blob: a6605ad84281e7b70d64dff2d2ee63a3534fdd2e [file] [log] [blame]
/*
* Copyright (C) 2016 Samsung Electronics. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include "fingerprint.h"
#include "et5xx.h"
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/poll.h>
#include <linux/sched.h>
#include <linux/irq.h>
#include <asm/irq.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/uaccess.h>
#include <linux/platform_device.h>
#include <linux/cdev.h>
#include <linux/miscdevice.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#ifdef ENABLE_SENSORS_FPRINT_SECURE
#include <linux/smc.h>
#endif
#include <linux/sysfs.h>
#include <linux/pinctrl/consumer.h>
#include "../pinctrl/core.h"
static DECLARE_BITMAP(minors, N_SPI_MINORS);
static LIST_HEAD(device_list);
static DEFINE_MUTEX(device_list_lock);
#ifdef ENABLE_SENSORS_FPRINT_SECURE
int fpsensor_goto_suspend =0;
#endif
static int gpio_irq;
static struct etspi_data *g_data;
static DECLARE_WAIT_QUEUE_HEAD(interrupt_waitq);
static unsigned int bufsiz = 1024;
module_param(bufsiz, uint, 0444);
MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
#if defined(ENABLE_SENSORS_FPRINT_SECURE)
int fps_resume_set(void) {
int ret =0;
if (fpsensor_goto_suspend) {
fpsensor_goto_suspend = 0;
#if !defined(CONFIG_TZDEV)
ret = exynos_smc(MC_FC_FP_PM_RESUME, 0, 0, 0);
pr_info("etspi %s : smc ret = %d\n", __func__, ret);
#endif
}
return ret;
}
#endif
static irqreturn_t etspi_fingerprint_interrupt(int irq, void *dev_id)
{
struct etspi_data *etspi = (struct etspi_data *)dev_id;
etspi->int_count++;
etspi->finger_on = 1;
disable_irq_nosync(gpio_irq);
wake_up_interruptible(&interrupt_waitq);
wake_lock_timeout(&etspi->fp_signal_lock, 1 * HZ);
pr_info("%s FPS triggered.int_count(%d) On(%d)\n", __func__,
etspi->int_count, etspi->finger_on);
etspi->interrupt_count++;
return IRQ_HANDLED;
}
int etspi_Interrupt_Init(
struct etspi_data *etspi,
int int_ctrl,
int detect_period,
int detect_threshold)
{
int status = 0;
etspi->finger_on = 0;
etspi->int_count = 0;
pr_info("%s int_ctrl = %d detect_period = %d detect_threshold = %d\n",
__func__,
int_ctrl,
detect_period,
detect_threshold);
etspi->detect_period = detect_period;
etspi->detect_threshold = detect_threshold;
gpio_irq = gpio_to_irq(etspi->drdyPin);
if (gpio_irq < 0) {
pr_err("%s gpio_to_irq failed\n", __func__);
status = gpio_irq;
goto done;
}
if (etspi->drdy_irq_flag == DRDY_IRQ_DISABLE) {
if (request_irq
(gpio_irq, etspi_fingerprint_interrupt
, int_ctrl, "etspi_irq", etspi) < 0) {
pr_err("%s drdy request_irq failed\n", __func__);
status = -EBUSY;
goto done;
} else {
enable_irq_wake(gpio_irq);
etspi->drdy_irq_flag = DRDY_IRQ_ENABLE;
}
}
done:
return status;
}
int etspi_Interrupt_Free(struct etspi_data *etspi)
{
pr_info("%s\n", __func__);
if (etspi != NULL) {
if (etspi->drdy_irq_flag == DRDY_IRQ_ENABLE) {
if (!etspi->int_count)
disable_irq_nosync(gpio_irq);
disable_irq_wake(gpio_irq);
free_irq(gpio_irq, etspi);
etspi->drdy_irq_flag = DRDY_IRQ_DISABLE;
}
etspi->finger_on = 0;
etspi->int_count = 0;
}
return 0;
}
void etspi_Interrupt_Abort(struct etspi_data *etspi)
{
etspi->finger_on = 1;
wake_up_interruptible(&interrupt_waitq);
}
unsigned int etspi_fps_interrupt_poll(
struct file *file,
struct poll_table_struct *wait)
{
unsigned int mask = 0;
struct etspi_data *etspi = file->private_data;
pr_debug("%s FPS fps_interrupt_poll, finger_on(%d), int_count(%d)\n",
__func__, etspi->finger_on, etspi->int_count);
if (!etspi->finger_on)
poll_wait(file, &interrupt_waitq, wait);
if (etspi->finger_on) {
mask |= POLLIN | POLLRDNORM;
etspi->finger_on = 0;
}
return mask;
}
/*-------------------------------------------------------------------------*/
static void etspi_reset(struct etspi_data *etspi)
{
pr_info("%s\n", __func__);
gpio_set_value(etspi->sleepPin, 0);
usleep_range(1050, 1100);
gpio_set_value(etspi->sleepPin, 1);
etspi->reset_count++;
}
static void etspi_power_set(struct etspi_data *etspi, int status)
{
int rc = 0;
if (etspi->ldo_pin) {
pr_info("%s ldo\n", __func__);
if (status == 1) {
if (etspi->ldo_pin) {
gpio_set_value(etspi->ldo_pin, 1);
etspi->ldo_enabled = 1;
}
} else if (status == 0) {
if (etspi->ldo_pin) {
gpio_set_value(etspi->ldo_pin, 0);
etspi->ldo_enabled = 0;
}
} else {
pr_err("%s can't support this value. %d\n"
, __func__, status);
}
} else if (etspi->regulator_3p3 != NULL) {
pr_info("%s regulator, status %d\n", __func__, status);
if (status == 1) {
if (regulator_is_enabled(etspi->regulator_3p3) == 0) {
rc = regulator_enable(etspi->regulator_3p3);
if (rc)
pr_err("%s regulator enable failed, rc=%d\n"
, __func__ , rc);
else
etspi->ldo_enabled = 1;
} else
pr_info("%s regulator is already enabled\n"
, __func__);
} else if (status == 0) {
if (regulator_is_enabled(etspi->regulator_3p3)) {
rc = regulator_disable(etspi->regulator_3p3);
if (rc)
pr_err("%s regulator disable failed, rc=%d\n"
, __func__, rc);
else
etspi->ldo_enabled = 0;
} else
pr_info("%s regulator is already disabled\n"
, __func__);
} else {
pr_err("%s can't support this value. %d\n"
, __func__, status);
}
} else {
pr_info("%s This HW revision does not support a power control\n"
, __func__);
}
}
static void etspi_pin_control(struct etspi_data *etspi,
bool pin_set)
{
int status = 0;
etspi->p->state = NULL;
if (pin_set) {
if (!IS_ERR(etspi->pins_poweron)) {
status = pinctrl_select_state(etspi->p,
etspi->pins_poweron);
if (status)
pr_err("%s: can't set pin default state\n",
__func__);
pr_info("%s idle\n", __func__);
}
} else {
if (!IS_ERR(etspi->pins_poweroff)) {
status = pinctrl_select_state(etspi->p,
etspi->pins_poweroff);
if (status)
