| /* |
| * SRAM allocator for Blackfin on-chip memory |
| * |
| * Copyright 2004-2009 Analog Devices Inc. |
| * |
| * Licensed under the GPL-2 or later. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/miscdevice.h> |
| #include <linux/ioport.h> |
| #include <linux/fcntl.h> |
| #include <linux/init.h> |
| #include <linux/poll.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/spinlock.h> |
| #include <linux/rtc.h> |
| #include <linux/slab.h> |
| #include <linux/mm_types.h> |
| |
| #include <asm/blackfin.h> |
| #include <asm/mem_map.h> |
| #include "blackfin_sram.h" |
| |
| /* the data structure for L1 scratchpad and DATA SRAM */ |
| struct sram_piece { |
| void *paddr; |
| int size; |
| pid_t pid; |
| struct sram_piece *next; |
| }; |
| |
| static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1sram_lock); |
| static DEFINE_PER_CPU(struct sram_piece, free_l1_ssram_head); |
| static DEFINE_PER_CPU(struct sram_piece, used_l1_ssram_head); |
| |
| #if L1_DATA_A_LENGTH != 0 |
| static DEFINE_PER_CPU(struct sram_piece, free_l1_data_A_sram_head); |
| static DEFINE_PER_CPU(struct sram_piece, used_l1_data_A_sram_head); |
| #endif |
| |
| #if L1_DATA_B_LENGTH != 0 |
| static DEFINE_PER_CPU(struct sram_piece, free_l1_data_B_sram_head); |
| static DEFINE_PER_CPU(struct sram_piece, used_l1_data_B_sram_head); |
| #endif |
| |
| #if L1_DATA_A_LENGTH || L1_DATA_B_LENGTH |
| static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_data_sram_lock); |
| #endif |
| |
| #if L1_CODE_LENGTH != 0 |
| static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_inst_sram_lock); |
| static DEFINE_PER_CPU(struct sram_piece, free_l1_inst_sram_head); |
| static DEFINE_PER_CPU(struct sram_piece, used_l1_inst_sram_head); |
| #endif |
| |
| #if L2_LENGTH != 0 |
| static spinlock_t l2_sram_lock ____cacheline_aligned_in_smp; |
| static struct sram_piece free_l2_sram_head, used_l2_sram_head; |
| #endif |
| |
| static struct kmem_cache *sram_piece_cache; |
| |
| /* L1 Scratchpad SRAM initialization function */ |
| static void __init l1sram_init(void) |
| { |
| unsigned int cpu; |
| unsigned long reserve; |
| |
| #ifdef CONFIG_SMP |
| reserve = 0; |
| #else |
| reserve = sizeof(struct l1_scratch_task_info); |
| #endif |
| |
| for (cpu = 0; cpu < num_possible_cpus(); ++cpu) { |
| per_cpu(free_l1_ssram_head, cpu).next = |
| kmem_cache_alloc(sram_piece_cache, GFP_KERNEL); |
| if (!per_cpu(free_l1_ssram_head, cpu).next) { |
| printk(KERN_INFO "Fail to initialize Scratchpad data SRAM.\n"); |
| return; |
| } |
| |
| per_cpu(free_l1_ssram_head, cpu).next->paddr = (void *)get_l1_scratch_start_cpu(cpu) + reserve; |
| per_cpu(free_l1_ssram_head, cpu).next->size = L1_SCRATCH_LENGTH - reserve; |
| per_cpu(free_l1_ssram_head, cpu).next->pid = 0; |
| per_cpu(free_l1_ssram_head, cpu).next->next = NULL; |
| |
| per_cpu(used_l1_ssram_head, cpu).next = NULL; |
| |
| /* mutex initialize */ |
| spin_lock_init(&per_cpu(l1sram_lock, cpu)); |
| printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n", |
| L1_SCRATCH_LENGTH >> 10); |
| } |
| } |
| |
| static void __init l1_data_sram_init(void) |
