| /* |
| * Copyright (c) 2006 ARM Ltd. |
| * Copyright (c) 2010 ST-Ericsson SA |
| * Copyirght (c) 2017 Linaro Ltd. |
| * |
| * Author: Peter Pearse <peter.pearse@arm.com> |
| * Author: Linus Walleij <linus.walleij@linaro.org> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the Free |
| * Software Foundation; either version 2 of the License, or (at your option) |
| * any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * The full GNU General Public License is in this distribution in the file |
| * called COPYING. |
| * |
| * Documentation: ARM DDI 0196G == PL080 |
| * Documentation: ARM DDI 0218E == PL081 |
| * Documentation: S3C6410 User's Manual == PL080S |
| * |
| * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any |
| * channel. |
| * |
| * The PL080 has 8 channels available for simultaneous use, and the PL081 |
| * has only two channels. So on these DMA controllers the number of channels |
| * and the number of incoming DMA signals are two totally different things. |
| * It is usually not possible to theoretically handle all physical signals, |
| * so a multiplexing scheme with possible denial of use is necessary. |
| * |
| * The PL080 has a dual bus master, PL081 has a single master. |
| * |
| * PL080S is a version modified by Samsung and used in S3C64xx SoCs. |
| * It differs in following aspects: |
| * - CH_CONFIG register at different offset, |
| * - separate CH_CONTROL2 register for transfer size, |
| * - bigger maximum transfer size, |
| * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word, |
| * - no support for peripheral flow control. |
| * |
| * Memory to peripheral transfer may be visualized as |
| * Get data from memory to DMAC |
| * Until no data left |
| * On burst request from peripheral |
| * Destination burst from DMAC to peripheral |
| * Clear burst request |
| * Raise terminal count interrupt |
| * |
| * For peripherals with a FIFO: |
| * Source burst size == half the depth of the peripheral FIFO |
| * Destination burst size == the depth of the peripheral FIFO |
| * |
| * (Bursts are irrelevant for mem to mem transfers - there are no burst |
| * signals, the DMA controller will simply facilitate its AHB master.) |
| * |
| * ASSUMES default (little) endianness for DMA transfers |
| * |
| * The PL08x has two flow control settings: |
| * - DMAC flow control: the transfer size defines the number of transfers |
| * which occur for the current LLI entry, and the DMAC raises TC at the |
| * end of every LLI entry. Observed behaviour shows the DMAC listening |
| * to both the BREQ and SREQ signals (contrary to documented), |
| * transferring data if either is active. The LBREQ and LSREQ signals |
| * are ignored. |
| * |
| * - Peripheral flow control: the transfer size is ignored (and should be |
| * zero). The data is transferred from the current LLI entry, until |
| * after the final transfer signalled by LBREQ or LSREQ. The DMAC |
| * will then move to the next LLI entry. Unsupported by PL080S. |
| */ |
| #include <linux/amba/bus.h> |
| #include <linux/amba/pl08x.h> |
| #include <linux/debugfs.h> |
| #include <linux/delay.h> |
| #include <linux/device.h> |
| #include <linux/dmaengine.h> |
| #include <linux/dmapool.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/export.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/of_dma.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/seq_file.h> |
| #include <linux/slab.h> |
| #include <linux/amba/pl080.h> |
| |
| #include "dmaengine.h" |
| #include "virt-dma.h" |
| |
| #define DRIVER_NAME "pl08xdmac" |
| |
| #define PL80X_DMA_BUSWIDTHS \ |
| BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \ |
| BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ |
| BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ |
| BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |
| |
| static struct amba_driver pl08x_amba_driver; |
| struct pl08x_driver_data; |
| |
| /** |
| * struct vendor_data - vendor-specific config parameters for PL08x derivatives |
| * @config_offset: offset to the configuration register |
| * @channels: the number of channels available in this variant |
| * @signals: the number of request signals available from the hardware |
| * @dualmaster: whether this version supports dual AHB masters or not. |
| * @nomadik: whether this variant is a ST Microelectronics Nomadik, where the |
| * channels have Nomadik security extension bits that need to be checked |
| * for permission before use and some registers are missing |
| * @pl080s: whether this variant is a Samsung PL080S, which has separate |
| * register and LLI word for transfer size. |
| * @ftdmac020: whether this variant is a Faraday Technology FTDMAC020 |
| * @max_transfer_size: the maximum single element transfer size for this |
| * PL08x variant. |
| */ |
| struct vendor_data { |
| u8 config_offset; |
| u8 channels; |
| u8 signals; |
| bool dualmaster; |
| bool nomadik; |
| bool pl080s; |
| bool ftdmac020; |
| u32 max_transfer_size; |
| }; |
| |
| /** |
| * struct pl08x_bus_data - information of source or destination |
| * busses for a transfer |
| * @addr: current address |
| * @maxwidth: the maximum width of a transfer on this bus |
| * @buswidth: the width of this bus in bytes: 1, 2 or 4 |
| */ |
| struct pl08x_bus_data { |
| dma_addr_t addr; |
| u8 maxwidth; |
| u8 buswidth; |
| }; |
| |
| #define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth) |
| |
| /** |
| * struct pl08x_phy_chan - holder for the physical channels |
| * @id: physical index to this channel |
| * @base: memory base address for this physical channel |
| * @reg_config: configuration address for this physical channel |
| * @reg_control: control address for this physical channel |
| * @reg_src: transfer source address register |
| * @reg_dst: transfer destination address register |
| * @reg_lli: transfer LLI address register |
| * @reg_busy: if the variant has a special per-channel busy register, |
| * this contains a pointer to it |
| * @lock: a lock to use when altering an instance of this struct |
| * @serving: the virtual channel currently being served by this physical |
| * channel |
| * @locked: channel unavailable for the system, e.g. dedicated to secure |
| * world |
| * @ftdmac020: channel is on a FTDMAC020 |
| * @pl080s: channel is on a PL08s |
| */ |
| struct pl08x_phy_chan { |
| unsigned int id; |
| void __iomem *base; |
| void __iomem *reg_config; |
| void __iomem *reg_control; |
| void __iomem *reg_src; |
| void __iomem *reg_dst; |
| void __iomem *reg_lli; |
| void __iomem *reg_busy; |
| spinlock_t lock; |
| struct pl08x_dma_chan *serving; |
| bool locked; |
| bool ftdmac020; |
| bool pl080s; |
| }; |
| |
| /** |
| * struct pl08x_sg - structure containing data per sg |
| * @src_addr: src address of sg |
| * @dst_addr: dst address of sg |
| * @len: transfer len in bytes |
| * @node: node for txd's dsg_list |
| */ |
| struct pl08x_sg { |
| dma_addr_t src_addr; |
| dma_addr_t dst_addr; |
| size_t len; |
| struct list_head node; |
| }; |
| |
| /** |
| * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor |
| * @vd: virtual DMA descriptor |
| * @dsg_list: list of children sg's |
| * @llis_bus: DMA memory address (physical) start for the LLIs |
| * @llis_va: virtual memory address start for the LLIs |
| * @cctl: control reg values for current txd |
| * @ccfg: config reg values for current txd |
| * @done: this marks completed descriptors, which should not have their |
| * mux released. |
| * @cyclic: indicate cyclic transfers |
| */ |
| struct pl08x_txd { |
| struct virt_dma_desc vd; |
| struct list_head dsg_list; |
| dma_addr_t llis_bus; |
| u32 *llis_va; |
| /* Default cctl value for LLIs */ |
| u32 cctl; |
| /* |
| * Settings to be put into the physical channel when we |
| * trigger this txd. Other registers are in llis_va[0]. |
| */ |
| u32 ccfg; |
| bool done; |
| bool cyclic; |
| }; |
| |
| /** |
| * enum pl08x_dma_chan_state - holds the PL08x specific virtual channel |
| * states |
| * @PL08X_CHAN_IDLE: the channel is idle |
| * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport |
| * channel and is running a transfer on it |
| * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport |
| * channel, but the transfer is currently paused |
| * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport |
| * channel to become available (only pertains to memcpy channels) |
| */ |
| enum pl08x_dma_chan_state { |
| PL08X_CHAN_IDLE, |
| PL08X_CHAN_RUNNING, |
| PL08X_CHAN_PAUSED, |
| PL08X_CHAN_WAITING, |
| }; |
| |
| /** |
| * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel |
| * @vc: wrappped virtual channel |
| * @phychan: the physical channel utilized by this channel, if there is one |
| * @name: name of channel |
| * @cd: channel platform data |
| * @cfg: slave configuration |
| * @at: active transaction on this channel |
| * @host: a pointer to the host (internal use) |
| * @state: whether the channel is idle, paused, running etc |
| * @slave: whether this channel is a device (slave) or for memcpy |
| * @signal: the physical DMA request signal which this channel is using |
| * @mux_use: count of descriptors using this DMA request signal setting |
| */ |
| struct pl08x_dma_chan { |
| struct virt_dma_chan vc; |
| struct pl08x_phy_chan *phychan; |
| const char *name; |
| struct pl08x_channel_data *cd; |
| struct dma_slave_config cfg; |
| struct pl08x_txd *at; |
| struct pl08x_driver_data *host; |
| enum pl08x_dma_chan_state state; |
| bool slave; |
| int signal; |
| unsigned mux_use; |
| }; |
| |
| /** |
| * struct pl08x_driver_data - the local state holder for the PL08x |
| * @slave: optional slave engine for this instance |
| * @memcpy: memcpy engine for this instance |
| * @has_slave: the PL08x has a slave engine (routed signals) |
| * @base: virtual memory base (remapped) for the PL08x |
| * @adev: the corresponding AMBA (PrimeCell) bus entry |
| * @vd: vendor data for this PL08x variant |
| * @pd: platform data passed in from the platform/machine |
| * @phy_chans: array of data for the physical channels |
| * @pool: a pool for the LLI descriptors |
| * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI |
| * fetches |
| * @mem_buses: set to indicate memory transfers on AHB2. |
| * @lli_words: how many words are used in each LLI item for this variant |
| */ |
| struct pl08x_driver_data { |
| struct dma_device slave; |
| struct dma_device memcpy; |
| bool has_slave; |
| void __iomem *base; |
| struct amba_device *adev; |
| const struct vendor_data *vd; |
| struct pl08x_platform_data *pd; |
| struct pl08x_phy_chan *phy_chans; |
| struct dma_pool *pool; |
| u8 lli_buses; |
| u8 mem_buses; |
| u8 lli_words; |
| }; |
| |
| /* |
| * PL08X specific defines |
| */ |
| |
| /* The order of words in an LLI. */ |
| #define PL080_LLI_SRC 0 |
| #define PL080_LLI_DST 1 |
| #define PL080_LLI_LLI 2 |
| #define PL080_LLI_CCTL 3 |
| #define PL080S_LLI_CCTL2 4 |
| |
| /* Total words in an LLI. */ |
| #define PL080_LLI_WORDS 4 |
| #define PL080S_LLI_WORDS 8 |
| |
| /* |
| * Number of LLIs in each LLI buffer allocated for one transfer |
| * (maximum times we call dma_pool_alloc on this pool without freeing) |
| */ |
| #define MAX_NUM_TSFR_LLIS 512 |
| #define PL08X_ALIGN 8 |
| |
