| /* |
| * Copyright (c) 2015 Linaro Ltd. |
| * Author: Pi-Cheng Chen <pi-cheng.chen@linaro.org> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/cpu.h> |
| #include <linux/cpu_cooling.h> |
| #include <linux/cpufreq.h> |
| #include <linux/cpumask.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_opp.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/slab.h> |
| #include <linux/thermal.h> |
| |
| #define MIN_VOLT_SHIFT (100000) |
| #define MAX_VOLT_SHIFT (200000) |
| #define MAX_VOLT_LIMIT (1150000) |
| #define VOLT_TOL (10000) |
| |
| /* |
| * The struct mtk_cpu_dvfs_info holds necessary information for doing CPU DVFS |
| * on each CPU power/clock domain of Mediatek SoCs. Each CPU cluster in |
| * Mediatek SoCs has two voltage inputs, Vproc and Vsram. In some cases the two |
| * voltage inputs need to be controlled under a hardware limitation: |
| * 100mV < Vsram - Vproc < 200mV |
| * |
| * When scaling the clock frequency of a CPU clock domain, the clock source |
| * needs to be switched to another stable PLL clock temporarily until |
| * the original PLL becomes stable at target frequency. |
| */ |
| struct mtk_cpu_dvfs_info { |
| struct cpumask cpus; |
| struct device *cpu_dev; |
| struct regulator *proc_reg; |
| struct regulator *sram_reg; |
| struct clk *cpu_clk; |
| struct clk *inter_clk; |
| struct thermal_cooling_device *cdev; |
| struct list_head list_head; |
| int intermediate_voltage; |
| bool need_voltage_tracking; |
| }; |
| |
| static LIST_HEAD(dvfs_info_list); |
| |
| static struct mtk_cpu_dvfs_info *mtk_cpu_dvfs_info_lookup(int cpu) |
| { |
| struct mtk_cpu_dvfs_info *info; |
| |
| list_for_each_entry(info, &dvfs_info_list, list_head) { |
| if (cpumask_test_cpu(cpu, &info->cpus)) |
| return info; |
| } |
| |
| return NULL; |
| } |
| |
| static int mtk_cpufreq_voltage_tracking(struct mtk_cpu_dvfs_info *info, |
| int new_vproc) |
| { |
| struct regulator *proc_reg = info->proc_reg; |
| struct regulator *sram_reg = info->sram_reg; |
| int old_vproc, old_vsram, new_vsram, vsram, vproc, ret; |
| |
| old_vproc = regulator_get_voltage(proc_reg); |
| if (old_vproc < 0) { |
| pr_err("%s: invalid Vproc value: %d\n", __func__, old_vproc); |
| return old_vproc; |
| } |
| /* Vsram should not exceed the maximum allowed voltage of SoC. */ |
| new_vsram = min(new_vproc + MIN_VOLT_SHIFT, MAX_VOLT_LIMIT); |
| |
| if (old_vproc < new_vproc) { |
| /* |
| * When scaling up voltages, Vsram and Vproc scale up step |
| * by step. At each step, set Vsram to (Vproc + 200mV) first, |
| * then set Vproc to (Vsram - 100mV). |
| * Keep doing it until Vsram and Vproc hit target voltages. |
| */ |
| do { |
| old_vsram = regulator_get_voltage(sram_reg); |
| if (old_vsram < 0) { |
| pr_err("%s: invalid Vsram value: %d\n", |
| __func__, old_vsram); |
| return old_vsram; |
| } |
| old_vproc = regulator_get_voltage(proc_reg); |
| if (old_vproc < 0) { |
| pr_err("%s: invalid Vproc value: %d\n", |
| __func__, old_vproc); |
| return old_vproc; |
| } |
| |
| vsram = min(new_vsram, old_vproc + MAX_VOLT_SHIFT); |
| |
| if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) { |
| vsram = MAX_VOLT_LIMIT; |
| |
| /* |
| * If the target Vsram hits the maximum voltage, |
| * try to set the exact voltage value first. |
| */ |
| ret = regulator_set_voltage(sram_reg, vsram, |
| vsram); |
| if (ret) |
| ret = regulator_set_voltage(sram_reg, |
| vsram - VOLT_TOL, |
| vsram); |
| |
| vproc = new_vproc; |