| { |
| #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0 |
| unsigned int cpu; |
| #endif |
| #if L1_DATA_A_LENGTH != 0 |
| for (cpu = 0; cpu < num_possible_cpus(); ++cpu) { |
| per_cpu(free_l1_data_A_sram_head, cpu).next = |
| kmem_cache_alloc(sram_piece_cache, GFP_KERNEL); |
| if (!per_cpu(free_l1_data_A_sram_head, cpu).next) { |
| printk(KERN_INFO "Fail to initialize L1 Data A SRAM.\n"); |
| return; |
| } |
| |
| per_cpu(free_l1_data_A_sram_head, cpu).next->paddr = |
| (void *)get_l1_data_a_start_cpu(cpu) + (_ebss_l1 - _sdata_l1); |
| per_cpu(free_l1_data_A_sram_head, cpu).next->size = |
| L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1); |
| per_cpu(free_l1_data_A_sram_head, cpu).next->pid = 0; |
| per_cpu(free_l1_data_A_sram_head, cpu).next->next = NULL; |
| |
| per_cpu(used_l1_data_A_sram_head, cpu).next = NULL; |
| |
| printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n", |
| L1_DATA_A_LENGTH >> 10, |
| per_cpu(free_l1_data_A_sram_head, cpu).next->size >> 10); |
| } |
| #endif |
| #if L1_DATA_B_LENGTH != 0 |
| for (cpu = 0; cpu < num_possible_cpus(); ++cpu) { |
| per_cpu(free_l1_data_B_sram_head, cpu).next = |
| kmem_cache_alloc(sram_piece_cache, GFP_KERNEL); |
| if (!per_cpu(free_l1_data_B_sram_head, cpu).next) { |
| printk(KERN_INFO "Fail to initialize L1 Data B SRAM.\n"); |
| return; |
| } |
| |
| per_cpu(free_l1_data_B_sram_head, cpu).next->paddr = |
| (void *)get_l1_data_b_start_cpu(cpu) + (_ebss_b_l1 - _sdata_b_l1); |
| per_cpu(free_l1_data_B_sram_head, cpu).next->size = |
| L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1); |
| per_cpu(free_l1_data_B_sram_head, cpu).next->pid = 0; |
| per_cpu(free_l1_data_B_sram_head, cpu).next->next = NULL; |
| |
| per_cpu(used_l1_data_B_sram_head, cpu).next = NULL; |
| |
| printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n", |
| L1_DATA_B_LENGTH >> 10, |
| per_cpu(free_l1_data_B_sram_head, cpu).next->size >> 10); |
| /* mutex initialize */ |
| } |
| #endif |
| |
| #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0 |
| for (cpu = 0; cpu < num_possible_cpus(); ++cpu) |
| spin_lock_init(&per_cpu(l1_data_sram_lock, cpu)); |
| #endif |
| } |
| |
| static void __init l1_inst_sram_init(void) |
| { |
| #if L1_CODE_LENGTH != 0 |
| unsigned int cpu; |
| for (cpu = 0; cpu < num_possible_cpus(); ++cpu) { |
| per_cpu(free_l1_inst_sram_head, cpu).next = |
| kmem_cache_alloc(sram_piece_cache, GFP_KERNEL); |
| if (!per_cpu(free_l1_inst_sram_head, cpu).next) { |
| printk(KERN_INFO "Failed to initialize L1 Instruction SRAM\n"); |
| return; |
| } |
| |
| per_cpu(free_l1_inst_sram_head, cpu).next->paddr = |
| (void *)get_l1_code_start_cpu(cpu) + (_etext_l1 - _stext_l1); |
| per_cpu(free_l1_inst_sram_head, cpu).next->size = |
| L1_CODE_LENGTH - (_etext_l1 - _stext_l1); |
| per_cpu(free_l1_inst_sram_head, cpu).next->pid = 0; |
| per_cpu(free_l1_inst_sram_head, cpu).next->next = NULL; |
| |
| per_cpu(used_l1_inst_sram_head, cpu).next = NULL; |
| |
| printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n", |
| L1_CODE_LENGTH >> 10, |
| per_cpu(free_l1_inst_sram_head, cpu).next->size >> 10); |