pr_err("%s: can't set pin sleep state\n",
__func__);
pr_info("%s sleep\n", __func__);
}
}
}
static void etspi_power_control(struct etspi_data *etspi, int status)
{
pr_info("%s status = %d\n", __func__, status);
if (status == 1) {
etspi_power_set(etspi, 1);
etspi_pin_control(etspi, 1);
usleep_range(1100, 1150);
if (etspi->sleepPin)
gpio_set_value(etspi->sleepPin, 1);
usleep_range(12000, 12050);
} else if (status == 0) {
#if defined(ENABLE_SENSORS_FPRINT_SECURE)
#if !defined(CONFIG_TZDEV)
pr_info("%s: cs_set smc ret = %d\n", __func__,
exynos_smc(MC_FC_FP_CS_SET, 0, 0, 0));
#endif
#endif
if (etspi->sleepPin)
gpio_set_value(etspi->sleepPin, 0);
etspi_power_set(etspi, 0);
etspi_pin_control(etspi, 0);
} else {
pr_err("%s can't support this value. %d\n", __func__, status);
}
}
static ssize_t etspi_read(struct file *filp,
char __user *buf,
size_t count,
loff_t *f_pos)
{
/*Implement by vendor if needed*/
return 0;
}
static ssize_t etspi_write(struct file *filp,
const char __user *buf,
size_t count,
loff_t *f_pos)
{
/*Implement by vendor if needed*/
return 0;
}
#ifdef ENABLE_SENSORS_FPRINT_SECURE
static int etspi_sec_spi_prepare(struct sec_spi_info *spi_info,
struct spi_device *spi)
{
struct clk *fp_spi_pclk, *fp_spi_sclk;
#if defined(CONFIG_SOC_EXYNOS7870) || defined(CONFIG_SOC_EXYNOS7880)
struct clk *fp_spi_dma;
int ret = 0;
#endif
fp_spi_pclk = clk_get(NULL, "fp-spi-pclk");
if (IS_ERR(fp_spi_pclk)) {
pr_err("%s Can't get fp_spi_pclk\n", __func__);
return PTR_ERR(fp_spi_pclk);
}
fp_spi_sclk = clk_get(NULL, "fp-spi-sclk");
if (IS_ERR(fp_spi_sclk)) {
pr_err("%s Can't get fp_spi_sclk\n", __func__);
return PTR_ERR(fp_spi_sclk);
}
#if defined(CONFIG_SOC_EXYNOS7870) || defined(CONFIG_SOC_EXYNOS7880)
fp_spi_dma = clk_get(NULL, "apb_pclk");
if (IS_ERR(fp_spi_dma)) {
pr_err("%s Can't get apb_pclk\n", __func__);
return PTR_ERR(fp_spi_dma);
}
#endif
clk_prepare_enable(fp_spi_pclk);
clk_prepare_enable(fp_spi_sclk);
#if defined(CONFIG_SOC_EXYNOS7870) || defined(CONFIG_SOC_EXYNOS7880)
ret = clk_prepare_enable(fp_spi_dma);
if (ret) {
pr_err("%s clk_finger clk_prepare_enable failed %d\n",
__func__, ret);
return ret;
}
#endif
#if defined(CONFIG_SOC_EXYNOS9810) || defined(CONFIG_SOC_EXYNOS9610)
/* There is a quarter-multiplier before the SPI */
clk_set_rate(fp_spi_sclk, spi_info->speed * 4);
#else
clk_set_rate(fp_spi_sclk, spi_info->speed * 2);
#endif
clk_put(fp_spi_pclk);
clk_put(fp_spi_sclk);
#if defined(CONFIG_SOC_EXYNOS7870) || defined(CONFIG_SOC_EXYNOS7880)
clk_put(fp_spi_dma);
#endif
return 0;
}
static int etspi_sec_spi_unprepare(struct sec_spi_info *spi_info,
struct spi_device *spi)
{
struct clk *fp_spi_pclk, *fp_spi_sclk;
#if defined(CONFIG_SOC_EXYNOS7870) || defined(CONFIG_SOC_EXYNOS7880)
struct clk *fp_spi_dma;
#endif
fp_spi_pclk = clk_get(NULL, "fp-spi-pclk");
if (IS_ERR(fp_spi_pclk)) {
pr_err("%s Can't get fp_spi_pclk\n", __func__);
return PTR_ERR(fp_spi_pclk);
}
fp_spi_sclk = clk_get(NULL, "fp-spi-sclk");
if (IS_ERR(fp_spi_sclk)) {
pr_err("%s Can't get fp_spi_sclk\n", __func__);
return PTR_ERR(fp_spi_sclk);
}
#if defined(CONFIG_SOC_EXYNOS7870) || defined(CONFIG_SOC_EXYNOS7880)
fp_spi_dma = clk_get(NULL, "apb_pclk");
if (IS_ERR(fp_spi_dma)) {
pr_err("%s Can't get apb_pclk\n", __func__);
return PTR_ERR(fp_spi_dma);
}
#endif
clk_disable_unprepare(fp_spi_pclk);
clk_disable_unprepare(fp_spi_sclk);
#if defined(CONFIG_SOC_EXYNOS7870) || defined(CONFIG_SOC_EXYNOS7880)
clk_disable_unprepare(fp_spi_dma);
#endif
clk_put(fp_spi_pclk);
clk_put(fp_spi_sclk);
#if defined(CONFIG_SOC_EXYNOS7870) || defined(CONFIG_SOC_EXYNOS7880)
clk_put(fp_spi_dma);
#endif
return 0;
}
#if !defined(CONFIG_SOC_EXYNOS8890) && !defined(CONFIG_SOC_EXYNOS7570) \
&& !defined(CONFIG_SOC_EXYNOS7870) && !defined(CONFIG_SOC_EXYNOS7880) \
&& !defined(CONFIG_SOC_EXYNOS7885) && !defined(CONFIG_SOC_EXYNOS9810) \
&& !defined(CONFIG_SOC_EXYNOS9610)
static struct amba_device *adev_dma;
static int etspi_sec_dma_prepare(struct sec_spi_info *spi_info)
{
struct device_node *np;
for_each_compatible_node(np, NULL, "arm,pl330") {
if (!of_device_is_available(np))
continue;
if (!of_dma_secure_mode(np))
continue;
adev_dma = of_find_amba_device_by_node(np);
pr_info("[%s]device_name:%s\n",
__func__, dev_name(&adev_dma->dev));
break;
}
if (adev_dma == NULL)
return -1;
pm_runtime_get_sync(&adev_dma->dev);
return 0;
}
static int etspi_sec_dma_unprepare(void)
{
if (adev_dma == NULL)
return -1;
pm_runtime_put(&adev_dma->dev);
return 0;
}
#endif
#endif
static long etspi_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
int err = 0, retval = 0;
struct etspi_data *etspi;
struct spi_device *spi;
u32 tmp;
struct egis_ioc_transfer *ioc = NULL;
#ifdef CONFIG_SENSORS_FINGERPRINT_32BITS_PLATFORM_ONLY
struct egis_ioc_transfer_32 *ioc_32 = NULL;
u64 tx_buffer_64, rx_buffer_64;
#endif
u8 *buf, *address, *result, *fr;
#ifdef ENABLE_SENSORS_FPRINT_SECURE
struct sec_spi_info *spi_info = NULL;
#endif
/* Check type and command number */
if (_IOC_TYPE(cmd) != EGIS_IOC_MAGIC) {
pr_err("%s _IOC_TYPE(cmd) != EGIS_IOC_MAGIC", __func__);
return -ENOTTY;
}
/* Check access direction once here; don't repeat below.
* IOC_DIR is from the user perspective, while access_ok is
* from the kernel perspective; so they look reversed.
*/
if (_IOC_DIR(cmd) & _IOC_READ)
err = !access_ok(VERIFY_WRITE,
(void __user *)arg,
_IOC_SIZE(cmd));
if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE)
err = !access_ok(VERIFY_READ,
(void __user *)arg,
_IOC_SIZE(cmd));
if (err) {
pr_err("%s err", __func__);
return -EFAULT;
}
/* guard against device removal before, or while,
* we issue this ioctl.
