| /* |
| * AMD Cryptographic Coprocessor (CCP) driver |
| * |
| * Copyright (C) 2013,2017 Advanced Micro Devices, Inc. |
| * |
| * Author: Tom Lendacky <thomas.lendacky@amd.com> |
| * Author: Gary R Hook <gary.hook@amd.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/pci.h> |
| #include <linux/interrupt.h> |
| #include <crypto/scatterwalk.h> |
| #include <crypto/des.h> |
| #include <linux/ccp.h> |
| |
| #include "ccp-dev.h" |
| |
| /* SHA initial context values */ |
| static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = { |
| cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1), |
| cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3), |
| cpu_to_be32(SHA1_H4), |
| }; |
| |
| static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = { |
| cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1), |
| cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3), |
| cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5), |
| cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7), |
| }; |
| |
| static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = { |
| cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1), |
| cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3), |
| cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5), |
| cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7), |
| }; |
| |
| static const __be64 ccp_sha384_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = { |
| cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1), |
| cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3), |
| cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5), |
| cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7), |
| }; |
| |
| static const __be64 ccp_sha512_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = { |
| cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1), |
| cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3), |
| cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5), |
| cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7), |
| }; |
| |
| #define CCP_NEW_JOBID(ccp) ((ccp->vdata->version == CCP_VERSION(3, 0)) ? \ |
| ccp_gen_jobid(ccp) : 0) |
| |
| static u32 ccp_gen_jobid(struct ccp_device *ccp) |
| { |
| return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK; |
| } |
| |
| static void ccp_sg_free(struct ccp_sg_workarea *wa) |
| { |
| if (wa->dma_count) |
| dma_unmap_sg(wa->dma_dev, wa->dma_sg_head, wa->nents, wa->dma_dir); |
| |
| wa->dma_count = 0; |
| } |
| |
| static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev, |
| struct scatterlist *sg, u64 len, |
| enum dma_data_direction dma_dir) |
| { |
| memset(wa, 0, sizeof(*wa)); |
| |
| wa->sg = sg; |
| if (!sg) |
| return 0; |
| |
| wa->nents = sg_nents_for_len(sg, len); |
| if (wa->nents < 0) |
| return wa->nents; |
| |
| wa->bytes_left = len; |
| wa->sg_used = 0; |
| |
| if (len == 0) |
| return 0; |
| |
| if (dma_dir == DMA_NONE) |
| return 0; |
| |
| wa->dma_sg = sg; |
| wa->dma_sg_head = sg; |
| wa->dma_dev = dev; |
| wa->dma_dir = dma_dir; |
| wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir); |
| if (!wa->dma_count) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len) |
| { |
| unsigned int nbytes = min_t(u64, len, wa->bytes_left); |
| unsigned int sg_combined_len = 0; |
| |
| if (!wa->sg) |
| return; |
| |
| wa->sg_used += nbytes; |
| wa->bytes_left -= nbytes; |
| if (wa->sg_used == sg_dma_len(wa->dma_sg)) { |
| /* Advance to the next DMA scatterlist entry */ |
| wa->dma_sg = sg_next(wa->dma_sg); |
| |
| /* In the case that the DMA mapped scatterlist has entries |
| * that have been merged, the non-DMA mapped scatterlist |
| * must be advanced multiple times for each merged entry. |
| * This ensures that the current non-DMA mapped entry |
| * corresponds to the current DMA mapped entry. |
| */ |
| do { |
| sg_combined_len += wa->sg->length; |
| wa->sg = sg_next(wa->sg); |
| } while (wa->sg_used > sg_combined_len); |
| |
| wa->sg_used = 0; |
| } |
| } |
| |
| static void ccp_dm_free(struct ccp_dm_workarea *wa) |
| { |
| if (wa->length <= CCP_DMAPOOL_MAX_SIZE) { |
| if (wa->address) |
| dma_pool_free(wa->dma_pool, wa->address, |
| wa->dma.address); |
| } else { |
| if (wa->dma.address) |
| dma_unmap_single(wa->dev, wa->dma.address, wa->length, |
| wa->dma.dir); |
| kfree(wa->address); |
| } |
| |
| wa->address = NULL; |
| wa->dma.address = 0; |
| } |
| |
| static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa, |
| struct ccp_cmd_queue *cmd_q, |
| unsigned int len, |
| enum dma_data_direction dir) |
| { |
| memset(wa, 0, sizeof(*wa)); |
| |
| if (!len) |
| return 0; |
| |
| wa->dev = cmd_q->ccp->dev; |
| wa->length = len; |
| |
| if (len <= CCP_DMAPOOL_MAX_SIZE) { |
| wa->dma_pool = cmd_q->dma_pool; |
| |
| wa->address = dma_pool_alloc(wa->dma_pool, GFP_KERNEL, |
| &wa->dma.address); |
| if (!wa->address) |
| return -ENOMEM; |
| |
| wa->dma.length = CCP_DMAPOOL_MAX_SIZE; |
| |
| memset(wa->address, 0, CCP_DMAPOOL_MAX_SIZE); |
| } else { |
| wa->address = kzalloc(len, GFP_KERNEL); |
| if (!wa->address) |
| return -ENOMEM; |
| |
| wa->dma.address = dma_map_single(wa->dev, wa->address, len, |
| dir); |
| if (dma_mapping_error(wa->dev, wa->dma.address)) { |
| kfree(wa->address); |
| wa->address = NULL; |
| return -ENOMEM; |
| } |
| |
| wa->dma.length = len; |
| } |
| wa->dma.dir = dir; |
| |
| return 0; |
| } |
| |
| static int ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset, |
| struct scatterlist *sg, unsigned int sg_offset, |
| unsigned int len) |
| { |
| WARN_ON(!wa->address); |
| |
| if (len > (wa->length - wa_offset)) |
| return -EINVAL; |
| |
| scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len, |
| 0); |
| return 0; |
| } |
| |
| static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset, |
| struct scatterlist *sg, unsigned int sg_offset, |
| unsigned int len) |
| { |
| WARN_ON(!wa->address); |
| |
| scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len, |
| 1); |
| } |
| |
| static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa, |
| unsigned int wa_offset, |
| struct scatterlist *sg, |
| unsigned int sg_offset, |
| unsigned int len) |
| { |
| u8 *p, *q; |
| int rc; |
| |
| rc = ccp_set_dm_area(wa, wa_offset, sg, sg_offset, len); |
| if (rc) |
| return rc; |
| |
| p = wa->address + wa_offset; |
| q = p + len - 1; |
| while (p < q) { |
| *p = *p ^ *q; |
| *q = *p ^ *q; |
| *p = *p ^ *q; |
| p++; |
| q--; |
| } |
| return 0; |
| } |
| |
| static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa, |
| unsigned int wa_offset, |
| struct scatterlist *sg, |
| unsigned int sg_offset, |
| unsigned int len) |
| { |
| u8 *p, *q; |
| |
| p = wa->address + wa_offset; |
| q = p + len - 1; |
| while (p < q) { |
| *p = *p ^ *q; |
| *q = *p ^ *q; |
| *p = *p ^ *q; |
| p++; |
| q--; |
| } |
| |
| ccp_get_dm_area(wa, wa_offset, sg, sg_offset, len); |
| } |
| |
| static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q) |
| { |
| ccp_dm_free(&data->dm_wa); |
| ccp_sg_free(&data->sg_wa); |
| } |
| |
| static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q, |
| struct scatterlist *sg, u64 sg_len, |
| unsigned int dm_len, |
| enum dma_data_direction dir) |
| { |
| int ret; |
| |
| memset(data, 0, sizeof(*data)); |
| |
| ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len, |
| dir); |
| if (ret) |
| goto e_err; |
| |
| ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir); |
| if (ret) |
| goto e_err; |
| |
| return 0; |
| |
| e_err: |
| ccp_free_data(data, cmd_q); |
| |
| return ret; |
| } |
| |
| static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from) |
| { |
| struct ccp_sg_workarea *sg_wa = &data->sg_wa; |
| struct ccp_dm_workarea *dm_wa = &data->dm_wa; |
| unsigned int buf_count, nbytes; |
| |
| /* Clear the buffer if setting it */ |
| if (!from) |
| memset(dm_wa->address, 0, dm_wa->length); |
| |
| if (!sg_wa->sg) |
| return 0; |
| |
| /* Perform the copy operation |
| * nbytes will always be <= UINT_MAX because dm_wa->length is |
| * an unsigned int |
| */ |
| nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length); |
| scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used, |
| nbytes, from); |
| |
| /* Update the structures and generate the count */ |
| buf_count = 0; |
| while (sg_wa->bytes_left && (buf_count < dm_wa->length)) { |
| nbytes = min(sg_dma_len(sg_wa->dma_sg) - sg_wa->sg_used, |
| dm_wa->length - buf_count); |
| nbytes = min_t(u64, sg_wa->bytes_left, nbytes); |
| |
| buf_count += nbytes; |
