg; |
| |
| reg = readl(&xcvr->afe_tx_ssc_control); |
| reg |= sata_spread; |
| writel(reg, &xcvr->afe_tx_ssc_control); |
| |
| reg = readl(&llr->stp_control); |
| reg |= 1 << 12; |
| writel(reg, &llr->stp_control); |
| } |
| } |
| |
| /* The SAS specification indicates that the phy_capabilities that |
| * are transmitted shall have an even parity. Calculate the parity. |
| */ |
| parity_check = phy_cap.all; |
| while (parity_check != 0) { |
| if (parity_check & 0x1) |
| parity_count++; |
| parity_check >>= 1; |
| } |
| |
| /* If parity indicates there are an odd number of bits set, then |
| * set the parity bit to 1 in the phy capabilities. |
| */ |
| if ((parity_count % 2) != 0) |
| phy_cap.parity = 1; |
| |
| writel(phy_cap.all, &llr->phy_capabilities); |
| |
| /* Set the enable spinup period but disable the ability to send |
| * notify enable spinup |
| */ |
| writel(SCU_ENSPINUP_GEN_VAL(COUNT, |
| phy_user->notify_enable_spin_up_insertion_frequency), |
| &llr->notify_enable_spinup_control); |
| |
| /* Write the ALIGN Insertion Ferequency for connected phy and |
| * inpendent of connected state |
| */ |
| clksm_value = SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(CONNECTED, |
| phy_user->in_connection_align_insertion_frequency); |
| |
| clksm_value |= SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(GENERAL, |
| phy_user->align_insertion_frequency); |
| |
| writel(clksm_value, &llr->clock_skew_management); |
| |
| if (is_c0(ihost->pdev) || is_c1(ihost->pdev)) { |
| writel(0x04210400, &llr->afe_lookup_table_control); |
| writel(0x020A7C05, &llr->sas_primitive_timeout); |
| } else |
| writel(0x02108421, &llr->afe_lookup_table_control); |
| |
| llctl = SCU_SAS_LLCTL_GEN_VAL(NO_OUTBOUND_TASK_TIMEOUT, |
| (u8)ihost->user_parameters.no_outbound_task_timeout); |
| |
| switch (phy_user->max_speed_generation) { |
| case SCIC_SDS_PARM_GEN3_SPEED: |
| link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN3; |
| break; |
| case SCIC_SDS_PARM_GEN2_SPEED: |
| link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN2; |
| break; |
| default: |
| link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN1; |
| break; |
| } |
| llctl |= SCU_SAS_LLCTL_GEN_VAL(MAX_LINK_RATE, link_rate); |
| writel(llctl, &llr->link_layer_control); |
| |
| sp_timeouts = readl(&llr->sas_phy_timeouts); |
| |
| /* Clear the default 0x36 (54us) RATE_CHANGE timeout value. */ |
| sp_timeouts &= ~SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0xFF); |
| |
| /* Set RATE_CHANGE timeout value to 0x3B (59us). This ensures SCU can |
| * lock with 3Gb drive when SCU max rate is set to 1.5Gb. |
| */ |
| sp_timeouts |= SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0x3B); |
| |
| writel(sp_timeouts, &llr->sas_phy_timeouts); |
| |
| if (is_a2(ihost->pdev)) { |
| /* Program the max ARB time for the PHY to 700us so we |
| * inter-operate with the PMC expander which shuts down |
| * PHYs if the expander PHY generates too many breaks. |
| * This time value will guarantee that the initiator PHY |
| * will generate the break. |
| */ |
| writel(SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME, |
| &llr->maximum_arbitration_wait_timer_timeout); |
| } |
| |
| /* Disable link layer hang detection, rely on the OS timeout for |
| * I/O timeouts. |
| */ |
| writel(0, &llr->link_layer_hang_detection_timeout); |
| |
| /* We can exit the initial state to the stopped state */ |
| sci_change_state(&iphy->sm, SCI_PHY_STOPPED); |
| |
| return SCI_SUCCESS; |
| } |
| |
| static void phy_sata_timeout(unsigned long data) |
| { |
| struct sci_timer *tmr = (struct sci_timer *)data; |
| struct isci_phy *iphy = container_of(tmr, typeof(*iphy), sata_timer); |
| struct isci_host *ihost = iphy->owning_port->owning_controller; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ihost->scic_lock, flags); |
| |
| if (tmr->cancel) |
| goto done; |
| |
| dev_dbg(sciphy_to_dev(iphy), |
| "%s: SCIC SDS Phy 0x%p did not receive signature fis before " |
| "timeout.\n", |
| __func__, |
| iphy); |
| |
| sci_change_state(&iphy->sm, SCI_PHY_STARTING); |
| done: |
| spin_unlock_irqrestore(&ihost->scic_lock, flags); |
| } |
| |
| /** |
| * This method returns the port currently containing this phy. If the phy is |
| * currently contained by the dummy port, then the phy is considered to not |
| * be part of a port. |
| * @sci_phy: This parameter specifies the phy for which to retrieve the |
| * containing port. |
| * |
| * This method returns a handle to a port that contains the supplied phy. |
| * NULL This value is returned if the phy is not part of a real |
| * port (i.e. it's contained in the dummy port). !NULL All other |
| * values indicate a handle/pointer to the port containing the phy. |
| */ |
| struct isci_port *phy_get_non_dummy_port(struct isci_phy *iphy) |
| { |
| struct isci_port *iport = iphy->owning_port; |
| |
| if (iport->physical_port_index == SCIC_SDS_DUMMY_PORT) |
| return NULL; |
| |
| return iphy->owning_port; |
| } |
| |
| /** |
| * This method will assign a port to the phy object. |
| * @out]: iphy This parameter specifies the phy for which to assign a port |
| * object. |
| * |
| * |
| */ |
| void sci_phy_set_port( |
| struct isci_phy *iphy, |
| struct isci_port *iport) |
| { |
| iphy->owning_port = iport; |
| |
| if (iphy->bcn_received_while_port_unassigned) { |
| iphy->bcn_received_while_port_unassigned = false; |
