blob: c933be01c7db66f999331b9d187c1125682b127e [file] [log] [blame]
/*
* Driver for TI Multi PLL CDCE913/925/937/949 clock synthesizer
*
* This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1,
* Y4/Y5 to PLL2, and so on. PLL frequency is set on a first-come-first-serve
* basis. Clients can directly request any frequency that the chip can
* deliver using the standard clk framework. In addition, the device can
* be configured and activated via the devicetree.
*
* Copyright (C) 2014, Topic Embedded Products
* Licenced under GPL
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/gcd.h>
/* Each chip has different number of PLLs and outputs, for example:
* The CECE925 has 2 PLLs which can be routed through dividers to 5 outputs.
* Model this as 2 PLL clocks which are parents to the outputs.
*/
enum {
CDCE913,
CDCE925,
CDCE937,
CDCE949,
};
struct clk_cdce925_chip_info {
int num_plls;
int num_outputs;
};
static const struct clk_cdce925_chip_info clk_cdce925_chip_info_tbl[] = {
[CDCE913] = { .num_plls = 1, .num_outputs = 3 },
[CDCE925] = { .num_plls = 2, .num_outputs = 5 },
[CDCE937] = { .num_plls = 3, .num_outputs = 7 },
[CDCE949] = { .num_plls = 4, .num_outputs = 9 },
};
#define MAX_NUMBER_OF_PLLS 4
#define MAX_NUMBER_OF_OUTPUTS 9
#define CDCE925_REG_GLOBAL1 0x01
#define CDCE925_REG_Y1SPIPDIVH 0x02
#define CDCE925_REG_PDIVL 0x03
#define CDCE925_REG_XCSEL 0x05
/* PLL parameters start at 0x10, steps of 0x10 */
#define CDCE925_OFFSET_PLL 0x10
/* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
#define CDCE925_PLL_MUX_OUTPUTS 0x14
#define CDCE925_PLL_MULDIV 0x18
#define CDCE925_PLL_FREQUENCY_MIN 80000000ul
#define CDCE925_PLL_FREQUENCY_MAX 230000000ul
struct clk_cdce925_chip;
struct clk_cdce925_output {
struct clk_hw hw;
struct clk_cdce925_chip *chip;
u8 index;
u16 pdiv; /* 1..127 for Y2-Y9; 1..1023 for Y1 */
};
#define to_clk_cdce925_output(_hw) \
container_of(_hw, struct clk_cdce925_output, hw)
struct clk_cdce925_pll {
struct clk_hw hw;
struct clk_cdce925_chip *chip;
u8 index;
u16 m; /* 1..511 */
u16 n; /* 1..4095 */
};
#define to_clk_cdce925_pll(_hw) container_of(_hw, struct clk_cdce925_pll, hw)
struct clk_cdce925_chip {
struct regmap *regmap;
struct i2c_client *i2c_client;
const struct clk_cdce925_chip_info *chip_info;
struct clk_cdce925_pll pll[MAX_NUMBER_OF_PLLS];
struct clk_cdce925_output clk[MAX_NUMBER_OF_OUTPUTS];
};
/* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
u16 n, u16 m)
{
if ((!m || !n) || (m == n))
return parent_rate; /* In bypass mode runs at same frequency */
return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
}
static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
/* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
}
static void cdce925_pll_find_rate(unsigned long rate,
unsigned long parent_rate, u16 *n, u16 *m)
{
unsigned long un;
unsigned long um;
unsigned long g;
if (rate <= parent_rate) {
/* Can always deliver parent_rate in bypass mode */
rate = parent_rate;
*n = 0;
*m = 0;
} else {
/* In PLL mode, need to apply min/max range */
if (rate < CDCE925_PLL_FREQUENCY_MIN)
rate = CDCE925_PLL_FREQUENCY_MIN;
else if (rate > CDCE925_PLL_FREQUENCY_MAX)
rate = CDCE925_PLL_FREQUENCY_MAX;
g = gcd(rate, parent_rate);
um = parent_rate / g;
un = rate / g;
/* When outside hw range, reduce to fit (rounding errors) */
while ((un > 4095) || (um > 511)) {
un >>= 1;
um >>= 1;
}
if (un == 0)
un = 1;
if (um == 0)
um = 1;
*n = un;
*m = um;
}
}
static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
u16 n, m;
cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
}
static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
if (!rate || (rate == parent_rate)) {
data->m = 0; /* Bypass mode */
data->n = 0;
return 0;
}
