blob: f211839e2cae18f4d71999ec41ad8ed2a8ff1bca [file] [log] [blame]
/* pci-vdk.c: MB93090-MB00 (VDK) PCI support
*
* Copyright (C) 2003, 2004 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <asm/segment.h>
#include <asm/io.h>
#include <asm/mb-regs.h>
#include <asm/mb86943a.h>
#include "pci-frv.h"
unsigned int __nongpreldata pci_probe = 1;
struct pci_ops *__nongpreldata pci_root_ops;
/*
* The accessible PCI window does not cover the entire CPU address space, but
* there are devices we want to access outside of that window, so we need to
* insert specific PCI bus resources instead of using the platform-level bus
* resources directly for the PCI root bus.
*
* These are configured and inserted by pcibios_init() and are attached to the
* root bus by pcibios_fixup_bus().
*/
static struct resource pci_ioport_resource = {
.name = "PCI IO",
.start = 0,
.end = IO_SPACE_LIMIT,
.flags = IORESOURCE_IO,
};
static struct resource pci_iomem_resource = {
.name = "PCI mem",
.start = 0,
.end = -1,
.flags = IORESOURCE_MEM,
};
/*
* Functions for accessing PCI configuration space
*/
#define CONFIG_CMD(bus, dev, where) \
(0x80000000 | (bus->number << 16) | (devfn << 8) | (where & ~3))
#define __set_PciCfgAddr(A) writel((A), (volatile void __iomem *) __region_CS1 + 0x80)
#define __get_PciCfgDataB(A) readb((volatile void __iomem *) __region_CS1 + 0x88 + ((A) & 3))
#define __get_PciCfgDataW(A) readw((volatile void __iomem *) __region_CS1 + 0x88 + ((A) & 2))
#define __get_PciCfgDataL(A) readl((volatile void __iomem *) __region_CS1 + 0x88)
#define __set_PciCfgDataB(A,V) \
writeb((V), (volatile void __iomem *) __region_CS1 + 0x88 + (3 - ((A) & 3)))
#define __set_PciCfgDataW(A,V) \
writew((V), (volatile void __iomem *) __region_CS1 + 0x88 + (2 - ((A) & 2)))
#define __set_PciCfgDataL(A,V) \
writel((V), (volatile void __iomem *) __region_CS1 + 0x88)
#define __get_PciBridgeDataB(A) readb((volatile void __iomem *) __region_CS1 + 0x800 + (A))
#define __get_PciBridgeDataW(A) readw((volatile void __iomem *) __region_CS1 + 0x800 + (A))
#define __get_PciBridgeDataL(A) readl((volatile void __iomem *) __region_CS1 + 0x800 + (A))
#define __set_PciBridgeDataB(A,V) writeb((V), (volatile void __iomem *) __region_CS1 + 0x800 + (A))
#define __set_PciBridgeDataW(A,V) writew((V), (volatile void __iomem *) __region_CS1 + 0x800 + (A))
#define __set_PciBridgeDataL(A,V) writel((V), (volatile void __iomem *) __region_CS1 + 0x800 + (A))
static inline int __query(const struct pci_dev *dev)
{
// return dev->bus->number==0 && (dev->devfn==PCI_DEVFN(0,0));
// return dev->bus->number==1;
// return dev->bus->number==0 &&
// (dev->devfn==PCI_DEVFN(2,0) || dev->devfn==PCI_DEVFN(3,0));
return 0;
}
/*****************************************************************************/
/*
*
*/
static int pci_frv_read_config(struct pci_bus *bus, unsigned int devfn, int where, int size,
u32 *val)
{
u32 _value;
if (bus->number == 0 && devfn == PCI_DEVFN(0, 0)) {
_value = __get_PciBridgeDataL(where & ~3);
}
else {
__set_PciCfgAddr(CONFIG_CMD(bus, devfn, where));
_value = __get_PciCfgDataL(where & ~3);
}
switch (size) {
case 1:
_value = _value >> ((where & 3) * 8);
break;
case 2:
_value = _value >> ((where & 2) * 8);
break;
case 4:
break;
default:
BUG();
}
*val = _value;
return PCIBIOS_SUCCESSFUL;
}
static int pci_frv_write_config(struct pci_bus *bus, unsigned int devfn, int where, int size,
u32 value)
{
switch (size) {
case 1:
if (bus->number == 0 && devfn == PCI_DEVFN(0, 0)) {
__set_PciBridgeDataB(where, value);
}
else {
__set_PciCfgAddr(CONFIG_CMD(bus, devfn, where));
__set_PciCfgDataB(where, value);
}
break;
case 2:
if (bus->number == 0 && devfn == PCI_DEVFN(0, 0)) {
__set_PciBridgeDataW(where, value);
}
else {
__set_PciCfgAddr(CONFIG_CMD(bus, devfn, where));
__set_PciCfgDataW(where, value);
}
break;
case 4:
if (bus->number == 0 && devfn == PCI_DEVFN(0, 0)) {
__set_PciBridgeDataL(where, value);
}
else {
__set_PciCfgAddr(CONFIG_CMD(bus, devfn, where));
__set_PciCfgDataL(where, value);
}
break;
default:
BUG();
}
return PCIBIOS_SUCCESSFUL;
}
static struct pci_ops pci_direct_frv = {
.read = pci_frv_read_config,
.write = pci_frv_write_config,
};
/*
* Before we decide to use direct hardware access mechanisms, we try to do some
* trivial checks to ensure it at least _seems_ to be working -- we just test
* whether bus 00 contains a host bridge (this is similar to checking
* techniques used in XFree86, but ours should be more reliable since we
* attempt to make use of direct access hints provided by the PCI BIOS).