| sci_port_broadcast_change_received(iphy->owning_port, iphy); |
| } |
| } |
| |
| enum sci_status sci_phy_initialize(struct isci_phy *iphy, |
| struct scu_transport_layer_registers __iomem *tl, |
| struct scu_link_layer_registers __iomem *ll) |
| { |
| /* Perfrom the initialization of the TL hardware */ |
| sci_phy_transport_layer_initialization(iphy, tl); |
| |
| /* Perofrm the initialization of the PE hardware */ |
| sci_phy_link_layer_initialization(iphy, ll); |
| |
| /* There is nothing that needs to be done in this state just |
| * transition to the stopped state |
| */ |
| sci_change_state(&iphy->sm, SCI_PHY_STOPPED); |
| |
| return SCI_SUCCESS; |
| } |
| |
| /** |
| * This method assigns the direct attached device ID for this phy. |
| * |
| * @iphy The phy for which the direct attached device id is to |
| * be assigned. |
| * @device_id The direct attached device ID to assign to the phy. |
| * This will either be the RNi for the device or an invalid RNi if there |
| * is no current device assigned to the phy. |
| */ |
| void sci_phy_setup_transport(struct isci_phy *iphy, u32 device_id) |
| { |
| u32 tl_control; |
| |
| writel(device_id, &iphy->transport_layer_registers->stp_rni); |
| |
| /* |
| * The read should guarantee that the first write gets posted |
| * before the next write |
| */ |
| tl_control = readl(&iphy->transport_layer_registers->control); |
| tl_control |= SCU_TLCR_GEN_BIT(CLEAR_TCI_NCQ_MAPPING_TABLE); |
| writel(tl_control, &iphy->transport_layer_registers->control); |
| } |
| |
| static void sci_phy_suspend(struct isci_phy *iphy) |
| { |
| u32 scu_sas_pcfg_value; |
| |
| scu_sas_pcfg_value = |
| readl(&iphy->link_layer_registers->phy_configuration); |
| scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE); |
| writel(scu_sas_pcfg_value, |
| &iphy->link_layer_registers->phy_configuration); |
| |
| sci_phy_setup_transport(iphy, SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX); |
| } |
| |
| void sci_phy_resume(struct isci_phy *iphy) |
| { |
| u32 scu_sas_pcfg_value; |
| |
| scu_sas_pcfg_value = |
| readl(&iphy->link_layer_registers->phy_configuration); |
| scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE); |
| writel(scu_sas_pcfg_value, |
| &iphy->link_layer_registers->phy_configuration); |
| } |
| |
| void sci_phy_get_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas) |
| { |
| sas->high = readl(&iphy->link_layer_registers->source_sas_address_high); |
| sas->low = readl(&iphy->link_layer_registers->source_sas_address_low); |
| } |
| |
| void sci_phy_get_attached_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas) |
| { |
| struct sas_identify_frame *iaf; |
| |
| iaf = &iphy->frame_rcvd.iaf; |
| memcpy(sas, iaf->sas_addr, SAS_ADDR_SIZE); |
| } |
| |
| void sci_phy_get_protocols(struct isci_phy *iphy, struct sci_phy_proto *proto) |
| { |
| proto->all = readl(&iphy->link_layer_registers->transmit_identification); |
| } |
| |
| enum sci_status sci_phy_start(struct isci_phy *iphy) |
| { |
| enum sci_phy_states state = iphy->sm.current_state_id; |
| |
| if (state != SCI_PHY_STOPPED) { |
| dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n", |
| __func__, phy_state_name(state)); |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| |
| sci_change_state(&iphy->sm, SCI_PHY_STARTING); |
| return SCI_SUCCESS; |
| } |
| |
| enum sci_status sci_phy_stop(struct isci_phy *iphy) |
| { |
| enum sci_phy_states state = iphy->sm.current_state_id; |
| |
| switch (state) { |
| case SCI_PHY_SUB_INITIAL: |
| case SCI_PHY_SUB_AWAIT_OSSP_EN: |
| case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN: |
| case SCI_PHY_SUB_AWAIT_SAS_POWER: |
| case SCI_PHY_SUB_AWAIT_SATA_POWER: |
| case SCI_PHY_SUB_AWAIT_SATA_PHY_EN: |
| case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN: |
| case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: |
| case SCI_PHY_SUB_FINAL: |
| case SCI_PHY_READY: |
| break; |
| default: |
| dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n", |
| __func__, phy_state_name(state)); |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| |
| sci_change_state(&iphy->sm, SCI_PHY_STOPPED); |
| return SCI_SUCCESS; |
| } |
| |
| enum sci_status sci_phy_reset(struct isci_phy *iphy) |
| { |
| enum sci_phy_states state = iphy->sm.current_state_id; |
| |
| if (state != SCI_PHY_READY) { |
| dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n", |
| __func__, phy_state_name(state)); |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| |
| sci_change_state(&iphy->sm, SCI_PHY_RESETTING); |
| return SCI_SUCCESS; |
| } |
| |
| enum sci_status sci_phy_consume_power_handler(struct isci_phy *iphy) |
| { |
| enum sci_phy_states state = iphy->sm.current_state_id; |
| |
| switch (state) { |
| case SCI_PHY_SUB_AWAIT_SAS_POWER: { |
| u32 enable_spinup; |
| |
| enable_spinup = readl(&iphy->link_layer_registers->notify_enable_spinup_control); |
| enable_spinup |= SCU_ENSPINUP_GEN_BIT(ENABLE); |
| writel(enable_spinup, &iphy->link_layer_registers->notify_enable_spinup_control); |
| |
| /* Change state to the final state this substate machine has run to completion */ |
| sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL); |
| |
| return SCI_SUCCESS; |
| } |
| case SCI_PHY_SUB_AWAIT_SATA_POWER: { |
| u32 scu_sas_pcfg_value; |
| |
| /* Release the spinup hold state and reset the OOB state machine */ |
| scu_sas_pcfg_value = |