| } else { |
| ret = regulator_set_voltage(sram_reg, vsram, |
| vsram + VOLT_TOL); |
| |
| vproc = vsram - MIN_VOLT_SHIFT; |
| } |
| if (ret) |
| return ret; |
| |
| ret = regulator_set_voltage(proc_reg, vproc, |
| vproc + VOLT_TOL); |
| if (ret) { |
| regulator_set_voltage(sram_reg, old_vsram, |
| old_vsram); |
| return ret; |
| } |
| } while (vproc < new_vproc || vsram < new_vsram); |
| } else if (old_vproc > new_vproc) { |
| /* |
| * When scaling down voltages, Vsram and Vproc scale down step |
| * by step. At each step, set Vproc to (Vsram - 200mV) first, |
| * then set Vproc to (Vproc + 100mV). |
| * Keep doing it until Vsram and Vproc hit target voltages. |
| */ |
| do { |
| old_vproc = regulator_get_voltage(proc_reg); |
| if (old_vproc < 0) { |
| pr_err("%s: invalid Vproc value: %d\n", |
| __func__, old_vproc); |
| return old_vproc; |
| } |
| old_vsram = regulator_get_voltage(sram_reg); |
| if (old_vsram < 0) { |
| pr_err("%s: invalid Vsram value: %d\n", |
| __func__, old_vsram); |
| return old_vsram; |
| } |
| |
| vproc = max(new_vproc, old_vsram - MAX_VOLT_SHIFT); |
| ret = regulator_set_voltage(proc_reg, vproc, |
| vproc + VOLT_TOL); |
| if (ret) |
| return ret; |
| |
| if (vproc == new_vproc) |
| vsram = new_vsram; |
| else |
| vsram = max(new_vsram, vproc + MIN_VOLT_SHIFT); |
| |
| if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) { |
| vsram = MAX_VOLT_LIMIT; |
| |
| /* |
| * If the target Vsram hits the maximum voltage, |
| * try to set the exact voltage value first. |
| */ |
| ret = regulator_set_voltage(sram_reg, vsram, |
| vsram); |
| if (ret) |
| ret = regulator_set_voltage(sram_reg, |
| vsram - VOLT_TOL, |
| vsram); |
| } else { |
| ret = regulator_set_voltage(sram_reg, vsram, |
| vsram + VOLT_TOL); |
| } |
| |
| if (ret) { |
| regulator_set_voltage(proc_reg, old_vproc, |
| old_vproc); |
| return ret; |
| } |
| } while (vproc > new_vproc + VOLT_TOL || |
| vsram > new_vsram + VOLT_TOL); |
| } |
| |
| return 0; |
| } |
| |
| static int mtk_cpufreq_set_voltage(struct mtk_cpu_dvfs_info *info, int vproc) |
| { |
| if (info->need_voltage_tracking) |
| return mtk_cpufreq_voltage_tracking(info, vproc); |
| else |
| return regulator_set_voltage(info->proc_reg, vproc, |
| vproc + VOLT_TOL); |
| } |
| |
| static int mtk_cpufreq_set_target(struct cpufreq_policy *policy, |
| unsigned int index) |
| { |
| struct cpufreq_frequency_table *freq_table = policy->freq_table; |
| struct clk *cpu_clk = policy->clk; |
| struct clk *armpll = clk_get_parent(cpu_clk); |
| struct mtk_cpu_dvfs_info *info = policy->driver_data; |
| struct device *cpu_dev = info->cpu_dev; |
| struct dev_pm_opp *opp; |
| long freq_hz, old_freq_hz; |
| int vproc, old_vproc, inter_vproc, target_vproc, ret; |
| |
| inter_vproc = info->intermediate_voltage; |
| |
| old_freq_hz = clk_get_rate(cpu_clk); |
| old_vproc = regulator_get_voltage(info->proc_reg); |
| if (old_vproc < 0) { |
| pr_err("%s: invalid Vproc value: %d\n", __func__, old_vproc); |
| return old_vproc; |
| } |
| |
| freq_hz = freq_table[index].frequency * 1000; |
| |
| opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz); |
| if (IS_ERR(opp)) { |
| pr_err("cpu%d: failed to find OPP for %ld\n", |
| policy->cpu, freq_hz); |
| return PTR_ERR(opp); |
| } |
| vproc = dev_pm_opp_get_voltage(opp); |
| dev_pm_opp_put(opp); |
| |
| /* |
| * If the new voltage or the intermediate voltage is higher than the |
| * current voltage, scale up voltage first. |