*/
etspi = filp->private_data;
spin_lock_irq(&etspi->spi_lock);
spi = spi_dev_get(etspi->spi);
spin_unlock_irq(&etspi->spi_lock);
if (spi == NULL) {
pr_err("%s spi == NULL", __func__);
return -ESHUTDOWN;
}
mutex_lock(&etspi->buf_lock);
/* segmented and/or full-duplex I/O request */
if ((_IOC_NR(cmd)) != (_IOC_NR(EGIS_IOC_MESSAGE(0))) \
|| (_IOC_DIR(cmd)) != _IOC_WRITE) {
retval = -ENOTTY;
goto out;
}
/*
* If platform is 32bit and kernel is 64bit
* We will alloc egis_ioc_transfer for 64bit and 32bit
* We use ioc_32(32bit) to get data from user mode.
* Then copy the ioc_32 to ioc(64bit).
*/
#ifdef CONFIG_SENSORS_FINGERPRINT_32BITS_PLATFORM_ONLY
tmp = _IOC_SIZE(cmd);
if ((tmp == 0) || (tmp % sizeof(struct egis_ioc_transfer_32)) != 0) {
pr_err("%s ioc_32 size error\n", __func__);
retval = -EINVAL;
goto out;
}
ioc_32 = kmalloc(tmp, GFP_KERNEL);
if (ioc_32 == NULL) {
retval = -ENOMEM;
pr_err("%s ioc_32 kmalloc error\n", __func__);
goto out;
}
if (__copy_from_user(ioc_32, (void __user *)arg, tmp)) {
retval = -EFAULT;
pr_err("%s ioc_32 copy_from_user error\n", __func__);
goto out;
}
ioc = kmalloc(sizeof(struct egis_ioc_transfer), GFP_KERNEL);
if (ioc == NULL) {
retval = -ENOMEM;
pr_err("%s ioc kmalloc error\n", __func__);
goto out;
}
tx_buffer_64 = (u64)ioc_32->tx_buf;
rx_buffer_64 = (u64)ioc_32->rx_buf;
ioc->tx_buf = (u8 *)tx_buffer_64;
ioc->rx_buf = (u8 *)rx_buffer_64;
ioc->len = ioc_32->len;
ioc->speed_hz = ioc_32->speed_hz;
ioc->delay_usecs = ioc_32->delay_usecs;
ioc->bits_per_word = ioc_32->bits_per_word;
ioc->cs_change = ioc_32->cs_change;
ioc->opcode = ioc_32->opcode;
memcpy(ioc->pad, ioc_32->pad, 3);
kfree(ioc_32);
#else
tmp = _IOC_SIZE(cmd);
if ((tmp == 0) || (tmp % sizeof(struct egis_ioc_transfer)) != 0) {
pr_err("%s ioc size error\n", __func__);
retval = -EINVAL;
goto out;
}
/* copy into scratch area */
ioc = kmalloc(tmp, GFP_KERNEL);
if (!ioc) {
retval = -ENOMEM;
goto out;
}
if (__copy_from_user(ioc, (void __user *)arg, tmp)) {
pr_err("%s __copy_from_user error\n", __func__);
retval = -EFAULT;
goto out;
}
#endif
switch (ioc->opcode) {
/*
* Read register
* tx_buf include register address will be read
*/
case FP_REGISTER_READ:
address = ioc->tx_buf;
result = ioc->rx_buf;
pr_debug("etspi FP_REGISTER_READ\n");
retval = etspi_io_read_register(etspi, address, result);
if (retval < 0) {
pr_err("%s FP_REGISTER_READ error retval = %d\n"
, __func__, retval);
}
break;
/*
* Write data to register
* tx_buf includes address and value will be wrote
*/
case FP_REGISTER_WRITE:
buf = ioc->tx_buf;
pr_debug("%s FP_REGISTER_WRITE\n", __func__);
retval = etspi_io_write_register(etspi, buf);
if (retval < 0) {
pr_err("%s FP_REGISTER_WRITE error retval = %d\n"
, __func__, retval);
}
break;
case FP_REGISTER_MREAD:
address = ioc->tx_buf;
result = ioc->rx_buf;
pr_debug("%s FP_REGISTER_MREAD\n", __func__);
retval = etspi_io_read_registerex(etspi, address, result,
ioc->len);
if (retval < 0) {
pr_err("%s FP_REGISTER_MREAD error retval = %d\n"
, __func__, retval);
}
break;
case FP_REGISTER_BREAD:
pr_debug("%s FP_REGISTER_BREAD\n", __func__);
retval = etspi_io_burst_read_register(etspi, ioc);
if (retval < 0) {
pr_err("%s FP_REGISTER_BREAD error retval = %d\n"
, __func__, retval);
}
break;
case FP_REGISTER_BWRITE:
pr_debug("%s FP_REGISTER_BWRITE\n", __func__);
retval = etspi_io_burst_write_register(etspi, ioc);
if (retval < 0) {
pr_err("%s FP_REGISTER_BWRITE error retval = %d\n"
, __func__, retval);
}
break;
case FP_REGISTER_BREAD_BACKWARD:
pr_debug("%s FP_REGISTER_BREAD_BACKWARD\n", __func__);
retval = etspi_io_burst_read_register_backward(etspi, ioc);
if (retval < 0) {
pr_err("%s FP_REGISTER_BREAD_BACKWARD error retval = %d\n"
, __func__, retval);
}
break;
case FP_REGISTER_BWRITE_BACKWARD:
pr_debug("%s FP_REGISTER_BWRITE_BACKWARD\n", __func__);
retval = etspi_io_burst_write_register_backward(etspi, ioc);
if (retval < 0) {
pr_err("%s FP_REGISTER_BWRITE_BACKWARD error retval = %d\n"
, __func__, retval);
}
break;
case FP_NVM_READ:
pr_debug("%s FP_NVM_READ, (%d)\n", __func__, spi->max_speed_hz);
retval = etspi_io_nvm_read(etspi, ioc);
if (retval < 0) {
pr_err("%s FP_NVM_READ error retval = %d\n"
, __func__, retval);
}
retval = etspi_io_nvm_off(etspi, ioc);
if (retval < 0) {
pr_err("%s FP_NVM_OFF error retval = %d\n"
, __func__, retval);
} else {
pr_debug("%s FP_NVM_OFF\n", __func__);
}
break;
case FP_NVM_WRITE:
pr_debug("%s FP_NVM_WRITE, (%d)\n", __func__,
spi->max_speed_hz);
retval = etspi_io_nvm_write(etspi, ioc);
if (retval < 0) {
pr_err("%s FP_NVM_WRITE error retval = %d\n"
, __func__, retval);
}
retval = etspi_io_nvm_off(etspi, ioc);
if (retval < 0) {
pr_err("%s FP_NVM_OFF error retval = %d\n"
, __func__, retval);
} else {
pr_debug("%s FP_NVM_OFF\n", __func__);
}
break;
case FP_NVM_WRITEEX:
pr_debug("%s FP_NVM_WRITEEX, (%d)\n", __func__,
spi->max_speed_hz);
retval = etspi_io_nvm_writeex(etspi, ioc);
if (retval < 0) {
pr_err("%s FP_NVM_WRITEEX error retval = %d\n"
, __func__, retval);
}
retval = etspi_io_nvm_off(etspi, ioc);
if (retval < 0) {
pr_err("%s FP_NVM_OFF error retval = %d\n"
, __func__, retval);
} else {
pr_debug("%s FP_NVM_OFF\n", __func__);
}
break;
case FP_NVM_OFF:
pr_debug("%s FP_NVM_OFF\n", __func__);
retval = etspi_io_nvm_off(etspi, ioc);
if (retval < 0) {
pr_err("%s FP_NVM_OFF error retval = %d\n"
, __func__, retval);
}
break;
case FP_VDM_READ:
pr_debug("%s FP_VDM_READ\n", __func__);
retval = etspi_io_vdm_read(etspi, ioc);
if (retval < 0) {
pr_err("%s FP_VDM_READ error retval = %d\n"
, __func__, retval);