| readl(&iphy->link_layer_registers->phy_configuration); |
| scu_sas_pcfg_value &= |
| ~(SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD) | SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE)); |
| scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET); |
| writel(scu_sas_pcfg_value, |
| &iphy->link_layer_registers->phy_configuration); |
| |
| /* Now restart the OOB operation */ |
| scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET); |
| scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE); |
| writel(scu_sas_pcfg_value, |
| &iphy->link_layer_registers->phy_configuration); |
| |
| /* Change state to the final state this substate machine has run to completion */ |
| sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_PHY_EN); |
| |
| return SCI_SUCCESS; |
| } |
| default: |
| dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n", |
| __func__, phy_state_name(state)); |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| } |
| |
| static void sci_phy_start_sas_link_training(struct isci_phy *iphy) |
| { |
| /* continue the link training for the phy as if it were a SAS PHY |
| * instead of a SATA PHY. This is done because the completion queue had a SAS |
| * PHY DETECTED event when the state machine was expecting a SATA PHY event. |
| */ |
| u32 phy_control; |
| |
| phy_control = readl(&iphy->link_layer_registers->phy_configuration); |
| phy_control |= SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD); |
| writel(phy_control, |
| &iphy->link_layer_registers->phy_configuration); |
| |
| sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SAS_SPEED_EN); |
| |
| iphy->protocol = SAS_PROTOCOL_SSP; |
| } |
| |
| static void sci_phy_start_sata_link_training(struct isci_phy *iphy) |
| { |
| /* This method continues the link training for the phy as if it were a SATA PHY |
| * instead of a SAS PHY. This is done because the completion queue had a SATA |
| * SPINUP HOLD event when the state machine was expecting a SAS PHY event. none |
| */ |
| sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_POWER); |
| |
| iphy->protocol = SAS_PROTOCOL_SATA; |
| } |
| |
| /** |
| * sci_phy_complete_link_training - perform processing common to |
| * all protocols upon completion of link training. |
| * @sci_phy: This parameter specifies the phy object for which link training |
| * has completed. |
| * @max_link_rate: This parameter specifies the maximum link rate to be |
| * associated with this phy. |
| * @next_state: This parameter specifies the next state for the phy's starting |
| * sub-state machine. |
| * |
| */ |
| static void sci_phy_complete_link_training(struct isci_phy *iphy, |
| enum sas_linkrate max_link_rate, |
| u32 next_state) |
| { |
| iphy->max_negotiated_speed = max_link_rate; |
| |
| sci_change_state(&iphy->sm, next_state); |
| } |
| |
| static const char *phy_event_name(u32 event_code) |
| { |
| switch (scu_get_event_code(event_code)) { |
| case SCU_EVENT_PORT_SELECTOR_DETECTED: |
| return "port selector"; |
| case SCU_EVENT_SENT_PORT_SELECTION: |
| return "port selection"; |
| case SCU_EVENT_HARD_RESET_TRANSMITTED: |
| return "tx hard reset"; |
| case SCU_EVENT_HARD_RESET_RECEIVED: |
| return "rx hard reset"; |
| case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT: |
| return "identify timeout"; |
| case SCU_EVENT_LINK_FAILURE: |
| return "link fail"; |
| case SCU_EVENT_SATA_SPINUP_HOLD: |
| return "sata spinup hold"; |
| case SCU_EVENT_SAS_15_SSC: |
| case SCU_EVENT_SAS_15: |
| return "sas 1.5"; |
| case SCU_EVENT_SAS_30_SSC: |
| case SCU_EVENT_SAS_30: |
| return "sas 3.0"; |
| case SCU_EVENT_SAS_60_SSC: |
| case SCU_EVENT_SAS_60: |
| return "sas 6.0"; |
| case SCU_EVENT_SATA_15_SSC: |
| case SCU_EVENT_SATA_15: |
| return "sata 1.5"; |
| case SCU_EVENT_SATA_30_SSC: |
| case SCU_EVENT_SATA_30: |
| return "sata 3.0"; |
| case SCU_EVENT_SATA_60_SSC: |
| case SCU_EVENT_SATA_60: |
| return "sata 6.0"; |
| case SCU_EVENT_SAS_PHY_DETECTED: |
| return "sas detect"; |
| case SCU_EVENT_SATA_PHY_DETECTED: |
| return "sata detect"; |
| default: |
| return "unknown"; |
| } |
| } |
| |
| #define phy_event_dbg(iphy, state, code) \ |
| dev_dbg(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \ |
| phy_to_host(iphy)->id, iphy->phy_index, \ |
| phy_state_name(state), phy_event_name(code), code) |
| |
| #define phy_event_warn(iphy, state, code) \ |
| dev_warn(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \ |
| phy_to_host(iphy)->id, iphy->phy_index, \ |
| phy_state_name(state), phy_event_name(code), code) |
| |
| |
| void scu_link_layer_set_txcomsas_timeout(struct isci_phy *iphy, u32 timeout) |
| { |
| u32 val; |
| |
| /* Extend timeout */ |
| val = readl(&iphy->link_layer_registers->transmit_comsas_signal); |
| val &= ~SCU_SAS_LLTXCOMSAS_GEN_VAL(NEGTIME, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_MASK); |
| val |= SCU_SAS_LLTXCOMSAS_GEN_VAL(NEGTIME, timeout); |
| |
| writel(val, &iphy->link_layer_registers->transmit_comsas_signal); |
| } |
| |
| enum sci_status sci_phy_event_handler(struct isci_phy *iphy, u32 event_code) |
| { |
| enum sci_phy_states state = iphy->sm.current_state_id; |
| |
| switch (state) { |
| case SCI_PHY_SUB_AWAIT_OSSP_EN: |
| switch (scu_get_event_code(event_code)) { |
| case SCU_EVENT_SAS_PHY_DETECTED: |
| sci_phy_start_sas_link_training(iphy); |
| iphy->is_in_link_training = true; |
| break; |
| case SCU_EVENT_SATA_SPINUP_HOLD: |