| */ |
| target_vproc = (inter_vproc > vproc) ? inter_vproc : vproc; |
| if (old_vproc < target_vproc) { |
| ret = mtk_cpufreq_set_voltage(info, target_vproc); |
| if (ret) { |
| pr_err("cpu%d: failed to scale up voltage!\n", |
| policy->cpu); |
| mtk_cpufreq_set_voltage(info, old_vproc); |
| return ret; |
| } |
| } |
| |
| /* Reparent the CPU clock to intermediate clock. */ |
| ret = clk_set_parent(cpu_clk, info->inter_clk); |
| if (ret) { |
| pr_err("cpu%d: failed to re-parent cpu clock!\n", |
| policy->cpu); |
| mtk_cpufreq_set_voltage(info, old_vproc); |
| WARN_ON(1); |
| return ret; |
| } |
| |
| /* Set the original PLL to target rate. */ |
| ret = clk_set_rate(armpll, freq_hz); |
| if (ret) { |
| pr_err("cpu%d: failed to scale cpu clock rate!\n", |
| policy->cpu); |
| clk_set_parent(cpu_clk, armpll); |
| mtk_cpufreq_set_voltage(info, old_vproc); |
| return ret; |
| } |
| |
| /* Set parent of CPU clock back to the original PLL. */ |
| ret = clk_set_parent(cpu_clk, armpll); |
| if (ret) { |
| pr_err("cpu%d: failed to re-parent cpu clock!\n", |
| policy->cpu); |
| mtk_cpufreq_set_voltage(info, inter_vproc); |
| WARN_ON(1); |
| return ret; |
| } |
| |
| /* |
| * If the new voltage is lower than the intermediate voltage or the |
| * original voltage, scale down to the new voltage. |
| */ |
| if (vproc < inter_vproc || vproc < old_vproc) { |
| ret = mtk_cpufreq_set_voltage(info, vproc); |
| if (ret) { |
| pr_err("cpu%d: failed to scale down voltage!\n", |
| policy->cpu); |
| clk_set_parent(cpu_clk, info->inter_clk); |
| clk_set_rate(armpll, old_freq_hz); |
| clk_set_parent(cpu_clk, armpll); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| #define DYNAMIC_POWER "dynamic-power-coefficient" |
| |
| static void mtk_cpufreq_ready(struct cpufreq_policy *policy) |
| { |
| struct mtk_cpu_dvfs_info *info = policy->driver_data; |
| struct device_node *np = of_node_get(info->cpu_dev->of_node); |
| u32 capacitance = 0; |
| |
| if (WARN_ON(!np)) |
| return; |
| |
| if (of_find_property(np, "#cooling-cells", NULL)) { |
| of_property_read_u32(np, DYNAMIC_POWER, &capacitance); |
| |
| info->cdev = of_cpufreq_power_cooling_register(np, |
| policy, capacitance, NULL); |
| |
| if (IS_ERR(info->cdev)) { |
| dev_err(info->cpu_dev, |
| "running cpufreq without cooling device: %ld\n", |
| PTR_ERR(info->cdev)); |
| |
| info->cdev = NULL; |
| } |
| } |
| |
| of_node_put(np); |
| } |
| |
| static int mtk_cpu_dvfs_info_init(struct mtk_cpu_dvfs_info *info, int cpu) |
| { |
| struct device *cpu_dev; |
| struct regulator *proc_reg = ERR_PTR(-ENODEV); |
| struct regulator *sram_reg = ERR_PTR(-ENODEV); |
| struct clk *cpu_clk = ERR_PTR(-ENODEV); |
| struct clk *inter_clk = ERR_PTR(-ENODEV); |
| struct dev_pm_opp *opp; |
| unsigned long rate; |
| int ret; |
| |
| cpu_dev = get_cpu_device(cpu); |
| if (!cpu_dev) { |
| pr_err("failed to get cpu%d device\n", cpu); |
| return -ENODEV; |
| } |
| |
| cpu_clk = clk_get(cpu_dev, "cpu"); |
| if (IS_ERR(cpu_clk)) { |
| if (PTR_ERR(cpu_clk) == -EPROBE_DEFER) |
| pr_warn("cpu clk for cpu%d not ready, retry.\n", cpu); |
| else |
| pr_err("failed to get cpu clk for cpu%d\n", cpu); |
| |
| ret = PTR_ERR(cpu_clk); |
| return ret; |
| } |
| |
| inter_clk = clk_get(cpu_dev, "intermediate"); |
| if (IS_ERR(inter_clk)) { |
| if (PTR_ERR(inter_clk) == -EPROBE_DEFER) |
| pr_warn("intermediate clk for cpu%d not ready, retry.\n", |
| cpu); |
| else |
| pr_err("failed to get intermediate clk for cpu%d\n", |