| static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan) |
| { |
| return container_of(chan, struct pl08x_dma_chan, vc.chan); |
| } |
| |
| static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx) |
| { |
| return container_of(tx, struct pl08x_txd, vd.tx); |
| } |
| |
| /* |
| * Mux handling. |
| * |
| * This gives us the DMA request input to the PL08x primecell which the |
| * peripheral described by the channel data will be routed to, possibly |
| * via a board/SoC specific external MUX. One important point to note |
| * here is that this does not depend on the physical channel. |
| */ |
| static int pl08x_request_mux(struct pl08x_dma_chan *plchan) |
| { |
| const struct pl08x_platform_data *pd = plchan->host->pd; |
| int ret; |
| |
| if (plchan->mux_use++ == 0 && pd->get_xfer_signal) { |
| ret = pd->get_xfer_signal(plchan->cd); |
| if (ret < 0) { |
| plchan->mux_use = 0; |
| return ret; |
| } |
| |
| plchan->signal = ret; |
| } |
| return 0; |
| } |
| |
| static void pl08x_release_mux(struct pl08x_dma_chan *plchan) |
| { |
| const struct pl08x_platform_data *pd = plchan->host->pd; |
| |
| if (plchan->signal >= 0) { |
| WARN_ON(plchan->mux_use == 0); |
| |
| if (--plchan->mux_use == 0 && pd->put_xfer_signal) { |
| pd->put_xfer_signal(plchan->cd, plchan->signal); |
| plchan->signal = -1; |
| } |
| } |
| } |
| |
| /* |
| * Physical channel handling |
| */ |
| |
| /* Whether a certain channel is busy or not */ |
| static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch) |
| { |
| unsigned int val; |
| |
| /* If we have a special busy register, take a shortcut */ |
| if (ch->reg_busy) { |
| val = readl(ch->reg_busy); |
| return !!(val & BIT(ch->id)); |
| } |
| val = readl(ch->reg_config); |
| return val & PL080_CONFIG_ACTIVE; |
| } |
| |
| /* |
| * pl08x_write_lli() - Write an LLI into the DMA controller. |
| * |
| * The PL08x derivatives support linked lists, but the first item of the |
| * list containing the source, destination, control word and next LLI is |
| * ignored. Instead the driver has to write those values directly into the |
| * SRC, DST, LLI and control registers. On FTDMAC020 also the SIZE |
| * register need to be set up for the first transfer. |
| */ |
| static void pl08x_write_lli(struct pl08x_driver_data *pl08x, |
| struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg) |
| { |
| if (pl08x->vd->pl080s) |
| dev_vdbg(&pl08x->adev->dev, |
| "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, " |
| "clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n", |
| phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST], |
| lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], |
| lli[PL080S_LLI_CCTL2], ccfg); |
| else |
| dev_vdbg(&pl08x->adev->dev, |
| "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, " |
| "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n", |
| phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST], |
| lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg); |
| |
| writel_relaxed(lli[PL080_LLI_SRC], phychan->reg_src); |
| writel_relaxed(lli[PL080_LLI_DST], phychan->reg_dst); |
| writel_relaxed(lli[PL080_LLI_LLI], phychan->reg_lli); |
| |
| /* |
| * The FTMAC020 has a different layout in the CCTL word of the LLI |
| * and the CCTL register which is split in CSR and SIZE registers. |
| * Convert the LLI item CCTL into the proper values to write into |
| * the CSR and SIZE registers. |
| */ |
| if (phychan->ftdmac020) { |
| u32 llictl = lli[PL080_LLI_CCTL]; |
| u32 val = 0; |
| |
| /* Write the transfer size (12 bits) to the size register */ |
| writel_relaxed(llictl & FTDMAC020_LLI_TRANSFER_SIZE_MASK, |
| phychan->base + FTDMAC020_CH_SIZE); |
| /* |
| * Then write the control bits 28..16 to the control register |
| * by shuffleing the bits around to where they are in the |
| * main register. The mapping is as follows: |
| * Bit 28: TC_MSK - mask on all except last LLI |
| * Bit 27..25: SRC_WIDTH |
| * Bit 24..22: DST_WIDTH |
| * Bit 21..20: SRCAD_CTRL |
| * Bit 19..17: DSTAD_CTRL |
| * Bit 17: SRC_SEL |
| * Bit 16: DST_SEL |
| */ |
| if (llictl & FTDMAC020_LLI_TC_MSK) |
| val |= FTDMAC020_CH_CSR_TC_MSK; |
| val |= ((llictl & FTDMAC020_LLI_SRC_WIDTH_MSK) >> |
| (FTDMAC020_LLI_SRC_WIDTH_SHIFT - |
| FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT)); |
| val |= ((llictl & FTDMAC020_LLI_DST_WIDTH_MSK) >> |
| (FTDMAC020_LLI_DST_WIDTH_SHIFT - |
| FTDMAC020_CH_CSR_DST_WIDTH_SHIFT)); |
| val |= ((llictl & FTDMAC020_LLI_SRCAD_CTL_MSK) >> |
| (FTDMAC020_LLI_SRCAD_CTL_SHIFT - |
| FTDMAC020_CH_CSR_SRCAD_CTL_SHIFT)); |
| val |= ((llictl & FTDMAC020_LLI_DSTAD_CTL_MSK) >> |
| (FTDMAC020_LLI_DSTAD_CTL_SHIFT - |
| FTDMAC020_CH_CSR_DSTAD_CTL_SHIFT)); |
| if (llictl & FTDMAC020_LLI_SRC_SEL) |
| val |= FTDMAC020_CH_CSR_SRC_SEL; |
| if (llictl & FTDMAC020_LLI_DST_SEL) |
| val |= FTDMAC020_CH_CSR_DST_SEL; |
| |
| /* |
| * Set up the bits that exist in the CSR but are not |
| * part the LLI, i.e. only gets written to the control |
| * register right here. |
| * |
| * FIXME: do not just handle memcpy, also handle slave DMA. |
| */ |
| switch (pl08x->pd->memcpy_burst_size) { |
| default: |
| case PL08X_BURST_SZ_1: |
| val |= PL080_BSIZE_1 << |
| FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; |
| break; |
| case PL08X_BURST_SZ_4: |
| val |= PL080_BSIZE_4 << |
| FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; |
| break; |
| case PL08X_BURST_SZ_8: |
| val |= PL080_BSIZE_8 << |
| FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; |
| break; |
| case PL08X_BURST_SZ_16: |
| val |= PL080_BSIZE_16 << |
| FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; |
| break; |
| case PL08X_BURST_SZ_32: |
| val |= PL080_BSIZE_32 << |
| FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; |
| break; |
| case PL08X_BURST_SZ_64: |
| val |= PL080_BSIZE_64 << |
| FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; |
| break; |
| case PL08X_BURST_SZ_128: |
| val |= PL080_BSIZE_128 << |
| FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; |
| break; |
| case PL08X_BURST_SZ_256: |
| val |= PL080_BSIZE_256 << |
| FTDMAC020_CH_CSR_SRC_SIZE_SHIFT; |
| break; |
| } |
| |
| /* Protection flags */ |
| if (pl08x->pd->memcpy_prot_buff) |
| val |= FTDMAC020_CH_CSR_PROT2; |
| if (pl08x->pd->memcpy_prot_cache) |
| val |= FTDMAC020_CH_CSR_PROT3; |
| /* We are the kernel, so we are in privileged mode */ |
| val |= FTDMAC020_CH_CSR_PROT1; |
| |
| writel_relaxed(val, phychan->reg_control); |
| } else { |
| /* Bits are just identical */ |
| writel_relaxed(lli[PL080_LLI_CCTL], phychan->reg_control); |
| } |
| |
| /* Second control word on the PL080s */ |
| if (pl08x->vd->pl080s) |
| writel_relaxed(lli[PL080S_LLI_CCTL2], |
| phychan->base + PL080S_CH_CONTROL2); |
| |
| writel(ccfg, phychan->reg_config); |
| } |
| |
| /* |
| * Set the initial DMA register values i.e. those for the first LLI |
| * The next LLI pointer and the configuration interrupt bit have |
| * been set when the LLIs were constructed. Poke them into the hardware |
| * and start the transfer. |
| */ |
| static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan) |
| { |
| struct pl08x_driver_data *pl08x = plchan->host; |
| struct pl08x_phy_chan *phychan = plchan->phychan; |
| struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc); |
| struct pl08x_txd *txd = to_pl08x_txd(&vd->tx); |
| u32 val; |
| |
| list_del(&txd->vd.node); |
| |
| plchan->at = txd; |
| |
| /* Wait for channel inactive */ |
| while (pl08x_phy_channel_busy(phychan)) |
| cpu_relax(); |
| |
| pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg); |
| |
| /* Enable the DMA channel */ |
| /* Do not access config register until channel shows as disabled */ |
| while (readl(pl08x->base + PL080_EN_CHAN) & BIT(phychan->id)) |
| cpu_relax(); |
| |
| /* Do not access config register until channel shows as inactive */ |
| if (phychan->ftdmac020) { |
| val = readl(phychan->reg_config); |
| while (val & FTDMAC020_CH_CFG_BUSY) |
| val = readl(phychan->reg_config); |
| |
| val = readl(phychan->reg_control); |
| while (val & FTDMAC020_CH_CSR_EN) |
| val = readl(phychan->reg_control); |
| |
| writel(val | FTDMAC020_CH_CSR_EN, |
| phychan->reg_control); |
| } else { |
| val = readl(phychan->reg_config); |
| while ((val & PL080_CONFIG_ACTIVE) || |
| (val & PL080_CONFIG_ENABLE)) |
| val = readl(phychan->reg_config); |
| |
| writel(val | PL080_CONFIG_ENABLE, phychan->reg_config); |
| } |
| } |
| |
| /* |
| * Pause the channel by setting the HALT bit. |
| * |
| * For M->P transfers, pause the DMAC first and then stop the peripheral - |
| * the FIFO can only drain if the peripheral is still requesting data. |
| * (note: this can still timeout if the DMAC FIFO never drains of data.) |
| * |
| * For P->M transfers, disable the peripheral first to stop it filling |
| * the DMAC FIFO, and then pause the DMAC. |
| */ |
| static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch) |
| { |
| u32 val; |
| int timeout; |
| |
| if (ch->ftdmac020) { |
| /* Use the enable bit on the FTDMAC020 */ |
| val = readl(ch->reg_control); |
| val &= ~FTDMAC020_CH_CSR_EN; |
| writel(val, ch->reg_control); |
| return; |
| } |
| |
| /* Set the HALT bit and wait for the FIFO to drain */ |
| val = readl(ch->reg_config); |
| val |= PL080_CONFIG_HALT; |
| writel(val, ch->reg_config); |
| |
| /* Wait for channel inactive */ |
| for (timeout = 1000; timeout; timeout--) { |
| if (!pl08x_phy_channel_busy(ch)) |
| break; |
| udelay(1); |
| } |
| if (pl08x_phy_channel_busy(ch)) |
| pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id); |
| } |
| |
| static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch) |
| { |
| u32 val; |
| |
| /* Use the enable bit on the FTDMAC020 */ |
| if (ch->ftdmac020) { |
| val = readl(ch->reg_control); |
| val |= FTDMAC020_CH_CSR_EN; |
| writel(val, ch->reg_control); |
| return; |
| } |
| |
| /* Clear the HALT bit */ |
| val = readl(ch->reg_config); |
| val &= ~PL080_CONFIG_HALT; |
| writel(val, ch->reg_config); |
| } |
| |
| /* |
| * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and |
| * clears any pending interrupt status. This should not be used for |
| * an on-going transfer, but as a method of shutting down a channel |
| * (eg, when it's no longer used) or terminating a transfer. |
| */ |
| static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x, |
| struct pl08x_phy_chan *ch) |
| { |
| u32 val; |
| |
| /* The layout for the FTDMAC020 is different */ |
| if (ch->ftdmac020) { |
| /* Disable all interrupts */ |
| val = readl(ch->reg_config); |
| val |= (FTDMAC020_CH_CFG_INT_ABT_MASK | |
| FTDMAC020_CH_CFG_INT_ERR_MASK | |
| FTDMAC020_CH_CFG_INT_TC_MASK); |
| writel(val, ch->reg_config); |
| |
| /* Abort and disable channel */ |
| val = readl(ch->reg_control); |
| val &= ~FTDMAC020_CH_CSR_EN; |
| val |= FTDMAC020_CH_CSR_ABT; |
| writel(val, ch->reg_control); |
| |
| /* Clear ABT and ERR interrupt flags */ |
| writel(BIT(ch->id) | BIT(ch->id + 16), |
| pl08x->base + PL080_ERR_CLEAR); |
| writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR); |
| |
| return; |
| } |
| |
| val = readl(ch->reg_config); |
| val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK | |
| PL080_CONFIG_TC_IRQ_MASK); |
| writel(val, ch->reg_config); |
