| // SPDX-License-Identifier: GPL-2.0 |
| #include <linux/mm.h> |
| #include <linux/gfp.h> |
| #include <linux/kernel.h> |
| |
| #include <asm/mce.h> |
| |
| #include "debugfs.h" |
| |
| /* |
| * RAS Correctable Errors Collector |
| * |
| * This is a simple gadget which collects correctable errors and counts their |
| * occurrence per physical page address. |
| * |
| * We've opted for possibly the simplest data structure to collect those - an |
| * array of the size of a memory page. It stores 512 u64's with the following |
| * structure: |
| * |
| * [63 ... PFN ... 12 | 11 ... generation ... 10 | 9 ... count ... 0] |
| * |
| * The generation in the two highest order bits is two bits which are set to 11b |
| * on every insertion. During the course of each entry's existence, the |
| * generation field gets decremented during spring cleaning to 10b, then 01b and |
| * then 00b. |
| * |
| * This way we're employing the natural numeric ordering to make sure that newly |
| * inserted/touched elements have higher 12-bit counts (which we've manufactured) |
| * and thus iterating over the array initially won't kick out those elements |
| * which were inserted last. |
| * |
| * Spring cleaning is what we do when we reach a certain number CLEAN_ELEMS of |
| * elements entered into the array, during which, we're decaying all elements. |
| * If, after decay, an element gets inserted again, its generation is set to 11b |
| * to make sure it has higher numerical count than other, older elements and |
| * thus emulate an an LRU-like behavior when deleting elements to free up space |
| * in the page. |
| * |
| * When an element reaches it's max count of count_threshold, we try to poison |
| * it by assuming that errors triggered count_threshold times in a single page |
| * are excessive and that page shouldn't be used anymore. count_threshold is |
| * initialized to COUNT_MASK which is the maximum. |
| * |
| * That error event entry causes cec_add_elem() to return !0 value and thus |
| * signal to its callers to log the error. |
| * |
| * To the question why we've chosen a page and moving elements around with |
| * memmove(), it is because it is a very simple structure to handle and max data |
| * movement is 4K which on highly optimized modern CPUs is almost unnoticeable. |
| * We wanted to avoid the pointer traversal of more complex structures like a |
| * linked list or some sort of a balancing search tree. |
| * |
| * Deleting an element takes O(n) but since it is only a single page, it should |
| * be fast enough and it shouldn't happen all too often depending on error |
| * patterns. |
| */ |
| |
| #undef pr_fmt |
| #define pr_fmt(fmt) "RAS: " fmt |
| |
| /* |
| * We use DECAY_BITS bits of PAGE_SHIFT bits for counting decay, i.e., how long |
| * elements have stayed in the array without having been accessed again. |
| */ |
| #define DECAY_BITS 2 |
| #define DECAY_MASK ((1ULL << DECAY_BITS) - 1) |
| #define MAX_ELEMS (PAGE_SIZE / sizeof(u64)) |
| |
| /* |
| * Threshold amount of inserted elements after which we start spring |
| * cleaning. |
| */ |
| #define CLEAN_ELEMS (MAX_ELEMS >> DECAY_BITS) |
| |
| /* Bits which count the number of errors happened in this 4K page. */ |
| #define COUNT_BITS (PAGE_SHIFT - DECAY_BITS) |
| #define COUNT_MASK ((1ULL << COUNT_BITS) - 1) |
| #define FULL_COUNT_MASK (PAGE_SIZE - 1) |
| |
| /* |
| * u64: [ 63 ... 12 | DECAY_BITS | COUNT_BITS ] |
| */ |
| |
| #define PFN(e) ((e) >> PAGE_SHIFT) |