| |
| /* mutex initialize */ |
| spin_lock_init(&per_cpu(l1_inst_sram_lock, cpu)); |
| } |
| #endif |
| } |
| |
| #ifdef __ADSPBF60x__ |
| static irqreturn_t l2_ecc_err(int irq, void *dev_id) |
| { |
| int status; |
| |
| printk(KERN_ERR "L2 ecc error happened\n"); |
| status = bfin_read32(L2CTL0_STAT); |
| if (status & 0x1) |
| printk(KERN_ERR "Core channel error type:0x%x, addr:0x%x\n", |
| bfin_read32(L2CTL0_ET0), bfin_read32(L2CTL0_EADDR0)); |
| if (status & 0x2) |
| printk(KERN_ERR "System channel error type:0x%x, addr:0x%x\n", |
| bfin_read32(L2CTL0_ET1), bfin_read32(L2CTL0_EADDR1)); |
| |
| status = status >> 8; |
| if (status) |
| printk(KERN_ERR "L2 Bank%d error, addr:0x%x\n", |
| status, bfin_read32(L2CTL0_ERRADDR0 + status)); |
| |
| panic("L2 Ecc error"); |
| return IRQ_HANDLED; |
| } |
| #endif |
| |
| static void __init l2_sram_init(void) |
| { |
| #if L2_LENGTH != 0 |
| |
| #ifdef __ADSPBF60x__ |
| int ret; |
| |
| ret = request_irq(IRQ_L2CTL0_ECC_ERR, l2_ecc_err, 0, "l2-ecc-err", |
| NULL); |
| if (unlikely(ret < 0)) { |
| printk(KERN_INFO "Fail to request l2 ecc error interrupt"); |
| return; |
| } |
| #endif |
| |
| free_l2_sram_head.next = |
| kmem_cache_alloc(sram_piece_cache, GFP_KERNEL); |
| if (!free_l2_sram_head.next) { |
| printk(KERN_INFO "Fail to initialize L2 SRAM.\n"); |
| return; |
| } |
| |
| free_l2_sram_head.next->paddr = |
| (void *)L2_START + (_ebss_l2 - _stext_l2); |
| free_l2_sram_head.next->size = |
| L2_LENGTH - (_ebss_l2 - _stext_l2); |
| free_l2_sram_head.next->pid = 0; |
| free_l2_sram_head.next->next = NULL; |
| |
| used_l2_sram_head.next = NULL; |
| |
| printk(KERN_INFO "Blackfin L2 SRAM: %d KB (%d KB free)\n", |
| L2_LENGTH >> 10, |
| free_l2_sram_head.next->size >> 10); |
| |
| /* mutex initialize */ |
| spin_lock_init(&l2_sram_lock); |
| #endif |
| } |
| |
| static int __init bfin_sram_init(void) |
| { |
| sram_piece_cache = kmem_cache_create("sram_piece_cache", |
| sizeof(struct sram_piece), |
| 0, SLAB_PANIC, NULL); |
| |
| l1sram_init(); |
| l1_data_sram_init(); |
| l1_inst_sram_init(); |
| l2_sram_init(); |
| |
| return 0; |
| } |
| pure_initcall(bfin_sram_init); |
| |
| /* SRAM allocate function */ |
| static void *_sram_alloc(size_t size, struct sram_piece *pfree_head, |
| struct sram_piece *pused_head) |
| { |
| struct sram_piece *pslot, *plast, *pavail; |
| |
| if (size <= 0 || !pfree_head || !pused_head) |
| return NULL; |
| |
| /* Align the size */ |
| size = (size + 3) & ~3; |
| |
| pslot = pfree_head->next; |
| plast = pfree_head; |
| |
| /* search an available piece slot */ |
| while (pslot != NULL && size > pslot->size) { |
| plast = pslot; |
| pslot = pslot->next; |
| } |
| |
| if (!pslot) |
| return NULL; |
| |
| if (pslot->size == size) { |
| plast->next = pslot->next; |
| pavail = pslot; |
| } else { |
| /* use atomic so our L1 allocator can be used atomically */ |
| pavail = kmem_cache_alloc(sram_piece_cache, GFP_ATOMIC); |
| |
| if (!pavail) |
| return NULL; |
| |
| pavail->paddr = pslot->paddr; |
| pavail->size = size; |
| pslot->paddr += size; |
| pslot->size -= size; |
| } |