| sci_phy_start_sata_link_training(iphy); |
| iphy->is_in_link_training = true; |
| break; |
| case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT: |
| /* Extend timeout value */ |
| scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED); |
| |
| /* Start the oob/sn state machine over again */ |
| sci_change_state(&iphy->sm, SCI_PHY_STARTING); |
| break; |
| default: |
| phy_event_dbg(iphy, state, event_code); |
| return SCI_FAILURE; |
| } |
| return SCI_SUCCESS; |
| case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN: |
| switch (scu_get_event_code(event_code)) { |
| case SCU_EVENT_SAS_PHY_DETECTED: |
| /* |
| * Why is this being reported again by the controller? |
| * We would re-enter this state so just stay here */ |
| break; |
| case SCU_EVENT_SAS_15: |
| case SCU_EVENT_SAS_15_SSC: |
| sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS, |
| SCI_PHY_SUB_AWAIT_IAF_UF); |
| break; |
| case SCU_EVENT_SAS_30: |
| case SCU_EVENT_SAS_30_SSC: |
| sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS, |
| SCI_PHY_SUB_AWAIT_IAF_UF); |
| break; |
| case SCU_EVENT_SAS_60: |
| case SCU_EVENT_SAS_60_SSC: |
| sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS, |
| SCI_PHY_SUB_AWAIT_IAF_UF); |
| break; |
| case SCU_EVENT_SATA_SPINUP_HOLD: |
| /* |
| * We were doing SAS PHY link training and received a SATA PHY event |
| * continue OOB/SN as if this were a SATA PHY */ |
| sci_phy_start_sata_link_training(iphy); |
| break; |
| case SCU_EVENT_LINK_FAILURE: |
| /* Change the timeout value to default */ |
| scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT); |
| |
| /* Link failure change state back to the starting state */ |
| sci_change_state(&iphy->sm, SCI_PHY_STARTING); |
| break; |
| case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT: |
| /* Extend the timeout value */ |
| scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED); |
| |
| /* Start the oob/sn state machine over again */ |
| sci_change_state(&iphy->sm, SCI_PHY_STARTING); |
| break; |
| default: |
| phy_event_warn(iphy, state, event_code); |
| return SCI_FAILURE; |
| break; |
| } |
| return SCI_SUCCESS; |
| case SCI_PHY_SUB_AWAIT_IAF_UF: |
| switch (scu_get_event_code(event_code)) { |
| case SCU_EVENT_SAS_PHY_DETECTED: |
| /* Backup the state machine */ |
| sci_phy_start_sas_link_training(iphy); |
| break; |
| case SCU_EVENT_SATA_SPINUP_HOLD: |
| /* We were doing SAS PHY link training and received a |
| * SATA PHY event continue OOB/SN as if this were a |
| * SATA PHY |
| */ |
| sci_phy_start_sata_link_training(iphy); |
| break; |
| case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT: |
| /* Extend the timeout value */ |
| scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED); |
| |
| /* Start the oob/sn state machine over again */ |
| sci_change_state(&iphy->sm, SCI_PHY_STARTING); |
| break; |
| case SCU_EVENT_LINK_FAILURE: |
| scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT); |
| case SCU_EVENT_HARD_RESET_RECEIVED: |
| /* Start the oob/sn state machine over again */ |
| sci_change_state(&iphy->sm, SCI_PHY_STARTING); |
| break; |
| default: |
| phy_event_warn(iphy, state, event_code); |
| return SCI_FAILURE; |
| } |
| return SCI_SUCCESS; |
| case SCI_PHY_SUB_AWAIT_SAS_POWER: |
| switch (scu_get_event_code(event_code)) { |
| case SCU_EVENT_LINK_FAILURE: |
| /* Change the timeout value to default */ |
| scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT); |
| |
| /* Link failure change state back to the starting state */ |
| sci_change_state(&iphy->sm, SCI_PHY_STARTING); |
| break; |
| default: |
| phy_event_warn(iphy, state, event_code); |
| return SCI_FAILURE; |
| } |
| return SCI_SUCCESS; |
| case SCI_PHY_SUB_AWAIT_SATA_POWER: |
| switch (scu_get_event_code(event_code)) { |
| case SCU_EVENT_LINK_FAILURE: |
| /* Change the timeout value to default */ |
| scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT); |
| |
| /* Link failure change state back to the starting state */ |
| sci_change_state(&iphy->sm, SCI_PHY_STARTING); |
| break; |
| case SCU_EVENT_SATA_SPINUP_HOLD: |
| /* These events are received every 10ms and are |
| * expected while in this state |
| */ |
| break; |
| |
| case SCU_EVENT_SAS_PHY_DETECTED: |
| /* There has been a change in the phy type before OOB/SN for the |
| * SATA finished start down the SAS link traning path. |
| */ |
| sci_phy_start_sas_link_training(iphy); |
| break; |
| |
| default: |
| phy_event_warn(iphy, state, event_code); |
| return SCI_FAILURE; |
| } |
| return SCI_SUCCESS; |
| case SCI_PHY_SUB_AWAIT_SATA_PHY_EN: |
| switch (scu_get_event_code(event_code)) { |
| case SCU_EVENT_LINK_FAILURE: |
| /* Change the timeout value to default */ |
| scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT); |
| |
| /* Link failure change state back to the starting state */ |
| sci_change_state(&iphy->sm, SCI_PHY_STARTING); |
| break; |
| case SCU_EVENT_SATA_SPINUP_HOLD: |
| /* These events might be received since we dont know how many may be in |
| * the completion queue while waiting for power |
| */ |
| break; |
| case SCU_EVENT_SATA_PHY_DETECTED: |
| iphy->protocol = SAS_PROTOCOL_SATA; |
| |
| /* We have received the SATA PHY notification change state */ |
| sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN); |
| break; |
| case SCU_EVENT_SAS_PHY_DETECTED: |
| /* There has been a change in the phy type before OOB/SN for the |