| ccp_update_sg_workarea(sg_wa, nbytes); |
| } |
| |
| return buf_count; |
| } |
| |
| static unsigned int ccp_fill_queue_buf(struct ccp_data *data) |
| { |
| return ccp_queue_buf(data, 0); |
| } |
| |
| static unsigned int ccp_empty_queue_buf(struct ccp_data *data) |
| { |
| return ccp_queue_buf(data, 1); |
| } |
| |
| static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst, |
| struct ccp_op *op, unsigned int block_size, |
| bool blocksize_op) |
| { |
| unsigned int sg_src_len, sg_dst_len, op_len; |
| |
| /* The CCP can only DMA from/to one address each per operation. This |
| * requires that we find the smallest DMA area between the source |
| * and destination. The resulting len values will always be <= UINT_MAX |
| * because the dma length is an unsigned int. |
| */ |
| sg_src_len = sg_dma_len(src->sg_wa.dma_sg) - src->sg_wa.sg_used; |
| sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len); |
| |
| if (dst) { |
| sg_dst_len = sg_dma_len(dst->sg_wa.dma_sg) - dst->sg_wa.sg_used; |
| sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len); |
| op_len = min(sg_src_len, sg_dst_len); |
| } else { |
| op_len = sg_src_len; |
| } |
| |
| /* The data operation length will be at least block_size in length |
| * or the smaller of available sg room remaining for the source or |
| * the destination |
| */ |
| op_len = max(op_len, block_size); |
| |
| /* Unless we have to buffer data, there's no reason to wait */ |
| op->soc = 0; |
| |
| if (sg_src_len < block_size) { |
| /* Not enough data in the sg element, so it |
| * needs to be buffered into a blocksize chunk |
| */ |
| int cp_len = ccp_fill_queue_buf(src); |
| |
| op->soc = 1; |
| op->src.u.dma.address = src->dm_wa.dma.address; |
| op->src.u.dma.offset = 0; |
| op->src.u.dma.length = (blocksize_op) ? block_size : cp_len; |
| } else { |
| /* Enough data in the sg element, but we need to |
| * adjust for any previously copied data |
| */ |
| op->src.u.dma.address = sg_dma_address(src->sg_wa.dma_sg); |
| op->src.u.dma.offset = src->sg_wa.sg_used; |
| op->src.u.dma.length = op_len & ~(block_size - 1); |
| |
| ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length); |
| } |
| |
| if (dst) { |
| if (sg_dst_len < block_size) { |
| /* Not enough room in the sg element or we're on the |
| * last piece of data (when using padding), so the |
| * output needs to be buffered into a blocksize chunk |
| */ |
| op->soc = 1; |
| op->dst.u.dma.address = dst->dm_wa.dma.address; |
| op->dst.u.dma.offset = 0; |
| op->dst.u.dma.length = op->src.u.dma.length; |
| } else { |
| /* Enough room in the sg element, but we need to |
| * adjust for any previously used area |
| */ |
| op->dst.u.dma.address = sg_dma_address(dst->sg_wa.dma_sg); |
| op->dst.u.dma.offset = dst->sg_wa.sg_used; |
| op->dst.u.dma.length = op->src.u.dma.length; |
| } |
| } |
| } |
| |
| static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst, |
| struct ccp_op *op) |
| { |
| op->init = 0; |
| |
| if (dst) { |
| if (op->dst.u.dma.address == dst->dm_wa.dma.address) |
| ccp_empty_queue_buf(dst); |
| else |
| ccp_update_sg_workarea(&dst->sg_wa, |
| op->dst.u.dma.length); |
| } |
| } |
| |
| static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q, |
| struct ccp_dm_workarea *wa, u32 jobid, u32 sb, |
| u32 byte_swap, bool from) |
| { |
| struct ccp_op op; |
| |
| memset(&op, 0, sizeof(op)); |
| |
| op.cmd_q = cmd_q; |
| op.jobid = jobid; |
| op.eom = 1; |
| |
| if (from) { |
| op.soc = 1; |
| op.src.type = CCP_MEMTYPE_SB; |
| op.src.u.sb = sb; |
| op.dst.type = CCP_MEMTYPE_SYSTEM; |
| op.dst.u.dma.address = wa->dma.address; |
| op.dst.u.dma.length = wa->length; |
| } else { |
| op.src.type = CCP_MEMTYPE_SYSTEM; |
| op.src.u.dma.address = wa->dma.address; |
| op.src.u.dma.length = wa->length; |
| op.dst.type = CCP_MEMTYPE_SB; |
| op.dst.u.sb = sb; |
| } |
| |
| op.u.passthru.byte_swap = byte_swap; |
| |
| return cmd_q->ccp->vdata->perform->passthru(&op); |
| } |
| |
| static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q, |
| struct ccp_dm_workarea *wa, u32 jobid, u32 sb, |
| u32 byte_swap) |
| { |
| return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false); |
| } |
| |
| static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q, |
| struct ccp_dm_workarea *wa, u32 jobid, u32 sb, |
| u32 byte_swap) |
| { |
| return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true); |
| } |
| |
| static noinline_for_stack int |
| ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| { |
| struct ccp_aes_engine *aes = &cmd->u.aes; |
| struct ccp_dm_workarea key, ctx; |
| struct ccp_data src; |
| struct ccp_op op; |
| unsigned int dm_offset; |
| int ret; |
| |
| if (!((aes->key_len == AES_KEYSIZE_128) || |
| (aes->key_len == AES_KEYSIZE_192) || |
| (aes->key_len == AES_KEYSIZE_256))) |
| return -EINVAL; |
| |
| if (aes->src_len & (AES_BLOCK_SIZE - 1)) |
| return -EINVAL; |
| |
| if (aes->iv_len != AES_BLOCK_SIZE) |
| return -EINVAL; |
| |
| if (!aes->key || !aes->iv || !aes->src) |
| return -EINVAL; |
| |
| if (aes->cmac_final) { |
| if (aes->cmac_key_len != AES_BLOCK_SIZE) |
| return -EINVAL; |
| |
| if (!aes->cmac_key) |
| return -EINVAL; |
| } |
| |
| BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1); |
| BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1); |
| |
| ret = -EIO; |
| memset(&op, 0, sizeof(op)); |
| op.cmd_q = cmd_q; |
| op.jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| op.sb_key = cmd_q->sb_key; |
| op.sb_ctx = cmd_q->sb_ctx; |
| op.init = 1; |
| op.u.aes.type = aes->type; |
| op.u.aes.mode = aes->mode; |
| op.u.aes.action = aes->action; |
| |
| /* All supported key sizes fit in a single (32-byte) SB entry |
| * and must be in little endian format. Use the 256-bit byte |
| * swap passthru option to convert from big endian to little |
| * endian. |
| */ |
| ret = ccp_init_dm_workarea(&key, cmd_q, |
| CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES, |
| DMA_TO_DEVICE); |
| if (ret) |
| return ret; |
| |
| dm_offset = CCP_SB_BYTES - aes->key_len; |
| ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len); |
| if (ret) |
| goto e_key; |
| ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, |
| CCP_PASSTHRU_BYTESWAP_256BIT); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_key; |
| } |
| |
| /* The AES context fits in a single (32-byte) SB entry and |
| * must be in little endian format. Use the 256-bit byte swap |
| * passthru option to convert from big endian to little endian. |
| */ |
| ret = ccp_init_dm_workarea(&ctx, cmd_q, |
| CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES, |
| DMA_BIDIRECTIONAL); |
| if (ret) |
| goto e_key; |
| |
| dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; |
| ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); |
| if (ret) |
| goto e_ctx; |
| ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| CCP_PASSTHRU_BYTESWAP_256BIT); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_ctx; |
| } |
| |
| /* Send data to the CCP AES engine */ |
| ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len, |
| AES_BLOCK_SIZE, DMA_TO_DEVICE); |
| if (ret) |
| goto e_ctx; |
| |
| while (src.sg_wa.bytes_left) { |
| ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true); |
| if (aes->cmac_final && !src.sg_wa.bytes_left) { |
| op.eom = 1; |
| |
| /* Push the K1/K2 key to the CCP now */ |
| ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, |
| op.sb_ctx, |
| CCP_PASSTHRU_BYTESWAP_256BIT); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_src; |
| } |
| |
| ret = ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0, |
| aes->cmac_key_len); |
| if (ret) |
| goto e_src; |
| ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| CCP_PASSTHRU_BYTESWAP_256BIT); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_src; |
| } |
| } |
| |
| ret = cmd_q->ccp->vdata->perform->aes(&op); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_src; |
| } |
| |
| ccp_process_data(&src, NULL, &op); |
| } |
| |
| /* Retrieve the AES context - convert from LE to BE using |
| * 32-byte (256-bit) byteswapping |
| */ |
| ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| CCP_PASSTHRU_BYTESWAP_256BIT); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_src; |
| } |
| |
| /* ...but we only need AES_BLOCK_SIZE bytes */ |
| dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; |
| ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); |
| |
| e_src: |
| ccp_free_data(&src, cmd_q); |
| |
| e_ctx: |
| ccp_dm_free(&ctx); |
| |
| e_key: |
| ccp_dm_free(&key); |
| |