| |
| pavail->pid = current->pid; |
| |
| pslot = pused_head->next; |
| plast = pused_head; |
| |
| /* insert new piece into used piece list !!! */ |
| while (pslot != NULL && pavail->paddr < pslot->paddr) { |
| plast = pslot; |
| pslot = pslot->next; |
| } |
| |
| pavail->next = pslot; |
| plast->next = pavail; |
| |
| return pavail->paddr; |
| } |
| |
| /* Allocate the largest available block. */ |
| static void *_sram_alloc_max(struct sram_piece *pfree_head, |
| struct sram_piece *pused_head, |
| unsigned long *psize) |
| { |
| struct sram_piece *pslot, *pmax; |
| |
| if (!pfree_head || !pused_head) |
| return NULL; |
| |
| pmax = pslot = pfree_head->next; |
| |
| /* search an available piece slot */ |
| while (pslot != NULL) { |
| if (pslot->size > pmax->size) |
| pmax = pslot; |
| pslot = pslot->next; |
| } |
| |
| if (!pmax) |
| return NULL; |
| |
| *psize = pmax->size; |
| |
| return _sram_alloc(*psize, pfree_head, pused_head); |
| } |
| |
| /* SRAM free function */ |
| static int _sram_free(const void *addr, |
| struct sram_piece *pfree_head, |
| struct sram_piece *pused_head) |
| { |
| struct sram_piece *pslot, *plast, *pavail; |
| |
| if (!pfree_head || !pused_head) |
| return -1; |
| |
| /* search the relevant memory slot */ |
| pslot = pused_head->next; |
| plast = pused_head; |
| |
| /* search an available piece slot */ |
| while (pslot != NULL && pslot->paddr != addr) { |
| plast = pslot; |
| pslot = pslot->next; |
| } |
| |
| if (!pslot) |
| return -1; |
| |
| plast->next = pslot->next; |
| pavail = pslot; |
| pavail->pid = 0; |
| |
| /* insert free pieces back to the free list */ |
| pslot = pfree_head->next; |
| plast = pfree_head; |
| |
| while (pslot != NULL && addr > pslot->paddr) { |
| plast = pslot; |
| pslot = pslot->next; |
| } |
| |
| if (plast != pfree_head && plast->paddr + plast->size == pavail->paddr) { |
| plast->size += pavail->size; |
| kmem_cache_free(sram_piece_cache, pavail); |
| } else { |
| pavail->next = plast->next; |
| plast->next = pavail; |
| plast = pavail; |
| } |
| |
| if (pslot && plast->paddr + plast->size == pslot->paddr) { |
| plast->size += pslot->size; |
| plast->next = pslot->next; |
| kmem_cache_free(sram_piece_cache, pslot); |
| } |
| |
| return 0; |
| } |
| |
| int sram_free(const void *addr) |
| { |
| |
| #if L1_CODE_LENGTH != 0 |
| if (addr >= (void *)get_l1_code_start() |
| && addr < (void *)(get_l1_code_start() + L1_CODE_LENGTH)) |
| return l1_inst_sram_free(addr); |
| else |
| #endif |
| #if L1_DATA_A_LENGTH != 0 |
| if (addr >= (void *)get_l1_data_a_start() |
| && addr < (void *)(get_l1_data_a_start() + L1_DATA_A_LENGTH)) |
| return l1_data_A_sram_free(addr); |
| else |
| #endif |
| #if L1_DATA_B_LENGTH != 0 |
| if (addr >= (void *)get_l1_data_b_start() |
| && addr < (void *)(get_l1_data_b_start() + L1_DATA_B_LENGTH)) |
| return l1_data_B_sram_free(addr); |
| else |
| #endif |
| #if L2_LENGTH != 0 |
| if (addr >= (void *)L2_START |
| && addr < (void *)(L2_START + L2_LENGTH)) |
| return l2_sram_free(addr); |
| else |
| #endif |
| return -1; |
| } |
| EXPORT_SYMBOL(sram_free); |
| |