| #define DECAY(e) (((e) >> COUNT_BITS) & DECAY_MASK) |
| #define COUNT(e) ((unsigned int)(e) & COUNT_MASK) |
| #define FULL_COUNT(e) ((e) & (PAGE_SIZE - 1)) |
| |
| static struct ce_array { |
| u64 *array; /* container page */ |
| unsigned int n; /* number of elements in the array */ |
| |
| unsigned int decay_count; /* |
| * number of element insertions/increments |
| * since the last spring cleaning. |
| */ |
| |
| u64 pfns_poisoned; /* |
| * number of PFNs which got poisoned. |
| */ |
| |
| u64 ces_entered; /* |
| * The number of correctable errors |
| * entered into the collector. |
| */ |
| |
| u64 decays_done; /* |
| * Times we did spring cleaning. |
| */ |
| |
| union { |
| struct { |
| __u32 disabled : 1, /* cmdline disabled */ |
| __resv : 31; |
| }; |
| __u32 flags; |
| }; |
| } ce_arr; |
| |
| static DEFINE_MUTEX(ce_mutex); |
| static u64 dfs_pfn; |
| |
| /* Amount of errors after which we offline */ |
| static unsigned int count_threshold = COUNT_MASK; |
| |
| /* |
| * The timer "decays" element count each timer_interval which is 24hrs by |
| * default. |
| */ |
| |
| #define CEC_TIMER_DEFAULT_INTERVAL 24 * 60 * 60 /* 24 hrs */ |
| #define CEC_TIMER_MIN_INTERVAL 1 * 60 * 60 /* 1h */ |
| #define CEC_TIMER_MAX_INTERVAL 30 * 24 * 60 * 60 /* one month */ |
| static struct timer_list cec_timer; |
| static u64 timer_interval = CEC_TIMER_DEFAULT_INTERVAL; |
| |
| /* |
| * Decrement decay value. We're using DECAY_BITS bits to denote decay of an |
| * element in the array. On insertion and any access, it gets reset to max. |
| */ |
| static void do_spring_cleaning(struct ce_array *ca) |
| { |
| int i; |
| |
| for (i = 0; i < ca->n; i++) { |
| u8 decay = DECAY(ca->array[i]); |
| |
| if (!decay) |
| continue; |
| |
| decay--; |
| |
| ca->array[i] &= ~(DECAY_MASK << COUNT_BITS); |
| ca->array[i] |= (decay << COUNT_BITS); |
| } |
| ca->decay_count = 0; |
| ca->decays_done++; |
| } |
| |
| /* |
| * @interval in seconds |
| */ |
| static void cec_mod_timer(struct timer_list *t, unsigned long interval) |
| { |
| unsigned long iv; |
| |
| iv = interval * HZ + jiffies; |
| |
| mod_timer(t, round_jiffies(iv)); |
| } |
| |
| static void cec_timer_fn(unsigned long data) |
| { |
| struct ce_array *ca = (struct ce_array *)data; |
| |
| do_spring_cleaning(ca); |
| |
| cec_mod_timer(&cec_timer, timer_interval); |
| } |
| |
| /* |
| * @to: index of the smallest element which is >= then @pfn. |
| * |
| * Return the index of the pfn if found, otherwise negative value. |
| */ |
| static int __find_elem(struct ce_array *ca, u64 pfn, unsigned int *to) |
| { |
| int min = 0, max = ca->n - 1; |
| u64 this_pfn; |
| |
| while (min <= max) { |
| int i = (min + max) >> 1; |
| |
| this_pfn = PFN(ca->array[i]); |
| |
| if (this_pfn < pfn) |
| min = i + 1; |
| else if (this_pfn > pfn) |
| max = i - 1; |
| else if (this_pfn == pfn) { |
| if (to) |
| *to = i; |
| |
| return i; |
| } |
| } |
| |
| /* |
| * When the loop terminates without finding @pfn, min has the index of |
| * the element slot where the new @pfn should be inserted. The loop |
| * terminates when min > max, which means the min index points to the |
| * bigger element while the max index to the smaller element, in-between |
| * which the new @pfn belongs to. |
| * |
| * For more details, see exercise 1, Section 6.2.1 in TAOCP, vol. 3. |
| */ |
| if (to) |
| *to = min; |
| |
| return -ENOKEY; |
| } |
| |
| static int find_elem(struct ce_array *ca, u64 pfn, unsigned int *to) |