| return ret; |
| } |
| |
| static noinline_for_stack int |
| ccp_run_aes_gcm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| { |
| struct ccp_aes_engine *aes = &cmd->u.aes; |
| struct ccp_dm_workarea key, ctx, final_wa, tag; |
| struct ccp_data src, dst; |
| struct ccp_data aad; |
| struct ccp_op op; |
| |
| unsigned long long *final; |
| unsigned int dm_offset; |
| unsigned int authsize; |
| unsigned int jobid; |
| unsigned int ilen; |
| bool in_place = true; /* Default value */ |
| int ret; |
| |
| struct scatterlist *p_inp, sg_inp[2]; |
| struct scatterlist *p_tag, sg_tag[2]; |
| struct scatterlist *p_outp, sg_outp[2]; |
| struct scatterlist *p_aad; |
| |
| if (!aes->iv) |
| return -EINVAL; |
| |
| if (!((aes->key_len == AES_KEYSIZE_128) || |
| (aes->key_len == AES_KEYSIZE_192) || |
| (aes->key_len == AES_KEYSIZE_256))) |
| return -EINVAL; |
| |
| if (!aes->key) /* Gotta have a key SGL */ |
| return -EINVAL; |
| |
| /* Zero defaults to 16 bytes, the maximum size */ |
| authsize = aes->authsize ? aes->authsize : AES_BLOCK_SIZE; |
| switch (authsize) { |
| case 16: |
| case 15: |
| case 14: |
| case 13: |
| case 12: |
| case 8: |
| case 4: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* First, decompose the source buffer into AAD & PT, |
| * and the destination buffer into AAD, CT & tag, or |
| * the input into CT & tag. |
| * It is expected that the input and output SGs will |
| * be valid, even if the AAD and input lengths are 0. |
| */ |
| p_aad = aes->src; |
| p_inp = scatterwalk_ffwd(sg_inp, aes->src, aes->aad_len); |
| p_outp = scatterwalk_ffwd(sg_outp, aes->dst, aes->aad_len); |
| if (aes->action == CCP_AES_ACTION_ENCRYPT) { |
| ilen = aes->src_len; |
| p_tag = scatterwalk_ffwd(sg_tag, p_outp, ilen); |
| } else { |
| /* Input length for decryption includes tag */ |
| ilen = aes->src_len - authsize; |
| p_tag = scatterwalk_ffwd(sg_tag, p_inp, ilen); |
| } |
| |
| jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| |
| memset(&op, 0, sizeof(op)); |
| op.cmd_q = cmd_q; |
| op.jobid = jobid; |
| op.sb_key = cmd_q->sb_key; /* Pre-allocated */ |
| op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */ |
| op.init = 1; |
| op.u.aes.type = aes->type; |
| |
| /* Copy the key to the LSB */ |
| ret = ccp_init_dm_workarea(&key, cmd_q, |
| CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES, |
| DMA_TO_DEVICE); |
| if (ret) |
| return ret; |
| |
| dm_offset = CCP_SB_BYTES - aes->key_len; |
| ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len); |
| if (ret) |
| goto e_key; |
| ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, |
| CCP_PASSTHRU_BYTESWAP_256BIT); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_key; |
| } |
| |
| /* Copy the context (IV) to the LSB. |
| * There is an assumption here that the IV is 96 bits in length, plus |
| * a nonce of 32 bits. If no IV is present, use a zeroed buffer. |
| */ |
| ret = ccp_init_dm_workarea(&ctx, cmd_q, |
| CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES, |
| DMA_BIDIRECTIONAL); |
| if (ret) |
| goto e_key; |
| |
| dm_offset = CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES - aes->iv_len; |
| ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); |
| if (ret) |
| goto e_ctx; |
| |
| ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| CCP_PASSTHRU_BYTESWAP_256BIT); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_ctx; |
| } |
| |
| op.init = 1; |
| if (aes->aad_len > 0) { |
| /* Step 1: Run a GHASH over the Additional Authenticated Data */ |
| ret = ccp_init_data(&aad, cmd_q, p_aad, aes->aad_len, |
| AES_BLOCK_SIZE, |
| DMA_TO_DEVICE); |
| if (ret) |
| goto e_ctx; |
| |
| op.u.aes.mode = CCP_AES_MODE_GHASH; |
| op.u.aes.action = CCP_AES_GHASHAAD; |
| |
| while (aad.sg_wa.bytes_left) { |
| ccp_prepare_data(&aad, NULL, &op, AES_BLOCK_SIZE, true); |
| |
| ret = cmd_q->ccp->vdata->perform->aes(&op); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_aad; |
| } |
| |
| ccp_process_data(&aad, NULL, &op); |
| op.init = 0; |
| } |
| } |
| |
| op.u.aes.mode = CCP_AES_MODE_GCTR; |
| op.u.aes.action = aes->action; |
| |
| if (ilen > 0) { |
| /* Step 2: Run a GCTR over the plaintext */ |
| in_place = (sg_virt(p_inp) == sg_virt(p_outp)) ? true : false; |
| |
| ret = ccp_init_data(&src, cmd_q, p_inp, ilen, |
| AES_BLOCK_SIZE, |
| in_place ? DMA_BIDIRECTIONAL |
| : DMA_TO_DEVICE); |
| if (ret) |
| goto e_aad; |
| |
| if (in_place) { |
| dst = src; |
| } else { |
| ret = ccp_init_data(&dst, cmd_q, p_outp, ilen, |
| AES_BLOCK_SIZE, DMA_FROM_DEVICE); |
| if (ret) |
| goto e_src; |
| } |
| |
| op.soc = 0; |
| op.eom = 0; |
| op.init = 1; |
| while (src.sg_wa.bytes_left) { |
| ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true); |
| if (!src.sg_wa.bytes_left) { |
| unsigned int nbytes = ilen % AES_BLOCK_SIZE; |
| |
| if (nbytes) { |
| op.eom = 1; |
| op.u.aes.size = (nbytes * 8) - 1; |
| } |
| } |
| |
| ret = cmd_q->ccp->vdata->perform->aes(&op); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_dst; |
| } |
| |
| ccp_process_data(&src, &dst, &op); |
| op.init = 0; |
| } |
| } |
| |
| /* Step 3: Update the IV portion of the context with the original IV */ |
| ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| CCP_PASSTHRU_BYTESWAP_256BIT); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_dst; |
| } |
| |
| ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); |
| if (ret) |
| goto e_dst; |
| |
| ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| CCP_PASSTHRU_BYTESWAP_256BIT); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_dst; |
| } |
| |
| /* Step 4: Concatenate the lengths of the AAD and source, and |
| * hash that 16 byte buffer. |
| */ |
| ret = ccp_init_dm_workarea(&final_wa, cmd_q, AES_BLOCK_SIZE, |
| DMA_BIDIRECTIONAL); |
| if (ret) |
| goto e_dst; |
| final = (unsigned long long *) final_wa.address; |
| final[0] = cpu_to_be64(aes->aad_len * 8); |
| final[1] = cpu_to_be64(ilen * 8); |
| |
| memset(&op, 0, sizeof(op)); |
| op.cmd_q = cmd_q; |
| op.jobid = jobid; |
| op.sb_key = cmd_q->sb_key; /* Pre-allocated */ |
| op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */ |
| op.init = 1; |
| op.u.aes.type = aes->type; |
| op.u.aes.mode = CCP_AES_MODE_GHASH; |
| op.u.aes.action = CCP_AES_GHASHFINAL; |
| op.src.type = CCP_MEMTYPE_SYSTEM; |
| op.src.u.dma.address = final_wa.dma.address; |
| op.src.u.dma.length = AES_BLOCK_SIZE; |
| op.dst.type = CCP_MEMTYPE_SYSTEM; |
| op.dst.u.dma.address = final_wa.dma.address; |
| op.dst.u.dma.length = AES_BLOCK_SIZE; |
| op.eom = 1; |
| op.u.aes.size = 0; |
| ret = cmd_q->ccp->vdata->perform->aes(&op); |
| if (ret) |
| goto e_final_wa; |
| |
| if (aes->action == CCP_AES_ACTION_ENCRYPT) { |
| /* Put the ciphered tag after the ciphertext. */ |
| ccp_get_dm_area(&final_wa, 0, p_tag, 0, authsize); |
| } else { |
| /* Does this ciphered tag match the input? */ |
| ret = ccp_init_dm_workarea(&tag, cmd_q, authsize, |
| DMA_BIDIRECTIONAL); |
| if (ret) |
| goto e_final_wa; |
| ret = ccp_set_dm_area(&tag, 0, p_tag, 0, authsize); |
| if (ret) { |
| ccp_dm_free(&tag); |
| goto e_final_wa; |
| } |
| |
| ret = crypto_memneq(tag.address, final_wa.address, |
| authsize) ? -EBADMSG : 0; |
| ccp_dm_free(&tag); |
| } |
| |
| e_final_wa: |
| ccp_dm_free(&final_wa); |
| |
| e_dst: |
| if (ilen > 0 && !in_place) |
| ccp_free_data(&dst, cmd_q); |
| |
| e_src: |
| if (ilen > 0) |
| ccp_free_data(&src, cmd_q); |
| |
| e_aad: |
| if (aes->aad_len) |
| ccp_free_data(&aad, cmd_q); |
| |
| e_ctx: |
| ccp_dm_free(&ctx); |
| |
| e_key: |
| ccp_dm_free(&key); |
| |
| return ret; |
| } |
| |
| static noinline_for_stack int |
| ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| { |
| struct ccp_aes_engine *aes = &cmd->u.aes; |
| struct ccp_dm_workarea key, ctx; |
| struct ccp_data src, dst; |
| struct ccp_op op; |
| unsigned int dm_offset; |
| bool in_place = false; |
| int ret; |
| |
| if (!((aes->key_len == AES_KEYSIZE_128) || |
| (aes->key_len == AES_KEYSIZE_192) || |
| (aes->key_len == AES_KEYSIZE_256))) |
| return -EINVAL; |
| |
| if (((aes->mode == CCP_AES_MODE_ECB) || |
| (aes->mode == CCP_AES_MODE_CBC) || |
| (aes->mode == CCP_AES_MODE_CFB)) && |
| (aes->src_len & (AES_BLOCK_SIZE - 1))) |
| return -EINVAL; |
| |
| if (!aes->key || !aes->src || !aes->dst) |
| return -EINVAL; |
| |
| if (aes->mode != CCP_AES_MODE_ECB) { |
| if (aes->iv_len != AES_BLOCK_SIZE) |
| return -EINVAL; |
| |
| if (!aes->iv) |
| return -EINVAL; |
| } |
| |
| BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1); |
| BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1); |
| |
| ret = -EIO; |
| memset(&op, 0, sizeof(op)); |
| op.cmd_q = cmd_q; |
| op.jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| op.sb_key = cmd_q->sb_key; |
| op.sb_ctx = cmd_q->sb_ctx; |
| op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1; |
| op.u.aes.type = aes->type; |
| op.u.aes.mode = aes->mode; |
| op.u.aes.action = aes->action; |
| |
| /* All supported key sizes fit in a single (32-byte) SB entry |
| * and must be in little endian format. Use the 256-bit byte |
| * swap passthru option to convert from big endian to little |
| * endian. |
| */ |
| ret = ccp_init_dm_workarea(&key, cmd_q, |
| CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES, |
| DMA_TO_DEVICE); |
| if (ret) |
| return ret; |
| |
| dm_offset = CCP_SB_BYTES - aes->key_len; |
| ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len); |
| if (ret) |
| goto e_key; |
| ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, |
| CCP_PASSTHRU_BYTESWAP_256BIT); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_key; |
| } |
| |
| /* The AES context fits in a single (32-byte) SB entry and |
| * must be in little endian format. Use the 256-bit byte swap |
| * passthru option to convert from big endian to little endian. |
| */ |
| ret = ccp_init_dm_workarea(&ctx, cmd_q, |
| CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES, |
| DMA_BIDIRECTIONAL); |
| if (ret) |
| goto e_key; |
| |
| if (aes->mode != CCP_AES_MODE_ECB) { |
| /* Load the AES context - convert to LE */ |
| dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; |
| ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); |
| if (ret) |
| goto e_ctx; |
| ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| CCP_PASSTHRU_BYTESWAP_256BIT); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_ctx; |
| } |
| } |
| switch (aes->mode) { |
| case CCP_AES_MODE_CFB: /* CFB128 only */ |
| case CCP_AES_MODE_CTR: |
| op.u.aes.size = AES_BLOCK_SIZE * BITS_PER_BYTE - 1; |
| break; |
| default: |
| op.u.aes.size = 0; |
| } |
| |
| /* Prepare the input and output data workareas. For in-place |
| * operations we need to set the dma direction to BIDIRECTIONAL |
| * and copy the src workarea to the dst workarea. |
| */ |
| if (sg_virt(aes->src) == sg_virt(aes->dst)) |
| in_place = true; |
| |
| ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len, |
| AES_BLOCK_SIZE, |
| in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); |
| if (ret) |
| goto e_ctx; |
| |
| if (in_place) { |
| dst = src; |
| } else { |
| ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len, |
| AES_BLOCK_SIZE, DMA_FROM_DEVICE); |
| if (ret) |
| goto e_src; |
| } |
| |
| /* Send data to the CCP AES engine */ |
| while (src.sg_wa.bytes_left) { |
| ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true); |
| if (!src.sg_wa.bytes_left) { |
| op.eom = 1; |
| |
| /* Since we don't retrieve the AES context in ECB |
| * mode we have to wait for the operation to complete |
| * on the last piece of data |
| */ |
| if (aes->mode == CCP_AES_MODE_ECB) |
| op.soc = 1; |
| } |
| |
| ret = cmd_q->ccp->vdata->perform->aes(&op); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_dst; |
| } |
| |
| ccp_process_data(&src, &dst, &op); |
| } |
| |
| if (aes->mode != CCP_AES_MODE_ECB) { |
| /* Retrieve the AES context - convert from LE to BE using |
| * 32-byte (256-bit) byteswapping |
| */ |
| ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| CCP_PASSTHRU_BYTESWAP_256BIT); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_dst; |
| } |
| |
| /* ...but we only need AES_BLOCK_SIZE bytes */ |
| dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; |
| ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len); |
| } |
| |
| e_dst: |
| if (!in_place) |
| ccp_free_data(&dst, cmd_q); |
| |
| e_src: |
| ccp_free_data(&src, cmd_q); |
| |
| e_ctx: |
| ccp_dm_free(&ctx); |
| |
| e_key: |
| ccp_dm_free(&key); |
| |
| return ret; |
| } |
| |
| static noinline_for_stack int |
| ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| { |
| struct ccp_xts_aes_engine *xts = &cmd->u.xts; |
| struct ccp_dm_workarea key, ctx; |
| struct ccp_data src, dst; |
| struct ccp_op op; |
| unsigned int unit_size, dm_offset; |
| bool in_place = false; |
| unsigned int sb_count; |
| enum ccp_aes_type aestype; |
| int ret; |
| |
| switch (xts->unit_size) { |
| case CCP_XTS_AES_UNIT_SIZE_16: |
| unit_size = 16; |
| break; |
| case CCP_XTS_AES_UNIT_SIZE_512: |
| unit_size = 512; |
| break; |
| case CCP_XTS_AES_UNIT_SIZE_1024: |
| unit_size = 1024; |
| break; |
| case CCP_XTS_AES_UNIT_SIZE_2048: |
| unit_size = 2048; |
| break; |
| case CCP_XTS_AES_UNIT_SIZE_4096: |
| unit_size = 4096; |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| if (xts->key_len == AES_KEYSIZE_128) |
| aestype = CCP_AES_TYPE_128; |
| else if (xts->key_len == AES_KEYSIZE_256) |
| aestype = CCP_AES_TYPE_256; |
| else |
| return -EINVAL; |
| |
| if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1))) |
| return -EINVAL; |
| |
| if (xts->iv_len != AES_BLOCK_SIZE) |
| return -EINVAL; |
| |
| if (!xts->key || !xts->iv || !xts->src || !xts->dst) |
| return -EINVAL; |
| |
| BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1); |
| BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1); |
| |
| ret = -EIO; |
| memset(&op, 0, sizeof(op)); |
| op.cmd_q = cmd_q; |
| op.jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| op.sb_key = cmd_q->sb_key; |
| op.sb_ctx = cmd_q->sb_ctx; |
| op.init = 1; |
| op.u.xts.type = aestype; |
| op.u.xts.action = xts->action; |
| op.u.xts.unit_size = xts->unit_size; |
| |
| /* A version 3 device only supports 128-bit keys, which fits into a |
| * single SB entry. A version 5 device uses a 512-bit vector, so two |
| * SB entries. |
| */ |
| if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) |
| sb_count = CCP_XTS_AES_KEY_SB_COUNT; |
| else |
| sb_count = CCP5_XTS_AES_KEY_SB_COUNT; |
| ret = ccp_init_dm_workarea(&key, cmd_q, |
| sb_count * CCP_SB_BYTES, |
| DMA_TO_DEVICE); |
| if (ret) |
| return ret; |
| |
| if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) { |
| /* All supported key sizes must be in little endian format. |
| * Use the 256-bit byte swap passthru option to convert from |
| * big endian to little endian. |
| */ |
| dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128; |
| ret = ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len); |
| if (ret) |
| goto e_key; |
| ret = ccp_set_dm_area(&key, 0, xts->key, xts->key_len, xts->key_len); |
| if (ret) |
| goto e_key; |
| } else { |
| /* Version 5 CCPs use a 512-bit space for the key: each portion |
| * occupies 256 bits, or one entire slot, and is zero-padded. |
| */ |
| unsigned int pad; |
| |
| dm_offset = CCP_SB_BYTES; |
| pad = dm_offset - xts->key_len; |
| ret = ccp_set_dm_area(&key, pad, xts->key, 0, xts->key_len); |
| if (ret) |
| goto e_key; |
| ret = ccp_set_dm_area(&key, dm_offset + pad, xts->key, |
| xts->key_len, xts->key_len); |
| if (ret) |
| goto e_key; |
| } |
| ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, |
| CCP_PASSTHRU_BYTESWAP_256BIT); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_key; |
| } |
| |
| /* The AES context fits in a single (32-byte) SB entry and |
| * for XTS is already in little endian format so no byte swapping |
| * is needed. |
| */ |
| ret = ccp_init_dm_workarea(&ctx, cmd_q, |
| CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES, |
| DMA_BIDIRECTIONAL); |
| if (ret) |
| goto e_key; |
| |
| ret = ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len); |
| if (ret) |
| goto e_ctx; |
| ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| CCP_PASSTHRU_BYTESWAP_NOOP); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_ctx; |
| } |
| |
| /* Prepare the input and output data workareas. For in-place |
| * operations we need to set the dma direction to BIDIRECTIONAL |
| * and copy the src workarea to the dst workarea. |
| */ |
| if (sg_virt(xts->src) == sg_virt(xts->dst)) |
| in_place = true; |
| |
| ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len, |
| unit_size, |
| in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); |
| if (ret) |
| goto e_ctx; |
| |
| if (in_place) { |
| dst = src; |
| } else { |
| ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len, |
| unit_size, DMA_FROM_DEVICE); |
| if (ret) |
| goto e_src; |
| } |
| |
| /* Send data to the CCP AES engine */ |
| while (src.sg_wa.bytes_left) { |
| ccp_prepare_data(&src, &dst, &op, unit_size, true); |
| if (!src.sg_wa.bytes_left) |