| |
| writel(BIT(ch->id), pl08x->base + PL080_ERR_CLEAR); |
| writel(BIT(ch->id), pl08x->base + PL080_TC_CLEAR); |
| } |
| |
| static u32 get_bytes_in_phy_channel(struct pl08x_phy_chan *ch) |
| { |
| u32 val; |
| u32 bytes; |
| |
| if (ch->ftdmac020) { |
| bytes = readl(ch->base + FTDMAC020_CH_SIZE); |
| |
| val = readl(ch->reg_control); |
| val &= FTDMAC020_CH_CSR_SRC_WIDTH_MSK; |
| val >>= FTDMAC020_CH_CSR_SRC_WIDTH_SHIFT; |
| } else if (ch->pl080s) { |
| val = readl(ch->base + PL080S_CH_CONTROL2); |
| bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK; |
| |
| val = readl(ch->reg_control); |
| val &= PL080_CONTROL_SWIDTH_MASK; |
| val >>= PL080_CONTROL_SWIDTH_SHIFT; |
| } else { |
| /* Plain PL08x */ |
| val = readl(ch->reg_control); |
| bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK; |
| |
| val &= PL080_CONTROL_SWIDTH_MASK; |
| val >>= PL080_CONTROL_SWIDTH_SHIFT; |
| } |
| |
| switch (val) { |
| case PL080_WIDTH_8BIT: |
| break; |
| case PL080_WIDTH_16BIT: |
| bytes *= 2; |
| break; |
| case PL080_WIDTH_32BIT: |
| bytes *= 4; |
| break; |
| } |
| return bytes; |
| } |
| |
| static u32 get_bytes_in_lli(struct pl08x_phy_chan *ch, const u32 *llis_va) |
| { |
| u32 val; |
| u32 bytes; |
| |
| if (ch->ftdmac020) { |
| val = llis_va[PL080_LLI_CCTL]; |
| bytes = val & FTDMAC020_LLI_TRANSFER_SIZE_MASK; |
| |
| val = llis_va[PL080_LLI_CCTL]; |
| val &= FTDMAC020_LLI_SRC_WIDTH_MSK; |
| val >>= FTDMAC020_LLI_SRC_WIDTH_SHIFT; |
| } else if (ch->pl080s) { |
| val = llis_va[PL080S_LLI_CCTL2]; |
| bytes = val & PL080S_CONTROL_TRANSFER_SIZE_MASK; |
| |
| val = llis_va[PL080_LLI_CCTL]; |
| val &= PL080_CONTROL_SWIDTH_MASK; |
| val >>= PL080_CONTROL_SWIDTH_SHIFT; |
| } else { |
| /* Plain PL08x */ |
| val = llis_va[PL080_LLI_CCTL]; |
| bytes = val & PL080_CONTROL_TRANSFER_SIZE_MASK; |
| |
| val &= PL080_CONTROL_SWIDTH_MASK; |
| val >>= PL080_CONTROL_SWIDTH_SHIFT; |
| } |
| |
| switch (val) { |
| case PL080_WIDTH_8BIT: |
| break; |
| case PL080_WIDTH_16BIT: |
| bytes *= 2; |
| break; |
| case PL080_WIDTH_32BIT: |
| bytes *= 4; |
| break; |
| } |
| return bytes; |
| } |
| |
| /* The channel should be paused when calling this */ |
| static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan) |
| { |
| struct pl08x_driver_data *pl08x = plchan->host; |
| const u32 *llis_va, *llis_va_limit; |
| struct pl08x_phy_chan *ch; |
| dma_addr_t llis_bus; |
| struct pl08x_txd *txd; |
| u32 llis_max_words; |
| size_t bytes; |
| u32 clli; |
| |
| ch = plchan->phychan; |
| txd = plchan->at; |
| |
| if (!ch || !txd) |
| return 0; |
| |
| /* |
| * Follow the LLIs to get the number of remaining |
| * bytes in the currently active transaction. |
| */ |
| clli = readl(ch->reg_lli) & ~PL080_LLI_LM_AHB2; |
| |
| /* First get the remaining bytes in the active transfer */ |
| bytes = get_bytes_in_phy_channel(ch); |
| |
| if (!clli) |
| return bytes; |
| |
| llis_va = txd->llis_va; |
| llis_bus = txd->llis_bus; |
| |
| llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS; |
| BUG_ON(clli < llis_bus || clli >= llis_bus + |
| sizeof(u32) * llis_max_words); |
| |
| /* |
| * Locate the next LLI - as this is an array, |
| * it's simple maths to find. |
| */ |
| llis_va += (clli - llis_bus) / sizeof(u32); |
| |
| llis_va_limit = llis_va + llis_max_words; |
| |
| for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) { |
| bytes += get_bytes_in_lli(ch, llis_va); |
| |
| /* |
| * A LLI pointer going backward terminates the LLI list |
| */ |
| if (llis_va[PL080_LLI_LLI] <= clli) |
| break; |
| } |
| |
| return bytes; |
| } |
| |
| /* |
| * Allocate a physical channel for a virtual channel |
| * |
| * Try to locate a physical channel to be used for this transfer. If all |
| * are taken return NULL and the requester will have to cope by using |
| * some fallback PIO mode or retrying later. |
| */ |
| static struct pl08x_phy_chan * |
| pl08x_get_phy_channel(struct pl08x_driver_data *pl08x, |
| struct pl08x_dma_chan *virt_chan) |
| { |
| struct pl08x_phy_chan *ch = NULL; |
| unsigned long flags; |
| int i; |
| |
| for (i = 0; i < pl08x->vd->channels; i++) { |
| ch = &pl08x->phy_chans[i]; |
| |
| spin_lock_irqsave(&ch->lock, flags); |
| |
| if (!ch->locked && !ch->serving) { |
| ch->serving = virt_chan; |
| spin_unlock_irqrestore(&ch->lock, flags); |
| break; |
| } |
| |
| spin_unlock_irqrestore(&ch->lock, flags); |
| } |
| |
| if (i == pl08x->vd->channels) { |
| /* No physical channel available, cope with it */ |
| return NULL; |
| } |
| |
| return ch; |
| } |
| |
| /* Mark the physical channel as free. Note, this write is atomic. */ |
| static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x, |
| struct pl08x_phy_chan *ch) |
| { |
| ch->serving = NULL; |
| } |
| |
| /* |
| * Try to allocate a physical channel. When successful, assign it to |
| * this virtual channel, and initiate the next descriptor. The |
| * virtual channel lock must be held at this point. |
| */ |
| static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan) |
| { |
| struct pl08x_driver_data *pl08x = plchan->host; |
| struct pl08x_phy_chan *ch; |
| |
| ch = pl08x_get_phy_channel(pl08x, plchan); |
| if (!ch) { |
| dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name); |
| plchan->state = PL08X_CHAN_WAITING; |
| return; |
| } |
| |
| dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n", |
| ch->id, plchan->name); |
| |
| plchan->phychan = ch; |
| plchan->state = PL08X_CHAN_RUNNING; |
| pl08x_start_next_txd(plchan); |
| } |
| |
| static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch, |
| struct pl08x_dma_chan *plchan) |
| { |
| struct pl08x_driver_data *pl08x = plchan->host; |
| |
| dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n", |
| ch->id, plchan->name); |
| |
| /* |
| * We do this without taking the lock; we're really only concerned |
| * about whether this pointer is NULL or not, and we're guaranteed |
| * that this will only be called when it _already_ is non-NULL. |
| */ |
| ch->serving = plchan; |
| plchan->phychan = ch; |
| plchan->state = PL08X_CHAN_RUNNING; |
| pl08x_start_next_txd(plchan); |
| } |
| |
| /* |
| * Free a physical DMA channel, potentially reallocating it to another |
| * virtual channel if we have any pending. |
| */ |
| static void pl08x_phy_free(struct pl08x_dma_chan *plchan) |
| { |
| struct pl08x_driver_data *pl08x = plchan->host; |
| struct pl08x_dma_chan *p, *next; |
| |
| retry: |
| next = NULL; |
| |
| /* Find a waiting virtual channel for the next transfer. */ |
| list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node) |
| if (p->state == PL08X_CHAN_WAITING) { |
| next = p; |
| break; |
| } |
| |
| if (!next && pl08x->has_slave) { |
| list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node) |
| if (p->state == PL08X_CHAN_WAITING) { |
| next = p; |
| break; |
| } |
| } |
| |
| /* Ensure that the physical channel is stopped */ |
| pl08x_terminate_phy_chan(pl08x, plchan->phychan); |
| |
| if (next) { |
| bool success; |
| |
| /* |
| * Eww. We know this isn't going to deadlock |
| * but lockdep probably doesn't. |
| */ |
| spin_lock(&next->vc.lock); |
| /* Re-check the state now that we have the lock */ |
| success = next->state == PL08X_CHAN_WAITING; |
| if (success) |
| pl08x_phy_reassign_start(plchan->phychan, next); |
| spin_unlock(&next->vc.lock); |
| |
| /* If the state changed, try to find another channel */ |
| if (!success) |
| goto retry; |
| } else { |
| /* No more jobs, so free up the physical channel */ |
| pl08x_put_phy_channel(pl08x, plchan->phychan); |
| } |
| |
| plchan->phychan = NULL; |
| plchan->state = PL08X_CHAN_IDLE; |
| } |
| |
| /* |
| * LLI handling |
| */ |
| |
| static inline unsigned int |
| pl08x_get_bytes_for_lli(struct pl08x_driver_data *pl08x, |
| u32 cctl, |
| bool source) |
| { |
| u32 val; |
| |
| if (pl08x->vd->ftdmac020) { |
| if (source) |
| val = (cctl & FTDMAC020_LLI_SRC_WIDTH_MSK) >> |
| FTDMAC020_LLI_SRC_WIDTH_SHIFT; |
| else |
| val = (cctl & FTDMAC020_LLI_DST_WIDTH_MSK) >> |
| FTDMAC020_LLI_DST_WIDTH_SHIFT; |
| } else { |
| if (source) |
| val = (cctl & PL080_CONTROL_SWIDTH_MASK) >> |
| PL080_CONTROL_SWIDTH_SHIFT; |
| else |
| val = (cctl & PL080_CONTROL_DWIDTH_MASK) >> |
| PL080_CONTROL_DWIDTH_SHIFT; |
| } |
| |
| switch (val) { |
| case PL080_WIDTH_8BIT: |
| return 1; |
| case PL080_WIDTH_16BIT: |
| return 2; |
| case PL080_WIDTH_32BIT: |
| return 4; |
| default: |
| break; |
| } |
| BUG(); |
| return 0; |
| } |
| |
| static inline u32 pl08x_lli_control_bits(struct pl08x_driver_data *pl08x, |
| u32 cctl, |
| u8 srcwidth, u8 dstwidth, |
| size_t tsize) |
| { |
| u32 retbits = cctl; |
| |
| /* |
| * Remove all src, dst and transfer size bits, then set the |
| * width and size according to the parameters. The bit offsets |
| * are different in the FTDMAC020 so we need to accound for this. |
| */ |
| if (pl08x->vd->ftdmac020) { |
| retbits &= ~FTDMAC020_LLI_DST_WIDTH_MSK; |
| retbits &= ~FTDMAC020_LLI_SRC_WIDTH_MSK; |
| retbits &= ~FTDMAC020_LLI_TRANSFER_SIZE_MASK; |
| |
| switch (srcwidth) { |
| case 1: |
| retbits |= PL080_WIDTH_8BIT << |
| FTDMAC020_LLI_SRC_WIDTH_SHIFT; |
| break; |
| case 2: |
| retbits |= PL080_WIDTH_16BIT << |
| FTDMAC020_LLI_SRC_WIDTH_SHIFT; |
| break; |
| case 4: |
| retbits |= PL080_WIDTH_32BIT << |
| FTDMAC020_LLI_SRC_WIDTH_SHIFT; |
| break; |
| default: |
| BUG(); |
| break; |
| } |
| |
| switch (dstwidth) { |
| case 1: |
| retbits |= PL080_WIDTH_8BIT << |
| FTDMAC020_LLI_DST_WIDTH_SHIFT; |
| break; |
| case 2: |
| retbits |= PL080_WIDTH_16BIT << |
| FTDMAC020_LLI_DST_WIDTH_SHIFT; |
| break; |
| case 4: |
| retbits |= PL080_WIDTH_32BIT << |
| FTDMAC020_LLI_DST_WIDTH_SHIFT; |
| break; |
| default: |
| BUG(); |
| break; |
| } |
| |
| tsize &= FTDMAC020_LLI_TRANSFER_SIZE_MASK; |
| retbits |= tsize << FTDMAC020_LLI_TRANSFER_SIZE_SHIFT; |
| } else { |
| retbits &= ~PL080_CONTROL_DWIDTH_MASK; |
| retbits &= ~PL080_CONTROL_SWIDTH_MASK; |
| retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK; |
| |
| switch (srcwidth) { |
| case 1: |
| retbits |= PL080_WIDTH_8BIT << |
| PL080_CONTROL_SWIDTH_SHIFT; |
| break; |
| case 2: |
| retbits |= PL080_WIDTH_16BIT << |
| PL080_CONTROL_SWIDTH_SHIFT; |
| break; |
| case 4: |
| retbits |= PL080_WIDTH_32BIT << |
| PL080_CONTROL_SWIDTH_SHIFT; |
| break; |
| default: |
| BUG(); |
| break; |
| } |
| |
| switch (dstwidth) { |
| case 1: |
| retbits |= PL080_WIDTH_8BIT << |
| PL080_CONTROL_DWIDTH_SHIFT; |
| break; |
| case 2: |
| retbits |= PL080_WIDTH_16BIT << |
| PL080_CONTROL_DWIDTH_SHIFT; |
| break; |
| case 4: |
| retbits |= PL080_WIDTH_32BIT << |
| PL080_CONTROL_DWIDTH_SHIFT; |
| break; |
| default: |
| BUG(); |
| break; |
| } |
| |
| tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK; |
| retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT; |
| } |
| |
| return retbits; |
| } |
| |
| struct pl08x_lli_build_data { |
| struct pl08x_txd *txd; |
| struct pl08x_bus_data srcbus; |
| struct pl08x_bus_data dstbus; |
| size_t remainder; |
| u32 lli_bus; |
| }; |
| |
| /* |
| * Autoselect a master bus to use for the transfer. Slave will be the chosen as |
| * victim in case src & dest are not similarly aligned. i.e. If after aligning |
| * masters address with width requirements of transfer (by sending few byte by |