if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
(rate > CDCE925_PLL_FREQUENCY_MAX)) {
pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
return -EINVAL;
}
if (rate < parent_rate) {
pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
rate, parent_rate);
return -EINVAL;
}
cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
return 0;
}
/* calculate p = max(0, 4 - int(log2 (n/m))) */
static u8 cdce925_pll_calc_p(u16 n, u16 m)
{
u8 p;
u16 r = n / m;
if (r >= 16)
return 0;
p = 4;
while (r > 1) {
r >>= 1;
--p;
}
return p;
}
/* Returns VCO range bits for VCO1_0_RANGE */
static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
{
struct clk *parent = clk_get_parent(hw->clk);
unsigned long rate = clk_get_rate(parent);
rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
if (rate >= 175000000)
return 0x3;
if (rate >= 150000000)
return 0x02;
if (rate >= 125000000)
return 0x01;
return 0x00;
}
/* I2C clock, hence everything must happen in (un)prepare because this
* may sleep */
static int cdce925_pll_prepare(struct clk_hw *hw)
{
struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
u16 n = data->n;
u16 m = data->m;
u16 r;
u8 q;
u8 p;
u16 nn;
u8 pll[4]; /* Bits are spread out over 4 byte registers */
u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
unsigned i;
if ((!m || !n) || (m == n)) {
/* Set PLL mux to bypass mode, leave the rest as is */
regmap_update_bits(data->chip->regmap,
reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
} else {
/* According to data sheet: */
/* p = max(0, 4 - int(log2 (n/m))) */
p = cdce925_pll_calc_p(n, m);
/* nn = n * 2^p */
nn = n * BIT(p);
/* q = int(nn/m) */
q = nn / m;
if ((q < 16) || (q > 63)) {
pr_debug("%s invalid q=%d\n", __func__, q);
return -EINVAL;
}
r = nn - (m*q);
if (r > 511) {
pr_debug("%s invalid r=%d\n", __func__, r);
return -EINVAL;
}
pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
n, m, p, q, r);
/* encode into register bits */
pll[0] = n >> 4;
pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
pll[3] = ((q & 0x07) << 5) | (p << 2) |
cdce925_pll_calc_range_bits(hw, n, m);
/* Write to registers */
for (i = 0; i < ARRAY_SIZE(pll); ++i)
regmap_write(data->chip->regmap,
reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
/* Enable PLL */
regmap_update_bits(data->chip->regmap,
reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
}
return 0;
}
static void cdce925_pll_unprepare(struct clk_hw *hw)
{
struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
regmap_update_bits(data->chip->regmap,
reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
}
static const struct clk_ops cdce925_pll_ops = {
.prepare = cdce925_pll_prepare,
.unprepare = cdce925_pll_unprepare,
.recalc_rate = cdce925_pll_recalc_rate,
.round_rate = cdce925_pll_round_rate,
.set_rate = cdce925_pll_set_rate,
};
static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
{
switch (data->index) {
case 0:
regmap_update_bits(data->chip->regmap,
CDCE925_REG_Y1SPIPDIVH,
0x03, (pdiv >> 8) & 0x03);
regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
break;
case 1:
regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
break;
case 2:
regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
break;
case 3:
regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
break;
case 4:
regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
break;
case 5:
regmap_update_bits(data->chip->regmap, 0x36, 0x7F, pdiv);
break;
case 6:
regmap_update_bits(data->chip->regmap, 0x37, 0x7F, pdiv);
break;
case 7:
regmap_update_bits(data->chip->regmap, 0x46, 0x7F, pdiv);
break;
case 8:
regmap_update_bits(data->chip->regmap, 0x47, 0x7F, pdiv);
break;
}
}
static void cdce925_clk_activate(struct clk_cdce925_output *data)
{
switch (data->index) {