| op.eom = 1; |
| |
| ret = cmd_q->ccp->vdata->perform->xts_aes(&op); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_dst; |
| } |
| |
| ccp_process_data(&src, &dst, &op); |
| } |
| |
| /* Retrieve the AES context - convert from LE to BE using |
| * 32-byte (256-bit) byteswapping |
| */ |
| ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| CCP_PASSTHRU_BYTESWAP_256BIT); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_dst; |
| } |
| |
| /* ...but we only need AES_BLOCK_SIZE bytes */ |
| dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE; |
| ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len); |
| |
| e_dst: |
| if (!in_place) |
| ccp_free_data(&dst, cmd_q); |
| |
| e_src: |
| ccp_free_data(&src, cmd_q); |
| |
| e_ctx: |
| ccp_dm_free(&ctx); |
| |
| e_key: |
| ccp_dm_free(&key); |
| |
| return ret; |
| } |
| |
| static noinline_for_stack int |
| ccp_run_des3_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| { |
| struct ccp_des3_engine *des3 = &cmd->u.des3; |
| |
| struct ccp_dm_workarea key, ctx; |
| struct ccp_data src, dst; |
| struct ccp_op op; |
| unsigned int dm_offset; |
| unsigned int len_singlekey; |
| bool in_place = false; |
| int ret; |
| |
| /* Error checks */ |
| if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) |
| return -EINVAL; |
| |
| if (!cmd_q->ccp->vdata->perform->des3) |
| return -EINVAL; |
| |
| if (des3->key_len != DES3_EDE_KEY_SIZE) |
| return -EINVAL; |
| |
| if (((des3->mode == CCP_DES3_MODE_ECB) || |
| (des3->mode == CCP_DES3_MODE_CBC)) && |
| (des3->src_len & (DES3_EDE_BLOCK_SIZE - 1))) |
| return -EINVAL; |
| |
| if (!des3->key || !des3->src || !des3->dst) |
| return -EINVAL; |
| |
| if (des3->mode != CCP_DES3_MODE_ECB) { |
| if (des3->iv_len != DES3_EDE_BLOCK_SIZE) |
| return -EINVAL; |
| |
| if (!des3->iv) |
| return -EINVAL; |
| } |
| |
| ret = -EIO; |
| /* Zero out all the fields of the command desc */ |
| memset(&op, 0, sizeof(op)); |
| |
| /* Set up the Function field */ |
| op.cmd_q = cmd_q; |
| op.jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| op.sb_key = cmd_q->sb_key; |
| |
| op.init = (des3->mode == CCP_DES3_MODE_ECB) ? 0 : 1; |
| op.u.des3.type = des3->type; |
| op.u.des3.mode = des3->mode; |
| op.u.des3.action = des3->action; |
| |
| /* |
| * All supported key sizes fit in a single (32-byte) KSB entry and |
| * (like AES) must be in little endian format. Use the 256-bit byte |
| * swap passthru option to convert from big endian to little endian. |
| */ |
| ret = ccp_init_dm_workarea(&key, cmd_q, |
| CCP_DES3_KEY_SB_COUNT * CCP_SB_BYTES, |
| DMA_TO_DEVICE); |
| if (ret) |
| return ret; |
| |
| /* |
| * The contents of the key triplet are in the reverse order of what |
| * is required by the engine. Copy the 3 pieces individually to put |
| * them where they belong. |
| */ |
| dm_offset = CCP_SB_BYTES - des3->key_len; /* Basic offset */ |
| |
| len_singlekey = des3->key_len / 3; |
| ret = ccp_set_dm_area(&key, dm_offset + 2 * len_singlekey, |
| des3->key, 0, len_singlekey); |
| if (ret) |
| goto e_key; |
| ret = ccp_set_dm_area(&key, dm_offset + len_singlekey, |
| des3->key, len_singlekey, len_singlekey); |
| if (ret) |
| goto e_key; |
| ret = ccp_set_dm_area(&key, dm_offset, |
| des3->key, 2 * len_singlekey, len_singlekey); |
| if (ret) |
| goto e_key; |
| |
| /* Copy the key to the SB */ |
| ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key, |
| CCP_PASSTHRU_BYTESWAP_256BIT); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_key; |
| } |
| |
| /* |
| * The DES3 context fits in a single (32-byte) KSB entry and |
| * must be in little endian format. Use the 256-bit byte swap |
| * passthru option to convert from big endian to little endian. |
| */ |
| if (des3->mode != CCP_DES3_MODE_ECB) { |
| op.sb_ctx = cmd_q->sb_ctx; |
| |
| ret = ccp_init_dm_workarea(&ctx, cmd_q, |
| CCP_DES3_CTX_SB_COUNT * CCP_SB_BYTES, |
| DMA_BIDIRECTIONAL); |
| if (ret) |
| goto e_key; |
| |
| /* Load the context into the LSB */ |
| dm_offset = CCP_SB_BYTES - des3->iv_len; |
| ret = ccp_set_dm_area(&ctx, dm_offset, des3->iv, 0, |
| des3->iv_len); |
| if (ret) |
| goto e_ctx; |
| |
| ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| CCP_PASSTHRU_BYTESWAP_256BIT); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_ctx; |
| } |
| } |
| |
| /* |
| * Prepare the input and output data workareas. For in-place |
| * operations we need to set the dma direction to BIDIRECTIONAL |
| * and copy the src workarea to the dst workarea. |
| */ |
| if (sg_virt(des3->src) == sg_virt(des3->dst)) |
| in_place = true; |
| |
| ret = ccp_init_data(&src, cmd_q, des3->src, des3->src_len, |
| DES3_EDE_BLOCK_SIZE, |
| in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); |
| if (ret) |
| goto e_ctx; |
| |
| if (in_place) |
| dst = src; |
| else { |
| ret = ccp_init_data(&dst, cmd_q, des3->dst, des3->src_len, |
| DES3_EDE_BLOCK_SIZE, DMA_FROM_DEVICE); |
| if (ret) |
| goto e_src; |
| } |
| |
| /* Send data to the CCP DES3 engine */ |
| while (src.sg_wa.bytes_left) { |
| ccp_prepare_data(&src, &dst, &op, DES3_EDE_BLOCK_SIZE, true); |
| if (!src.sg_wa.bytes_left) { |
| op.eom = 1; |
| |
| /* Since we don't retrieve the context in ECB mode |
| * we have to wait for the operation to complete |
| * on the last piece of data |
| */ |
| op.soc = 0; |
| } |
| |
| ret = cmd_q->ccp->vdata->perform->des3(&op); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_dst; |
| } |
| |
| ccp_process_data(&src, &dst, &op); |
| } |
| |
| if (des3->mode != CCP_DES3_MODE_ECB) { |
| /* Retrieve the context and make BE */ |
| ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| CCP_PASSTHRU_BYTESWAP_256BIT); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_dst; |
| } |
| |
| /* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */ |
| ccp_get_dm_area(&ctx, dm_offset, des3->iv, 0, |
| DES3_EDE_BLOCK_SIZE); |
| } |
| e_dst: |
| if (!in_place) |
| ccp_free_data(&dst, cmd_q); |
| |
| e_src: |
| ccp_free_data(&src, cmd_q); |
| |
| e_ctx: |
| if (des3->mode != CCP_DES3_MODE_ECB) |
| ccp_dm_free(&ctx); |
| |
| e_key: |
| ccp_dm_free(&key); |
| |
| return ret; |
| } |
| |
| static noinline_for_stack int |
| ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| { |
| struct ccp_sha_engine *sha = &cmd->u.sha; |
| struct ccp_dm_workarea ctx; |
| struct ccp_data src; |
| struct ccp_op op; |
| unsigned int ioffset, ooffset; |
| unsigned int digest_size; |
| int sb_count; |
| const void *init; |
| u64 block_size; |
| int ctx_size; |
| int ret; |
| |
| switch (sha->type) { |
| case CCP_SHA_TYPE_1: |
| if (sha->ctx_len < SHA1_DIGEST_SIZE) |
| return -EINVAL; |
| block_size = SHA1_BLOCK_SIZE; |
| break; |
| case CCP_SHA_TYPE_224: |
| if (sha->ctx_len < SHA224_DIGEST_SIZE) |
| return -EINVAL; |
| block_size = SHA224_BLOCK_SIZE; |
| break; |
| case CCP_SHA_TYPE_256: |
| if (sha->ctx_len < SHA256_DIGEST_SIZE) |
| return -EINVAL; |
| block_size = SHA256_BLOCK_SIZE; |
| break; |
| case CCP_SHA_TYPE_384: |
| if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0) |
| || sha->ctx_len < SHA384_DIGEST_SIZE) |
| return -EINVAL; |
| block_size = SHA384_BLOCK_SIZE; |
| break; |
| case CCP_SHA_TYPE_512: |
| if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0) |
| || sha->ctx_len < SHA512_DIGEST_SIZE) |
| return -EINVAL; |
| block_size = SHA512_BLOCK_SIZE; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| if (!sha->ctx) |
| return -EINVAL; |
| |
| if (!sha->final && (sha->src_len & (block_size - 1))) |
| return -EINVAL; |
| |
| /* The version 3 device can't handle zero-length input */ |
| if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) { |
| |
| if (!sha->src_len) { |
| unsigned int digest_len; |
| const u8 *sha_zero; |
| |
| /* Not final, just return */ |
| if (!sha->final) |
| return 0; |
| |
| /* CCP can't do a zero length sha operation so the |
| * caller must buffer the data. |
| */ |
| if (sha->msg_bits) |
| return -EINVAL; |
| |
| /* The CCP cannot perform zero-length sha operations |
| * so the caller is required to buffer data for the |
| * final operation. However, a sha operation for a |
| * message with a total length of zero is valid so |
| * known values are required to supply the result. |
| */ |
| switch (sha->type) { |
| case CCP_SHA_TYPE_1: |
| sha_zero = sha1_zero_message_hash; |
| digest_len = SHA1_DIGEST_SIZE; |
| break; |
| case CCP_SHA_TYPE_224: |
| sha_zero = sha224_zero_message_hash; |
| digest_len = SHA224_DIGEST_SIZE; |
| break; |
| case CCP_SHA_TYPE_256: |
| sha_zero = sha256_zero_message_hash; |