| * byte data), slave is still not aligned, then its width will be reduced to |
| * BYTE. |
| * - prefers the destination bus if both available |
| * - prefers bus with fixed address (i.e. peripheral) |
| */ |
| static void pl08x_choose_master_bus(struct pl08x_driver_data *pl08x, |
| struct pl08x_lli_build_data *bd, |
| struct pl08x_bus_data **mbus, |
| struct pl08x_bus_data **sbus, |
| u32 cctl) |
| { |
| bool dst_incr; |
| bool src_incr; |
| |
| /* |
| * The FTDMAC020 only supports memory-to-memory transfer, so |
| * source and destination always increase. |
| */ |
| if (pl08x->vd->ftdmac020) { |
| dst_incr = true; |
| src_incr = true; |
| } else { |
| dst_incr = !!(cctl & PL080_CONTROL_DST_INCR); |
| src_incr = !!(cctl & PL080_CONTROL_SRC_INCR); |
| } |
| |
| /* |
| * If either bus is not advancing, i.e. it is a peripheral, that |
| * one becomes master |
| */ |
| if (!dst_incr) { |
| *mbus = &bd->dstbus; |
| *sbus = &bd->srcbus; |
| } else if (!src_incr) { |
| *mbus = &bd->srcbus; |
| *sbus = &bd->dstbus; |
| } else { |
| if (bd->dstbus.buswidth >= bd->srcbus.buswidth) { |
| *mbus = &bd->dstbus; |
| *sbus = &bd->srcbus; |
| } else { |
| *mbus = &bd->srcbus; |
| *sbus = &bd->dstbus; |
| } |
| } |
| } |
| |
| /* |
| * Fills in one LLI for a certain transfer descriptor and advance the counter |
| */ |
| static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x, |
| struct pl08x_lli_build_data *bd, |
| int num_llis, int len, u32 cctl, u32 cctl2) |
| { |
| u32 offset = num_llis * pl08x->lli_words; |
| u32 *llis_va = bd->txd->llis_va + offset; |
| dma_addr_t llis_bus = bd->txd->llis_bus; |
| |
| BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS); |
| |
| /* Advance the offset to next LLI. */ |
| offset += pl08x->lli_words; |
| |
| llis_va[PL080_LLI_SRC] = bd->srcbus.addr; |
| llis_va[PL080_LLI_DST] = bd->dstbus.addr; |
| llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset); |
| llis_va[PL080_LLI_LLI] |= bd->lli_bus; |
| llis_va[PL080_LLI_CCTL] = cctl; |
| if (pl08x->vd->pl080s) |
| llis_va[PL080S_LLI_CCTL2] = cctl2; |
| |
| if (pl08x->vd->ftdmac020) { |
| /* FIXME: only memcpy so far so both increase */ |
| bd->srcbus.addr += len; |
| bd->dstbus.addr += len; |
| } else { |
| if (cctl & PL080_CONTROL_SRC_INCR) |
| bd->srcbus.addr += len; |
| if (cctl & PL080_CONTROL_DST_INCR) |
| bd->dstbus.addr += len; |
| } |
| |
| BUG_ON(bd->remainder < len); |
| |
| bd->remainder -= len; |
| } |
| |
| static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x, |
| struct pl08x_lli_build_data *bd, u32 *cctl, u32 len, |
| int num_llis, size_t *total_bytes) |
| { |
| *cctl = pl08x_lli_control_bits(pl08x, *cctl, 1, 1, len); |
| pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len); |
| (*total_bytes) += len; |
| } |
| |
| #if 1 |
| static void pl08x_dump_lli(struct pl08x_driver_data *pl08x, |
| const u32 *llis_va, int num_llis) |
| { |
| int i; |
| |
| if (pl08x->vd->pl080s) { |
| dev_vdbg(&pl08x->adev->dev, |
| "%-3s %-9s %-10s %-10s %-10s %-10s %s\n", |
| "lli", "", "csrc", "cdst", "clli", "cctl", "cctl2"); |
| for (i = 0; i < num_llis; i++) { |
| dev_vdbg(&pl08x->adev->dev, |
| "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", |
| i, llis_va, llis_va[PL080_LLI_SRC], |
| llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI], |
| llis_va[PL080_LLI_CCTL], |
| llis_va[PL080S_LLI_CCTL2]); |
| llis_va += pl08x->lli_words; |
| } |
| } else { |
| dev_vdbg(&pl08x->adev->dev, |
| "%-3s %-9s %-10s %-10s %-10s %s\n", |
| "lli", "", "csrc", "cdst", "clli", "cctl"); |
| for (i = 0; i < num_llis; i++) { |
| dev_vdbg(&pl08x->adev->dev, |
| "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n", |
| i, llis_va, llis_va[PL080_LLI_SRC], |
| llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI], |
| llis_va[PL080_LLI_CCTL]); |
| llis_va += pl08x->lli_words; |
| } |
| } |
| } |
| #else |
| static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x, |
| const u32 *llis_va, int num_llis) {} |
| #endif |
| |
| /* |
| * This fills in the table of LLIs for the transfer descriptor |
| * Note that we assume we never have to change the burst sizes |
| * Return 0 for error |
| */ |
| static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x, |
| struct pl08x_txd *txd) |
| { |
| struct pl08x_bus_data *mbus, *sbus; |
| struct pl08x_lli_build_data bd; |
| int num_llis = 0; |
| u32 cctl, early_bytes = 0; |
| size_t max_bytes_per_lli, total_bytes; |
| u32 *llis_va, *last_lli; |
| struct pl08x_sg *dsg; |
| |
| txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus); |
| if (!txd->llis_va) { |
| dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__); |
| return 0; |
| } |
| |
| bd.txd = txd; |
| bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0; |
| cctl = txd->cctl; |
| |
| /* Find maximum width of the source bus */ |
| bd.srcbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, true); |
| |
| /* Find maximum width of the destination bus */ |
| bd.dstbus.maxwidth = pl08x_get_bytes_for_lli(pl08x, cctl, false); |
| |
| list_for_each_entry(dsg, &txd->dsg_list, node) { |
| total_bytes = 0; |
| cctl = txd->cctl; |
| |
| bd.srcbus.addr = dsg->src_addr; |
| bd.dstbus.addr = dsg->dst_addr; |
| bd.remainder = dsg->len; |
| bd.srcbus.buswidth = bd.srcbus.maxwidth; |
| bd.dstbus.buswidth = bd.dstbus.maxwidth; |
| |
| pl08x_choose_master_bus(pl08x, &bd, &mbus, &sbus, cctl); |
| |
| dev_vdbg(&pl08x->adev->dev, |
| "src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n", |
| (u64)bd.srcbus.addr, |
| cctl & PL080_CONTROL_SRC_INCR ? "+" : "", |
| bd.srcbus.buswidth, |
| (u64)bd.dstbus.addr, |
| cctl & PL080_CONTROL_DST_INCR ? "+" : "", |
| bd.dstbus.buswidth, |
| bd.remainder); |
| dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n", |
| mbus == &bd.srcbus ? "src" : "dst", |
| sbus == &bd.srcbus ? "src" : "dst"); |
| |
| /* |
| * Zero length is only allowed if all these requirements are |
| * met: |
| * - flow controller is peripheral. |
| * - src.addr is aligned to src.width |
| * - dst.addr is aligned to dst.width |
| * |
| * sg_len == 1 should be true, as there can be two cases here: |
| * |
| * - Memory addresses are contiguous and are not scattered. |
| * Here, Only one sg will be passed by user driver, with |
| * memory address and zero length. We pass this to controller |
| * and after the transfer it will receive the last burst |
| * request from peripheral and so transfer finishes. |
| * |
| * - Memory addresses are scattered and are not contiguous. |
| * Here, Obviously as DMA controller doesn't know when a lli's |
| * transfer gets over, it can't load next lli. So in this |
| * case, there has to be an assumption that only one lli is |
| * supported. Thus, we can't have scattered addresses. |
| */ |
| if (!bd.remainder) { |
| u32 fc; |
| |
| /* FTDMAC020 only does memory-to-memory */ |
| if (pl08x->vd->ftdmac020) |
| fc = PL080_FLOW_MEM2MEM; |
| else |
| fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >> |
| PL080_CONFIG_FLOW_CONTROL_SHIFT; |
| if (!((fc >= PL080_FLOW_SRC2DST_DST) && |
| (fc <= PL080_FLOW_SRC2DST_SRC))) { |
| dev_err(&pl08x->adev->dev, "%s sg len can't be zero", |
| __func__); |
| return 0; |
| } |
| |
| if (!IS_BUS_ALIGNED(&bd.srcbus) || |
| !IS_BUS_ALIGNED(&bd.dstbus)) { |
| dev_err(&pl08x->adev->dev, |
| "%s src & dst address must be aligned to src" |
| " & dst width if peripheral is flow controller", |
| __func__); |
| return 0; |
| } |
| |
| cctl = pl08x_lli_control_bits(pl08x, cctl, |
| bd.srcbus.buswidth, bd.dstbus.buswidth, |
| 0); |
| pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++, |
| 0, cctl, 0); |
| break; |
| } |
| |
| /* |
| * Send byte by byte for following cases |
| * - Less than a bus width available |
| * - until master bus is aligned |
| */ |
| if (bd.remainder < mbus->buswidth) |
| early_bytes = bd.remainder; |
| else if (!IS_BUS_ALIGNED(mbus)) { |
| early_bytes = mbus->buswidth - |
| (mbus->addr & (mbus->buswidth - 1)); |
| if ((bd.remainder - early_bytes) < mbus->buswidth) |
| early_bytes = bd.remainder; |
| } |
| |
| if (early_bytes) { |
| dev_vdbg(&pl08x->adev->dev, |
| "%s byte width LLIs (remain 0x%08zx)\n", |
| __func__, bd.remainder); |
| prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes, |
| num_llis++, &total_bytes); |
| } |
| |
| if (bd.remainder) { |
| /* |
| * Master now aligned |
| * - if slave is not then we must set its width down |
| */ |
| if (!IS_BUS_ALIGNED(sbus)) { |
| dev_dbg(&pl08x->adev->dev, |
| "%s set down bus width to one byte\n", |
| __func__); |
| |
| sbus->buswidth = 1; |
| } |
| |
| /* |
| * Bytes transferred = tsize * src width, not |
| * MIN(buswidths) |
| */ |
| max_bytes_per_lli = bd.srcbus.buswidth * |
| pl08x->vd->max_transfer_size; |
| dev_vdbg(&pl08x->adev->dev, |
| "%s max bytes per lli = %zu\n", |
| __func__, max_bytes_per_lli); |
| |
| /* |
| * Make largest possible LLIs until less than one bus |
| * width left |
| */ |
| while (bd.remainder > (mbus->buswidth - 1)) { |
| size_t lli_len, tsize, width; |
| |
| /* |
| * If enough left try to send max possible, |
| * otherwise try to send the remainder |
| */ |
| lli_len = min(bd.remainder, max_bytes_per_lli); |
| |
| /* |
| * Check against maximum bus alignment: |
| * Calculate actual transfer size in relation to |
| * bus width an get a maximum remainder of the |
| * highest bus width - 1 |
| */ |
| width = max(mbus->buswidth, sbus->buswidth); |
| lli_len = (lli_len / width) * width; |
| tsize = lli_len / bd.srcbus.buswidth; |
| |
| dev_vdbg(&pl08x->adev->dev, |
| "%s fill lli with single lli chunk of " |
| "size 0x%08zx (remainder 0x%08zx)\n", |
| __func__, lli_len, bd.remainder); |
| |
| cctl = pl08x_lli_control_bits(pl08x, cctl, |
| bd.srcbus.buswidth, bd.dstbus.buswidth, |
| tsize); |
| pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++, |
| lli_len, cctl, tsize); |
| total_bytes += lli_len; |
| } |
| |
| /* |
| * Send any odd bytes |
| */ |
| if (bd.remainder) { |
| dev_vdbg(&pl08x->adev->dev, |
| "%s align with boundary, send odd bytes (remain %zu)\n", |
| __func__, bd.remainder); |
| prep_byte_width_lli(pl08x, &bd, &cctl, |
| bd.remainder, num_llis++, &total_bytes); |
| } |
| } |
| |
| if (total_bytes != dsg->len) { |
| dev_err(&pl08x->adev->dev, |
| "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n", |
| __func__, total_bytes, dsg->len); |
| return 0; |
| } |
| |
| if (num_llis >= MAX_NUM_TSFR_LLIS) { |
| dev_err(&pl08x->adev->dev, |
| "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n", |
| __func__, MAX_NUM_TSFR_LLIS); |
| return 0; |
| } |
| } |
| |
| llis_va = txd->llis_va; |
| last_lli = llis_va + (num_llis - 1) * pl08x->lli_words; |
| |
| if (txd->cyclic) { |
| /* Link back to the first LLI. */ |
| last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus; |
| } else { |
| /* The final LLI terminates the LLI. */ |
| last_lli[PL080_LLI_LLI] = 0; |
| /* The final LLI element shall also fire an interrupt. */ |
| if (pl08x->vd->ftdmac020) |
| last_lli[PL080_LLI_CCTL] &= ~FTDMAC020_LLI_TC_MSK; |
| else |
| last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN; |
| } |
| |
| pl08x_dump_lli(pl08x, llis_va, num_llis); |
| |
| return num_llis; |
| } |
| |
| static void pl08x_free_txd(struct pl08x_driver_data *pl08x, |