case 0:
regmap_update_bits(data->chip->regmap,
CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
break;
case 1:
case 2:
regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
break;
case 3:
case 4:
regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
break;
case 5:
case 6:
regmap_update_bits(data->chip->regmap, 0x34, 0x03, 0x03);
break;
case 7:
case 8:
regmap_update_bits(data->chip->regmap, 0x44, 0x03, 0x03);
break;
}
}
static int cdce925_clk_prepare(struct clk_hw *hw)
{
struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
cdce925_clk_set_pdiv(data, data->pdiv);
cdce925_clk_activate(data);
return 0;
}
static void cdce925_clk_unprepare(struct clk_hw *hw)
{
struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
/* Disable clock by setting divider to "0" */
cdce925_clk_set_pdiv(data, 0);
}
static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
if (data->pdiv)
return parent_rate / data->pdiv;
return 0;
}
static u16 cdce925_calc_divider(unsigned long rate,
unsigned long parent_rate)
{
unsigned long divider;
if (!rate)
return 0;
if (rate >= parent_rate)
return 1;
divider = DIV_ROUND_CLOSEST(parent_rate, rate);
if (divider > 0x7F)
divider = 0x7F;
return (u16)divider;
}
static unsigned long cdce925_clk_best_parent_rate(
struct clk_hw *hw, unsigned long rate)
{
struct clk *pll = clk_get_parent(hw->clk);
struct clk *root = clk_get_parent(pll);
unsigned long root_rate = clk_get_rate(root);
unsigned long best_rate_error = rate;
u16 pdiv_min;
u16 pdiv_max;
u16 pdiv_best;
u16 pdiv_now;
if (root_rate % rate == 0)
return root_rate; /* Don't need the PLL, use bypass */
pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
if (pdiv_min > pdiv_max)
return 0; /* No can do? */
pdiv_best = pdiv_min;
for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
unsigned long target_rate = rate * pdiv_now;
long pll_rate = clk_round_rate(pll, target_rate);
unsigned long actual_rate;
unsigned long rate_error;
if (pll_rate <= 0)
continue;
actual_rate = pll_rate / pdiv_now;
rate_error = abs((long)actual_rate - (long)rate);
if (rate_error < best_rate_error) {
pdiv_best = pdiv_now;
best_rate_error = rate_error;
}
/* TODO: Consider PLL frequency based on smaller n/m values
* and pick the better one if the error is equal */
}
return rate * pdiv_best;
}
static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
unsigned long l_parent_rate = *parent_rate;
u16 divider = cdce925_calc_divider(rate, l_parent_rate);
if (l_parent_rate / divider != rate) {
l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
divider = cdce925_calc_divider(rate, l_parent_rate);
*parent_rate = l_parent_rate;
}
if (divider)
return (long)(l_parent_rate / divider);
return 0;
}
static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
data->pdiv = cdce925_calc_divider(rate, parent_rate);
return 0;
}
static const struct clk_ops cdce925_clk_ops = {
.prepare = cdce925_clk_prepare,
.unprepare = cdce925_clk_unprepare,
.recalc_rate = cdce925_clk_recalc_rate,
.round_rate = cdce925_clk_round_rate,
.set_rate = cdce925_clk_set_rate,
};
static u16 cdce925_y1_calc_divider(unsigned long rate,
unsigned long parent_rate)
{
unsigned long divider;
if (!rate)
return 0;
if (rate >= parent_rate)
return 1;
divider = DIV_ROUND_CLOSEST(parent_rate, rate);
if (divider > 0x3FF) /* Y1 has 10-bit divider */
divider = 0x3FF;
return (u16)divider;
}
static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
unsigned long l_parent_rate = *parent_rate;
u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
if (divider)
return (long)(l_parent_rate / divider);
return 0;
}
static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
return 0;
}
static const struct clk_ops cdce925_clk_y1_ops = {
.prepare = cdce925_clk_prepare,