| cpu); |
| |
| ret = PTR_ERR(inter_clk); |
| goto out_free_resources; |
| } |
| |
| proc_reg = regulator_get_exclusive(cpu_dev, "proc"); |
| if (IS_ERR(proc_reg)) { |
| if (PTR_ERR(proc_reg) == -EPROBE_DEFER) |
| pr_warn("proc regulator for cpu%d not ready, retry.\n", |
| cpu); |
| else |
| pr_err("failed to get proc regulator for cpu%d\n", |
| cpu); |
| |
| ret = PTR_ERR(proc_reg); |
| goto out_free_resources; |
| } |
| |
| /* Both presence and absence of sram regulator are valid cases. */ |
| sram_reg = regulator_get_exclusive(cpu_dev, "sram"); |
| |
| /* Get OPP-sharing information from "operating-points-v2" bindings */ |
| ret = dev_pm_opp_of_get_sharing_cpus(cpu_dev, &info->cpus); |
| if (ret) { |
| pr_err("failed to get OPP-sharing information for cpu%d\n", |
| cpu); |
| goto out_free_resources; |
| } |
| |
| ret = dev_pm_opp_of_cpumask_add_table(&info->cpus); |
| if (ret) { |
| pr_warn("no OPP table for cpu%d\n", cpu); |
| goto out_free_resources; |
| } |
| |
| /* Search a safe voltage for intermediate frequency. */ |
| rate = clk_get_rate(inter_clk); |
| opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate); |
| if (IS_ERR(opp)) { |
| pr_err("failed to get intermediate opp for cpu%d\n", cpu); |
| ret = PTR_ERR(opp); |
| goto out_free_opp_table; |
| } |
| info->intermediate_voltage = dev_pm_opp_get_voltage(opp); |
| dev_pm_opp_put(opp); |
| |
| info->cpu_dev = cpu_dev; |
| info->proc_reg = proc_reg; |
| info->sram_reg = IS_ERR(sram_reg) ? NULL : sram_reg; |
| info->cpu_clk = cpu_clk; |
| info->inter_clk = inter_clk; |
| |
| /* |
| * If SRAM regulator is present, software "voltage tracking" is needed |
| * for this CPU power domain. |
| */ |
| info->need_voltage_tracking = !IS_ERR(sram_reg); |
| |
| return 0; |
| |
| out_free_opp_table: |
| dev_pm_opp_of_cpumask_remove_table(&info->cpus); |
| |
| out_free_resources: |
| if (!IS_ERR(proc_reg)) |
| regulator_put(proc_reg); |
| if (!IS_ERR(sram_reg)) |
| regulator_put(sram_reg); |
| if (!IS_ERR(cpu_clk)) |
| clk_put(cpu_clk); |
| if (!IS_ERR(inter_clk)) |
| clk_put(inter_clk); |
| |
| return ret; |
| } |
| |
| static void mtk_cpu_dvfs_info_release(struct mtk_cpu_dvfs_info *info) |
| { |
| if (!IS_ERR(info->proc_reg)) |
| regulator_put(info->proc_reg); |
| if (!IS_ERR(info->sram_reg)) |
| regulator_put(info->sram_reg); |
| if (!IS_ERR(info->cpu_clk)) |
| clk_put(info->cpu_clk); |
| if (!IS_ERR(info->inter_clk)) |
| clk_put(info->inter_clk); |
| |
| dev_pm_opp_of_cpumask_remove_table(&info->cpus); |
| } |
| |
| static int mtk_cpufreq_init(struct cpufreq_policy *policy) |
| { |
| struct mtk_cpu_dvfs_info *info; |
| struct cpufreq_frequency_table *freq_table; |
| int ret; |
| |
| info = mtk_cpu_dvfs_info_lookup(policy->cpu); |
| if (!info) { |
| pr_err("dvfs info for cpu%d is not initialized.\n", |
| policy->cpu); |
| return -EINVAL; |
| } |
| |
| ret = dev_pm_opp_init_cpufreq_table(info->cpu_dev, &freq_table); |
| if (ret) { |
| pr_err("failed to init cpufreq table for cpu%d: %d\n", |
| policy->cpu, ret); |
| return ret; |
| } |
| |
| ret = cpufreq_table_validate_and_show(policy, freq_table); |
| if (ret) { |
| pr_err("%s: invalid frequency table: %d\n", __func__, ret); |
| goto out_free_cpufreq_table; |
| } |
| |
| cpumask_copy(policy->cpus, &info->cpus); |
| policy->driver_data = info; |
| policy->clk = info->cpu_clk; |
| |
| return 0; |
| |
| out_free_cpufreq_table: |
