| /* |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation version 2. |
| * |
| * This program is distributed "as is" WITHOUT ANY WARRANTY of any |
| * kind, whether express or implied; without even the implied warranty |
| * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/clk-provider.h> |
| #include <linux/delay.h> |
| #include <linux/err.h> |
| #include <linux/math64.h> |
| #include <linux/of.h> |
| #include <linux/of_address.h> |
| #include <linux/clk/ti.h> |
| |
| /* FAPLL Control Register PLL_CTRL */ |
| #define FAPLL_MAIN_MULT_N_SHIFT 16 |
| #define FAPLL_MAIN_DIV_P_SHIFT 8 |
| #define FAPLL_MAIN_LOCK BIT(7) |
| #define FAPLL_MAIN_PLLEN BIT(3) |
| #define FAPLL_MAIN_BP BIT(2) |
| #define FAPLL_MAIN_LOC_CTL BIT(0) |
| |
| #define FAPLL_MAIN_MAX_MULT_N 0xffff |
| #define FAPLL_MAIN_MAX_DIV_P 0xff |
| #define FAPLL_MAIN_CLEAR_MASK \ |
| ((FAPLL_MAIN_MAX_MULT_N << FAPLL_MAIN_MULT_N_SHIFT) | \ |
| (FAPLL_MAIN_DIV_P_SHIFT << FAPLL_MAIN_DIV_P_SHIFT) | \ |
| FAPLL_MAIN_LOC_CTL) |
| |
| /* FAPLL powerdown register PWD */ |
| #define FAPLL_PWD_OFFSET 4 |
| |
| #define MAX_FAPLL_OUTPUTS 7 |
| #define FAPLL_MAX_RETRIES 1000 |
| |
| #define to_fapll(_hw) container_of(_hw, struct fapll_data, hw) |
| #define to_synth(_hw) container_of(_hw, struct fapll_synth, hw) |
| |
| /* The bypass bit is inverted on the ddr_pll.. */ |
| #define fapll_is_ddr_pll(va) (((u32)(va) & 0xffff) == 0x0440) |
| |
| /* |
| * The audio_pll_clk1 input is hard wired to the 27MHz bypass clock, |
| * and the audio_pll_clk1 synthesizer is hardwared to 32KiHz output. |
| */ |
| #define is_ddr_pll_clk1(va) (((u32)(va) & 0xffff) == 0x044c) |
| #define is_audio_pll_clk1(va) (((u32)(va) & 0xffff) == 0x04a8) |
| |
| /* Synthesizer divider register */ |
| #define SYNTH_LDMDIV1 BIT(8) |
| |
| /* Synthesizer frequency register */ |
| #define SYNTH_LDFREQ BIT(31) |
| |
| #define SYNTH_PHASE_K 8 |
| #define SYNTH_MAX_INT_DIV 0xf |
| #define SYNTH_MAX_DIV_M 0xff |
| |
| struct fapll_data { |
| struct clk_hw hw; |
| void __iomem *base; |
| const char *name; |
| struct clk *clk_ref; |
| struct clk *clk_bypass; |
| struct clk_onecell_data outputs; |
| bool bypass_bit_inverted; |
| }; |
| |
| struct fapll_synth { |
| struct clk_hw hw; |
| struct fapll_data *fd; |
| int index; |
| void __iomem *freq; |
| void __iomem *div; |
| const char *name; |
| struct clk *clk_pll; |
| }; |
| |
| static bool ti_fapll_clock_is_bypass(struct fapll_data *fd) |
| { |
| u32 v = readl_relaxed(fd->base); |
| |
| if (fd->bypass_bit_inverted) |
| return !(v & FAPLL_MAIN_BP); |
| else |
| return !!(v & FAPLL_MAIN_BP); |
| } |
| |
| static void ti_fapll_set_bypass(struct fapll_data *fd) |
| { |
| u32 v = readl_relaxed(fd->base); |
| |
| if (fd->bypass_bit_inverted) |
| v &= ~FAPLL_MAIN_BP; |
| else |
| v |= FAPLL_MAIN_BP; |
| writel_relaxed(v, fd->base); |
| } |
| |
| static void ti_fapll_clear_bypass(struct fapll_data *fd) |
| { |
| u32 v = readl_relaxed(fd->base); |
| |
| if (fd->bypass_bit_inverted) |
| v |= FAPLL_MAIN_BP; |
| else |
| v &= ~FAPLL_MAIN_BP; |
| writel_relaxed(v, fd->base); |
| } |
| |
| static int ti_fapll_wait_lock(struct fapll_data *fd) |
| { |
| int retries = FAPLL_MAX_RETRIES; |
| u32 v; |
| |
| while ((v = readl_relaxed(fd->base))) { |
| if (v & FAPLL_MAIN_LOCK) |
| return 0; |
| |
| if (retries-- <= 0) |
| break; |
| |
| udelay(1); |
| } |
| |
| pr_err("%s failed to lock\n", fd->name); |
| |
| return -ETIMEDOUT; |
| } |
| |