.unprepare = cdce925_clk_unprepare,
.recalc_rate = cdce925_clk_recalc_rate,
.round_rate = cdce925_clk_y1_round_rate,
.set_rate = cdce925_clk_y1_set_rate,
};
#define CDCE925_I2C_COMMAND_BLOCK_TRANSFER 0x00
#define CDCE925_I2C_COMMAND_BYTE_TRANSFER 0x80
static int cdce925_regmap_i2c_write(
void *context, const void *data, size_t count)
{
struct device *dev = context;
struct i2c_client *i2c = to_i2c_client(dev);
int ret;
u8 reg_data[2];
if (count != 2)
return -ENOTSUPP;
/* First byte is command code */
reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
reg_data[1] = ((u8 *)data)[1];
dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
reg_data[0], reg_data[1]);
ret = i2c_master_send(i2c, reg_data, count);
if (likely(ret == count))
return 0;
else if (ret < 0)
return ret;
else
return -EIO;
}
static int cdce925_regmap_i2c_read(void *context,
const void *reg, size_t reg_size, void *val, size_t val_size)
{
struct device *dev = context;
struct i2c_client *i2c = to_i2c_client(dev);
struct i2c_msg xfer[2];
int ret;
u8 reg_data[2];
if (reg_size != 1)
return -ENOTSUPP;
xfer[0].addr = i2c->addr;
xfer[0].flags = 0;
xfer[0].buf = reg_data;
if (val_size == 1) {
reg_data[0] =
CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
xfer[0].len = 1;
} else {
reg_data[0] =
CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
reg_data[1] = val_size;
xfer[0].len = 2;
}
xfer[1].addr = i2c->addr;
xfer[1].flags = I2C_M_RD;
xfer[1].len = val_size;
xfer[1].buf = val;
ret = i2c_transfer(i2c->adapter, xfer, 2);
if (likely(ret == 2)) {
dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
reg_size, val_size, reg_data[0], *((u8 *)val));
return 0;
} else if (ret < 0)
return ret;
else
return -EIO;
}
static struct clk_hw *
of_clk_cdce925_get(struct of_phandle_args *clkspec, void *_data)
{
struct clk_cdce925_chip *data = _data;
unsigned int idx = clkspec->args[0];
if (idx >= ARRAY_SIZE(data->clk)) {
pr_err("%s: invalid index %u\n", __func__, idx);
return ERR_PTR(-EINVAL);
}
return &data->clk[idx].hw;
}
/* The CDCE925 uses a funky way to read/write registers. Bulk mode is
* just weird, so just use the single byte mode exclusively. */
static struct regmap_bus regmap_cdce925_bus = {
.write = cdce925_regmap_i2c_write,
.read = cdce925_regmap_i2c_read,
};
static int cdce925_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct clk_cdce925_chip *data;
struct device_node *node = client->dev.of_node;
const char *parent_name;
const char *pll_clk_name[MAX_NUMBER_OF_PLLS] = {NULL,};
struct clk_init_data init;
u32 value;
int i;
int err;
struct device_node *np_output;
char child_name[6];
struct regmap_config config = {
.name = "configuration0",
.reg_bits = 8,
.val_bits = 8,
.cache_type = REGCACHE_RBTREE,
};
dev_dbg(&client->dev, "%s\n", __func__);
data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->i2c_client = client;
data->chip_info = &clk_cdce925_chip_info_tbl[id->driver_data];
config.max_register = CDCE925_OFFSET_PLL +
data->chip_info->num_plls * 0x10 - 1;
data->regmap = devm_regmap_init(&client->dev, &regmap_cdce925_bus,
&client->dev, &config);
if (IS_ERR(data->regmap)) {
dev_err(&client->dev, "failed to allocate register map\n");
return PTR_ERR(data->regmap);
}
i2c_set_clientdata(client, data);
parent_name = of_clk_get_parent_name(node, 0);
if (!parent_name) {
dev_err(&client->dev, "missing parent clock\n");
return -ENODEV;
}
dev_dbg(&client->dev, "parent is: %s\n", parent_name);
if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
regmap_write(data->regmap,
CDCE925_REG_XCSEL, (value << 3) & 0xF8);
/* PWDN bit */
regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
/* Set input source for Y1 to be the XTAL */
regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