| void *l1_data_A_sram_alloc(size_t size) |
| { |
| #if L1_DATA_A_LENGTH != 0 |
| unsigned long flags; |
| void *addr; |
| unsigned int cpu; |
| |
| cpu = smp_processor_id(); |
| /* add mutex operation */ |
| spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags); |
| |
| addr = _sram_alloc(size, &per_cpu(free_l1_data_A_sram_head, cpu), |
| &per_cpu(used_l1_data_A_sram_head, cpu)); |
| |
| /* add mutex operation */ |
| spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags); |
| |
| pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n", |
| (long unsigned int)addr, size); |
| |
| return addr; |
| #else |
| return NULL; |
| #endif |
| } |
| EXPORT_SYMBOL(l1_data_A_sram_alloc); |
| |
| int l1_data_A_sram_free(const void *addr) |
| { |
| #if L1_DATA_A_LENGTH != 0 |
| unsigned long flags; |
| int ret; |
| unsigned int cpu; |
| |
| cpu = smp_processor_id(); |
| /* add mutex operation */ |
| spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags); |
| |
| ret = _sram_free(addr, &per_cpu(free_l1_data_A_sram_head, cpu), |
| &per_cpu(used_l1_data_A_sram_head, cpu)); |
| |
| /* add mutex operation */ |
| spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags); |
| |
| return ret; |
| #else |
| return -1; |
| #endif |
| } |
| EXPORT_SYMBOL(l1_data_A_sram_free); |
| |
| void *l1_data_B_sram_alloc(size_t size) |
| { |
| #if L1_DATA_B_LENGTH != 0 |
| unsigned long flags; |
| void *addr; |
| unsigned int cpu; |
| |
| cpu = smp_processor_id(); |
| /* add mutex operation */ |
| spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags); |
| |
| addr = _sram_alloc(size, &per_cpu(free_l1_data_B_sram_head, cpu), |
| &per_cpu(used_l1_data_B_sram_head, cpu)); |
| |
| /* add mutex operation */ |
| spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags); |
| |
| pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n", |
| (long unsigned int)addr, size); |
| |
| return addr; |
| #else |
| return NULL; |
| #endif |
| } |
| EXPORT_SYMBOL(l1_data_B_sram_alloc); |
| |
| int l1_data_B_sram_free(const void *addr) |
| { |
| #if L1_DATA_B_LENGTH != 0 |
| unsigned long flags; |
| int ret; |
| unsigned int cpu; |
| |
| cpu = smp_processor_id(); |
| /* add mutex operation */ |
| spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags); |
| |
| ret = _sram_free(addr, &per_cpu(free_l1_data_B_sram_head, cpu), |
| &per_cpu(used_l1_data_B_sram_head, cpu)); |
| |
| /* add mutex operation */ |
| spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags); |
| |
| return ret; |
| #else |
| return -1; |
| #endif |
| } |
| EXPORT_SYMBOL(l1_data_B_sram_free); |
| |
| void *l1_data_sram_alloc(size_t size) |
| { |
| void *addr = l1_data_A_sram_alloc(size); |
| |
| if (!addr) |
| addr = l1_data_B_sram_alloc(size); |
| |
| return addr; |
| } |
| EXPORT_SYMBOL(l1_data_sram_alloc); |
| |
| void *l1_data_sram_zalloc(size_t size) |
| { |
| void *addr = l1_data_sram_alloc(size); |
| |
| if (addr) |
| memset(addr, 0x00, size); |
| |
| return addr; |
| } |
| EXPORT_SYMBOL(l1_data_sram_zalloc); |
| |
| int l1_data_sram_free(const void *addr) |
| { |
| int ret; |
| ret = l1_data_A_sram_free(addr); |