| struct pl08x_txd *txd) |
| { |
| struct pl08x_sg *dsg, *_dsg; |
| |
| if (txd->llis_va) |
| dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus); |
| |
| list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) { |
| list_del(&dsg->node); |
| kfree(dsg); |
| } |
| |
| kfree(txd); |
| } |
| |
| static void pl08x_desc_free(struct virt_dma_desc *vd) |
| { |
| struct pl08x_txd *txd = to_pl08x_txd(&vd->tx); |
| struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan); |
| |
| dma_descriptor_unmap(&vd->tx); |
| if (!txd->done) |
| pl08x_release_mux(plchan); |
| |
| pl08x_free_txd(plchan->host, txd); |
| } |
| |
| static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x, |
| struct pl08x_dma_chan *plchan) |
| { |
| LIST_HEAD(head); |
| |
| vchan_get_all_descriptors(&plchan->vc, &head); |
| vchan_dma_desc_free_list(&plchan->vc, &head); |
| } |
| |
| /* |
| * The DMA ENGINE API |
| */ |
| static void pl08x_free_chan_resources(struct dma_chan *chan) |
| { |
| /* Ensure all queued descriptors are freed */ |
| vchan_free_chan_resources(to_virt_chan(chan)); |
| } |
| |
| static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt( |
| struct dma_chan *chan, unsigned long flags) |
| { |
| struct dma_async_tx_descriptor *retval = NULL; |
| |
| return retval; |
| } |
| |
| /* |
| * Code accessing dma_async_is_complete() in a tight loop may give problems. |
| * If slaves are relying on interrupts to signal completion this function |
| * must not be called with interrupts disabled. |
| */ |
| static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan, |
| dma_cookie_t cookie, struct dma_tx_state *txstate) |
| { |
| struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); |
| struct virt_dma_desc *vd; |
| unsigned long flags; |
| enum dma_status ret; |
| size_t bytes = 0; |
| |
| ret = dma_cookie_status(chan, cookie, txstate); |
| if (ret == DMA_COMPLETE) |
| return ret; |
| |
| /* |
| * There's no point calculating the residue if there's |
| * no txstate to store the value. |
| */ |
| if (!txstate) { |
| if (plchan->state == PL08X_CHAN_PAUSED) |
| ret = DMA_PAUSED; |
| return ret; |
| } |
| |
| spin_lock_irqsave(&plchan->vc.lock, flags); |
| ret = dma_cookie_status(chan, cookie, txstate); |
| if (ret != DMA_COMPLETE) { |
| vd = vchan_find_desc(&plchan->vc, cookie); |
| if (vd) { |
| /* On the issued list, so hasn't been processed yet */ |
| struct pl08x_txd *txd = to_pl08x_txd(&vd->tx); |
| struct pl08x_sg *dsg; |
| |
| list_for_each_entry(dsg, &txd->dsg_list, node) |
| bytes += dsg->len; |
| } else { |
| bytes = pl08x_getbytes_chan(plchan); |
| } |
| } |
| spin_unlock_irqrestore(&plchan->vc.lock, flags); |
| |
| /* |
| * This cookie not complete yet |
| * Get number of bytes left in the active transactions and queue |
| */ |
| dma_set_residue(txstate, bytes); |
| |
| if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS) |
| ret = DMA_PAUSED; |
| |
| /* Whether waiting or running, we're in progress */ |
| return ret; |
| } |
| |
| /* PrimeCell DMA extension */ |
| struct burst_table { |
| u32 burstwords; |
| u32 reg; |
| }; |
| |
| static const struct burst_table burst_sizes[] = { |
| { |
| .burstwords = 256, |
| .reg = PL080_BSIZE_256, |
| }, |
| { |
| .burstwords = 128, |
| .reg = PL080_BSIZE_128, |
| }, |
| { |
| .burstwords = 64, |
| .reg = PL080_BSIZE_64, |
| }, |
| { |
| .burstwords = 32, |
| .reg = PL080_BSIZE_32, |
| }, |
| { |
| .burstwords = 16, |
| .reg = PL080_BSIZE_16, |
| }, |
| { |
| .burstwords = 8, |
| .reg = PL080_BSIZE_8, |
| }, |
| { |
| .burstwords = 4, |
| .reg = PL080_BSIZE_4, |
| }, |
| { |
| .burstwords = 0, |
| .reg = PL080_BSIZE_1, |
| }, |
| }; |
| |
| /* |
| * Given the source and destination available bus masks, select which |
| * will be routed to each port. We try to have source and destination |
| * on separate ports, but always respect the allowable settings. |
| */ |
| static u32 pl08x_select_bus(bool ftdmac020, u8 src, u8 dst) |
| { |
| u32 cctl = 0; |
| u32 dst_ahb2; |
| u32 src_ahb2; |
| |
| /* The FTDMAC020 use different bits to indicate src/dst bus */ |
| if (ftdmac020) { |
| dst_ahb2 = FTDMAC020_LLI_DST_SEL; |
| src_ahb2 = FTDMAC020_LLI_SRC_SEL; |
| } else { |
| dst_ahb2 = PL080_CONTROL_DST_AHB2; |
| src_ahb2 = PL080_CONTROL_SRC_AHB2; |
| } |
| |
| if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1))) |
| cctl |= dst_ahb2; |
| if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2))) |
| cctl |= src_ahb2; |
| |
| return cctl; |
| } |
| |
| static u32 pl08x_cctl(u32 cctl) |
| { |
| cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 | |
| PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR | |
| PL080_CONTROL_PROT_MASK); |
| |
| /* Access the cell in privileged mode, non-bufferable, non-cacheable */ |
| return cctl | PL080_CONTROL_PROT_SYS; |
| } |
| |
| static u32 pl08x_width(enum dma_slave_buswidth width) |
| { |
| switch (width) { |
| case DMA_SLAVE_BUSWIDTH_1_BYTE: |
| return PL080_WIDTH_8BIT; |
| case DMA_SLAVE_BUSWIDTH_2_BYTES: |
| return PL080_WIDTH_16BIT; |
| case DMA_SLAVE_BUSWIDTH_4_BYTES: |
| return PL080_WIDTH_32BIT; |
| default: |
| return ~0; |
| } |
| } |
| |
| static u32 pl08x_burst(u32 maxburst) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(burst_sizes); i++) |
| if (burst_sizes[i].burstwords <= maxburst) |
| break; |
| |
| return burst_sizes[i].reg; |
| } |
| |
| static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan, |
| enum dma_slave_buswidth addr_width, u32 maxburst) |
| { |
| u32 width, burst, cctl = 0; |
| |
| width = pl08x_width(addr_width); |
| if (width == ~0) |
| return ~0; |
| |
| cctl |= width << PL080_CONTROL_SWIDTH_SHIFT; |
| cctl |= width << PL080_CONTROL_DWIDTH_SHIFT; |
| |
| /* |
| * If this channel will only request single transfers, set this |
| * down to ONE element. Also select one element if no maxburst |
| * is specified. |
| */ |
| if (plchan->cd->single) |
| maxburst = 1; |
| |
| burst = pl08x_burst(maxburst); |
| cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT; |
| cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT; |
| |
| return pl08x_cctl(cctl); |
| } |
| |
| /* |
| * Slave transactions callback to the slave device to allow |
| * synchronization of slave DMA signals with the DMAC enable |
| */ |
| static void pl08x_issue_pending(struct dma_chan *chan) |
| { |
| struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&plchan->vc.lock, flags); |
| if (vchan_issue_pending(&plchan->vc)) { |
| if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING) |
| pl08x_phy_alloc_and_start(plchan); |
| } |
| spin_unlock_irqrestore(&plchan->vc.lock, flags); |
| } |
| |
| static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan) |
| { |
| struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT); |
| |
| if (txd) |
| INIT_LIST_HEAD(&txd->dsg_list); |
| return txd; |
| } |
| |
| static u32 pl08x_memcpy_cctl(struct pl08x_driver_data *pl08x) |
| { |
| u32 cctl = 0; |
| |
| /* Conjure cctl */ |
| switch (pl08x->pd->memcpy_burst_size) { |
| default: |
| dev_err(&pl08x->adev->dev, |
| "illegal burst size for memcpy, set to 1\n"); |
| /* Fall through */ |
| case PL08X_BURST_SZ_1: |
| cctl |= PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT | |
| PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT; |
| break; |
| case PL08X_BURST_SZ_4: |
| cctl |= PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT | |
| PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT; |
| break; |
| case PL08X_BURST_SZ_8: |
| cctl |= PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT | |
| PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT; |
| break; |
| case PL08X_BURST_SZ_16: |
| cctl |= PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT | |
| PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT; |
| break; |
| case PL08X_BURST_SZ_32: |
| cctl |= PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT | |
| PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT; |
| break; |
| case PL08X_BURST_SZ_64: |
| cctl |= PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT | |
| PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT; |
| break; |
| case PL08X_BURST_SZ_128: |
| cctl |= PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT | |
| PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT; |
| break; |
| case PL08X_BURST_SZ_256: |
| cctl |= PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT | |
| PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT; |
| break; |
| } |
| |
| switch (pl08x->pd->memcpy_bus_width) { |
| default: |
| dev_err(&pl08x->adev->dev, |
| "illegal bus width for memcpy, set to 8 bits\n"); |
| /* Fall through */ |
| case PL08X_BUS_WIDTH_8_BITS: |
| cctl |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT | |
| PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT; |
| break; |
| case PL08X_BUS_WIDTH_16_BITS: |
| cctl |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT | |
| PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT; |
| break; |
| case PL08X_BUS_WIDTH_32_BITS: |
| cctl |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT | |
| PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT; |
| break; |
| } |
| |
| /* Protection flags */ |
| if (pl08x->pd->memcpy_prot_buff) |
| cctl |= PL080_CONTROL_PROT_BUFF; |
| if (pl08x->pd->memcpy_prot_cache) |
| cctl |= PL080_CONTROL_PROT_CACHE; |
| |
| /* We are the kernel, so we are in privileged mode */ |
| cctl |= PL080_CONTROL_PROT_SYS; |
| |
| /* Both to be incremented or the code will break */ |
| cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR; |
| |
| if (pl08x->vd->dualmaster) |
| cctl |= pl08x_select_bus(false, |
| pl08x->mem_buses, |
| pl08x->mem_buses); |
| |
| return cctl; |
| } |
| |
| static u32 pl08x_ftdmac020_memcpy_cctl(struct pl08x_driver_data *pl08x) |
| { |
| u32 cctl = 0; |
| |
| /* Conjure cctl */ |
| switch (pl08x->pd->memcpy_bus_width) { |
| default: |
| dev_err(&pl08x->adev->dev, |
| "illegal bus width for memcpy, set to 8 bits\n"); |
| /* Fall through */ |
| case PL08X_BUS_WIDTH_8_BITS: |
| cctl |= PL080_WIDTH_8BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT | |
| PL080_WIDTH_8BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT; |
| break; |
| case PL08X_BUS_WIDTH_16_BITS: |
| cctl |= PL080_WIDTH_16BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT | |
| PL080_WIDTH_16BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT; |
| break; |
| case PL08X_BUS_WIDTH_32_BITS: |
| cctl |= PL080_WIDTH_32BIT << FTDMAC020_LLI_SRC_WIDTH_SHIFT | |
| PL080_WIDTH_32BIT << FTDMAC020_LLI_DST_WIDTH_SHIFT; |
| break; |
| } |
| |
| /* |
| * By default mask the TC IRQ on all LLIs, it will be unmasked on |
| * the last LLI item by other code. |
| */ |
| cctl |= FTDMAC020_LLI_TC_MSK; |
| |
| /* |
| * Both to be incremented so leave bits FTDMAC020_LLI_SRCAD_CTL |
| * and FTDMAC020_LLI_DSTAD_CTL as zero |
| */ |
| if (pl08x->vd->dualmaster) |
| cctl |= pl08x_select_bus(true, |
| pl08x->mem_buses, |
| pl08x->mem_buses); |
| |
| return cctl; |
| } |
| |
| /* |
| * Initialize a descriptor to be used by memcpy submit |
| */ |
| static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy( |
| struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, |
| size_t len, unsigned long flags) |