init.ops = &cdce925_pll_ops;
init.flags = 0;
init.parent_names = &parent_name;
init.num_parents = parent_name ? 1 : 0;
/* Register PLL clocks */
for (i = 0; i < data->chip_info->num_plls; ++i) {
pll_clk_name[i] = kasprintf(GFP_KERNEL, "%s.pll%d",
client->dev.of_node->name, i);
init.name = pll_clk_name[i];
data->pll[i].chip = data;
data->pll[i].hw.init = &init;
data->pll[i].index = i;
err = devm_clk_hw_register(&client->dev, &data->pll[i].hw);
if (err) {
dev_err(&client->dev, "Failed register PLL %d\n", i);
goto error;
}
sprintf(child_name, "PLL%d", i+1);
np_output = of_get_child_by_name(node, child_name);
if (!np_output)
continue;
if (!of_property_read_u32(np_output,
"clock-frequency", &value)) {
err = clk_set_rate(data->pll[i].hw.clk, value);
if (err)
dev_err(&client->dev,
"unable to set PLL frequency %ud\n",
value);
}
if (!of_property_read_u32(np_output,
"spread-spectrum", &value)) {
u8 flag = of_property_read_bool(np_output,
"spread-spectrum-center") ? 0x80 : 0x00;
regmap_update_bits(data->regmap,
0x16 + (i*CDCE925_OFFSET_PLL),
0x80, flag);
regmap_update_bits(data->regmap,
0x12 + (i*CDCE925_OFFSET_PLL),
0x07, value & 0x07);
}
}
/* Register output clock Y1 */
init.ops = &cdce925_clk_y1_ops;
init.flags = 0;
init.num_parents = 1;
init.parent_names = &parent_name; /* Mux Y1 to input */
init.name = kasprintf(GFP_KERNEL, "%s.Y1", client->dev.of_node->name);
data->clk[0].chip = data;
data->clk[0].hw.init = &init;
data->clk[0].index = 0;
data->clk[0].pdiv = 1;
err = devm_clk_hw_register(&client->dev, &data->clk[0].hw);
kfree(init.name); /* clock framework made a copy of the name */
if (err) {
dev_err(&client->dev, "clock registration Y1 failed\n");
goto error;
}
/* Register output clocks Y2 .. Y5*/
init.ops = &cdce925_clk_ops;
init.flags = CLK_SET_RATE_PARENT;
init.num_parents = 1;
for (i = 1; i < data->chip_info->num_outputs; ++i) {
init.name = kasprintf(GFP_KERNEL, "%s.Y%d",
client->dev.of_node->name, i+1);
data->clk[i].chip = data;
data->clk[i].hw.init = &init;
data->clk[i].index = i;
data->clk[i].pdiv = 1;
switch (i) {
case 1:
case 2:
/* Mux Y2/3 to PLL1 */
init.parent_names = &pll_clk_name[0];
break;
case 3:
case 4:
/* Mux Y4/5 to PLL2 */
init.parent_names = &pll_clk_name[1];
break;
case 5:
case 6:
/* Mux Y6/7 to PLL3 */
init.parent_names = &pll_clk_name[2];
break;
case 7:
case 8:
/* Mux Y8/9 to PLL4 */
init.parent_names = &pll_clk_name[3];
break;
}
err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
kfree(init.name); /* clock framework made a copy of the name */
if (err) {
dev_err(&client->dev, "clock registration failed\n");
goto error;
}
}
/* Register the output clocks */
err = of_clk_add_hw_provider(client->dev.of_node, of_clk_cdce925_get,
data);
if (err)
dev_err(&client->dev, "unable to add OF clock provider\n");
err = 0;
error:
for (i = 0; i < data->chip_info->num_plls; ++i)
/* clock framework made a copy of the name */
kfree(pll_clk_name[i]);
return err;
}
static const struct i2c_device_id cdce925_id[] = {
{ "cdce913", CDCE913 },
{ "cdce925", CDCE925 },
{ "cdce937", CDCE937 },
{ "cdce949", CDCE949 },
{ }
};
MODULE_DEVICE_TABLE(i2c, cdce925_id);
static const struct of_device_id clk_cdce925_of_match[] = {
{ .compatible = "ti,cdce913" },
{ .compatible = "ti,cdce925" },
{ .compatible = "ti,cdce937" },
{ .compatible = "ti,cdce949" },
{ },
};
MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
static struct i2c_driver cdce925_driver = {
.driver = {
.name = "cdce925",
.of_match_table = of_match_ptr(clk_cdce925_of_match),
},
.probe = cdce925_probe,
.id_table = cdce925_id,
};
module_i2c_driver(cdce925_driver);
MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
MODULE_DESCRIPTION("TI CDCE913/925/937/949 driver");
MODULE_LICENSE("GPL");