| * SATA finished start down the SAS link traning path. |
| */ |
| sci_phy_start_sas_link_training(iphy); |
| break; |
| default: |
| phy_event_warn(iphy, state, event_code); |
| return SCI_FAILURE; |
| } |
| return SCI_SUCCESS; |
| case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN: |
| switch (scu_get_event_code(event_code)) { |
| case SCU_EVENT_SATA_PHY_DETECTED: |
| /* |
| * The hardware reports multiple SATA PHY detected events |
| * ignore the extras */ |
| break; |
| case SCU_EVENT_SATA_15: |
| case SCU_EVENT_SATA_15_SSC: |
| sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS, |
| SCI_PHY_SUB_AWAIT_SIG_FIS_UF); |
| break; |
| case SCU_EVENT_SATA_30: |
| case SCU_EVENT_SATA_30_SSC: |
| sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS, |
| SCI_PHY_SUB_AWAIT_SIG_FIS_UF); |
| break; |
| case SCU_EVENT_SATA_60: |
| case SCU_EVENT_SATA_60_SSC: |
| sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS, |
| SCI_PHY_SUB_AWAIT_SIG_FIS_UF); |
| break; |
| case SCU_EVENT_LINK_FAILURE: |
| /* Change the timeout value to default */ |
| scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT); |
| |
| /* Link failure change state back to the starting state */ |
| sci_change_state(&iphy->sm, SCI_PHY_STARTING); |
| break; |
| case SCU_EVENT_SAS_PHY_DETECTED: |
| /* |
| * There has been a change in the phy type before OOB/SN for the |
| * SATA finished start down the SAS link traning path. */ |
| sci_phy_start_sas_link_training(iphy); |
| break; |
| default: |
| phy_event_warn(iphy, state, event_code); |
| return SCI_FAILURE; |
| } |
| |
| return SCI_SUCCESS; |
| case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: |
| switch (scu_get_event_code(event_code)) { |
| case SCU_EVENT_SATA_PHY_DETECTED: |
| /* Backup the state machine */ |
| sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN); |
| break; |
| |
| case SCU_EVENT_LINK_FAILURE: |
| /* Change the timeout value to default */ |
| scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT); |
| |
| /* Link failure change state back to the starting state */ |
| sci_change_state(&iphy->sm, SCI_PHY_STARTING); |
| break; |
| |
| default: |
| phy_event_warn(iphy, state, event_code); |
| return SCI_FAILURE; |
| } |
| return SCI_SUCCESS; |
| case SCI_PHY_READY: |
| switch (scu_get_event_code(event_code)) { |
| case SCU_EVENT_LINK_FAILURE: |
| /* Set default timeout */ |
| scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT); |
| |
| /* Link failure change state back to the starting state */ |
| sci_change_state(&iphy->sm, SCI_PHY_STARTING); |
| break; |
| case SCU_EVENT_BROADCAST_CHANGE: |
| case SCU_EVENT_BROADCAST_SES: |
| case SCU_EVENT_BROADCAST_RESERVED0: |
| case SCU_EVENT_BROADCAST_RESERVED1: |
| case SCU_EVENT_BROADCAST_EXPANDER: |
| case SCU_EVENT_BROADCAST_AEN: |
| /* Broadcast change received. Notify the port. */ |
| if (phy_get_non_dummy_port(iphy) != NULL) |
| sci_port_broadcast_change_received(iphy->owning_port, iphy); |
| else |
| iphy->bcn_received_while_port_unassigned = true; |
| break; |
| case SCU_EVENT_BROADCAST_RESERVED3: |
| case SCU_EVENT_BROADCAST_RESERVED4: |
| default: |
| phy_event_warn(iphy, state, event_code); |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| return SCI_SUCCESS; |
| case SCI_PHY_RESETTING: |
| switch (scu_get_event_code(event_code)) { |
| case SCU_EVENT_HARD_RESET_TRANSMITTED: |
| /* Link failure change state back to the starting state */ |
| sci_change_state(&iphy->sm, SCI_PHY_STARTING); |
| break; |
| default: |
| phy_event_warn(iphy, state, event_code); |
| return SCI_FAILURE_INVALID_STATE; |
| break; |
| } |
| return SCI_SUCCESS; |
| default: |
| dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n", |
| __func__, phy_state_name(state)); |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| } |
| |
| enum sci_status sci_phy_frame_handler(struct isci_phy *iphy, u32 frame_index) |
| { |
| enum sci_phy_states state = iphy->sm.current_state_id; |
| struct isci_host *ihost = iphy->owning_port->owning_controller; |
| enum sci_status result; |
| unsigned long flags; |
| |
| switch (state) { |
| case SCI_PHY_SUB_AWAIT_IAF_UF: { |
| u32 *frame_words; |
| struct sas_identify_frame iaf; |
| |
| result = sci_unsolicited_frame_control_get_header(&ihost->uf_control, |
| frame_index, |
| (void **)&frame_words); |
| |
| if (result != SCI_SUCCESS) |
| return result; |
| |
| sci_swab32_cpy(&iaf, frame_words, sizeof(iaf) / sizeof(u32)); |
| if (iaf.frame_type == 0) { |
| u32 state; |
| |
| spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags); |
| memcpy(&iphy->frame_rcvd.iaf, &iaf, sizeof(iaf)); |
| spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags); |
| if (iaf.smp_tport) { |
| /* We got the IAF for an expander PHY go to the final |
| * state since there are no power requirements for |
| * expander phys. |
| */ |
| state = SCI_PHY_SUB_FINAL; |
| } else { |
| /* We got the IAF we can now go to the await spinup |
| * semaphore state |
| */ |
| state = SCI_PHY_SUB_AWAIT_SAS_POWER; |
| } |
| sci_change_state(&iphy->sm, state); |
| result = SCI_SUCCESS; |
| } else |
| dev_warn(sciphy_to_dev(iphy), |
| "%s: PHY starting substate machine received " |
| "unexpected frame id %x\n", |
| __func__, frame_index); |
| |
| sci_controller_release_frame(ihost, frame_index); |
| return result; |
| } |
| case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: { |