| { |
| struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); |
| struct pl08x_driver_data *pl08x = plchan->host; |
| struct pl08x_txd *txd; |
| struct pl08x_sg *dsg; |
| int ret; |
| |
| txd = pl08x_get_txd(plchan); |
| if (!txd) { |
| dev_err(&pl08x->adev->dev, |
| "%s no memory for descriptor\n", __func__); |
| return NULL; |
| } |
| |
| dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT); |
| if (!dsg) { |
| pl08x_free_txd(pl08x, txd); |
| return NULL; |
| } |
| list_add_tail(&dsg->node, &txd->dsg_list); |
| |
| dsg->src_addr = src; |
| dsg->dst_addr = dest; |
| dsg->len = len; |
| if (pl08x->vd->ftdmac020) { |
| /* Writing CCFG zero ENABLES all interrupts */ |
| txd->ccfg = 0; |
| txd->cctl = pl08x_ftdmac020_memcpy_cctl(pl08x); |
| } else { |
| txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK | |
| PL080_CONFIG_TC_IRQ_MASK | |
| PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT; |
| txd->cctl = pl08x_memcpy_cctl(pl08x); |
| } |
| |
| ret = pl08x_fill_llis_for_desc(plchan->host, txd); |
| if (!ret) { |
| pl08x_free_txd(pl08x, txd); |
| return NULL; |
| } |
| |
| return vchan_tx_prep(&plchan->vc, &txd->vd, flags); |
| } |
| |
| static struct pl08x_txd *pl08x_init_txd( |
| struct dma_chan *chan, |
| enum dma_transfer_direction direction, |
| dma_addr_t *slave_addr) |
| { |
| struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); |
| struct pl08x_driver_data *pl08x = plchan->host; |
| struct pl08x_txd *txd; |
| enum dma_slave_buswidth addr_width; |
| int ret, tmp; |
| u8 src_buses, dst_buses; |
| u32 maxburst, cctl; |
| |
| txd = pl08x_get_txd(plchan); |
| if (!txd) { |
| dev_err(&pl08x->adev->dev, "%s no txd\n", __func__); |
| return NULL; |
| } |
| |
| /* |
| * Set up addresses, the PrimeCell configured address |
| * will take precedence since this may configure the |
| * channel target address dynamically at runtime. |
| */ |
| if (direction == DMA_MEM_TO_DEV) { |
| cctl = PL080_CONTROL_SRC_INCR; |
| *slave_addr = plchan->cfg.dst_addr; |
| addr_width = plchan->cfg.dst_addr_width; |
| maxburst = plchan->cfg.dst_maxburst; |
| src_buses = pl08x->mem_buses; |
| dst_buses = plchan->cd->periph_buses; |
| } else if (direction == DMA_DEV_TO_MEM) { |
| cctl = PL080_CONTROL_DST_INCR; |
| *slave_addr = plchan->cfg.src_addr; |
| addr_width = plchan->cfg.src_addr_width; |
| maxburst = plchan->cfg.src_maxburst; |
| src_buses = plchan->cd->periph_buses; |
| dst_buses = pl08x->mem_buses; |
| } else { |
| pl08x_free_txd(pl08x, txd); |
| dev_err(&pl08x->adev->dev, |
| "%s direction unsupported\n", __func__); |
| return NULL; |
| } |
| |
| cctl |= pl08x_get_cctl(plchan, addr_width, maxburst); |
| if (cctl == ~0) { |
| pl08x_free_txd(pl08x, txd); |
| dev_err(&pl08x->adev->dev, |
| "DMA slave configuration botched?\n"); |
| return NULL; |
| } |
| |
| txd->cctl = cctl | pl08x_select_bus(false, src_buses, dst_buses); |
| |
| if (plchan->cfg.device_fc) |
| tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER : |
| PL080_FLOW_PER2MEM_PER; |
| else |
| tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER : |
| PL080_FLOW_PER2MEM; |
| |
| txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK | |
| PL080_CONFIG_TC_IRQ_MASK | |
| tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT; |
| |
| ret = pl08x_request_mux(plchan); |
| if (ret < 0) { |
| pl08x_free_txd(pl08x, txd); |
| dev_dbg(&pl08x->adev->dev, |
| "unable to mux for transfer on %s due to platform restrictions\n", |
| plchan->name); |
| return NULL; |
| } |
| |
| dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n", |
| plchan->signal, plchan->name); |
| |
| /* Assign the flow control signal to this channel */ |
| if (direction == DMA_MEM_TO_DEV) |
| txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT; |
| else |
| txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT; |
| |
| return txd; |
| } |
| |
| static int pl08x_tx_add_sg(struct pl08x_txd *txd, |
| enum dma_transfer_direction direction, |
| dma_addr_t slave_addr, |
| dma_addr_t buf_addr, |
| unsigned int len) |
| { |
| struct pl08x_sg *dsg; |
| |
| dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT); |
| if (!dsg) |
| return -ENOMEM; |
| |
| list_add_tail(&dsg->node, &txd->dsg_list); |
| |
| dsg->len = len; |
| if (direction == DMA_MEM_TO_DEV) { |
| dsg->src_addr = buf_addr; |
| dsg->dst_addr = slave_addr; |
| } else { |
| dsg->src_addr = slave_addr; |
| dsg->dst_addr = buf_addr; |
| } |
| |
| return 0; |
| } |
| |
| static struct dma_async_tx_descriptor *pl08x_prep_slave_sg( |
| struct dma_chan *chan, struct scatterlist *sgl, |
| unsigned int sg_len, enum dma_transfer_direction direction, |
| unsigned long flags, void *context) |
| { |
| struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); |
| struct pl08x_driver_data *pl08x = plchan->host; |
| struct pl08x_txd *txd; |
| struct scatterlist *sg; |
| int ret, tmp; |
| dma_addr_t slave_addr; |
| |
| dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n", |
| __func__, sg_dma_len(sgl), plchan->name); |
| |
| txd = pl08x_init_txd(chan, direction, &slave_addr); |
| if (!txd) |
| return NULL; |
| |
| for_each_sg(sgl, sg, sg_len, tmp) { |
| ret = pl08x_tx_add_sg(txd, direction, slave_addr, |
| sg_dma_address(sg), |
| sg_dma_len(sg)); |
| if (ret) { |
| pl08x_release_mux(plchan); |
| pl08x_free_txd(pl08x, txd); |
| dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n", |
| __func__); |
| return NULL; |
| } |
| } |
| |
| ret = pl08x_fill_llis_for_desc(plchan->host, txd); |
| if (!ret) { |
| pl08x_release_mux(plchan); |
| pl08x_free_txd(pl08x, txd); |
| return NULL; |
| } |
| |
| return vchan_tx_prep(&plchan->vc, &txd->vd, flags); |
| } |
| |
| static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic( |
| struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, |
| size_t period_len, enum dma_transfer_direction direction, |
| unsigned long flags, void *context) |
| { |
| struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); |
| struct pl08x_driver_data *pl08x = plchan->host; |
| struct pl08x_txd *txd; |
| int ret, tmp; |
| dma_addr_t slave_addr; |
| |
| dev_dbg(&pl08x->adev->dev, |
| "%s prepare cyclic transaction of %zd/%zd bytes %s %s\n", |
| __func__, period_len, buf_len, |
| direction == DMA_MEM_TO_DEV ? "to" : "from", |
| plchan->name); |
| |
| txd = pl08x_init_txd(chan, direction, &slave_addr); |
| if (!txd) |
| return NULL; |
| |
| txd->cyclic = true; |
| txd->cctl |= PL080_CONTROL_TC_IRQ_EN; |
| for (tmp = 0; tmp < buf_len; tmp += period_len) { |
| ret = pl08x_tx_add_sg(txd, direction, slave_addr, |
| buf_addr + tmp, period_len); |
| if (ret) { |
| pl08x_release_mux(plchan); |
| pl08x_free_txd(pl08x, txd); |
| return NULL; |
| } |
| } |
| |
| ret = pl08x_fill_llis_for_desc(plchan->host, txd); |
| if (!ret) { |
| pl08x_release_mux(plchan); |
| pl08x_free_txd(pl08x, txd); |
| return NULL; |
| } |
| |
| return vchan_tx_prep(&plchan->vc, &txd->vd, flags); |
| } |
| |
| static int pl08x_config(struct dma_chan *chan, |
| struct dma_slave_config *config) |
| { |
| struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); |
| struct pl08x_driver_data *pl08x = plchan->host; |
| |
| if (!plchan->slave) |
| return -EINVAL; |
| |
| /* Reject definitely invalid configurations */ |
| if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES || |
| config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES) |
| return -EINVAL; |
| |
| if (config->device_fc && pl08x->vd->pl080s) { |
| dev_err(&pl08x->adev->dev, |
| "%s: PL080S does not support peripheral flow control\n", |
| __func__); |
| return -EINVAL; |
| } |
| |
| plchan->cfg = *config; |
| |
| return 0; |
| } |
| |
| static int pl08x_terminate_all(struct dma_chan *chan) |
| { |
| struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); |
| struct pl08x_driver_data *pl08x = plchan->host; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&plchan->vc.lock, flags); |
| if (!plchan->phychan && !plchan->at) { |
| spin_unlock_irqrestore(&plchan->vc.lock, flags); |
| return 0; |
| } |
| |
| plchan->state = PL08X_CHAN_IDLE; |
| |
| if (plchan->phychan) { |
| /* |
| * Mark physical channel as free and free any slave |
| * signal |
| */ |
| pl08x_phy_free(plchan); |
| } |
| /* Dequeue jobs and free LLIs */ |
| if (plchan->at) { |
| pl08x_desc_free(&plchan->at->vd); |
| plchan->at = NULL; |
| } |
| /* Dequeue jobs not yet fired as well */ |
| pl08x_free_txd_list(pl08x, plchan); |
| |
| spin_unlock_irqrestore(&plchan->vc.lock, flags); |
| |
| return 0; |
| } |
| |
| static int pl08x_pause(struct dma_chan *chan) |
| { |
| struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); |
| unsigned long flags; |
| |
| /* |
| * Anything succeeds on channels with no physical allocation and |
| * no queued transfers. |
| */ |
| spin_lock_irqsave(&plchan->vc.lock, flags); |
| if (!plchan->phychan && !plchan->at) { |
| spin_unlock_irqrestore(&plchan->vc.lock, flags); |
| return 0; |
| } |
| |
| pl08x_pause_phy_chan(plchan->phychan); |
| plchan->state = PL08X_CHAN_PAUSED; |
| |
| spin_unlock_irqrestore(&plchan->vc.lock, flags); |
| |
| return 0; |
| } |
| |
| static int pl08x_resume(struct dma_chan *chan) |
| { |
| struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); |
| unsigned long flags; |
| |
| /* |
| * Anything succeeds on channels with no physical allocation and |
| * no queued transfers. |
| */ |
| spin_lock_irqsave(&plchan->vc.lock, flags); |
| if (!plchan->phychan && !plchan->at) { |
| spin_unlock_irqrestore(&plchan->vc.lock, flags); |
| return 0; |
| } |
| |
| pl08x_resume_phy_chan(plchan->phychan); |
| plchan->state = PL08X_CHAN_RUNNING; |
| |
| spin_unlock_irqrestore(&plchan->vc.lock, flags); |
| |
| return 0; |
| } |
| |
| bool pl08x_filter_id(struct dma_chan *chan, void *chan_id) |
| { |
| struct pl08x_dma_chan *plchan; |
| char *name = chan_id; |
| |
| /* Reject channels for devices not bound to this driver */ |
| if (chan->device->dev->driver != &pl08x_amba_driver.drv) |
| return false; |
| |
| plchan = to_pl08x_chan(chan); |
| |
| /* Check that the channel is not taken! */ |
| if (!strcmp(plchan->name, name)) |
| return true; |
| |
| return false; |
| } |
| EXPORT_SYMBOL_GPL(pl08x_filter_id); |
| |
| static bool pl08x_filter_fn(struct dma_chan *chan, void *chan_id) |
| { |
| struct pl08x_dma_chan *plchan = to_pl08x_chan(chan); |
| |
| return plchan->cd == chan_id; |
| } |
| |
| /* |
| * Just check that the device is there and active |
| * TODO: turn this bit on/off depending on the number of physical channels |
| * actually used, if it is zero... well shut it off. That will save some |
| * power. Cut the clock at the same time. |
| */ |
| static void pl08x_ensure_on(struct pl08x_driver_data *pl08x) |
| { |
| /* The Nomadik variant does not have the config register */ |
| if (pl08x->vd->nomadik) |
| return; |
| /* The FTDMAC020 variant does this in another register */ |
| if (pl08x->vd->ftdmac020) { |
| writel(PL080_CONFIG_ENABLE, pl08x->base + FTDMAC020_CSR); |
| return; |
| } |
| writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG); |
| } |
| |
| static irqreturn_t pl08x_irq(int irq, void *dev) |
| { |
| struct pl08x_driver_data *pl08x = dev; |
| u32 mask = 0, err, tc, i; |
| |
| /* check & clear - ERR & TC interrupts */ |