| static int ti_fapll_enable(struct clk_hw *hw) |
| { |
| struct fapll_data *fd = to_fapll(hw); |
| u32 v = readl_relaxed(fd->base); |
| |
| v |= FAPLL_MAIN_PLLEN; |
| writel_relaxed(v, fd->base); |
| ti_fapll_wait_lock(fd); |
| |
| return 0; |
| } |
| |
| static void ti_fapll_disable(struct clk_hw *hw) |
| { |
| struct fapll_data *fd = to_fapll(hw); |
| u32 v = readl_relaxed(fd->base); |
| |
| v &= ~FAPLL_MAIN_PLLEN; |
| writel_relaxed(v, fd->base); |
| } |
| |
| static int ti_fapll_is_enabled(struct clk_hw *hw) |
| { |
| struct fapll_data *fd = to_fapll(hw); |
| u32 v = readl_relaxed(fd->base); |
| |
| return v & FAPLL_MAIN_PLLEN; |
| } |
| |
| static unsigned long ti_fapll_recalc_rate(struct clk_hw *hw, |
| unsigned long parent_rate) |
| { |
| struct fapll_data *fd = to_fapll(hw); |
| u32 fapll_n, fapll_p, v; |
| u64 rate; |
| |
| if (ti_fapll_clock_is_bypass(fd)) |
| return parent_rate; |
| |
| rate = parent_rate; |
| |
| /* PLL pre-divider is P and multiplier is N */ |
| v = readl_relaxed(fd->base); |
| fapll_p = (v >> 8) & 0xff; |
| if (fapll_p) |
| do_div(rate, fapll_p); |
| fapll_n = v >> 16; |
| if (fapll_n) |
| rate *= fapll_n; |
| |
| return rate; |
| } |
| |
| static u8 ti_fapll_get_parent(struct clk_hw *hw) |
| { |
| struct fapll_data *fd = to_fapll(hw); |
| |
| if (ti_fapll_clock_is_bypass(fd)) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int ti_fapll_set_div_mult(unsigned long rate, |
| unsigned long parent_rate, |
| u32 *pre_div_p, u32 *mult_n) |
| { |
| /* |
| * So far no luck getting decent clock with PLL divider, |
| * PLL does not seem to lock and the signal does not look |
| * right. It seems the divider can only be used together |
| * with the multiplier? |
| */ |
| if (rate < parent_rate) { |
| pr_warn("FAPLL main divider rates unsupported\n"); |
| return -EINVAL; |
| } |
| |
| *mult_n = rate / parent_rate; |
| if (*mult_n > FAPLL_MAIN_MAX_MULT_N) |
| return -EINVAL; |
| *pre_div_p = 1; |
| |
| return 0; |
| } |
| |
| static long ti_fapll_round_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long *parent_rate) |
| { |
| u32 pre_div_p, mult_n; |
| int error; |
| |
| if (!rate) |
| return -EINVAL; |
| |
| error = ti_fapll_set_div_mult(rate, *parent_rate, |
| &pre_div_p, &mult_n); |
| if (error) |
| return error; |
| |
| rate = *parent_rate / pre_div_p; |
| rate *= mult_n; |
| |
| return rate; |
| } |
| |
| static int ti_fapll_set_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long parent_rate) |
| { |
| struct fapll_data *fd = to_fapll(hw); |
| u32 pre_div_p, mult_n, v; |
| int error; |
| |
| if (!rate) |
| return -EINVAL; |
| |
| error = ti_fapll_set_div_mult(rate, parent_rate, |
| &pre_div_p, &mult_n); |
| if (error) |
| return error; |
| |
| ti_fapll_set_bypass(fd); |
| v = readl_relaxed(fd->base); |
| v &= ~FAPLL_MAIN_CLEAR_MASK; |
| v |= pre_div_p << FAPLL_MAIN_DIV_P_SHIFT; |
| v |= mult_n << FAPLL_MAIN_MULT_N_SHIFT; |
| writel_relaxed(v, fd->base); |
| if (ti_fapll_is_enabled(hw)) |
| ti_fapll_wait_lock(fd); |
| ti_fapll_clear_bypass(fd); |
| |
| return 0; |
| } |
| |
| static const struct clk_ops ti_fapll_ops = { |
| .enable = ti_fapll_enable, |
| .disable = ti_fapll_disable, |
| .is_enabled = ti_fapll_is_enabled, |
| .recalc_rate = ti_fapll_recalc_rate, |
| .get_parent = ti_fapll_get_parent, |
| .round_rate = ti_fapll_round_rate, |
| .set_rate = ti_fapll_set_rate, |
| }; |
| |
| static int ti_fapll_synth_enable(struct clk_hw *hw) |
| { |