| struct dev_to_host_fis *frame_header; |
| u32 *fis_frame_data; |
| |
| result = sci_unsolicited_frame_control_get_header(&ihost->uf_control, |
| frame_index, |
| (void **)&frame_header); |
| |
| if (result != SCI_SUCCESS) |
| return result; |
| |
| if ((frame_header->fis_type == FIS_REGD2H) && |
| !(frame_header->status & ATA_BUSY)) { |
| sci_unsolicited_frame_control_get_buffer(&ihost->uf_control, |
| frame_index, |
| (void **)&fis_frame_data); |
| |
| spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags); |
| sci_controller_copy_sata_response(&iphy->frame_rcvd.fis, |
| frame_header, |
| fis_frame_data); |
| spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags); |
| |
| /* got IAF we can now go to the await spinup semaphore state */ |
| sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL); |
| |
| result = SCI_SUCCESS; |
| } else |
| dev_warn(sciphy_to_dev(iphy), |
| "%s: PHY starting substate machine received " |
| "unexpected frame id %x\n", |
| __func__, frame_index); |
| |
| /* Regardless of the result we are done with this frame with it */ |
| sci_controller_release_frame(ihost, frame_index); |
| |
| return result; |
| } |
| default: |
| dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n", |
| __func__, phy_state_name(state)); |
| return SCI_FAILURE_INVALID_STATE; |
| } |
| |
| } |
| |
| static void sci_phy_starting_initial_substate_enter(struct sci_base_state_machine *sm) |
| { |
| struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); |
| |
| /* This is just an temporary state go off to the starting state */ |
| sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_OSSP_EN); |
| } |
| |
| static void sci_phy_starting_await_sas_power_substate_enter(struct sci_base_state_machine *sm) |
| { |
| struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); |
| struct isci_host *ihost = iphy->owning_port->owning_controller; |
| |
| sci_controller_power_control_queue_insert(ihost, iphy); |
| } |
| |
| static void sci_phy_starting_await_sas_power_substate_exit(struct sci_base_state_machine *sm) |
| { |
| struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); |
| struct isci_host *ihost = iphy->owning_port->owning_controller; |
| |
| sci_controller_power_control_queue_remove(ihost, iphy); |
| } |
| |
| static void sci_phy_starting_await_sata_power_substate_enter(struct sci_base_state_machine *sm) |
| { |
| struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); |
| struct isci_host *ihost = iphy->owning_port->owning_controller; |
| |
| sci_controller_power_control_queue_insert(ihost, iphy); |
| } |
| |
| static void sci_phy_starting_await_sata_power_substate_exit(struct sci_base_state_machine *sm) |
| { |
| struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); |
| struct isci_host *ihost = iphy->owning_port->owning_controller; |
| |
| sci_controller_power_control_queue_remove(ihost, iphy); |
| } |
| |
| static void sci_phy_starting_await_sata_phy_substate_enter(struct sci_base_state_machine *sm) |
| { |
| struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); |
| |
| sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT); |
| } |
| |
| static void sci_phy_starting_await_sata_phy_substate_exit(struct sci_base_state_machine *sm) |
| { |
| struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); |
| |
| sci_del_timer(&iphy->sata_timer); |
| } |
| |
| static void sci_phy_starting_await_sata_speed_substate_enter(struct sci_base_state_machine *sm) |
| { |
| struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); |
| |
| sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT); |
| } |
| |
| static void sci_phy_starting_await_sata_speed_substate_exit(struct sci_base_state_machine *sm) |
| { |
| struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); |
| |
| sci_del_timer(&iphy->sata_timer); |
| } |
| |
| static void sci_phy_starting_await_sig_fis_uf_substate_enter(struct sci_base_state_machine *sm) |
| { |
| struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); |
| |
| if (sci_port_link_detected(iphy->owning_port, iphy)) { |
| |
| /* |
| * Clear the PE suspend condition so we can actually |
| * receive SIG FIS |
| * The hardware will not respond to the XRDY until the PE |
| * suspend condition is cleared. |
| */ |
| sci_phy_resume(iphy); |
| |
| sci_mod_timer(&iphy->sata_timer, |
| SCIC_SDS_SIGNATURE_FIS_TIMEOUT); |
| } else |
| iphy->is_in_link_training = false; |
| } |
| |
| static void sci_phy_starting_await_sig_fis_uf_substate_exit(struct sci_base_state_machine *sm) |
| { |
| struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); |
| |
| sci_del_timer(&iphy->sata_timer); |
| } |
| |
| static void sci_phy_starting_final_substate_enter(struct sci_base_state_machine *sm) |
| { |
| struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); |
| |
| /* State machine has run to completion so exit out and change |
| * the base state machine to the ready state |
| */ |
| sci_change_state(&iphy->sm, SCI_PHY_READY); |
| } |
| |
| /** |
| * |
| * @sci_phy: This is the struct isci_phy object to stop. |
| * |
| * This method will stop the struct isci_phy object. This does not reset the |
| * protocol engine it just suspends it and places it in a state where it will |
| * not cause the end device to power up. none |
| */ |
| static void scu_link_layer_stop_protocol_engine( |
| struct isci_phy *iphy) |
| { |
| u32 scu_sas_pcfg_value; |
| u32 enable_spinup_value; |