| err = readl(pl08x->base + PL080_ERR_STATUS); |
| if (err) { |
| dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n", |
| __func__, err); |
| writel(err, pl08x->base + PL080_ERR_CLEAR); |
| } |
| tc = readl(pl08x->base + PL080_TC_STATUS); |
| if (tc) |
| writel(tc, pl08x->base + PL080_TC_CLEAR); |
| |
| if (!err && !tc) |
| return IRQ_NONE; |
| |
| for (i = 0; i < pl08x->vd->channels; i++) { |
| if ((BIT(i) & err) || (BIT(i) & tc)) { |
| /* Locate physical channel */ |
| struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i]; |
| struct pl08x_dma_chan *plchan = phychan->serving; |
| struct pl08x_txd *tx; |
| |
| if (!plchan) { |
| dev_err(&pl08x->adev->dev, |
| "%s Error TC interrupt on unused channel: 0x%08x\n", |
| __func__, i); |
| continue; |
| } |
| |
| spin_lock(&plchan->vc.lock); |
| tx = plchan->at; |
| if (tx && tx->cyclic) { |
| vchan_cyclic_callback(&tx->vd); |
| } else if (tx) { |
| plchan->at = NULL; |
| /* |
| * This descriptor is done, release its mux |
| * reservation. |
| */ |
| pl08x_release_mux(plchan); |
| tx->done = true; |
| vchan_cookie_complete(&tx->vd); |
| |
| /* |
| * And start the next descriptor (if any), |
| * otherwise free this channel. |
| */ |
| if (vchan_next_desc(&plchan->vc)) |
| pl08x_start_next_txd(plchan); |
| else |
| pl08x_phy_free(plchan); |
| } |
| spin_unlock(&plchan->vc.lock); |
| |
| mask |= BIT(i); |
| } |
| } |
| |
| return mask ? IRQ_HANDLED : IRQ_NONE; |
| } |
| |
| static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan) |
| { |
| chan->slave = true; |
| chan->name = chan->cd->bus_id; |
| chan->cfg.src_addr = chan->cd->addr; |
| chan->cfg.dst_addr = chan->cd->addr; |
| } |
| |
| /* |
| * Initialise the DMAC memcpy/slave channels. |
| * Make a local wrapper to hold required data |
| */ |
| static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x, |
| struct dma_device *dmadev, unsigned int channels, bool slave) |
| { |
| struct pl08x_dma_chan *chan; |
| int i; |
| |
| INIT_LIST_HEAD(&dmadev->channels); |
| |
| /* |
| * Register as many many memcpy as we have physical channels, |
| * we won't always be able to use all but the code will have |
| * to cope with that situation. |
| */ |
| for (i = 0; i < channels; i++) { |
| chan = kzalloc(sizeof(*chan), GFP_KERNEL); |
| if (!chan) |
| return -ENOMEM; |
| |
| chan->host = pl08x; |
| chan->state = PL08X_CHAN_IDLE; |
| chan->signal = -1; |
| |
| if (slave) { |
| chan->cd = &pl08x->pd->slave_channels[i]; |
| /* |
| * Some implementations have muxed signals, whereas some |
| * use a mux in front of the signals and need dynamic |
| * assignment of signals. |
| */ |
| chan->signal = i; |
| pl08x_dma_slave_init(chan); |
| } else { |
| chan->cd = kzalloc(sizeof(*chan->cd), GFP_KERNEL); |
| if (!chan->cd) { |
| kfree(chan); |
| return -ENOMEM; |
| } |
| chan->cd->bus_id = "memcpy"; |
| chan->cd->periph_buses = pl08x->pd->mem_buses; |
| chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i); |
| if (!chan->name) { |
| kfree(chan->cd); |
| kfree(chan); |
| return -ENOMEM; |
| } |
| } |
| dev_dbg(&pl08x->adev->dev, |
| "initialize virtual channel \"%s\"\n", |
| chan->name); |
| |
| chan->vc.desc_free = pl08x_desc_free; |
| vchan_init(&chan->vc, dmadev); |
| } |
| dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n", |
| i, slave ? "slave" : "memcpy"); |
| return i; |
| } |
| |
| static void pl08x_free_virtual_channels(struct dma_device *dmadev) |
| { |
| struct pl08x_dma_chan *chan = NULL; |
| struct pl08x_dma_chan *next; |
| |
| list_for_each_entry_safe(chan, |
| next, &dmadev->channels, vc.chan.device_node) { |
| list_del(&chan->vc.chan.device_node); |
| kfree(chan); |
| } |
| } |
| |
| #ifdef CONFIG_DEBUG_FS |
| static const char *pl08x_state_str(enum pl08x_dma_chan_state state) |
| { |
| switch (state) { |
| case PL08X_CHAN_IDLE: |
| return "idle"; |
| case PL08X_CHAN_RUNNING: |
| return "running"; |
| case PL08X_CHAN_PAUSED: |
| return "paused"; |
| case PL08X_CHAN_WAITING: |
| return "waiting"; |
| default: |
| break; |
| } |
| return "UNKNOWN STATE"; |
| } |
| |
| static int pl08x_debugfs_show(struct seq_file *s, void *data) |
| { |
| struct pl08x_driver_data *pl08x = s->private; |
| struct pl08x_dma_chan *chan; |
| struct pl08x_phy_chan *ch; |
| unsigned long flags; |
| int i; |
| |
| seq_printf(s, "PL08x physical channels:\n"); |
| seq_printf(s, "CHANNEL:\tUSER:\n"); |
| seq_printf(s, "--------\t-----\n"); |
| for (i = 0; i < pl08x->vd->channels; i++) { |
| struct pl08x_dma_chan *virt_chan; |
| |
| ch = &pl08x->phy_chans[i]; |
| |
| spin_lock_irqsave(&ch->lock, flags); |
| virt_chan = ch->serving; |
| |
| seq_printf(s, "%d\t\t%s%s\n", |
| ch->id, |
| virt_chan ? virt_chan->name : "(none)", |
| ch->locked ? " LOCKED" : ""); |
| |
| spin_unlock_irqrestore(&ch->lock, flags); |
| } |
| |
| seq_printf(s, "\nPL08x virtual memcpy channels:\n"); |
| seq_printf(s, "CHANNEL:\tSTATE:\n"); |
| seq_printf(s, "--------\t------\n"); |
| list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) { |
| seq_printf(s, "%s\t\t%s\n", chan->name, |
| pl08x_state_str(chan->state)); |
| } |
| |
| if (pl08x->has_slave) { |
| seq_printf(s, "\nPL08x virtual slave channels:\n"); |
| seq_printf(s, "CHANNEL:\tSTATE:\n"); |
| seq_printf(s, "--------\t------\n"); |
| list_for_each_entry(chan, &pl08x->slave.channels, |
| vc.chan.device_node) { |
| seq_printf(s, "%s\t\t%s\n", chan->name, |
| pl08x_state_str(chan->state)); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int pl08x_debugfs_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, pl08x_debugfs_show, inode->i_private); |
| } |
| |
| static const struct file_operations pl08x_debugfs_operations = { |
| .open = pl08x_debugfs_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x) |
| { |
| /* Expose a simple debugfs interface to view all clocks */ |
| (void) debugfs_create_file(dev_name(&pl08x->adev->dev), |
| S_IFREG | S_IRUGO, NULL, pl08x, |
| &pl08x_debugfs_operations); |
| } |
| |
| #else |
| static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x) |
| { |
| } |
| #endif |
| |
| #ifdef CONFIG_OF |
| static struct dma_chan *pl08x_find_chan_id(struct pl08x_driver_data *pl08x, |
| u32 id) |
| { |
| struct pl08x_dma_chan *chan; |
| |
| /* Trying to get a slave channel from something with no slave support */ |
| if (!pl08x->has_slave) |
| return NULL; |
| |
| list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) { |
| if (chan->signal == id) |
| return &chan->vc.chan; |
| } |
| |
| return NULL; |
| } |
| |
| static struct dma_chan *pl08x_of_xlate(struct of_phandle_args *dma_spec, |
| struct of_dma *ofdma) |
| { |
| struct pl08x_driver_data *pl08x = ofdma->of_dma_data; |
| struct dma_chan *dma_chan; |
| struct pl08x_dma_chan *plchan; |
| |
| if (!pl08x) |
| return NULL; |
| |
| if (dma_spec->args_count != 2) { |
| dev_err(&pl08x->adev->dev, |
| "DMA channel translation requires two cells\n"); |
| return NULL; |
| } |
| |
| dma_chan = pl08x_find_chan_id(pl08x, dma_spec->args[0]); |
| if (!dma_chan) { |
| dev_err(&pl08x->adev->dev, |
| "DMA slave channel not found\n"); |
| return NULL; |
| } |
| |
| plchan = to_pl08x_chan(dma_chan); |
| dev_dbg(&pl08x->adev->dev, |
| "translated channel for signal %d\n", |
| dma_spec->args[0]); |
| |
| /* Augment channel data for applicable AHB buses */ |
| plchan->cd->periph_buses = dma_spec->args[1]; |
| return dma_get_slave_channel(dma_chan); |
| } |
| |
| static int pl08x_of_probe(struct amba_device *adev, |
| struct pl08x_driver_data *pl08x, |
| struct device_node *np) |
| { |
| struct pl08x_platform_data *pd; |
| struct pl08x_channel_data *chanp = NULL; |
| u32 val; |
| int ret; |
| int i; |
| |
| pd = devm_kzalloc(&adev->dev, sizeof(*pd), GFP_KERNEL); |
| if (!pd) |
| return -ENOMEM; |
| |
| /* Eligible bus masters for fetching LLIs */ |
| if (of_property_read_bool(np, "lli-bus-interface-ahb1")) |
| pd->lli_buses |= PL08X_AHB1; |
| if (of_property_read_bool(np, "lli-bus-interface-ahb2")) |
| pd->lli_buses |= PL08X_AHB2; |
| if (!pd->lli_buses) { |
| dev_info(&adev->dev, "no bus masters for LLIs stated, assume all\n"); |
| pd->lli_buses |= PL08X_AHB1 | PL08X_AHB2; |
| } |
| |
| /* Eligible bus masters for memory access */ |
| if (of_property_read_bool(np, "mem-bus-interface-ahb1")) |
| pd->mem_buses |= PL08X_AHB1; |
| if (of_property_read_bool(np, "mem-bus-interface-ahb2")) |
| pd->mem_buses |= PL08X_AHB2; |
| if (!pd->mem_buses) { |
| dev_info(&adev->dev, "no bus masters for memory stated, assume all\n"); |
| pd->mem_buses |= PL08X_AHB1 | PL08X_AHB2; |
| } |
| |
| /* Parse the memcpy channel properties */ |
| ret = of_property_read_u32(np, "memcpy-burst-size", &val); |
| if (ret) { |
| dev_info(&adev->dev, "no memcpy burst size specified, using 1 byte\n"); |
| val = 1; |
| } |
| switch (val) { |
| default: |
| dev_err(&adev->dev, "illegal burst size for memcpy, set to 1\n"); |
| /* Fall through */ |
| case 1: |
| pd->memcpy_burst_size = PL08X_BURST_SZ_1; |
| break; |
| case 4: |
| pd->memcpy_burst_size = PL08X_BURST_SZ_4; |
| break; |
| case 8: |
| pd->memcpy_burst_size = PL08X_BURST_SZ_8; |
| break; |
| case 16: |
| pd->memcpy_burst_size = PL08X_BURST_SZ_16; |
| break; |
| case 32: |
| pd->memcpy_burst_size = PL08X_BURST_SZ_32; |
| break; |
| case 64: |
| pd->memcpy_burst_size = PL08X_BURST_SZ_64; |
| break; |
| case 128: |
| pd->memcpy_burst_size = PL08X_BURST_SZ_128; |
| break; |
| case 256: |
| pd->memcpy_burst_size = PL08X_BURST_SZ_256; |
| break; |
| } |
| |
| ret = of_property_read_u32(np, "memcpy-bus-width", &val); |
| if (ret) { |
| dev_info(&adev->dev, "no memcpy bus width specified, using 8 bits\n"); |
| val = 8; |
| } |
| switch (val) { |
| default: |
| dev_err(&adev->dev, "illegal bus width for memcpy, set to 8 bits\n"); |
| /* Fall through */ |
| case 8: |
| pd->memcpy_bus_width = PL08X_BUS_WIDTH_8_BITS; |
| break; |
| case 16: |
| pd->memcpy_bus_width = PL08X_BUS_WIDTH_16_BITS; |
| break; |
| case 32: |
| pd->memcpy_bus_width = PL08X_BUS_WIDTH_32_BITS; |
| break; |
| } |
| |
| /* |
| * Allocate channel data for all possible slave channels (one |
| * for each possible signal), channels will then be allocated |
| * for a device and have it's AHB interfaces set up at |
| * translation time. |
| */ |
| if (pl08x->vd->signals) { |
| chanp = devm_kcalloc(&adev->dev, |
| pl08x->vd->signals, |
| sizeof(struct pl08x_channel_data), |
| GFP_KERNEL); |
| if (!chanp) |
| return -ENOMEM; |
| |
| pd->slave_channels = chanp; |
| for (i = 0; i < pl08x->vd->signals; i++) { |
| /* |
| * chanp->periph_buses will be assigned at translation |
| */ |
| chanp->bus_id = kasprintf(GFP_KERNEL, "slave%d", i); |
| chanp++; |
| } |
| pd->num_slave_channels = pl08x->vd->signals; |
| } |
| |
| pl08x->pd = pd; |
| |
| return of_dma_controller_register(adev->dev.of_node, pl08x_of_xlate, |
| pl08x); |
| } |
| #else |
| static inline int pl08x_of_probe(struct amba_device *adev, |
| struct pl08x_driver_data *pl08x, |
| struct device_node *np) |
| { |
| return -EINVAL; |
| } |
| #endif |
| |
| static int pl08x_probe(struct amba_device *adev, const struct amba_id *id) |
| { |
| struct pl08x_driver_data *pl08x; |
| struct vendor_data *vd = id->data; |
| struct device_node *np = adev->dev.of_node; |
| u32 tsfr_size; |
| int ret = 0; |
| int i; |
| |
| ret = amba_request_regions(adev, NULL); |