} else {
pr_debug("%s FP_VDM_READ finished.\n", __func__);
}
break;
case FP_VDM_WRITE:
pr_debug("%s FP_VDM_WRITE\n", __func__);
retval = etspi_io_vdm_write(etspi, ioc);
if (retval < 0) {
pr_err("%s FP_VDM_WRITE error retval = %d\n"
, __func__, retval);
} else {
pr_debug("%s FP_VDM_WRTIE finished.\n", __func__);
}
break;
/*
* Get one frame data from sensor
*/
case FP_GET_ONE_IMG:
fr = ioc->rx_buf;
pr_debug("%s FP_GET_ONE_IMG\n", __func__);
retval = etspi_io_get_frame(etspi, fr, ioc->len);
if (retval < 0) {
pr_err("%s FP_GET_ONE_IMG error retval = %d\n"
, __func__, retval);
}
break;
case FP_SENSOR_RESET:
pr_info("%s FP_SENSOR_RESET\n", __func__);
etspi_reset(etspi);
break;
case FP_RESET_SET:
break;
case FP_POWER_CONTROL:
case FP_POWER_CONTROL_ET5XX:
pr_info("%s FP_POWER_CONTROL, status = %d\n", __func__,
ioc->len);
etspi_power_control(etspi, ioc->len);
break;
case FP_SET_SPI_CLOCK:
pr_info("%s FP_SET_SPI_CLOCK, clock = %d\n", __func__,
ioc->speed_hz);
#ifdef ENABLE_SENSORS_FPRINT_SECURE
if (etspi->enabled_clk) {
if (spi->max_speed_hz == ioc->speed_hz) {
pr_info("%s already enabled same clock.\n",
__func__);
break;
}
pr_info("%s already enabled. DISABLE_SPI_CLOCK\n",
__func__);
retval = etspi_sec_spi_unprepare(spi_info, spi);
if (retval < 0)
pr_err("%s: couldn't disable spi clks\n",
__func__);
#if !defined(CONFIG_SOC_EXYNOS8890) && !defined(CONFIG_SOC_EXYNOS7570) \
&& !defined(CONFIG_SOC_EXYNOS7870) && !defined(CONFIG_SOC_EXYNOS7880) \
&& !defined(CONFIG_SOC_EXYNOS7885) && !defined(CONFIG_SOC_EXYNOS9810) \
&& !defined(CONFIG_SOC_EXYNOS9610)
retval = etspi_sec_dma_unprepare();
if (retval < 0)
pr_err("%s: couldn't disable spi dma\n",
__func__);
#endif
#ifdef FEATURE_SPI_WAKELOCK
wake_unlock(&etspi->fp_spi_lock);
#endif
etspi->enabled_clk = false;
}
spi->max_speed_hz = ioc->speed_hz;
spi_info = kmalloc(sizeof(struct sec_spi_info),
GFP_KERNEL);
if (spi_info != NULL) {
pr_info("%s ENABLE_SPI_CLOCK\n", __func__);
spi_info->speed = spi->max_speed_hz;
retval = etspi_sec_spi_prepare(spi_info, spi);
if (retval < 0)
pr_err("%s: Unable to enable spi clk\n",
__func__);
#if !defined(CONFIG_SOC_EXYNOS8890) && !defined(CONFIG_SOC_EXYNOS7570) \
&& !defined(CONFIG_SOC_EXYNOS7870) && !defined(CONFIG_SOC_EXYNOS7880) \
&& !defined(CONFIG_SOC_EXYNOS7885) && !defined(CONFIG_SOC_EXYNOS9810) \
&& !defined(CONFIG_SOC_EXYNOS9610)
retval = etspi_sec_dma_prepare(spi_info);
if (retval < 0)
pr_err("%s: Unable to enable spi dma\n",
__func__);
#endif
kfree(spi_info);
#ifdef FEATURE_SPI_WAKELOCK
wake_lock(&etspi->fp_spi_lock);
#endif
etspi->enabled_clk = true;
} else
retval = -ENOMEM;
#else
spi->max_speed_hz = ioc->speed_hz;
#endif
break;
/*
* Trigger initial routine
*/
case INT_TRIGGER_INIT:
pr_debug("%s Trigger function init\n", __func__);
retval = etspi_Interrupt_Init(
etspi,
(int)ioc->pad[0],
(int)ioc->pad[1],
(int)ioc->pad[2]);
break;
/* trigger */
case INT_TRIGGER_CLOSE:
pr_debug("%s Trigger function close\n", __func__);
retval = etspi_Interrupt_Free(etspi);
break;
/* Poll Abort */
case INT_TRIGGER_ABORT:
pr_debug("%s Trigger function abort\n", __func__);
etspi_Interrupt_Abort(etspi);
break;
#ifdef ENABLE_SENSORS_FPRINT_SECURE
case FP_DISABLE_SPI_CLOCK:
pr_info("%s FP_DISABLE_SPI_CLOCK\n", __func__);
if (etspi->enabled_clk) {
pr_info("%s DISABLE_SPI_CLOCK\n", __func__);
retval = etspi_sec_spi_unprepare(spi_info, spi);
if (retval < 0)
pr_err("%s: couldn't disable spi clks\n",
__func__);
#if !defined(CONFIG_SOC_EXYNOS8890) && !defined(CONFIG_SOC_EXYNOS7570) \
&& !defined(CONFIG_SOC_EXYNOS7870) && !defined(CONFIG_SOC_EXYNOS7880) \
&& !defined(CONFIG_SOC_EXYNOS7885) && !defined(CONFIG_SOC_EXYNOS9810) \
&& !defined(CONFIG_SOC_EXYNOS9610)
retval = etspi_sec_dma_unprepare();
if (retval < 0)
pr_err("%s: couldn't disable spi dma\n",
__func__);
#endif
#ifdef FEATURE_SPI_WAKELOCK
wake_unlock(&etspi->fp_spi_lock);
#endif
etspi->enabled_clk = false;
}
break;
case FP_CPU_SPEEDUP:
pr_info("%s FP_CPU_SPEEDUP\n", __func__);
if (ioc->len) {
u8 retry_cnt = 0;
pr_info("%s FP_CPU_SPEEDUP ON:%d, retry: %d\n",
__func__, ioc->len, retry_cnt);
#if defined(CONFIG_SECURE_OS_BOOSTER_API)
do {
retval = secos_booster_start(ioc->len - 1);
retry_cnt++;
if (retval) {
pr_err("%s: booster start failed. (%d) retry: %d\n"
, __func__, retval, retry_cnt);
if (retry_cnt < 7)
usleep_range(500, 510);
}
} while (retval && retry_cnt < 7);
#elif defined(CONFIG_TZDEV_BOOST)
tz_boost_enable();
#endif
} else {
pr_info("%s FP_CPU_SPEEDUP OFF\n", __func__);
#if defined(CONFIG_SECURE_OS_BOOSTER_API)
retval = secos_booster_stop();
if (retval)
pr_err("%s: booster stop failed. (%d)\n"
, __func__, retval);
#elif defined(CONFIG_TZDEV_BOOST)
tz_boost_disable();
#endif
}
break;
case FP_SET_SENSOR_TYPE:
if ((int)ioc->len >= SENSOR_OOO &&
(int)ioc->len < SENSOR_MAXIMUM) {
if ((int)ioc->len == SENSOR_OOO &&
etspi->sensortype == SENSOR_FAILED) {
pr_info("%s maintain type check from out of order :%s\n",
__func__,
sensor_status[g_data->sensortype + 2]);
} else {
etspi->sensortype = (int)ioc->len;
pr_info("%s FP_SET_SENSOR_TYPE :%s\n",
__func__,
sensor_status[g_data->sensortype + 2]);
}
} else {
pr_err("%s FP_SET_SENSOR_TYPE invalid value %d\n",
__func__, (int)ioc->len);
etspi->sensortype = SENSOR_UNKNOWN;
}
break;
case FP_SET_LOCKSCREEN:
pr_info("%s FP_SET_LOCKSCREEN\n", __func__);
break;
case FP_SET_WAKE_UP_SIGNAL:
pr_info("%s FP_SET_WAKE_UP_SIGNAL\n", __func__);
break;
#endif
case FP_SENSOR_ORIENT:
pr_info("%s: orient is %d", __func__, etspi->orient);
retval = put_user(etspi->orient, (u8 __user *) (uintptr_t)ioc->rx_buf);