| struct fapll_synth *synth = to_synth(hw); |
| u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET); |
| |
| v &= ~(1 << synth->index); |
| writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET); |
| |
| return 0; |
| } |
| |
| static void ti_fapll_synth_disable(struct clk_hw *hw) |
| { |
| struct fapll_synth *synth = to_synth(hw); |
| u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET); |
| |
| v |= 1 << synth->index; |
| writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET); |
| } |
| |
| static int ti_fapll_synth_is_enabled(struct clk_hw *hw) |
| { |
| struct fapll_synth *synth = to_synth(hw); |
| u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET); |
| |
| return !(v & (1 << synth->index)); |
| } |
| |
| /* |
| * See dm816x TRM chapter 1.10.3 Flying Adder PLL fore more info |
| */ |
| static unsigned long ti_fapll_synth_recalc_rate(struct clk_hw *hw, |
| unsigned long parent_rate) |
| { |
| struct fapll_synth *synth = to_synth(hw); |
| u32 synth_div_m; |
| u64 rate; |
| |
| /* The audio_pll_clk1 is hardwired to produce 32.768KiHz clock */ |
| if (!synth->div) |
| return 32768; |
| |
| /* |
| * PLL in bypass sets the synths in bypass mode too. The PLL rate |
| * can be also be set to 27MHz, so we can't use parent_rate to |
| * check for bypass mode. |
| */ |
| if (ti_fapll_clock_is_bypass(synth->fd)) |
| return parent_rate; |
| |
| rate = parent_rate; |
| |
| /* |
| * Synth frequency integer and fractional divider. |
| * Note that the phase output K is 8, so the result needs |
| * to be multiplied by SYNTH_PHASE_K. |
| */ |
| if (synth->freq) { |
| u32 v, synth_int_div, synth_frac_div, synth_div_freq; |
| |
| v = readl_relaxed(synth->freq); |
| synth_int_div = (v >> 24) & 0xf; |
| synth_frac_div = v & 0xffffff; |
| synth_div_freq = (synth_int_div * 10000000) + synth_frac_div; |
| rate *= 10000000; |
| do_div(rate, synth_div_freq); |
| rate *= SYNTH_PHASE_K; |
| } |
| |
| /* Synth post-divider M */ |
| synth_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M; |
| |
| return DIV_ROUND_UP_ULL(rate, synth_div_m); |
| } |
| |
| static unsigned long ti_fapll_synth_get_frac_rate(struct clk_hw *hw, |
| unsigned long parent_rate) |
| { |
| struct fapll_synth *synth = to_synth(hw); |
| unsigned long current_rate, frac_rate; |
| u32 post_div_m; |
| |
| current_rate = ti_fapll_synth_recalc_rate(hw, parent_rate); |
| post_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M; |
| frac_rate = current_rate * post_div_m; |
| |
| return frac_rate; |
| } |
| |
| static u32 ti_fapll_synth_set_frac_rate(struct fapll_synth *synth, |
| unsigned long rate, |
| unsigned long parent_rate) |
| { |
| u32 post_div_m, synth_int_div = 0, synth_frac_div = 0, v; |
| |
| post_div_m = DIV_ROUND_UP_ULL((u64)parent_rate * SYNTH_PHASE_K, rate); |
| post_div_m = post_div_m / SYNTH_MAX_INT_DIV; |
| if (post_div_m > SYNTH_MAX_DIV_M) |
| return -EINVAL; |
| if (!post_div_m) |
| post_div_m = 1; |
| |
| for (; post_div_m < SYNTH_MAX_DIV_M; post_div_m++) { |
| synth_int_div = DIV_ROUND_UP_ULL((u64)parent_rate * |
| SYNTH_PHASE_K * |
| 10000000, |
| rate * post_div_m); |
| synth_frac_div = synth_int_div % 10000000; |
| synth_int_div /= 10000000; |
| |
| if (synth_int_div <= SYNTH_MAX_INT_DIV) |
| break; |
| } |
| |
| if (synth_int_div > SYNTH_MAX_INT_DIV) |
| return -EINVAL; |
| |
| v = readl_relaxed(synth->freq); |
| v &= ~0x1fffffff; |
| v |= (synth_int_div & SYNTH_MAX_INT_DIV) << 24; |