| if (ret) |
| return ret; |
| |
| /* Ensure that we can do DMA */ |
| ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32)); |
| if (ret) |
| goto out_no_pl08x; |
| |
| /* Create the driver state holder */ |
| pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL); |
| if (!pl08x) { |
| ret = -ENOMEM; |
| goto out_no_pl08x; |
| } |
| |
| /* Assign useful pointers to the driver state */ |
| pl08x->adev = adev; |
| pl08x->vd = vd; |
| |
| pl08x->base = ioremap(adev->res.start, resource_size(&adev->res)); |
| if (!pl08x->base) { |
| ret = -ENOMEM; |
| goto out_no_ioremap; |
| } |
| |
| if (vd->ftdmac020) { |
| u32 val; |
| |
| val = readl(pl08x->base + FTDMAC020_REVISION); |
| dev_info(&pl08x->adev->dev, "FTDMAC020 %d.%d rel %d\n", |
| (val >> 16) & 0xff, (val >> 8) & 0xff, val & 0xff); |
| val = readl(pl08x->base + FTDMAC020_FEATURE); |
| dev_info(&pl08x->adev->dev, "FTDMAC020 %d channels, " |
| "%s built-in bridge, %s, %s linked lists\n", |
| (val >> 12) & 0x0f, |
| (val & BIT(10)) ? "no" : "has", |
| (val & BIT(9)) ? "AHB0 and AHB1" : "AHB0", |
| (val & BIT(8)) ? "supports" : "does not support"); |
| |
| /* Vendor data from feature register */ |
| if (!(val & BIT(8))) |
| dev_warn(&pl08x->adev->dev, |
| "linked lists not supported, required\n"); |
| vd->channels = (val >> 12) & 0x0f; |
| vd->dualmaster = !!(val & BIT(9)); |
| } |
| |
| /* Initialize memcpy engine */ |
| dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask); |
| pl08x->memcpy.dev = &adev->dev; |
| pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources; |
| pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy; |
| pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt; |
| pl08x->memcpy.device_tx_status = pl08x_dma_tx_status; |
| pl08x->memcpy.device_issue_pending = pl08x_issue_pending; |
| pl08x->memcpy.device_config = pl08x_config; |
| pl08x->memcpy.device_pause = pl08x_pause; |
| pl08x->memcpy.device_resume = pl08x_resume; |
| pl08x->memcpy.device_terminate_all = pl08x_terminate_all; |
| pl08x->memcpy.src_addr_widths = PL80X_DMA_BUSWIDTHS; |
| pl08x->memcpy.dst_addr_widths = PL80X_DMA_BUSWIDTHS; |
| pl08x->memcpy.directions = BIT(DMA_MEM_TO_MEM); |
| pl08x->memcpy.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; |
| if (vd->ftdmac020) |
| pl08x->memcpy.copy_align = DMAENGINE_ALIGN_4_BYTES; |
| |
| |
| /* |
| * Initialize slave engine, if the block has no signals, that means |
| * we have no slave support. |
| */ |
| if (vd->signals) { |
| pl08x->has_slave = true; |
| dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask); |
| dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask); |
| pl08x->slave.dev = &adev->dev; |
| pl08x->slave.device_free_chan_resources = |
| pl08x_free_chan_resources; |
| pl08x->slave.device_prep_dma_interrupt = |
| pl08x_prep_dma_interrupt; |
| pl08x->slave.device_tx_status = pl08x_dma_tx_status; |
| pl08x->slave.device_issue_pending = pl08x_issue_pending; |
| pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg; |
| pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic; |
| pl08x->slave.device_config = pl08x_config; |
| pl08x->slave.device_pause = pl08x_pause; |
| pl08x->slave.device_resume = pl08x_resume; |
| pl08x->slave.device_terminate_all = pl08x_terminate_all; |
| pl08x->slave.src_addr_widths = PL80X_DMA_BUSWIDTHS; |
| pl08x->slave.dst_addr_widths = PL80X_DMA_BUSWIDTHS; |
| pl08x->slave.directions = |
| BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); |
| pl08x->slave.residue_granularity = |
| DMA_RESIDUE_GRANULARITY_SEGMENT; |
| } |
| |
| /* Get the platform data */ |
| pl08x->pd = dev_get_platdata(&adev->dev); |
| if (!pl08x->pd) { |
| if (np) { |
| ret = pl08x_of_probe(adev, pl08x, np); |
| if (ret) |
| goto out_no_platdata; |
| } else { |
| dev_err(&adev->dev, "no platform data supplied\n"); |
| ret = -EINVAL; |
| goto out_no_platdata; |
| } |
| } else { |
| pl08x->slave.filter.map = pl08x->pd->slave_map; |
| pl08x->slave.filter.mapcnt = pl08x->pd->slave_map_len; |
| pl08x->slave.filter.fn = pl08x_filter_fn; |
| } |
| |
| /* By default, AHB1 only. If dualmaster, from platform */ |
| pl08x->lli_buses = PL08X_AHB1; |
| pl08x->mem_buses = PL08X_AHB1; |
| if (pl08x->vd->dualmaster) { |
| pl08x->lli_buses = pl08x->pd->lli_buses; |
| pl08x->mem_buses = pl08x->pd->mem_buses; |
| } |
| |
| if (vd->pl080s) |
| pl08x->lli_words = PL080S_LLI_WORDS; |
| else |
| pl08x->lli_words = PL080_LLI_WORDS; |
| tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32); |
| |
| /* A DMA memory pool for LLIs, align on 1-byte boundary */ |
| pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev, |
| tsfr_size, PL08X_ALIGN, 0); |
| if (!pl08x->pool) { |
| ret = -ENOMEM; |
| goto out_no_lli_pool; |
| } |
| |
| /* Turn on the PL08x */ |
| pl08x_ensure_on(pl08x); |
| |
| /* Clear any pending interrupts */ |
| if (vd->ftdmac020) |
| /* This variant has error IRQs in bits 16-19 */ |
| writel(0x0000FFFF, pl08x->base + PL080_ERR_CLEAR); |
| else |
| writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR); |
| writel(0x000000FF, pl08x->base + PL080_TC_CLEAR); |
| |
| /* Attach the interrupt handler */ |
| ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x); |
| if (ret) { |
| dev_err(&adev->dev, "%s failed to request interrupt %d\n", |
| __func__, adev->irq[0]); |
| goto out_no_irq; |
| } |
| |
| /* Initialize physical channels */ |
| pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)), |
| GFP_KERNEL); |
| if (!pl08x->phy_chans) { |
| ret = -ENOMEM; |
| goto out_no_phychans; |
| } |
| |
| for (i = 0; i < vd->channels; i++) { |
| struct pl08x_phy_chan *ch = &pl08x->phy_chans[i]; |
| |
| ch->id = i; |
| ch->base = pl08x->base + PL080_Cx_BASE(i); |
| if (vd->ftdmac020) { |
| /* FTDMA020 has a special channel busy register */ |
| ch->reg_busy = ch->base + FTDMAC020_CH_BUSY; |
| ch->reg_config = ch->base + FTDMAC020_CH_CFG; |
| ch->reg_control = ch->base + FTDMAC020_CH_CSR; |
| ch->reg_src = ch->base + FTDMAC020_CH_SRC_ADDR; |
| ch->reg_dst = ch->base + FTDMAC020_CH_DST_ADDR; |
| ch->reg_lli = ch->base + FTDMAC020_CH_LLP; |
| ch->ftdmac020 = true; |
| } else { |
| ch->reg_config = ch->base + vd->config_offset; |
| ch->reg_control = ch->base + PL080_CH_CONTROL; |
| ch->reg_src = ch->base + PL080_CH_SRC_ADDR; |
| ch->reg_dst = ch->base + PL080_CH_DST_ADDR; |
| ch->reg_lli = ch->base + PL080_CH_LLI; |
| } |
| if (vd->pl080s) |
| ch->pl080s = true; |
| |
| spin_lock_init(&ch->lock); |
| |
| /* |
| * Nomadik variants can have channels that are locked |
| * down for the secure world only. Lock up these channels |
| * by perpetually serving a dummy virtual channel. |
| */ |
| if (vd->nomadik) { |
| u32 val; |
| |
| val = readl(ch->reg_config); |
| if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) { |
| dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i); |
| ch->locked = true; |
| } |
| } |
| |
| dev_dbg(&adev->dev, "physical channel %d is %s\n", |
| i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE"); |
| } |
| |
| /* Register as many memcpy channels as there are physical channels */ |
| ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy, |
| pl08x->vd->channels, false); |
| if (ret <= 0) { |
| dev_warn(&pl08x->adev->dev, |
| "%s failed to enumerate memcpy channels - %d\n", |
| __func__, ret); |
| goto out_no_memcpy; |
| } |
| |
| /* Register slave channels */ |
| if (pl08x->has_slave) { |
| ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave, |
| pl08x->pd->num_slave_channels, true); |
| if (ret < 0) { |
| dev_warn(&pl08x->adev->dev, |
| "%s failed to enumerate slave channels - %d\n", |
| __func__, ret); |
| goto out_no_slave; |
| } |
| } |
| |
| ret = dma_async_device_register(&pl08x->memcpy); |
| if (ret) { |
| dev_warn(&pl08x->adev->dev, |
| "%s failed to register memcpy as an async device - %d\n", |
| __func__, ret); |
| goto out_no_memcpy_reg; |
| } |
| |
| if (pl08x->has_slave) { |
| ret = dma_async_device_register(&pl08x->slave); |
| if (ret) { |
| dev_warn(&pl08x->adev->dev, |
| "%s failed to register slave as an async device - %d\n", |
| __func__, ret); |
| goto out_no_slave_reg; |
| } |
| } |
| |
| amba_set_drvdata(adev, pl08x); |
| init_pl08x_debugfs(pl08x); |
| dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n", |
| amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev), |
| (unsigned long long)adev->res.start, adev->irq[0]); |
| |
| return 0; |
| |
| out_no_slave_reg: |
| dma_async_device_unregister(&pl08x->memcpy); |
| out_no_memcpy_reg: |
| if (pl08x->has_slave) |
| pl08x_free_virtual_channels(&pl08x->slave); |
| out_no_slave: |
| pl08x_free_virtual_channels(&pl08x->memcpy); |
| out_no_memcpy: |
| kfree(pl08x->phy_chans); |
| out_no_phychans: |
| free_irq(adev->irq[0], pl08x); |
| out_no_irq: |
| dma_pool_destroy(pl08x->pool); |
| out_no_lli_pool: |
| out_no_platdata: |
| iounmap(pl08x->base); |
| out_no_ioremap: |
| kfree(pl08x); |
| out_no_pl08x: |
| amba_release_regions(adev); |
| return ret; |
| } |
| |
| /* PL080 has 8 channels and the PL080 have just 2 */ |
| static struct vendor_data vendor_pl080 = { |
| .config_offset = PL080_CH_CONFIG, |
| .channels = 8, |
| .signals = 16, |
| .dualmaster = true, |
| .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK, |
| }; |
| |
| static struct vendor_data vendor_nomadik = { |
| .config_offset = PL080_CH_CONFIG, |
| .channels = 8, |
| .signals = 32, |
| .dualmaster = true, |
| .nomadik = true, |
| .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK, |
| }; |
| |
| static struct vendor_data vendor_pl080s = { |
| .config_offset = PL080S_CH_CONFIG, |
| .channels = 8, |
| .signals = 32, |
| .pl080s = true, |
| .max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK, |
| }; |
| |
| static struct vendor_data vendor_pl081 = { |
| .config_offset = PL080_CH_CONFIG, |
| .channels = 2, |
| .signals = 16, |
| .dualmaster = false, |
| .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK, |
| }; |
| |
| static struct vendor_data vendor_ftdmac020 = { |
| .config_offset = PL080_CH_CONFIG, |
| .ftdmac020 = true, |
| .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK, |
| }; |
| |
| static const struct amba_id pl08x_ids[] = { |
| /* Samsung PL080S variant */ |
| { |
| .id = 0x0a141080, |
| .mask = 0xffffffff, |
| .data = &vendor_pl080s, |
| }, |
| /* PL080 */ |
| { |
| .id = 0x00041080, |
| .mask = 0x000fffff, |
| .data = &vendor_pl080, |
| }, |
| /* PL081 */ |
| { |
| .id = 0x00041081, |
| .mask = 0x000fffff, |
| .data = &vendor_pl081, |
| }, |
| /* Nomadik 8815 PL080 variant */ |
| { |
| .id = 0x00280080, |
| .mask = 0x00ffffff, |
| .data = &vendor_nomadik, |
| }, |
| /* Faraday Technology FTDMAC020 */ |
| { |
| .id = 0x0003b080, |
| .mask = 0x000fffff, |
| .data = &vendor_ftdmac020, |
| }, |
| { 0, 0 }, |
| }; |
| |
| MODULE_DEVICE_TABLE(amba, pl08x_ids); |
| |
| static struct amba_driver pl08x_amba_driver = { |
| .drv.name = DRIVER_NAME, |
| .id_table = pl08x_ids, |
| .probe = pl08x_probe, |
| }; |
| |
| static int __init pl08x_init(void) |
| { |
| int retval; |
| retval = amba_driver_register(&pl08x_amba_driver); |
| if (retval) |
| printk(KERN_WARNING DRIVER_NAME |
| "failed to register as an AMBA device (%d)\n", |
| retval); |
| return retval; |
| } |
| subsys_initcall(pl08x_init); |