if (retval != 0)
pr_err("%s FP_SENSOR_ORIENT put_user fail: %d\n", __func__, retval);
break;
case FP_SPI_VALUE:
etspi->spi_value = ioc->len;
pr_info("%s spi_value: 0x%x\n", __func__,etspi->spi_value);
break;
case FP_IOCTL_RESERVED_01:
case FP_IOCTL_RESERVED_02:
break;
default:
retval = -EFAULT;
break;
}
out:
if (ioc != NULL)
kfree(ioc);
mutex_unlock(&etspi->buf_lock);
spi_dev_put(spi);
if (retval < 0)
pr_err("%s retval = %d\n", __func__, retval);
return retval;
}
#ifdef CONFIG_COMPAT
static long etspi_compat_ioctl(struct file *filp,
unsigned int cmd,
unsigned long arg)
{
return etspi_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
}
#else
#define etspi_compat_ioctl NULL
#endif
/* CONFIG_COMPAT */
static int etspi_open(struct inode *inode, struct file *filp)
{
struct etspi_data *etspi;
int status = -ENXIO;
pr_info("%s\n", __func__);
mutex_lock(&device_list_lock);
list_for_each_entry(etspi, &device_list, device_entry) {
if (etspi->devt == inode->i_rdev) {
status = 0;
break;
}
}
if (status == 0) {
if (etspi->buf == NULL) {
etspi->buf = kmalloc(bufsiz, GFP_KERNEL);
if (etspi->buf == NULL) {
dev_dbg(&etspi->spi->dev, "open/ENOMEM\n");
status = -ENOMEM;
}
}
if (status == 0) {
etspi->users++;
filp->private_data = etspi;
nonseekable_open(inode, filp);
etspi->bufsiz = bufsiz;
}
} else
pr_debug("%s nothing for minor %d\n"
, __func__, iminor(inode));
mutex_unlock(&device_list_lock);
return status;
}
static int etspi_release(struct inode *inode, struct file *filp)
{
struct etspi_data *etspi;
pr_info("%s\n", __func__);
mutex_lock(&device_list_lock);
etspi = filp->private_data;
filp->private_data = NULL;
/* last close? */
etspi->users--;
if (etspi->users == 0) {
int dofree;
kfree(etspi->buf);
etspi->buf = NULL;
/* ... after we unbound from the underlying device? */
spin_lock_irq(&etspi->spi_lock);
dofree = (etspi->spi == NULL);
spin_unlock_irq(&etspi->spi_lock);
if (dofree)
kfree(etspi);
}
mutex_unlock(&device_list_lock);
return 0;
}
int etspi_platformInit(struct etspi_data *etspi)
{
int status = 0;
pr_info("%s\n", __func__);
/* gpio setting for ldo, ldo2, sleep, drdy pin */
if (etspi != NULL) {
etspi->drdy_irq_flag = DRDY_IRQ_DISABLE;
if (etspi->ldo_pin) {
status = gpio_request(etspi->ldo_pin, "etspi_ldo_en");
if (status < 0) {
pr_err("%s gpio_request etspi_ldo_en failed\n",
__func__);
goto etspi_platformInit_ldo_failed;
}
gpio_direction_output(etspi->ldo_pin, 0);
etspi->ldo_enabled = 0;
}
status = gpio_request(etspi->sleepPin, "etspi_sleep");
if (status < 0) {
pr_err("%s gpio_requset etspi_sleep failed\n",
__func__);
goto etspi_platformInit_sleep_failed;
}
gpio_direction_output(etspi->sleepPin, 0);
if (status < 0) {
pr_err("%s gpio_direction_output SLEEP failed\n",
__func__);
status = -EBUSY;
goto etspi_platformInit_sleep_failed;
}
status = gpio_request(etspi->drdyPin, "etspi_drdy");
if (status < 0) {
pr_err("%s gpio_request etspi_drdy failed\n",
__func__);
goto etspi_platformInit_drdy_failed;
}
status = gpio_direction_input(etspi->drdyPin);
if (status < 0) {
pr_err("%s gpio_direction_input DRDY failed\n",
__func__);
goto etspi_platformInit_gpio_init_failed;
}
pr_info("%s sleep value =%d\n"
"%s ldo en value =%d\n",
__func__, gpio_get_value(etspi->sleepPin),
__func__, gpio_get_value(etspi->ldo_pin));
} else {
status = -EFAULT;
}
#ifdef ENABLE_SENSORS_FPRINT_SECURE
#ifdef FEATURE_SPI_WAKELOCK
wake_lock_init(&etspi->fp_spi_lock,
WAKE_LOCK_SUSPEND, "etspi_wake_lock");
#endif
#endif
wake_lock_init(&etspi->fp_signal_lock,
WAKE_LOCK_SUSPEND, "etspi_sigwake_lock");
pr_info("%s successful status=%d\n", __func__, status);
return status;
etspi_platformInit_gpio_init_failed:
gpio_free(etspi->drdyPin);
etspi_platformInit_drdy_failed:
gpio_free(etspi->sleepPin);
etspi_platformInit_sleep_failed:
gpio_free(etspi->ldo_pin);
etspi_platformInit_ldo_failed:
pr_err("%s is failed\n", __func__);
return status;
}
void etspi_platformUninit(struct etspi_data *etspi)
{
pr_info("%s\n", __func__);
if (etspi != NULL) {
disable_irq_wake(gpio_irq);
disable_irq(gpio_irq);
free_irq(gpio_irq, etspi);
etspi->drdy_irq_flag = DRDY_IRQ_DISABLE;
if (etspi->ldo_pin)
gpio_free(etspi->ldo_pin);
gpio_free(etspi->sleepPin);
gpio_free(etspi->drdyPin);
#ifndef ENABLE_SENSORS_FPRINT_SECURE
#ifdef CONFIG_SOC_EXYNOS8890
if (etspi->cs_gpio)
gpio_free(etspi->cs_gpio);
#endif
#endif
#ifdef ENABLE_SENSORS_FPRINT_SECURE
#ifdef FEATURE_SPI_WAKELOCK
wake_lock_destroy(&etspi->fp_spi_lock);
#endif
#endif
wake_lock_destroy(&etspi->fp_signal_lock);
}
}
static int etspi_parse_dt(struct device *dev,
struct etspi_data *data)
{
struct device_node *np = dev->of_node;
enum of_gpio_flags flags;
int errorno = 0;
int gpio;
#ifndef ENABLE_SENSORS_FPRINT_SECURE
#ifdef CONFIG_SOC_EXYNOS8890
gpio = of_get_named_gpio_flags(np, "etspi-csgpio",
0, &flags);
if (gpio < 0) {
errorno = gpio;
pr_err("%s: fail to get csgpio\n", __func__);
goto dt_exit;
} else {
data->cs_gpio = gpio;
pr_info("%s: cs_gpio=%d\n",
__func__, data->cs_gpio);
}
#endif
#endif
gpio = of_get_named_gpio_flags(np, "etspi-sleepPin",
0, &flags);
if (gpio < 0) {
errorno = gpio;
pr_err("%s: fail to get sleepPin\n", __func__);
goto dt_exit;
} else {
data->sleepPin = gpio;
pr_info("%s: sleepPin=%d\n",
__func__, data->sleepPin);
}
gpio = of_get_named_gpio_flags(np, "etspi-drdyPin",
0, &flags);
if (gpio < 0) {
errorno = gpio;
pr_err("%s: fail to get drdyPin\n", __func__);
goto dt_exit;
} else {
data->drdyPin = gpio;
pr_info("%s: drdyPin=%d\n",
__func__, data->drdyPin);
}