| digest_len = SHA256_DIGEST_SIZE; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0, |
| digest_len, 1); |
| |
| return 0; |
| } |
| } |
| |
| /* Set variables used throughout */ |
| switch (sha->type) { |
| case CCP_SHA_TYPE_1: |
| digest_size = SHA1_DIGEST_SIZE; |
| init = (void *) ccp_sha1_init; |
| ctx_size = SHA1_DIGEST_SIZE; |
| sb_count = 1; |
| if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0)) |
| ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE; |
| else |
| ooffset = ioffset = 0; |
| break; |
| case CCP_SHA_TYPE_224: |
| digest_size = SHA224_DIGEST_SIZE; |
| init = (void *) ccp_sha224_init; |
| ctx_size = SHA256_DIGEST_SIZE; |
| sb_count = 1; |
| ioffset = 0; |
| if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0)) |
| ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE; |
| else |
| ooffset = 0; |
| break; |
| case CCP_SHA_TYPE_256: |
| digest_size = SHA256_DIGEST_SIZE; |
| init = (void *) ccp_sha256_init; |
| ctx_size = SHA256_DIGEST_SIZE; |
| sb_count = 1; |
| ooffset = ioffset = 0; |
| break; |
| case CCP_SHA_TYPE_384: |
| digest_size = SHA384_DIGEST_SIZE; |
| init = (void *) ccp_sha384_init; |
| ctx_size = SHA512_DIGEST_SIZE; |
| sb_count = 2; |
| ioffset = 0; |
| ooffset = 2 * CCP_SB_BYTES - SHA384_DIGEST_SIZE; |
| break; |
| case CCP_SHA_TYPE_512: |
| digest_size = SHA512_DIGEST_SIZE; |
| init = (void *) ccp_sha512_init; |
| ctx_size = SHA512_DIGEST_SIZE; |
| sb_count = 2; |
| ooffset = ioffset = 0; |
| break; |
| default: |
| ret = -EINVAL; |
| goto e_data; |
| } |
| |
| /* For zero-length plaintext the src pointer is ignored; |
| * otherwise both parts must be valid |
| */ |
| if (sha->src_len && !sha->src) |
| return -EINVAL; |
| |
| memset(&op, 0, sizeof(op)); |
| op.cmd_q = cmd_q; |
| op.jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */ |
| op.u.sha.type = sha->type; |
| op.u.sha.msg_bits = sha->msg_bits; |
| |
| /* For SHA1/224/256 the context fits in a single (32-byte) SB entry; |
| * SHA384/512 require 2 adjacent SB slots, with the right half in the |
| * first slot, and the left half in the second. Each portion must then |
| * be in little endian format: use the 256-bit byte swap option. |
| */ |
| ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES, |
| DMA_BIDIRECTIONAL); |
| if (ret) |
| return ret; |
| if (sha->first) { |
| switch (sha->type) { |
| case CCP_SHA_TYPE_1: |
| case CCP_SHA_TYPE_224: |
| case CCP_SHA_TYPE_256: |
| memcpy(ctx.address + ioffset, init, ctx_size); |
| break; |
| case CCP_SHA_TYPE_384: |
| case CCP_SHA_TYPE_512: |
| memcpy(ctx.address + ctx_size / 2, init, |
| ctx_size / 2); |
| memcpy(ctx.address, init + ctx_size / 2, |
| ctx_size / 2); |
| break; |
| default: |
| ret = -EINVAL; |
| goto e_ctx; |
| } |
| } else { |
| /* Restore the context */ |
| ret = ccp_set_dm_area(&ctx, 0, sha->ctx, 0, |
| sb_count * CCP_SB_BYTES); |
| if (ret) |
| goto e_ctx; |
| } |
| |
| ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| CCP_PASSTHRU_BYTESWAP_256BIT); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_ctx; |
| } |
| |
| if (sha->src) { |
| /* Send data to the CCP SHA engine; block_size is set above */ |
| ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len, |
| block_size, DMA_TO_DEVICE); |
| if (ret) |
| goto e_ctx; |
| |
| while (src.sg_wa.bytes_left) { |
| ccp_prepare_data(&src, NULL, &op, block_size, false); |
| if (sha->final && !src.sg_wa.bytes_left) |
| op.eom = 1; |
| |
| ret = cmd_q->ccp->vdata->perform->sha(&op); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_data; |
| } |
| |
| ccp_process_data(&src, NULL, &op); |
| } |
| } else { |
| op.eom = 1; |
| ret = cmd_q->ccp->vdata->perform->sha(&op); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_data; |
| } |
| } |
| |
| /* Retrieve the SHA context - convert from LE to BE using |
| * 32-byte (256-bit) byteswapping to BE |
| */ |
| ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx, |
| CCP_PASSTHRU_BYTESWAP_256BIT); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_data; |
| } |
| |
| if (sha->final) { |
| /* Finishing up, so get the digest */ |
| switch (sha->type) { |
| case CCP_SHA_TYPE_1: |
| case CCP_SHA_TYPE_224: |
| case CCP_SHA_TYPE_256: |
| ccp_get_dm_area(&ctx, ooffset, |
| sha->ctx, 0, |
| digest_size); |
| break; |
| case CCP_SHA_TYPE_384: |
| case CCP_SHA_TYPE_512: |
| ccp_get_dm_area(&ctx, 0, |
| sha->ctx, LSB_ITEM_SIZE - ooffset, |
| LSB_ITEM_SIZE); |
| ccp_get_dm_area(&ctx, LSB_ITEM_SIZE + ooffset, |
| sha->ctx, 0, |
| LSB_ITEM_SIZE - ooffset); |
| break; |
| default: |
| ret = -EINVAL; |
| goto e_data; |
| } |
| } else { |
| /* Stash the context */ |
| ccp_get_dm_area(&ctx, 0, sha->ctx, 0, |
| sb_count * CCP_SB_BYTES); |
| } |
| |
| if (sha->final && sha->opad) { |
| /* HMAC operation, recursively perform final SHA */ |
| struct ccp_cmd hmac_cmd; |
| struct scatterlist sg; |
| u8 *hmac_buf; |
| |
| if (sha->opad_len != block_size) { |
| ret = -EINVAL; |
| goto e_data; |
| } |
| |
| hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL); |
| if (!hmac_buf) { |
| ret = -ENOMEM; |
| goto e_data; |
| } |
| sg_init_one(&sg, hmac_buf, block_size + digest_size); |
| |
| scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0); |
| switch (sha->type) { |
| case CCP_SHA_TYPE_1: |
| case CCP_SHA_TYPE_224: |
| case CCP_SHA_TYPE_256: |
| memcpy(hmac_buf + block_size, |
| ctx.address + ooffset, |
| digest_size); |
| break; |
| case CCP_SHA_TYPE_384: |
| case CCP_SHA_TYPE_512: |
| memcpy(hmac_buf + block_size, |
| ctx.address + LSB_ITEM_SIZE + ooffset, |
| LSB_ITEM_SIZE); |
| memcpy(hmac_buf + block_size + |
| (LSB_ITEM_SIZE - ooffset), |
| ctx.address, |
| LSB_ITEM_SIZE); |
| break; |
| default: |
| kfree(hmac_buf); |
| ret = -EINVAL; |
| goto e_data; |
| } |
| |
| memset(&hmac_cmd, 0, sizeof(hmac_cmd)); |
| hmac_cmd.engine = CCP_ENGINE_SHA; |
| hmac_cmd.u.sha.type = sha->type; |
| hmac_cmd.u.sha.ctx = sha->ctx; |
| hmac_cmd.u.sha.ctx_len = sha->ctx_len; |
| hmac_cmd.u.sha.src = &sg; |
| hmac_cmd.u.sha.src_len = block_size + digest_size; |
| hmac_cmd.u.sha.opad = NULL; |
| hmac_cmd.u.sha.opad_len = 0; |
| hmac_cmd.u.sha.first = 1; |
| hmac_cmd.u.sha.final = 1; |
| hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3; |
| |
| ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd); |
| if (ret) |
| cmd->engine_error = hmac_cmd.engine_error; |
| |
| kfree(hmac_buf); |
| } |
| |
| e_data: |
| if (sha->src) |
| ccp_free_data(&src, cmd_q); |
| |
| e_ctx: |
| ccp_dm_free(&ctx); |
| |
| return ret; |
| } |
| |
| static noinline_for_stack int |
| ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| { |
| struct ccp_rsa_engine *rsa = &cmd->u.rsa; |
| struct ccp_dm_workarea exp, src, dst; |
| struct ccp_op op; |
| unsigned int sb_count, i_len, o_len; |
| int ret; |
| |
| /* Check against the maximum allowable size, in bits */ |
| if (rsa->key_size > cmd_q->ccp->vdata->rsamax) |
| return -EINVAL; |
| |
| if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst) |
| return -EINVAL; |
| |
| memset(&op, 0, sizeof(op)); |
| op.cmd_q = cmd_q; |
| op.jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| |
| /* The RSA modulus must precede the message being acted upon, so |
| * it must be copied to a DMA area where the message and the |
| * modulus can be concatenated. Therefore the input buffer |
| * length required is twice the output buffer length (which |
| * must be a multiple of 256-bits). Compute o_len, i_len in bytes. |
| * Buffer sizes must be a multiple of 32 bytes; rounding up may be |
| * required. |
| */ |
| o_len = 32 * ((rsa->key_size + 255) / 256); |
| i_len = o_len * 2; |
| |
| sb_count = 0; |
| if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) { |
| /* sb_count is the number of storage block slots required |
| * for the modulus. |
| */ |
| sb_count = o_len / CCP_SB_BYTES; |
| op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q, |
| sb_count); |
| if (!op.sb_key) |
| return -EIO; |
| } else { |
| /* A version 5 device allows a modulus size that will not fit |
| * in the LSB, so the command will transfer it from memory. |
| * Set the sb key to the default, even though it's not used. |
| */ |
| op.sb_key = cmd_q->sb_key; |
| } |
| |
| /* The RSA exponent must be in little endian format. Reverse its |
| * byte order. |
| */ |
| ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE); |
| if (ret) |
| goto e_sb; |
| |
| ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len); |
| if (ret) |
| goto e_exp; |
| |
| if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) { |