*
* This should be close to trivial, but it isn't, because there are buggy
* chipsets (yes, you guessed it, by Intel and Compaq) that have no class ID.
*/
static int __init pci_sanity_check(struct pci_ops *o)
{
struct pci_bus bus; /* Fake bus and device */
u32 id;
bus.number = 0;
if (o->read(&bus, 0, PCI_VENDOR_ID, 4, &id) == PCIBIOS_SUCCESSFUL) {
printk("PCI: VDK Bridge device:vendor: %08x\n", id);
if (id == 0x200e10cf)
return 1;
}
printk("PCI: VDK Bridge: Sanity check failed\n");
return 0;
}
static struct pci_ops * __init pci_check_direct(void)
{
unsigned long flags;
local_irq_save(flags);
/* check if access works */
if (pci_sanity_check(&pci_direct_frv)) {
local_irq_restore(flags);
printk("PCI: Using configuration frv\n");
// request_mem_region(0xBE040000, 256, "FRV bridge");
// request_mem_region(0xBFFFFFF4, 12, "PCI frv");
return &pci_direct_frv;
}
local_irq_restore(flags);
return NULL;
}
/*
* Exceptions for specific devices. Usually work-arounds for fatal design flaws.
*/
static void __init pci_fixup_umc_ide(struct pci_dev *d)
{
/*
* UM8886BF IDE controller sets region type bits incorrectly,
* therefore they look like memory despite of them being I/O.
*/
int i;
printk("PCI: Fixing base address flags for device %s\n", pci_name(d));
for(i=0; i<4; i++)
d->resource[i].flags |= PCI_BASE_ADDRESS_SPACE_IO;
}
static void pci_fixup_ide_bases(struct pci_dev *d)
{
int i;
/*
* PCI IDE controllers use non-standard I/O port decoding, respect it.
*/
if ((d->class >> 8) != PCI_CLASS_STORAGE_IDE)
return;
printk("PCI: IDE base address fixup for %s\n", pci_name(d));
for(i=0; i<4; i++) {
struct resource *r = &d->resource[i];
if ((r->start & ~0x80) == 0x374) {
r->start |= 2;
r->end = r->start;
}
}
}
static void pci_fixup_ide_trash(struct pci_dev *d)
{
int i;
/*
* There exist PCI IDE controllers which have utter garbage
* in first four base registers. Ignore that.
*/
printk("PCI: IDE base address trash cleared for %s\n", pci_name(d));
for(i=0; i<4; i++)
d->resource[i].start = d->resource[i].end = d->resource[i].flags = 0;
}
static void pci_fixup_latency(struct pci_dev *d)
{
/*
* SiS 5597 and 5598 chipsets require latency timer set to
* at most 32 to avoid lockups.
*/
DBG("PCI: Setting max latency to 32\n");
pcibios_max_latency = 32;
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_UMC, PCI_DEVICE_ID_UMC_UM8886BF, pci_fixup_umc_ide);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_5513, pci_fixup_ide_trash);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_5597, pci_fixup_latency);
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_5598, pci_fixup_latency);
DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pci_fixup_ide_bases);
/*
* Called after each bus is probed, but before its children
* are examined.