| |
| /* Suspend the protocol engine and place it in a sata spinup hold state */ |
| scu_sas_pcfg_value = |
| readl(&iphy->link_layer_registers->phy_configuration); |
| scu_sas_pcfg_value |= |
| (SCU_SAS_PCFG_GEN_BIT(OOB_RESET) | |
| SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE) | |
| SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD)); |
| writel(scu_sas_pcfg_value, |
| &iphy->link_layer_registers->phy_configuration); |
| |
| /* Disable the notify enable spinup primitives */ |
| enable_spinup_value = readl(&iphy->link_layer_registers->notify_enable_spinup_control); |
| enable_spinup_value &= ~SCU_ENSPINUP_GEN_BIT(ENABLE); |
| writel(enable_spinup_value, &iphy->link_layer_registers->notify_enable_spinup_control); |
| } |
| |
| static void scu_link_layer_start_oob(struct isci_phy *iphy) |
| { |
| struct scu_link_layer_registers __iomem *ll = iphy->link_layer_registers; |
| u32 val; |
| |
| /** Reset OOB sequence - start */ |
| val = readl(&ll->phy_configuration); |
| val &= ~(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) | |
| SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE) | |
| SCU_SAS_PCFG_GEN_BIT(HARD_RESET)); |
| writel(val, &ll->phy_configuration); |
| readl(&ll->phy_configuration); /* flush */ |
| /** Reset OOB sequence - end */ |
| |
| /** Start OOB sequence - start */ |
| val = readl(&ll->phy_configuration); |
| val |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE); |
| writel(val, &ll->phy_configuration); |
| readl(&ll->phy_configuration); /* flush */ |
| /** Start OOB sequence - end */ |
| } |
| |
| /** |
| * |
| * |
| * This method will transmit a hard reset request on the specified phy. The SCU |
| * hardware requires that we reset the OOB state machine and set the hard reset |
| * bit in the phy configuration register. We then must start OOB over with the |
| * hard reset bit set. |
| */ |
| static void scu_link_layer_tx_hard_reset( |
| struct isci_phy *iphy) |
| { |
| u32 phy_configuration_value; |
| |
| /* |
| * SAS Phys must wait for the HARD_RESET_TX event notification to transition |
| * to the starting state. */ |
| phy_configuration_value = |
| readl(&iphy->link_layer_registers->phy_configuration); |
| phy_configuration_value &= ~(SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE)); |
| phy_configuration_value |= |
| (SCU_SAS_PCFG_GEN_BIT(HARD_RESET) | |
| SCU_SAS_PCFG_GEN_BIT(OOB_RESET)); |
| writel(phy_configuration_value, |
| &iphy->link_layer_registers->phy_configuration); |
| |
| /* Now take the OOB state machine out of reset */ |
| phy_configuration_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE); |
| phy_configuration_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET); |
| writel(phy_configuration_value, |
| &iphy->link_layer_registers->phy_configuration); |
| } |
| |
| static void sci_phy_stopped_state_enter(struct sci_base_state_machine *sm) |
| { |
| struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); |
| struct isci_port *iport = iphy->owning_port; |
| struct isci_host *ihost = iport->owning_controller; |
| |
| /* |
| * @todo We need to get to the controller to place this PE in a |
| * reset state |
| */ |
| sci_del_timer(&iphy->sata_timer); |
| |
| scu_link_layer_stop_protocol_engine(iphy); |
| |
| if (iphy->sm.previous_state_id != SCI_PHY_INITIAL) |
| sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy); |
| } |
| |
| static void sci_phy_starting_state_enter(struct sci_base_state_machine *sm) |
| { |
| struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); |
| struct isci_port *iport = iphy->owning_port; |
| struct isci_host *ihost = iport->owning_controller; |
| |
| scu_link_layer_stop_protocol_engine(iphy); |
| scu_link_layer_start_oob(iphy); |
| |
| /* We don't know what kind of phy we are going to be just yet */ |
| iphy->protocol = SAS_PROTOCOL_NONE; |
| iphy->bcn_received_while_port_unassigned = false; |
| |
| if (iphy->sm.previous_state_id == SCI_PHY_READY) |
| sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy); |
| |
| sci_change_state(&iphy->sm, SCI_PHY_SUB_INITIAL); |
| } |
| |
| static void sci_phy_ready_state_enter(struct sci_base_state_machine *sm) |
| { |
| struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); |
| struct isci_port *iport = iphy->owning_port; |
| struct isci_host *ihost = iport->owning_controller; |
| |
| sci_controller_link_up(ihost, phy_get_non_dummy_port(iphy), iphy); |
| } |
| |
| static void sci_phy_ready_state_exit(struct sci_base_state_machine *sm) |
| { |
| struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); |
| |
| sci_phy_suspend(iphy); |
| } |
| |
| static void sci_phy_resetting_state_enter(struct sci_base_state_machine *sm) |
| { |
| struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm); |
| |
| /* The phy is being reset, therefore deactivate it from the port. In |
| * the resetting state we don't notify the user regarding link up and |
| * link down notifications |
| */ |
| sci_port_deactivate_phy(iphy->owning_port, iphy, false); |
| |
| if (iphy->protocol == SAS_PROTOCOL_SSP) { |
| scu_link_layer_tx_hard_reset(iphy); |
| } else { |
| /* The SCU does not need to have a discrete reset state so |
| * just go back to the starting state. |
| */ |
| sci_change_state(&iphy->sm, SCI_PHY_STARTING); |
| } |
| } |
| |
| static const struct sci_base_state sci_phy_state_table[] = { |
| [SCI_PHY_INITIAL] = { }, |