| /* Copy the exponent to the local storage block, using |
| * as many 32-byte blocks as were allocated above. It's |
| * already little endian, so no further change is required. |
| */ |
| ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key, |
| CCP_PASSTHRU_BYTESWAP_NOOP); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_exp; |
| } |
| } else { |
| /* The exponent can be retrieved from memory via DMA. */ |
| op.exp.u.dma.address = exp.dma.address; |
| op.exp.u.dma.offset = 0; |
| } |
| |
| /* Concatenate the modulus and the message. Both the modulus and |
| * the operands must be in little endian format. Since the input |
| * is in big endian format it must be converted. |
| */ |
| ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE); |
| if (ret) |
| goto e_exp; |
| |
| ret = ccp_reverse_set_dm_area(&src, 0, rsa->mod, 0, rsa->mod_len); |
| if (ret) |
| goto e_src; |
| ret = ccp_reverse_set_dm_area(&src, o_len, rsa->src, 0, rsa->src_len); |
| if (ret) |
| goto e_src; |
| |
| /* Prepare the output area for the operation */ |
| ret = ccp_init_dm_workarea(&dst, cmd_q, o_len, DMA_FROM_DEVICE); |
| if (ret) |
| goto e_src; |
| |
| op.soc = 1; |
| op.src.u.dma.address = src.dma.address; |
| op.src.u.dma.offset = 0; |
| op.src.u.dma.length = i_len; |
| op.dst.u.dma.address = dst.dma.address; |
| op.dst.u.dma.offset = 0; |
| op.dst.u.dma.length = o_len; |
| |
| op.u.rsa.mod_size = rsa->key_size; |
| op.u.rsa.input_len = i_len; |
| |
| ret = cmd_q->ccp->vdata->perform->rsa(&op); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_dst; |
| } |
| |
| ccp_reverse_get_dm_area(&dst, 0, rsa->dst, 0, rsa->mod_len); |
| |
| e_dst: |
| ccp_dm_free(&dst); |
| |
| e_src: |
| ccp_dm_free(&src); |
| |
| e_exp: |
| ccp_dm_free(&exp); |
| |
| e_sb: |
| if (sb_count) |
| cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count); |
| |
| return ret; |
| } |
| |
| static noinline_for_stack int |
| ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| { |
| struct ccp_passthru_engine *pt = &cmd->u.passthru; |
| struct ccp_dm_workarea mask; |
| struct ccp_data src, dst; |
| struct ccp_op op; |
| bool in_place = false; |
| unsigned int i; |
| int ret = 0; |
| |
| if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1))) |
| return -EINVAL; |
| |
| if (!pt->src || !pt->dst) |
| return -EINVAL; |
| |
| if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) { |
| if (pt->mask_len != CCP_PASSTHRU_MASKSIZE) |
| return -EINVAL; |
| if (!pt->mask) |
| return -EINVAL; |
| } |
| |
| BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1); |
| |
| memset(&op, 0, sizeof(op)); |
| op.cmd_q = cmd_q; |
| op.jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| |
| if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) { |
| /* Load the mask */ |
| op.sb_key = cmd_q->sb_key; |
| |
| ret = ccp_init_dm_workarea(&mask, cmd_q, |
| CCP_PASSTHRU_SB_COUNT * |
| CCP_SB_BYTES, |
| DMA_TO_DEVICE); |
| if (ret) |
| return ret; |
| |
| ret = ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len); |
| if (ret) |
| goto e_mask; |
| ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key, |
| CCP_PASSTHRU_BYTESWAP_NOOP); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_mask; |
| } |
| } |
| |
| /* Prepare the input and output data workareas. For in-place |
| * operations we need to set the dma direction to BIDIRECTIONAL |
| * and copy the src workarea to the dst workarea. |
| */ |
| if (sg_virt(pt->src) == sg_virt(pt->dst)) |
| in_place = true; |
| |
| ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len, |
| CCP_PASSTHRU_MASKSIZE, |
| in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE); |
| if (ret) |
| goto e_mask; |
| |
| if (in_place) { |
| dst = src; |
| } else { |
| ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len, |
| CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE); |
| if (ret) |
| goto e_src; |
| } |
| |
| /* Send data to the CCP Passthru engine |
| * Because the CCP engine works on a single source and destination |
| * dma address at a time, each entry in the source scatterlist |
| * (after the dma_map_sg call) must be less than or equal to the |
| * (remaining) length in the destination scatterlist entry and the |
| * length must be a multiple of CCP_PASSTHRU_BLOCKSIZE |
| */ |
| dst.sg_wa.sg_used = 0; |
| for (i = 1; i <= src.sg_wa.dma_count; i++) { |
| if (!dst.sg_wa.sg || |
| (sg_dma_len(dst.sg_wa.sg) < sg_dma_len(src.sg_wa.sg))) { |
| ret = -EINVAL; |
| goto e_dst; |
| } |
| |
| if (i == src.sg_wa.dma_count) { |
| op.eom = 1; |
| op.soc = 1; |
| } |
| |
| op.src.type = CCP_MEMTYPE_SYSTEM; |
| op.src.u.dma.address = sg_dma_address(src.sg_wa.sg); |
| op.src.u.dma.offset = 0; |
| op.src.u.dma.length = sg_dma_len(src.sg_wa.sg); |
| |
| op.dst.type = CCP_MEMTYPE_SYSTEM; |
| op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg); |
| op.dst.u.dma.offset = dst.sg_wa.sg_used; |
| op.dst.u.dma.length = op.src.u.dma.length; |
| |
| ret = cmd_q->ccp->vdata->perform->passthru(&op); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_dst; |
| } |
| |
| dst.sg_wa.sg_used += sg_dma_len(src.sg_wa.sg); |
| if (dst.sg_wa.sg_used == sg_dma_len(dst.sg_wa.sg)) { |
| dst.sg_wa.sg = sg_next(dst.sg_wa.sg); |
| dst.sg_wa.sg_used = 0; |
| } |
| src.sg_wa.sg = sg_next(src.sg_wa.sg); |
| } |
| |
| e_dst: |
| if (!in_place) |
| ccp_free_data(&dst, cmd_q); |
| |
| e_src: |
| ccp_free_data(&src, cmd_q); |
| |
| e_mask: |
| if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) |
| ccp_dm_free(&mask); |
| |
| return ret; |
| } |
| |
| static noinline_for_stack int |
| ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q, |
| struct ccp_cmd *cmd) |
| { |
| struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap; |
| struct ccp_dm_workarea mask; |
| struct ccp_op op; |
| int ret; |
| |
| if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1))) |
| return -EINVAL; |
| |
| if (!pt->src_dma || !pt->dst_dma) |
| return -EINVAL; |
| |
| if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) { |
| if (pt->mask_len != CCP_PASSTHRU_MASKSIZE) |
| return -EINVAL; |
| if (!pt->mask) |
| return -EINVAL; |
| } |
| |
| BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1); |
| |
| memset(&op, 0, sizeof(op)); |
| op.cmd_q = cmd_q; |
| op.jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| |
| if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) { |
| /* Load the mask */ |
| op.sb_key = cmd_q->sb_key; |
| |
| mask.length = pt->mask_len; |
| mask.dma.address = pt->mask; |
| mask.dma.length = pt->mask_len; |
| |
| ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key, |
| CCP_PASSTHRU_BYTESWAP_NOOP); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| return ret; |
| } |
| } |
| |
| /* Send data to the CCP Passthru engine */ |
| op.eom = 1; |
| op.soc = 1; |
| |
| op.src.type = CCP_MEMTYPE_SYSTEM; |
| op.src.u.dma.address = pt->src_dma; |
| op.src.u.dma.offset = 0; |
| op.src.u.dma.length = pt->src_len; |
| |
| op.dst.type = CCP_MEMTYPE_SYSTEM; |
| op.dst.u.dma.address = pt->dst_dma; |
| op.dst.u.dma.offset = 0; |
| op.dst.u.dma.length = pt->src_len; |
| |
| ret = cmd_q->ccp->vdata->perform->passthru(&op); |
| if (ret) |
| cmd->engine_error = cmd_q->cmd_error; |
| |
| return ret; |
| } |
| |
| static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| { |
| struct ccp_ecc_engine *ecc = &cmd->u.ecc; |
| struct ccp_dm_workarea src, dst; |
| struct ccp_op op; |
| int ret; |
| u8 *save; |
| |
| if (!ecc->u.mm.operand_1 || |
| (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES)) |
| return -EINVAL; |
| |
| if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) |
| if (!ecc->u.mm.operand_2 || |
| (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES)) |
| return -EINVAL; |
| |
| if (!ecc->u.mm.result || |
| (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES)) |
| return -EINVAL; |
| |
| memset(&op, 0, sizeof(op)); |
| op.cmd_q = cmd_q; |
| op.jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| |
| /* Concatenate the modulus and the operands. Both the modulus and |
| * the operands must be in little endian format. Since the input |
| * is in big endian format it must be converted and placed in a |
| * fixed length buffer. |
| */ |
| ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE, |
| DMA_TO_DEVICE); |
| if (ret) |
| return ret; |
| |
| /* Save the workarea address since it is updated in order to perform |
| * the concatenation |
| */ |
| save = src.address; |
| |
| /* Copy the ECC modulus */ |
| ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len); |
| if (ret) |
| goto e_src; |
| src.address += CCP_ECC_OPERAND_SIZE; |
| |
| /* Copy the first operand */ |
| ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_1, 0, |
| ecc->u.mm.operand_1_len); |
| if (ret) |
| goto e_src; |
| src.address += CCP_ECC_OPERAND_SIZE; |
| |
| if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) { |
| /* Copy the second operand */ |
| ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_2, 0, |
| ecc->u.mm.operand_2_len); |
| if (ret) |
| goto e_src; |
| src.address += CCP_ECC_OPERAND_SIZE; |
| } |
| |
| /* Restore the workarea address */ |
| src.address = save; |
| |
| /* Prepare the output area for the operation */ |
| ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE, |
| DMA_FROM_DEVICE); |
| if (ret) |
| goto e_src; |
| |
| op.soc = 1; |
| op.src.u.dma.address = src.dma.address; |
| op.src.u.dma.offset = 0; |
| op.src.u.dma.length = src.length; |
| op.dst.u.dma.address = dst.dma.address; |
| op.dst.u.dma.offset = 0; |
| op.dst.u.dma.length = dst.length; |
| |
| op.u.ecc.function = cmd->u.ecc.function; |
| |
| ret = cmd_q->ccp->vdata->perform->ecc(&op); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_dst; |
| } |
| |
| ecc->ecc_result = le16_to_cpup( |
| (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET)); |
| if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) { |
| ret = -EIO; |
| goto e_dst; |
| } |
| |
| /* Save the ECC result */ |
| ccp_reverse_get_dm_area(&dst, 0, ecc->u.mm.result, 0, |
| CCP_ECC_MODULUS_BYTES); |
| |
| e_dst: |
| ccp_dm_free(&dst); |
| |
| e_src: |
| ccp_dm_free(&src); |
| |
| return ret; |
| } |
| |
| static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| { |
| struct ccp_ecc_engine *ecc = &cmd->u.ecc; |
| struct ccp_dm_workarea src, dst; |
| struct ccp_op op; |
| int ret; |
| u8 *save; |
| |
| if (!ecc->u.pm.point_1.x || |
| (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) || |
| !ecc->u.pm.point_1.y || |
| (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES)) |
| return -EINVAL; |
| |
| if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) { |
| if (!ecc->u.pm.point_2.x || |
| (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) || |
| !ecc->u.pm.point_2.y || |
| (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES)) |
| return -EINVAL; |
| } else { |
| if (!ecc->u.pm.domain_a || |
| (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES)) |
| return -EINVAL; |
| |
| if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) |
| if (!ecc->u.pm.scalar || |
| (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES)) |
| return -EINVAL; |
| } |
| |
| if (!ecc->u.pm.result.x || |
| (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) || |
| !ecc->u.pm.result.y || |
| (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES)) |
| return -EINVAL; |
| |
| memset(&op, 0, sizeof(op)); |
| op.cmd_q = cmd_q; |
| op.jobid = CCP_NEW_JOBID(cmd_q->ccp); |
| |
| /* Concatenate the modulus and the operands. Both the modulus and |
| * the operands must be in little endian format. Since the input |
| * is in big endian format it must be converted and placed in a |
| * fixed length buffer. |
| */ |
| ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE, |
| DMA_TO_DEVICE); |
| if (ret) |
| return ret; |
| |
| /* Save the workarea address since it is updated in order to perform |
| * the concatenation |
| */ |
| save = src.address; |
| |
| /* Copy the ECC modulus */ |
| ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len); |
| if (ret) |
| goto e_src; |
| src.address += CCP_ECC_OPERAND_SIZE; |
| |
| /* Copy the first point X and Y coordinate */ |
| ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.x, 0, |
| ecc->u.pm.point_1.x_len); |
| if (ret) |
| goto e_src; |
| src.address += CCP_ECC_OPERAND_SIZE; |
| ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.y, 0, |
| ecc->u.pm.point_1.y_len); |
| if (ret) |
| goto e_src; |
| src.address += CCP_ECC_OPERAND_SIZE; |
| |
| /* Set the first point Z coordinate to 1 */ |
| *src.address = 0x01; |
| src.address += CCP_ECC_OPERAND_SIZE; |
| |
| if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) { |
| /* Copy the second point X and Y coordinate */ |
| ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.x, 0, |
| ecc->u.pm.point_2.x_len); |
| if (ret) |
| goto e_src; |
| src.address += CCP_ECC_OPERAND_SIZE; |
| ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.y, 0, |
| ecc->u.pm.point_2.y_len); |
| if (ret) |
| goto e_src; |
| src.address += CCP_ECC_OPERAND_SIZE; |
| |
| /* Set the second point Z coordinate to 1 */ |
| *src.address = 0x01; |
| src.address += CCP_ECC_OPERAND_SIZE; |
| } else { |
| /* Copy the Domain "a" parameter */ |
| ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.domain_a, 0, |
| ecc->u.pm.domain_a_len); |
| if (ret) |
| goto e_src; |
| src.address += CCP_ECC_OPERAND_SIZE; |
| |
| if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) { |
| /* Copy the scalar value */ |
| ret = ccp_reverse_set_dm_area(&src, 0, |
| ecc->u.pm.scalar, 0, |
| ecc->u.pm.scalar_len); |
| if (ret) |
| goto e_src; |
| src.address += CCP_ECC_OPERAND_SIZE; |
| } |
| } |
| |
| /* Restore the workarea address */ |
| src.address = save; |
| |
| /* Prepare the output area for the operation */ |
| ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE, |
| DMA_FROM_DEVICE); |
| if (ret) |
| goto e_src; |
| |
| op.soc = 1; |
| op.src.u.dma.address = src.dma.address; |
| op.src.u.dma.offset = 0; |
| op.src.u.dma.length = src.length; |
| op.dst.u.dma.address = dst.dma.address; |
| op.dst.u.dma.offset = 0; |
| op.dst.u.dma.length = dst.length; |
| |
| op.u.ecc.function = cmd->u.ecc.function; |
| |
| ret = cmd_q->ccp->vdata->perform->ecc(&op); |
| if (ret) { |
| cmd->engine_error = cmd_q->cmd_error; |
| goto e_dst; |
| } |
| |
| ecc->ecc_result = le16_to_cpup( |
| (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET)); |
| if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) { |
| ret = -EIO; |
| goto e_dst; |
| } |
| |
| /* Save the workarea address since it is updated as we walk through |
| * to copy the point math result |
| */ |
| save = dst.address; |
| |
| /* Save the ECC result X and Y coordinates */ |
| ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.x, 0, |
| CCP_ECC_MODULUS_BYTES); |
| dst.address += CCP_ECC_OUTPUT_SIZE; |
| ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.y, 0, |
| CCP_ECC_MODULUS_BYTES); |
| dst.address += CCP_ECC_OUTPUT_SIZE; |
| |
| /* Restore the workarea address */ |
| dst.address = save; |
| |
| e_dst: |
| ccp_dm_free(&dst); |
| |
| e_src: |
| ccp_dm_free(&src); |
| |
| return ret; |
| } |
| |
| static noinline_for_stack int |
| ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| { |
| struct ccp_ecc_engine *ecc = &cmd->u.ecc; |
| |
| ecc->ecc_result = 0; |
| |
| if (!ecc->mod || |
| (ecc->mod_len > CCP_ECC_MODULUS_BYTES)) |
| return -EINVAL; |
| |
| switch (ecc->function) { |
| case CCP_ECC_FUNCTION_MMUL_384BIT: |
| case CCP_ECC_FUNCTION_MADD_384BIT: |
| case CCP_ECC_FUNCTION_MINV_384BIT: |
| return ccp_run_ecc_mm_cmd(cmd_q, cmd); |
| |
| case CCP_ECC_FUNCTION_PADD_384BIT: |
| case CCP_ECC_FUNCTION_PMUL_384BIT: |
| case CCP_ECC_FUNCTION_PDBL_384BIT: |
| return ccp_run_ecc_pm_cmd(cmd_q, cmd); |
| |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd) |
| { |
| int ret; |
| |
| cmd->engine_error = 0; |
| cmd_q->cmd_error = 0; |
| cmd_q->int_rcvd = 0; |
| cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q); |
| |
| switch (cmd->engine) { |
| case CCP_ENGINE_AES: |
| switch (cmd->u.aes.mode) { |
| case CCP_AES_MODE_CMAC: |
| ret = ccp_run_aes_cmac_cmd(cmd_q, cmd); |
| break; |
| case CCP_AES_MODE_GCM: |
| ret = ccp_run_aes_gcm_cmd(cmd_q, cmd); |
| break; |
| default: |
| ret = ccp_run_aes_cmd(cmd_q, cmd); |
| break; |
| } |
| break; |
| case CCP_ENGINE_XTS_AES_128: |
| ret = ccp_run_xts_aes_cmd(cmd_q, cmd); |
| break; |
| case CCP_ENGINE_DES3: |
| ret = ccp_run_des3_cmd(cmd_q, cmd); |
| break; |
| case CCP_ENGINE_SHA: |
| ret = ccp_run_sha_cmd(cmd_q, cmd); |
| break; |
| case CCP_ENGINE_RSA: |
| ret = ccp_run_rsa_cmd(cmd_q, cmd); |
| break; |
| case CCP_ENGINE_PASSTHRU: |
| if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP) |
| ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd); |
| else |
| ret = ccp_run_passthru_cmd(cmd_q, cmd); |
| break; |
| case CCP_ENGINE_ECC: |
| ret = ccp_run_ecc_cmd(cmd_q, cmd); |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| |
| return ret; |
| } |