gpio = of_get_named_gpio_flags(np, "etspi-ldoPin",
0, &flags);
if (gpio < 0) {
data->ldo_pin = 0;
pr_err("%s: fail to get ldo_pin\n", __func__);
} else {
data->ldo_pin = gpio;
pr_info("%s: ldo_pin=%d\n",
__func__, data->ldo_pin);
}
if (of_property_read_string(np, "etspi-regulator", &data->btp_vdd) < 0) {
pr_info("%s: not use btp_regulator\n", __func__);
data->btp_vdd = NULL;
} else {
data->regulator_3p3 = regulator_get(NULL, data->btp_vdd);
if (IS_ERR(data->regulator_3p3) ||
(data->regulator_3p3) == NULL) {
pr_info("%s: not use regulator_3p3\n", __func__);
data->regulator_3p3 = NULL;
} else {
pr_info("%s: btp_regulator ok\n", __func__);
}
}
if (of_property_read_string_index(np, "etspi-chipid", 0,
(const char **)&data->chipid)) {
data->chipid = NULL;
}
pr_info("%s: chipid: %s\n", __func__, data->chipid);
if (of_property_read_u32(np, "etspi-orient", &data->orient))
data->orient = 0;
pr_info("%s: orient: %d\n", __func__, data->orient);
data->p = pinctrl_get_select_default(dev);
if (IS_ERR(data->p)) {
errorno = -EINVAL;
pr_err("%s: failed pinctrl_get\n", __func__);
goto dt_exit;
}
#if !defined(ENABLE_SENSORS_FPRINT_SECURE) || defined(DISABLED_GPIO_PROTECTION)
data->pins_poweroff = pinctrl_lookup_state(data->p, "pins_poweroff");
#else
data->pins_poweroff = pinctrl_lookup_state(data->p, "pins_poweroff_tz");
#endif
if (IS_ERR(data->pins_poweroff)) {
pr_err("%s : could not get pins sleep_state (%li)\n",
__func__, PTR_ERR(data->pins_poweroff));
goto fail_pinctrl_get;
}
#if !defined(ENABLE_SENSORS_FPRINT_SECURE) || defined(DISABLED_GPIO_PROTECTION)
data->pins_poweron = pinctrl_lookup_state(data->p, "pins_poweron");
#else
data->pins_poweron = pinctrl_lookup_state(data->p, "pins_poweron_tz");
#endif
if (IS_ERR(data->pins_poweron)) {
pr_err("%s : could not get pins idle_state (%li)\n",
__func__, PTR_ERR(data->pins_poweron));
goto fail_pinctrl_get;
}
pr_info("%s is successful\n", __func__);
return errorno;
fail_pinctrl_get:
pinctrl_put(data->p);
dt_exit:
pr_err("%s is failed\n", __func__);
return errorno;
}
static const struct file_operations etspi_fops = {
.owner = THIS_MODULE,
.write = etspi_write,
.read = etspi_read,
.unlocked_ioctl = etspi_ioctl,
.compat_ioctl = etspi_compat_ioctl,
.open = etspi_open,
.release = etspi_release,
.llseek = no_llseek,
.poll = etspi_fps_interrupt_poll
};
#ifndef ENABLE_SENSORS_FPRINT_SECURE
static int etspi_type_check(struct etspi_data *etspi)
{
u8 buf1, buf2, buf3, buf4, buf5, buf6, buf7;
etspi_power_control(g_data, 1);
msleep(20);
etspi_read_register(etspi, 0x00, &buf1);
if (buf1 != 0xAA) {
etspi->sensortype = SENSOR_FAILED;
pr_info("%s sensor not ready, status = %x\n", __func__, buf1);
etspi_power_control(g_data, 0);
return -ENODEV;
}
etspi_read_register(etspi, 0xFD, &buf1);
etspi_read_register(etspi, 0xFE, &buf2);
etspi_read_register(etspi, 0xFF, &buf3);
etspi_read_register(etspi, 0x20, &buf4);
etspi_read_register(etspi, 0x21, &buf5);
etspi_read_register(etspi, 0x23, &buf6);
etspi_read_register(etspi, 0x24, &buf7);
etspi_power_control(g_data, 0);
pr_info("%s buf1-7: %x, %x, %x, %x, %x, %x, %x\n",
__func__, buf1, buf2, buf3, buf4, buf5, buf6, buf7);
/*
* type check return value
* ET510C : 0X00 / 0X66 / 0X00 / 0X33
* ET510D : 0x03 / 0x0A / 0x05
* ET516A : 0x00 / 0x10 / 0x05
* ET520 : 0x03 / 0x14 / 0x05
* ET520E : 0x04 / 0x14 / 0x05
* ET523 : 0x00 / 0x17 / 0x05
*/
if ((buf1 == 0x00) && (buf2 == 0x10) && (buf3 == 0x05)) {
etspi->sensortype = SENSOR_EGIS;
pr_info("%s sensor type is EGIS ET516A sensor\n", __func__);
} else if ((buf1 == 0x03) && (buf2 == 0x0A) && (buf3 == 0x05)) {
etspi->sensortype = SENSOR_EGIS;
pr_info("%s sensor type is EGIS ET510D sensor\n", __func__);
} else if ((buf1 == 0x03) && (buf2 == 0x14) && (buf3 == 0x05)) {
etspi->sensortype = SENSOR_EGIS;
pr_info("%s sensor type is EGIS ET520 sensor\n", __func__);
} else if ((buf1 == 0x04) && (buf2 == 0x14) && (buf3 == 0x05)) {
etspi->sensortype = SENSOR_EGIS;
pr_info("%s sensor type is EGIS ET520E sensor\n", __func__);
} else if ((buf1 == 0x00) && (buf2 == 0x17) && (buf3 == 0x05)) {
etspi->sensortype = SENSOR_EGIS;
pr_info("%s sensor type is EGIS ET523 sensor\n", __func__);
} else {
if ((buf4 == 0x00) && (buf5 == 0x66)
&& (buf6 == 0x00) && (buf7 == 0x33)) {
etspi->sensortype = SENSOR_EGIS;
pr_info("%s sensor type is EGIS ET510C sensor\n",
__func__);
} else {
etspi->sensortype = SENSOR_FAILED;
pr_info("%s sensor type is FAILED\n", __func__);
return -ENODEV;
}
}
return 0;
}
#endif
static ssize_t etspi_bfs_values_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etspi_data *data = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "\"FP_SPICLK\":\"%d\"\n",
data->spi->max_speed_hz);
}
static ssize_t etspi_type_check_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etspi_data *data = dev_get_drvdata(dev);
#ifndef ENABLE_SENSORS_FPRINT_SECURE
int retry = 0;
int status = 0;
do {
status = etspi_type_check(data);
pr_info("%s type (%u), retry (%d)\n"
, __func__, data->sensortype, retry);
} while (!data->sensortype && ++retry < 3);
if (status == -ENODEV)
pr_info("%s type check fail\n", __func__);
#endif
return snprintf(buf, PAGE_SIZE, "%d\n", data->sensortype);
}
static ssize_t etspi_vendor_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%s\n", VENDOR);
}
static ssize_t etspi_name_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%s\n", g_data->chipid);
}
static ssize_t etspi_adm_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", DETECT_ADM);
}