| if (ret == -1) |
| ret = l1_data_B_sram_free(addr); |
| return ret; |
| } |
| EXPORT_SYMBOL(l1_data_sram_free); |
| |
| void *l1_inst_sram_alloc(size_t size) |
| { |
| #if L1_CODE_LENGTH != 0 |
| unsigned long flags; |
| void *addr; |
| unsigned int cpu; |
| |
| cpu = smp_processor_id(); |
| /* add mutex operation */ |
| spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags); |
| |
| addr = _sram_alloc(size, &per_cpu(free_l1_inst_sram_head, cpu), |
| &per_cpu(used_l1_inst_sram_head, cpu)); |
| |
| /* add mutex operation */ |
| spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags); |
| |
| pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n", |
| (long unsigned int)addr, size); |
| |
| return addr; |
| #else |
| return NULL; |
| #endif |
| } |
| EXPORT_SYMBOL(l1_inst_sram_alloc); |
| |
| int l1_inst_sram_free(const void *addr) |
| { |
| #if L1_CODE_LENGTH != 0 |
| unsigned long flags; |
| int ret; |
| unsigned int cpu; |
| |
| cpu = smp_processor_id(); |
| /* add mutex operation */ |
| spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags); |
| |
| ret = _sram_free(addr, &per_cpu(free_l1_inst_sram_head, cpu), |
| &per_cpu(used_l1_inst_sram_head, cpu)); |
| |
| /* add mutex operation */ |
| spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags); |
| |
| return ret; |
| #else |
| return -1; |
| #endif |
| } |
| EXPORT_SYMBOL(l1_inst_sram_free); |
| |
| /* L1 Scratchpad memory allocate function */ |
| void *l1sram_alloc(size_t size) |
| { |
| unsigned long flags; |
| void *addr; |
| unsigned int cpu; |
| |
| cpu = smp_processor_id(); |
| /* add mutex operation */ |
| spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags); |
| |
| addr = _sram_alloc(size, &per_cpu(free_l1_ssram_head, cpu), |
| &per_cpu(used_l1_ssram_head, cpu)); |
| |
| /* add mutex operation */ |
| spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags); |
| |
| return addr; |
| } |
| |
| /* L1 Scratchpad memory allocate function */ |
| void *l1sram_alloc_max(size_t *psize) |
| { |
| unsigned long flags; |
| void *addr; |
| unsigned int cpu; |
| |
| cpu = smp_processor_id(); |
| /* add mutex operation */ |
| spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags); |
| |
| addr = _sram_alloc_max(&per_cpu(free_l1_ssram_head, cpu), |
| &per_cpu(used_l1_ssram_head, cpu), psize); |
| |
| /* add mutex operation */ |
| spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags); |
| |
| return addr; |
| } |
| |
| /* L1 Scratchpad memory free function */ |
| int l1sram_free(const void *addr) |
| { |
| unsigned long flags; |
| int ret; |
| unsigned int cpu; |
| |
| cpu = smp_processor_id(); |
| /* add mutex operation */ |
| spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags); |
| |
| ret = _sram_free(addr, &per_cpu(free_l1_ssram_head, cpu), |
| &per_cpu(used_l1_ssram_head, cpu)); |
| |
| /* add mutex operation */ |
| spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags); |
| |
| return ret; |
| } |
| |
| void *l2_sram_alloc(size_t size) |
| { |
| #if L2_LENGTH != 0 |
| unsigned long flags; |
| void *addr; |
| |
| /* add mutex operation */ |