| { |
| WARN_ON(!to); |
| |
| if (!ca->n) { |
| *to = 0; |
| return -ENOKEY; |
| } |
| return __find_elem(ca, pfn, to); |
| } |
| |
| static void del_elem(struct ce_array *ca, int idx) |
| { |
| /* Save us a function call when deleting the last element. */ |
| if (ca->n - (idx + 1)) |
| memmove((void *)&ca->array[idx], |
| (void *)&ca->array[idx + 1], |
| (ca->n - (idx + 1)) * sizeof(u64)); |
| |
| ca->n--; |
| } |
| |
| static u64 del_lru_elem_unlocked(struct ce_array *ca) |
| { |
| unsigned int min = FULL_COUNT_MASK; |
| int i, min_idx = 0; |
| |
| for (i = 0; i < ca->n; i++) { |
| unsigned int this = FULL_COUNT(ca->array[i]); |
| |
| if (min > this) { |
| min = this; |
| min_idx = i; |
| } |
| } |
| |
| del_elem(ca, min_idx); |
| |
| return PFN(ca->array[min_idx]); |
| } |
| |
| /* |
| * We return the 0th pfn in the error case under the assumption that it cannot |
| * be poisoned and excessive CEs in there are a serious deal anyway. |
| */ |
| static u64 __maybe_unused del_lru_elem(void) |
| { |
| struct ce_array *ca = &ce_arr; |
| u64 pfn; |
| |
| if (!ca->n) |
| return 0; |
| |
| mutex_lock(&ce_mutex); |
| pfn = del_lru_elem_unlocked(ca); |
| mutex_unlock(&ce_mutex); |
| |
| return pfn; |
| } |
| |
| |
| int cec_add_elem(u64 pfn) |
| { |
| struct ce_array *ca = &ce_arr; |
| unsigned int to; |
| int count, ret = 0; |
| |
| /* |
| * We can be called very early on the identify_cpu() path where we are |
| * not initialized yet. We ignore the error for simplicity. |
| */ |
| if (!ce_arr.array || ce_arr.disabled) |
| return -ENODEV; |
| |
| ca->ces_entered++; |
| |
| mutex_lock(&ce_mutex); |
| |
| if (ca->n == MAX_ELEMS) |
| WARN_ON(!del_lru_elem_unlocked(ca)); |
| |
| ret = find_elem(ca, pfn, &to); |
| if (ret < 0) { |
| /* |
| * Shift range [to-end] to make room for one more element. |
| */ |
| memmove((void *)&ca->array[to + 1], |
| (void *)&ca->array[to], |
| (ca->n - to) * sizeof(u64)); |
| |
| ca->array[to] = (pfn << PAGE_SHIFT) | |
| (DECAY_MASK << COUNT_BITS) | 1; |
| |
| ca->n++; |
| |
| ret = 0; |
| |
| goto decay; |
| } |
| |
| count = COUNT(ca->array[to]); |
| |
| if (count < count_threshold) { |
| ca->array[to] |= (DECAY_MASK << COUNT_BITS); |
| ca->array[to]++; |
| |
| ret = 0; |
| } else { |
| u64 pfn = ca->array[to] >> PAGE_SHIFT; |
| |
| if (!pfn_valid(pfn)) { |
| pr_warn("CEC: Invalid pfn: 0x%llx\n", pfn); |
| } else { |
| /* We have reached max count for this page, soft-offline it. */ |
| pr_err("Soft-offlining pfn: 0x%llx\n", pfn); |
| memory_failure_queue(pfn, 0, MF_SOFT_OFFLINE); |
| ca->pfns_poisoned++; |
| } |
| |
| del_elem(ca, to); |
| |
| /* |
| * Return a >0 value to denote that we've reached the offlining |
| * threshold. |
| */ |
| ret = 1; |
| |
| goto unlock; |
| } |
| |
| decay: |
| ca->decay_count++; |
| |
| if (ca->decay_count >= CLEAN_ELEMS) |
| do_spring_cleaning(ca); |
| |
| unlock: |
| mutex_unlock(&ce_mutex); |
| |
| return ret; |
| } |
| |
| static int u64_get(void *data, u64 *val) |
| { |
| *val = *(u64 *)data; |
| |
| return 0; |
| } |
| |
| static int pfn_set(void *data, u64 val) |
| { |
| *(u64 *)data = val; |
| |
| cec_add_elem(val); |
| |
| return 0; |
| } |
| |
| DEFINE_DEBUGFS_ATTRIBUTE(pfn_ops, u64_get, pfn_set, "0x%llx\n"); |
| |
| static int decay_interval_set(void *data, u64 val) |
| { |
| *(u64 *)data = val; |
| |
| if (val < CEC_TIMER_MIN_INTERVAL) |
| return -EINVAL; |
| |
| if (val > CEC_TIMER_MAX_INTERVAL) |