static ssize_t etspi_intcnt_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etspi_data *data = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%d\n", data->interrupt_count);
}
static ssize_t etspi_intcnt_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t size)
{
struct etspi_data *data = dev_get_drvdata(dev);
if (sysfs_streq(buf, "c")) {
data->interrupt_count = 0;
pr_info("initialization is done\n");
}
return size;
}
static ssize_t etspi_resetcnt_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct etspi_data *data = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%d\n", data->reset_count);
}
static ssize_t etspi_resetcnt_store(struct device *dev,
struct device_attribute *attr, const char *buf,
size_t size)
{
struct etspi_data *data = dev_get_drvdata(dev);
if (sysfs_streq(buf, "c")) {
data->reset_count = 0;
pr_info("initialization is done\n");
}
return size;
}
static DEVICE_ATTR(bfs_values, 0444, etspi_bfs_values_show, NULL);
static DEVICE_ATTR(type_check, 0444, etspi_type_check_show, NULL);
static DEVICE_ATTR(vendor, 0444, etspi_vendor_show, NULL);
static DEVICE_ATTR(name, 0444, etspi_name_show, NULL);
static DEVICE_ATTR(adm, 0444, etspi_adm_show, NULL);
static DEVICE_ATTR(intcnt, 0664, etspi_intcnt_show, etspi_intcnt_store);
static DEVICE_ATTR(resetcnt, 0664, etspi_resetcnt_show, etspi_resetcnt_store);
static struct device_attribute *fp_attrs[] = {
&dev_attr_bfs_values,
&dev_attr_type_check,
&dev_attr_vendor,
&dev_attr_name,
&dev_attr_adm,
&dev_attr_intcnt,
&dev_attr_resetcnt,
NULL,
};
static void etspi_work_func_debug(struct work_struct *work)
{
pr_info("%s ldo: %d, sleep: %d, tz: %d, spi_value: 0x%x, type: %s\n",
__func__,
g_data->ldo_enabled, gpio_get_value(g_data->sleepPin),
g_data->tz_mode, g_data->spi_value,
sensor_status[g_data->sensortype + 2]);
}
static void etspi_enable_debug_timer(void)
{
mod_timer(&g_data->dbg_timer,
round_jiffies_up(jiffies + FPSENSOR_DEBUG_TIMER_SEC));
}
static void etspi_disable_debug_timer(void)
{
del_timer_sync(&g_data->dbg_timer);
cancel_work_sync(&g_data->work_debug);
}
static void etspi_timer_func(unsigned long ptr)
{
queue_work(g_data->wq_dbg, &g_data->work_debug);
mod_timer(&g_data->dbg_timer,
round_jiffies_up(jiffies + FPSENSOR_DEBUG_TIMER_SEC));
}
static int etspi_set_timer(struct etspi_data *etspi)
{
int status = 0;
setup_timer(&etspi->dbg_timer,
etspi_timer_func, (unsigned long)etspi);
etspi->wq_dbg =
create_singlethread_workqueue("etspi_debug_wq");
if (!etspi->wq_dbg) {
status = -ENOMEM;
pr_err("%s could not create workqueue\n", __func__);
return status;
}
INIT_WORK(&etspi->work_debug, etspi_work_func_debug);
return status;
}
#ifndef ENABLE_SENSORS_FPRINT_SECURE
#ifdef CONFIG_SOC_EXYNOS8890
static int etspi_set_cs_gpio(struct etspi_data *etspi,
struct s3c64xx_spi_csinfo *cs)
{
int status = -1;
pr_info("%s, spi auto cs mode(%d)\n", __func__, cs->cs_mode);
if (etspi->cs_gpio) {
cs->line = etspi->cs_gpio;
if (!gpio_is_valid(cs->line))
cs->line = 0;
} else {
cs->line = 0;
}
if (cs->line != 0) {
status = gpio_request_one(cs->line, GPIOF_OUT_INIT_HIGH,
dev_name(&etspi->spi->dev));
if (status) {
dev_err(&etspi->spi->dev,
"Failed to get /CS gpio [%d]: %d\n",
cs->line, status);
}
}
return status;
}
#endif
#endif
/*-------------------------------------------------------------------------*/
static struct class *etspi_class;
/*-------------------------------------------------------------------------*/
static int etspi_probe(struct spi_device *spi)
{
struct etspi_data *etspi;
int status;
unsigned long minor;
#ifndef ENABLE_SENSORS_FPRINT_SECURE
int retry = 0;
#ifdef CONFIG_SOC_EXYNOS8890
struct s3c64xx_spi_csinfo *cs;
#endif
#endif
pr_info("%s\n", __func__);
#ifdef ENABLE_SENSORS_FPRINT_SECURE
fpsensor_goto_suspend = 0;
#endif
/* Allocate driver data */
etspi = kzalloc(sizeof(*etspi), GFP_KERNEL);
if (!etspi)
return -ENOMEM;
/* device tree call */
if (spi->dev.of_node) {
status = etspi_parse_dt(&spi->dev, etspi);
if (status) {
pr_err("%s - Failed to parse DT\n", __func__);
goto etspi_probe_parse_dt_failed;
}
}
/* Initialize the driver data */
etspi->spi = spi;
g_data = etspi;
spin_lock_init(&etspi->spi_lock);
mutex_init(&etspi->buf_lock);
mutex_init(&device_list_lock);
INIT_LIST_HEAD(&etspi->device_entry);
/* platform init */
status = etspi_platformInit(etspi);
if (status != 0) {
pr_err("%s platforminit failed\n", __func__);
goto etspi_probe_platformInit_failed;
}
spi->bits_per_word = 8;
spi->max_speed_hz = SLOW_BAUD_RATE;
spi->mode = SPI_MODE_0;
spi->chip_select = 0;
#ifndef ENABLE_SENSORS_FPRINT_SECURE
#ifdef CONFIG_SOC_EXYNOS8890
/* set cs pin in fp driver, use only Exynos8890 */
/* for use auto cs mode with dualization fp sensor */
cs = spi->controller_data;
if (cs->cs_mode == 1)
status = etspi_set_cs_gpio(etspi, cs);
else
pr_info("%s, spi manual mode(%d)\n", __func__, cs->cs_mode);
#endif
status = spi_setup(spi);
if (status != 0) {
pr_err("%s spi_setup() is failed. status : %d\n",
__func__, status);
return status;
}
#endif
etspi->spi_value = 0;
#ifdef ENABLE_SENSORS_FPRINT_SECURE
etspi->sensortype = SENSOR_UNKNOWN;
#else
/* sensor hw type check */
do {
status = etspi_type_check(etspi);
pr_info("%s type (%u), retry (%d)\n"
, __func__, etspi->sensortype, retry);
} while (!etspi->sensortype && ++retry < 3);
if (status == -ENODEV)
pr_info("%s type check fail\n", __func__);
#endif
#if defined(DISABLED_GPIO_PROTECTION)
etspi_pin_control(etspi, 0);
#endif
#ifdef ENABLE_SENSORS_FPRINT_SECURE
etspi->tz_mode = true;
#endif
etspi->reset_count = 0;
etspi->interrupt_count = 0;
/* If we can allocate a minor number, hook up this device.