| v |= (synth_frac_div & 0xffffff); |
| v |= SYNTH_LDFREQ; |
| writel_relaxed(v, synth->freq); |
| |
| return post_div_m; |
| } |
| |
| static long ti_fapll_synth_round_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long *parent_rate) |
| { |
| struct fapll_synth *synth = to_synth(hw); |
| struct fapll_data *fd = synth->fd; |
| unsigned long r; |
| |
| if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate) |
| return -EINVAL; |
| |
| /* Only post divider m available with no fractional divider? */ |
| if (!synth->freq) { |
| unsigned long frac_rate; |
| u32 synth_post_div_m; |
| |
| frac_rate = ti_fapll_synth_get_frac_rate(hw, *parent_rate); |
| synth_post_div_m = DIV_ROUND_UP(frac_rate, rate); |
| r = DIV_ROUND_UP(frac_rate, synth_post_div_m); |
| goto out; |
| } |
| |
| r = *parent_rate * SYNTH_PHASE_K; |
| if (rate > r) |
| goto out; |
| |
| r = DIV_ROUND_UP_ULL(r, SYNTH_MAX_INT_DIV * SYNTH_MAX_DIV_M); |
| if (rate < r) |
| goto out; |
| |
| r = rate; |
| out: |
| return r; |
| } |
| |
| static int ti_fapll_synth_set_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long parent_rate) |
| { |
| struct fapll_synth *synth = to_synth(hw); |
| struct fapll_data *fd = synth->fd; |
| unsigned long frac_rate, post_rate = 0; |
| u32 post_div_m = 0, v; |
| |
| if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate) |
| return -EINVAL; |
| |
| /* Produce the rate with just post divider M? */ |
| frac_rate = ti_fapll_synth_get_frac_rate(hw, parent_rate); |
| if (frac_rate < rate) { |
| if (!synth->freq) |
| return -EINVAL; |
| } else { |
| post_div_m = DIV_ROUND_UP(frac_rate, rate); |
| if (post_div_m && (post_div_m <= SYNTH_MAX_DIV_M)) |
| post_rate = DIV_ROUND_UP(frac_rate, post_div_m); |
| if (!synth->freq && !post_rate) |
| return -EINVAL; |
| } |
| |
| /* Need to recalculate the fractional divider? */ |
| if ((post_rate != rate) && synth->freq) |
| post_div_m = ti_fapll_synth_set_frac_rate(synth, |
| rate, |
| parent_rate); |
| |
| v = readl_relaxed(synth->div); |
| v &= ~SYNTH_MAX_DIV_M; |
| v |= post_div_m; |
| v |= SYNTH_LDMDIV1; |
| writel_relaxed(v, synth->div); |
| |
| return 0; |
| } |
| |
| static const struct clk_ops ti_fapll_synt_ops = { |
| .enable = ti_fapll_synth_enable, |
| .disable = ti_fapll_synth_disable, |
| .is_enabled = ti_fapll_synth_is_enabled, |
| .recalc_rate = ti_fapll_synth_recalc_rate, |
| .round_rate = ti_fapll_synth_round_rate, |
| .set_rate = ti_fapll_synth_set_rate, |
| }; |
| |
| static struct clk * __init ti_fapll_synth_setup(struct fapll_data *fd, |
| void __iomem *freq, |
| void __iomem *div, |
| int index, |
| const char *name, |
| const char *parent, |
| struct clk *pll_clk) |
| { |
| struct clk_init_data *init; |
| struct fapll_synth *synth; |
| struct clk *clk = ERR_PTR(-ENOMEM); |
| |
| init = kzalloc(sizeof(*init), GFP_KERNEL); |
| if (!init) |
| return ERR_PTR(-ENOMEM); |
| |
| init->ops = &ti_fapll_synt_ops; |
| init->name = name; |
| init->parent_names = &parent; |
| init->num_parents = 1; |
| |
| synth = kzalloc(sizeof(*synth), GFP_KERNEL); |
| if (!synth) |
| goto free; |
| |
| synth->fd = fd; |
| synth->index = index; |
| synth->freq = freq; |
| synth->div = div; |
| synth->name = name; |
| synth->hw.init = init; |
| synth->clk_pll = pll_clk; |
| |
| clk = clk_register(NULL, &synth->hw); |
| if (IS_ERR(clk)) { |
| pr_err("failed to register clock\n"); |
| goto free; |
| } |
| |
| return clk; |
| |
| free: |
| kfree(synth); |