| return -EINVAL; |
| |
| timer_interval = val; |
| |
| cec_mod_timer(&cec_timer, timer_interval); |
| return 0; |
| } |
| DEFINE_DEBUGFS_ATTRIBUTE(decay_interval_ops, u64_get, decay_interval_set, "%lld\n"); |
| |
| static int count_threshold_set(void *data, u64 val) |
| { |
| *(u64 *)data = val; |
| |
| if (val > COUNT_MASK) |
| val = COUNT_MASK; |
| |
| count_threshold = val; |
| |
| return 0; |
| } |
| DEFINE_DEBUGFS_ATTRIBUTE(count_threshold_ops, u64_get, count_threshold_set, "%lld\n"); |
| |
| static int array_dump(struct seq_file *m, void *v) |
| { |
| struct ce_array *ca = &ce_arr; |
| u64 prev = 0; |
| int i; |
| |
| mutex_lock(&ce_mutex); |
| |
| seq_printf(m, "{ n: %d\n", ca->n); |
| for (i = 0; i < ca->n; i++) { |
| u64 this = PFN(ca->array[i]); |
| |
| seq_printf(m, " %03d: [%016llx|%03llx]\n", i, this, FULL_COUNT(ca->array[i])); |
| |
| WARN_ON(prev > this); |
| |
| prev = this; |
| } |
| |
| seq_printf(m, "}\n"); |
| |
| seq_printf(m, "Stats:\nCEs: %llu\nofflined pages: %llu\n", |
| ca->ces_entered, ca->pfns_poisoned); |
| |
| seq_printf(m, "Flags: 0x%x\n", ca->flags); |
| |
| seq_printf(m, "Timer interval: %lld seconds\n", timer_interval); |
| seq_printf(m, "Decays: %lld\n", ca->decays_done); |
| |
| seq_printf(m, "Action threshold: %d\n", count_threshold); |
| |
| mutex_unlock(&ce_mutex); |
| |
| return 0; |
| } |
| |
| static int array_open(struct inode *inode, struct file *filp) |
| { |
| return single_open(filp, array_dump, NULL); |
| } |
| |
| static const struct file_operations array_ops = { |
| .owner = THIS_MODULE, |
| .open = array_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static int __init create_debugfs_nodes(void) |
| { |
| struct dentry *d, *pfn, *decay, *count, *array; |
| |
| d = debugfs_create_dir("cec", ras_debugfs_dir); |
| if (!d) { |
| pr_warn("Error creating cec debugfs node!\n"); |
| return -1; |
| } |
| |
| pfn = debugfs_create_file("pfn", S_IRUSR | S_IWUSR, d, &dfs_pfn, &pfn_ops); |
| if (!pfn) { |
| pr_warn("Error creating pfn debugfs node!\n"); |
| goto err; |
| } |
| |
| array = debugfs_create_file("array", S_IRUSR, d, NULL, &array_ops); |
| if (!array) { |
| pr_warn("Error creating array debugfs node!\n"); |
| goto err; |
| } |
| |
| decay = debugfs_create_file("decay_interval", S_IRUSR | S_IWUSR, d, |
| &timer_interval, &decay_interval_ops); |
| if (!decay) { |
| pr_warn("Error creating decay_interval debugfs node!\n"); |
| goto err; |
| } |
| |
| count = debugfs_create_file("count_threshold", S_IRUSR | S_IWUSR, d, |
| &count_threshold, &count_threshold_ops); |
| if (!count) { |
| pr_warn("Error creating count_threshold debugfs node!\n"); |
| goto err; |
| } |
| |
| |
| return 0; |
| |
| err: |
| debugfs_remove_recursive(d); |
| |
| return 1; |
| } |
| |
| void __init cec_init(void) |
| { |
| if (ce_arr.disabled) |
| return; |
| |
| ce_arr.array = (void *)get_zeroed_page(GFP_KERNEL); |
| if (!ce_arr.array) { |
| pr_err("Error allocating CE array page!\n"); |
| return; |
| } |
| |
| if (create_debugfs_nodes()) |
| return; |
| |
| setup_timer(&cec_timer, cec_timer_fn, (unsigned long)&ce_arr); |
| cec_mod_timer(&cec_timer, CEC_TIMER_DEFAULT_INTERVAL); |
| |
| pr_info("Correctable Errors collector initialized.\n"); |
| } |
| |
| int __init parse_cec_param(char *str) |
| { |
| if (!str) |
| return 0; |
| |
| if (*str == '=') |
| str++; |
| |
| if (!strcmp(str, "cec_disable")) |
| ce_arr.disabled = 1; |
| else |
| return 0; |
| |
| return 1; |
| } |