* Reusing minors is fine so long as udev or mdev is working.
*/
mutex_lock(&device_list_lock);
minor = find_first_zero_bit(minors, N_SPI_MINORS);
if (minor < N_SPI_MINORS) {
struct device *dev;
etspi->devt = MKDEV(ET5XX_MAJOR, (unsigned int)minor);
dev = device_create(etspi_class, &spi->dev,
etspi->devt, etspi, "esfp0");
status = IS_ERR(dev) ? PTR_ERR(dev) : 0;
} else {
dev_dbg(&spi->dev, "no minor number available!\n");
status = -ENODEV;
}
if (status == 0) {
set_bit(minor, minors);
list_add(&etspi->device_entry, &device_list);
}
mutex_unlock(&device_list_lock);
if (status == 0)
spi_set_drvdata(spi, etspi);
else
goto etspi_create_failed;
status = fingerprint_register(etspi->fp_device,
etspi, fp_attrs, "fingerprint");
if (status) {
pr_err("%s sysfs register failed\n", __func__);
goto etspi_register_failed;
}
status = etspi_set_timer(etspi);
if (status)
goto etspi_sysfs_failed;
etspi_enable_debug_timer();
pr_info("%s is successful\n", __func__);
return status;
etspi_sysfs_failed:
fingerprint_unregister(etspi->fp_device, fp_attrs);
etspi_register_failed:
device_destroy(etspi_class, etspi->devt);
class_destroy(etspi_class);
etspi_create_failed:
etspi_platformUninit(etspi);
etspi_probe_platformInit_failed:
etspi_probe_parse_dt_failed:
kfree(etspi);
pr_err("%s is failed\n", __func__);
return status;
}
static int etspi_remove(struct spi_device *spi)
{
struct etspi_data *etspi = spi_get_drvdata(spi);
pr_info("%s\n", __func__);
if (etspi != NULL) {
etspi_disable_debug_timer();
etspi_platformUninit(etspi);
/* make sure ops on existing fds can abort cleanly */
spin_lock_irq(&etspi->spi_lock);
etspi->spi = NULL;
spi_set_drvdata(spi, NULL);
spin_unlock_irq(&etspi->spi_lock);
/* prevent new opens */
mutex_lock(&device_list_lock);
fingerprint_unregister(etspi->fp_device, fp_attrs);
list_del(&etspi->device_entry);
device_destroy(etspi_class, etspi->devt);
clear_bit(MINOR(etspi->devt), minors);
if (etspi->users == 0)
kfree(etspi);
mutex_unlock(&device_list_lock);
}
return 0;
}
static int etspi_pm_suspend(struct device *dev)
{
#if defined(ENABLE_SENSORS_FPRINT_SECURE)
#if !defined(CONFIG_TZDEV)
int ret = 0;
#endif
#endif
pr_info("%s\n", __func__);
if (g_data != NULL) {
#ifdef ENABLE_SENSORS_FPRINT_SECURE
fpsensor_goto_suspend = 1; /* used by pinctrl_samsung.c */
#endif
etspi_disable_debug_timer();
if (!g_data->ldo_enabled) {
#if defined(ENABLE_SENSORS_FPRINT_SECURE)
#if !defined(CONFIG_TZDEV)
ret = exynos_smc(MC_FC_FP_PM_SUSPEND, 0, 0, 0);
pr_info("%s: suspend smc ret = %d\n", __func__, ret);
#endif
#endif
} else {
#if defined(ENABLE_SENSORS_FPRINT_SECURE)
#if !defined(CONFIG_TZDEV)
ret = exynos_smc(MC_FC_FP_PM_SUSPEND_CS_HIGH, 0, 0, 0);
pr_info("%s: suspend_cs_high smc ret = %d\n",
__func__, ret);
#endif
#endif
}
}
return 0;
}
static int etspi_pm_resume(struct device *dev)
{
pr_info("%s\n", __func__);
if (g_data != NULL) {
etspi_enable_debug_timer();
#if defined(ENABLE_SENSORS_FPRINT_SECURE)
if (fpsensor_goto_suspend) {
fps_resume_set();
}
#endif
}
return 0;
}
static const struct dev_pm_ops etspi_pm_ops = {
.suspend = etspi_pm_suspend,
.resume = etspi_pm_resume
};
static const struct of_device_id etspi_match_table[] = {
{ .compatible = "etspi,et5xx",},
{},
};
static struct spi_driver etspi_spi_driver = {
.driver = {
.name = "egis_fingerprint",
.owner = THIS_MODULE,
.pm = &etspi_pm_ops,
.of_match_table = etspi_match_table
},
.probe = etspi_probe,
.remove = etspi_remove,
};
/*-------------------------------------------------------------------------*/
static int __init etspi_init(void)
{
int status;
pr_info("%s\n", __func__);
#if defined(CONFIG_SENSORS_FINGERPRINT_DUALIZATION) \
&& defined(CONFIG_SENSORS_VFS7XXX)
/* vendor check */
pr_info("%s FP_CHECK value (%d)\n", __func__, FP_CHECK);
if (FP_CHECK) {
pr_err("%s It is not egis sensor\n", __func__);
return -ENODEV;
}
#endif
/* Claim our 256 reserved device numbers. Then register a class
* that will key udev/mdev to add/remove /dev nodes. Last, register
* the driver which manages those device numbers.
*/
BUILD_BUG_ON(N_SPI_MINORS > 256);
status = register_chrdev(ET5XX_MAJOR, "egis_fingerprint", &etspi_fops);
if (status < 0) {
pr_err("%s register_chrdev error.status:%d\n", __func__,
status);
return status;
}
etspi_class = class_create(THIS_MODULE, "egis_fingerprint");
if (IS_ERR(etspi_class)) {
pr_err("%s class_create error.\n", __func__);
unregister_chrdev(ET5XX_MAJOR, etspi_spi_driver.driver.name);
return PTR_ERR(etspi_class);
}
status = spi_register_driver(&etspi_spi_driver);
if (status < 0) {
pr_err("%s spi_register_driver error.\n", __func__);
class_destroy(etspi_class);
unregister_chrdev(ET5XX_MAJOR, etspi_spi_driver.driver.name);
return status;
}
pr_info("%s is successful\n", __func__);
return status;
}
static void __exit etspi_exit(void)
{
pr_info("%s\n", __func__);
spi_unregister_driver(&etspi_spi_driver);
class_destroy(etspi_class);
unregister_chrdev(ET5XX_MAJOR, etspi_spi_driver.driver.name);
}
module_init(etspi_init);
module_exit(etspi_exit);
MODULE_AUTHOR("Wang YuWei, <robert.wang@egistec.com>");
MODULE_DESCRIPTION("SPI Interface for ET5XX");
MODULE_LICENSE("GPL");