| [SCI_PHY_STOPPED] = { |
| .enter_state = sci_phy_stopped_state_enter, |
| }, |
| [SCI_PHY_STARTING] = { |
| .enter_state = sci_phy_starting_state_enter, |
| }, |
| [SCI_PHY_SUB_INITIAL] = { |
| .enter_state = sci_phy_starting_initial_substate_enter, |
| }, |
| [SCI_PHY_SUB_AWAIT_OSSP_EN] = { }, |
| [SCI_PHY_SUB_AWAIT_SAS_SPEED_EN] = { }, |
| [SCI_PHY_SUB_AWAIT_IAF_UF] = { }, |
| [SCI_PHY_SUB_AWAIT_SAS_POWER] = { |
| .enter_state = sci_phy_starting_await_sas_power_substate_enter, |
| .exit_state = sci_phy_starting_await_sas_power_substate_exit, |
| }, |
| [SCI_PHY_SUB_AWAIT_SATA_POWER] = { |
| .enter_state = sci_phy_starting_await_sata_power_substate_enter, |
| .exit_state = sci_phy_starting_await_sata_power_substate_exit |
| }, |
| [SCI_PHY_SUB_AWAIT_SATA_PHY_EN] = { |
| .enter_state = sci_phy_starting_await_sata_phy_substate_enter, |
| .exit_state = sci_phy_starting_await_sata_phy_substate_exit |
| }, |
| [SCI_PHY_SUB_AWAIT_SATA_SPEED_EN] = { |
| .enter_state = sci_phy_starting_await_sata_speed_substate_enter, |
| .exit_state = sci_phy_starting_await_sata_speed_substate_exit |
| }, |
| [SCI_PHY_SUB_AWAIT_SIG_FIS_UF] = { |
| .enter_state = sci_phy_starting_await_sig_fis_uf_substate_enter, |
| .exit_state = sci_phy_starting_await_sig_fis_uf_substate_exit |
| }, |
| [SCI_PHY_SUB_FINAL] = { |
| .enter_state = sci_phy_starting_final_substate_enter, |
| }, |
| [SCI_PHY_READY] = { |
| .enter_state = sci_phy_ready_state_enter, |
| .exit_state = sci_phy_ready_state_exit, |
| }, |
| [SCI_PHY_RESETTING] = { |
| .enter_state = sci_phy_resetting_state_enter, |
| }, |
| [SCI_PHY_FINAL] = { }, |
| }; |
| |
| void sci_phy_construct(struct isci_phy *iphy, |
| struct isci_port *iport, u8 phy_index) |
| { |
| sci_init_sm(&iphy->sm, sci_phy_state_table, SCI_PHY_INITIAL); |
| |
| /* Copy the rest of the input data to our locals */ |
| iphy->owning_port = iport; |
| iphy->phy_index = phy_index; |
| iphy->bcn_received_while_port_unassigned = false; |
| iphy->protocol = SAS_PROTOCOL_NONE; |
| iphy->link_layer_registers = NULL; |
| iphy->max_negotiated_speed = SAS_LINK_RATE_UNKNOWN; |
| |
| /* Create the SIGNATURE FIS Timeout timer for this phy */ |
| sci_init_timer(&iphy->sata_timer, phy_sata_timeout); |
| } |
| |
| void isci_phy_init(struct isci_phy *iphy, struct isci_host *ihost, int index) |
| { |
| struct sci_oem_params *oem = &ihost->oem_parameters; |
| u64 sci_sas_addr; |
| __be64 sas_addr; |
| |
| sci_sas_addr = oem->phys[index].sas_address.high; |
| sci_sas_addr <<= 32; |
| sci_sas_addr |= oem->phys[index].sas_address.low; |
| sas_addr = cpu_to_be64(sci_sas_addr); |
| memcpy(iphy->sas_addr, &sas_addr, sizeof(sas_addr)); |
| |
| iphy->sas_phy.enabled = 0; |
| iphy->sas_phy.id = index; |
| iphy->sas_phy.sas_addr = &iphy->sas_addr[0]; |
| iphy->sas_phy.frame_rcvd = (u8 *)&iphy->frame_rcvd; |
| iphy->sas_phy.ha = &ihost->sas_ha; |
| iphy->sas_phy.lldd_phy = iphy; |
| iphy->sas_phy.enabled = 1; |
| iphy->sas_phy.class = SAS; |
| iphy->sas_phy.iproto = SAS_PROTOCOL_ALL; |
| iphy->sas_phy.tproto = 0; |
| iphy->sas_phy.type = PHY_TYPE_PHYSICAL; |
| iphy->sas_phy.role = PHY_ROLE_INITIATOR; |
| iphy->sas_phy.oob_mode = OOB_NOT_CONNECTED; |
| iphy->sas_phy.linkrate = SAS_LINK_RATE_UNKNOWN; |
| memset(&iphy->frame_rcvd, 0, sizeof(iphy->frame_rcvd)); |
| } |
| |
| |
| /** |
| * isci_phy_control() - This function is one of the SAS Domain Template |
| * functions. This is a phy management function. |
| * @phy: This parameter specifies the sphy being controlled. |
| * @func: This parameter specifies the phy control function being invoked. |
| * @buf: This parameter is specific to the phy function being invoked. |
| * |
| * status, zero indicates success. |
| */ |
| int isci_phy_control(struct asd_sas_phy *sas_phy, |
| enum phy_func func, |
| void *buf) |
| { |
| int ret = 0; |
| struct isci_phy *iphy = sas_phy->lldd_phy; |
| struct asd_sas_port *port = sas_phy->port; |
| struct isci_host *ihost = sas_phy->ha->lldd_ha; |
| unsigned long flags; |
| |
| dev_dbg(&ihost->pdev->dev, |
| "%s: phy %p; func %d; buf %p; isci phy %p, port %p\n", |
| __func__, sas_phy, func, buf, iphy, port); |
| |
| switch (func) { |
| case PHY_FUNC_DISABLE: |
| spin_lock_irqsave(&ihost->scic_lock, flags); |
| scu_link_layer_start_oob(iphy); |
| sci_phy_stop(iphy); |
| spin_unlock_irqrestore(&ihost->scic_lock, flags); |
| break; |
| |
| case PHY_FUNC_LINK_RESET: |
| spin_lock_irqsave(&ihost->scic_lock, flags); |
| scu_link_layer_start_oob(iphy); |
| sci_phy_stop(iphy); |
| sci_phy_start(iphy); |
| spin_unlock_irqrestore(&ihost->scic_lock, flags); |
| break; |
| |
| case PHY_FUNC_HARD_RESET: |
| if (!port) |
| return -ENODEV; |
| |
| ret = isci_port_perform_hard_reset(ihost, port->lldd_port, iphy); |
| |
| break; |
| case PHY_FUNC_GET_EVENTS: { |
| struct scu_link_layer_registers __iomem *r; |
| struct sas_phy *phy = sas_phy->phy; |
| |
| r = iphy->link_layer_registers; |
| phy->running_disparity_error_count = readl(&r->running_disparity_error_count); |
| phy->loss_of_dword_sync_count = readl(&r->loss_of_sync_error_count); |
| phy->phy_reset_problem_count = readl(&r->phy_reset_problem_count); |
| phy->invalid_dword_count = readl(&r->invalid_dword_counter); |
| break; |
| } |
| |
| default: |
| dev_dbg(&ihost->pdev->dev, |
| "%s: phy %p; func %d NOT IMPLEMENTED!\n", |
| __func__, sas_phy, func); |
| ret = -ENOSYS; |
| break; |
| } |
| return ret; |
| } |