*/
void pcibios_fixup_bus(struct pci_bus *bus)
{
#if 0
printk("### PCIBIOS_FIXUP_BUS(%d)\n",bus->number);
#endif
pci_read_bridge_bases(bus);
if (bus->number == 0) {
struct pci_dev *dev;
list_for_each_entry(dev, &bus->devices, bus_list) {
if (dev->devfn == 0) {
dev->resource[0].start = 0;
dev->resource[0].end = 0;
}
}
}
}
/*
* Initialization. Try all known PCI access methods. Note that we support
* using both PCI BIOS and direct access: in such cases, we use I/O ports
* to access config space, but we still keep BIOS order of cards to be
* compatible with 2.0.X. This should go away some day.
*/
int __init pcibios_init(void)
{
struct pci_bus *bus;
struct pci_ops *dir = NULL;
LIST_HEAD(resources);
if (!mb93090_mb00_detected)
return -ENXIO;
__reg_MB86943_sl_ctl |= MB86943_SL_CTL_DRCT_MASTER_SWAP | MB86943_SL_CTL_DRCT_SLAVE_SWAP;
__reg_MB86943_ecs_base(1) = ((__region_CS2 + 0x01000000) >> 9) | 0x08000000;
__reg_MB86943_ecs_base(2) = ((__region_CS2 + 0x00000000) >> 9) | 0x08000000;
*(volatile uint32_t *) (__region_CS1 + 0x848) = 0xe0000000;
*(volatile uint32_t *) (__region_CS1 + 0x8b8) = 0x00000000;
__reg_MB86943_sl_pci_io_base = (__region_CS2 + 0x04000000) >> 9;
__reg_MB86943_sl_pci_mem_base = (__region_CS2 + 0x08000000) >> 9;
__reg_MB86943_pci_sl_io_base = __region_CS2 + 0x04000000;
__reg_MB86943_pci_sl_mem_base = __region_CS2 + 0x08000000;
mb();
/* enable PCI arbitration */
__reg_MB86943_pci_arbiter = MB86943_PCIARB_EN;
pci_ioport_resource.start = (__reg_MB86943_sl_pci_io_base << 9) & 0xfffffc00;
pci_ioport_resource.end = (__reg_MB86943_sl_pci_io_range << 9) | 0x3ff;
pci_ioport_resource.end += pci_ioport_resource.start;
printk("PCI IO window: %08llx-%08llx\n",
(unsigned long long) pci_ioport_resource.start,
(unsigned long long) pci_ioport_resource.end);
pci_iomem_resource.start = (__reg_MB86943_sl_pci_mem_base << 9) & 0xfffffc00;
pci_iomem_resource.end = (__reg_MB86943_sl_pci_mem_range << 9) | 0x3ff;
pci_iomem_resource.end += pci_iomem_resource.start;
/* Reserve somewhere to write to flush posted writes. This is used by
* __flush_PCI_writes() from asm/io.h to force the write FIFO in the
* CPU-PCI bridge to flush as this doesn't happen automatically when a
* read is performed on the MB93090 development kit motherboard.
*/
pci_iomem_resource.start += 0x400;
printk("PCI MEM window: %08llx-%08llx\n",
(unsigned long long) pci_iomem_resource.start,
(unsigned long long) pci_iomem_resource.end);
printk("PCI DMA memory: %08lx-%08lx\n",
dma_coherent_mem_start, dma_coherent_mem_end);
if (insert_resource(&iomem_resource, &pci_iomem_resource) < 0)
panic("Unable to insert PCI IOMEM resource\n");
if (insert_resource(&ioport_resource, &pci_ioport_resource) < 0)
panic("Unable to insert PCI IOPORT resource\n");
if (!pci_probe)
return -ENXIO;
dir = pci_check_direct();
if (dir)
pci_root_ops = dir;
else {
printk("PCI: No PCI bus detected\n");
return -ENXIO;
}
printk("PCI: Probing PCI hardware\n");
pci_add_resource(&resources, &pci_ioport_resource);
pci_add_resource(&resources, &pci_iomem_resource);
bus = pci_scan_root_bus(NULL, 0, pci_root_ops, NULL, &resources);
pcibios_irq_init();
pcibios_fixup_irqs();
pcibios_resource_survey();
if (!bus)
return 0;
pci_bus_add_devices(bus);
return 0;
}
arch_initcall(pcibios_init);
char * __init pcibios_setup(char *str)
{
if (!strcmp(str, "off")) {
pci_probe = 0;
return NULL;
}
return str;
}
int pcibios_enable_device(struct pci_dev *dev, int mask)
{
int err;
if ((err = pci_enable_resources(dev, mask)) < 0)
return err;
if (!dev->msi_enabled)
pcibios_enable_irq(dev);
return 0;
}