| dev_pm_opp_free_cpufreq_table(info->cpu_dev, &freq_table); |
| return ret; |
| } |
| |
| static int mtk_cpufreq_exit(struct cpufreq_policy *policy) |
| { |
| struct mtk_cpu_dvfs_info *info = policy->driver_data; |
| |
| cpufreq_cooling_unregister(info->cdev); |
| dev_pm_opp_free_cpufreq_table(info->cpu_dev, &policy->freq_table); |
| |
| return 0; |
| } |
| |
| static struct cpufreq_driver mtk_cpufreq_driver = { |
| .flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK | |
| CPUFREQ_HAVE_GOVERNOR_PER_POLICY, |
| .verify = cpufreq_generic_frequency_table_verify, |
| .target_index = mtk_cpufreq_set_target, |
| .get = cpufreq_generic_get, |
| .init = mtk_cpufreq_init, |
| .exit = mtk_cpufreq_exit, |
| .ready = mtk_cpufreq_ready, |
| .name = "mtk-cpufreq", |
| .attr = cpufreq_generic_attr, |
| }; |
| |
| static int mtk_cpufreq_probe(struct platform_device *pdev) |
| { |
| struct mtk_cpu_dvfs_info *info, *tmp; |
| int cpu, ret; |
| |
| for_each_possible_cpu(cpu) { |
| info = mtk_cpu_dvfs_info_lookup(cpu); |
| if (info) |
| continue; |
| |
| info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); |
| if (!info) { |
| ret = -ENOMEM; |
| goto release_dvfs_info_list; |
| } |
| |
| ret = mtk_cpu_dvfs_info_init(info, cpu); |
| if (ret) { |
| dev_err(&pdev->dev, |
| "failed to initialize dvfs info for cpu%d\n", |
| cpu); |
| goto release_dvfs_info_list; |
| } |
| |
| list_add(&info->list_head, &dvfs_info_list); |
| } |
| |
| ret = cpufreq_register_driver(&mtk_cpufreq_driver); |
| if (ret) { |
| dev_err(&pdev->dev, "failed to register mtk cpufreq driver\n"); |
| goto release_dvfs_info_list; |
| } |
| |
| return 0; |
| |
| release_dvfs_info_list: |
| list_for_each_entry_safe(info, tmp, &dvfs_info_list, list_head) { |
| mtk_cpu_dvfs_info_release(info); |
| list_del(&info->list_head); |
| } |
| |
| return ret; |
| } |
| |
| static struct platform_driver mtk_cpufreq_platdrv = { |
| .driver = { |
| .name = "mtk-cpufreq", |
| }, |
| .probe = mtk_cpufreq_probe, |
| }; |
| |
| /* List of machines supported by this driver */ |
| static const struct of_device_id mtk_cpufreq_machines[] __initconst = { |
| { .compatible = "mediatek,mt2701", }, |
| { .compatible = "mediatek,mt7622", }, |
| { .compatible = "mediatek,mt7623", }, |
| { .compatible = "mediatek,mt817x", }, |
| { .compatible = "mediatek,mt8173", }, |
| { .compatible = "mediatek,mt8176", }, |
| |
| { } |
| }; |
| MODULE_DEVICE_TABLE(of, mtk_cpufreq_machines); |
| |
| static int __init mtk_cpufreq_driver_init(void) |
| { |
| struct device_node *np; |
| const struct of_device_id *match; |
| struct platform_device *pdev; |
| int err; |
| |
| np = of_find_node_by_path("/"); |
| if (!np) |
| return -ENODEV; |
| |
| match = of_match_node(mtk_cpufreq_machines, np); |
| of_node_put(np); |
| if (!match) { |
| pr_warn("Machine is not compatible with mtk-cpufreq\n"); |
| return -ENODEV; |
| } |
| |
| err = platform_driver_register(&mtk_cpufreq_platdrv); |
| if (err) |
| return err; |
| |
| /* |
| * Since there's no place to hold device registration code and no |
| * device tree based way to match cpufreq driver yet, both the driver |
| * and the device registration codes are put here to handle defer |
| * probing. |
| */ |
| pdev = platform_device_register_simple("mtk-cpufreq", -1, NULL, 0); |
| if (IS_ERR(pdev)) { |
| pr_err("failed to register mtk-cpufreq platform device\n"); |
| return PTR_ERR(pdev); |
| } |
| |
| return 0; |
| } |
| device_initcall(mtk_cpufreq_driver_init); |