| kfree(init); |
| |
| return clk; |
| } |
| |
| static void __init ti_fapll_setup(struct device_node *node) |
| { |
| struct fapll_data *fd; |
| struct clk_init_data *init = NULL; |
| const char *parent_name[2]; |
| struct clk *pll_clk; |
| int i; |
| |
| fd = kzalloc(sizeof(*fd), GFP_KERNEL); |
| if (!fd) |
| return; |
| |
| fd->outputs.clks = kzalloc(sizeof(struct clk *) * |
| MAX_FAPLL_OUTPUTS + 1, |
| GFP_KERNEL); |
| if (!fd->outputs.clks) |
| goto free; |
| |
| init = kzalloc(sizeof(*init), GFP_KERNEL); |
| if (!init) |
| goto free; |
| |
| init->ops = &ti_fapll_ops; |
| init->name = node->name; |
| |
| init->num_parents = of_clk_get_parent_count(node); |
| if (init->num_parents != 2) { |
| pr_err("%s must have two parents\n", node->name); |
| goto free; |
| } |
| |
| of_clk_parent_fill(node, parent_name, 2); |
| init->parent_names = parent_name; |
| |
| fd->clk_ref = of_clk_get(node, 0); |
| if (IS_ERR(fd->clk_ref)) { |
| pr_err("%s could not get clk_ref\n", node->name); |
| goto free; |
| } |
| |
| fd->clk_bypass = of_clk_get(node, 1); |
| if (IS_ERR(fd->clk_bypass)) { |
| pr_err("%s could not get clk_bypass\n", node->name); |
| goto free; |
| } |
| |
| fd->base = of_iomap(node, 0); |
| if (!fd->base) { |
| pr_err("%s could not get IO base\n", node->name); |
| goto free; |
| } |
| |
| if (fapll_is_ddr_pll(fd->base)) |
| fd->bypass_bit_inverted = true; |
| |
| fd->name = node->name; |
| fd->hw.init = init; |
| |
| /* Register the parent PLL */ |
| pll_clk = clk_register(NULL, &fd->hw); |
| if (IS_ERR(pll_clk)) |
| goto unmap; |
| |
| fd->outputs.clks[0] = pll_clk; |
| fd->outputs.clk_num++; |
| |
| /* |
| * Set up the child synthesizers starting at index 1 as the |
| * PLL output is at index 0. We need to check the clock-indices |
| * for numbering in case there are holes in the synth mapping, |
| * and then probe the synth register to see if it has a FREQ |
| * register available. |
| */ |
| for (i = 0; i < MAX_FAPLL_OUTPUTS; i++) { |
| const char *output_name; |
| void __iomem *freq, *div; |
| struct clk *synth_clk; |
| int output_instance; |
| u32 v; |
| |
| if (of_property_read_string_index(node, "clock-output-names", |
| i, &output_name)) |
| continue; |
| |
| if (of_property_read_u32_index(node, "clock-indices", i, |
| &output_instance)) |
| output_instance = i; |
| |
| freq = fd->base + (output_instance * 8); |
| div = freq + 4; |
| |
| /* Check for hardwired audio_pll_clk1 */ |
| if (is_audio_pll_clk1(freq)) { |
| freq = NULL; |
| div = NULL; |
| } else { |
| /* Does the synthesizer have a FREQ register? */ |
| v = readl_relaxed(freq); |
| if (!v) |
| freq = NULL; |
| } |
| synth_clk = ti_fapll_synth_setup(fd, freq, div, output_instance, |
| output_name, node->name, |
| pll_clk); |
| if (IS_ERR(synth_clk)) |
| continue; |
| |
| fd->outputs.clks[output_instance] = synth_clk; |
| fd->outputs.clk_num++; |
| |
| clk_register_clkdev(synth_clk, output_name, NULL); |
| } |
| |
| /* Register the child synthesizers as the FAPLL outputs */ |
| of_clk_add_provider(node, of_clk_src_onecell_get, &fd->outputs); |
| /* Add clock alias for the outputs */ |
| |
| kfree(init); |
| |
| return; |
| |
| unmap: |
| iounmap(fd->base); |
| free: |
| if (fd->clk_bypass) |
| clk_put(fd->clk_bypass); |
| if (fd->clk_ref) |
| clk_put(fd->clk_ref); |
| kfree(fd->outputs.clks); |
| kfree(fd); |
| kfree(init); |
| } |
| |
| CLK_OF_DECLARE(ti_fapll_clock, "ti,dm816-fapll-clock", ti_fapll_setup); |