| spin_lock_irqsave(&l2_sram_lock, flags); |
| |
| addr = _sram_alloc(size, &free_l2_sram_head, |
| &used_l2_sram_head); |
| |
| /* add mutex operation */ |
| spin_unlock_irqrestore(&l2_sram_lock, flags); |
| |
| pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n", |
| (long unsigned int)addr, size); |
| |
| return addr; |
| #else |
| return NULL; |
| #endif |
| } |
| EXPORT_SYMBOL(l2_sram_alloc); |
| |
| void *l2_sram_zalloc(size_t size) |
| { |
| void *addr = l2_sram_alloc(size); |
| |
| if (addr) |
| memset(addr, 0x00, size); |
| |
| return addr; |
| } |
| EXPORT_SYMBOL(l2_sram_zalloc); |
| |
| int l2_sram_free(const void *addr) |
| { |
| #if L2_LENGTH != 0 |
| unsigned long flags; |
| int ret; |
| |
| /* add mutex operation */ |
| spin_lock_irqsave(&l2_sram_lock, flags); |
| |
| ret = _sram_free(addr, &free_l2_sram_head, |
| &used_l2_sram_head); |
| |
| /* add mutex operation */ |
| spin_unlock_irqrestore(&l2_sram_lock, flags); |
| |
| return ret; |
| #else |
| return -1; |
| #endif |
| } |
| EXPORT_SYMBOL(l2_sram_free); |
| |
| int sram_free_with_lsl(const void *addr) |
| { |
| struct sram_list_struct *lsl, **tmp; |
| struct mm_struct *mm = current->mm; |
| int ret = -1; |
| |
| for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next) |
| if ((*tmp)->addr == addr) { |
| lsl = *tmp; |
| ret = sram_free(addr); |
| *tmp = lsl->next; |
| kfree(lsl); |
| break; |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(sram_free_with_lsl); |
| |
| /* Allocate memory and keep in L1 SRAM List (lsl) so that the resources are |
| * tracked. These are designed for userspace so that when a process exits, |
| * we can safely reap their resources. |
| */ |
| void *sram_alloc_with_lsl(size_t size, unsigned long flags) |
| { |
| void *addr = NULL; |
| struct sram_list_struct *lsl = NULL; |
| struct mm_struct *mm = current->mm; |
| |
| lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL); |
| if (!lsl) |
| return NULL; |
| |
| if (flags & L1_INST_SRAM) |
| addr = l1_inst_sram_alloc(size); |
| |
| if (addr == NULL && (flags & L1_DATA_A_SRAM)) |
| addr = l1_data_A_sram_alloc(size); |
| |
| if (addr == NULL && (flags & L1_DATA_B_SRAM)) |
| addr = l1_data_B_sram_alloc(size); |
| |
| if (addr == NULL && (flags & L2_SRAM)) |
| addr = l2_sram_alloc(size); |
| |
| if (addr == NULL) { |
| kfree(lsl); |
| return NULL; |
| } |
| lsl->addr = addr; |
| lsl->length = size; |
| lsl->next = mm->context.sram_list; |
| mm->context.sram_list = lsl; |
| return addr; |
| } |
| EXPORT_SYMBOL(sram_alloc_with_lsl); |
| |
| #ifdef CONFIG_PROC_FS |
| /* Once we get a real allocator, we'll throw all of this away. |
| * Until then, we need some sort of visibility into the L1 alloc. |
| */ |
| /* Need to keep line of output the same. Currently, that is 44 bytes |
| * (including newline). |
| */ |
| static int _sram_proc_show(struct seq_file *m, const char *desc, |
| struct sram_piece *pfree_head, |
| struct sram_piece *pused_head) |
| { |
| struct sram_piece *pslot; |
| |
| if (!pfree_head || !pused_head) |
| return -1; |
| |
| seq_printf(m, "--- SRAM %-14s Size PID State \n", desc); |
| |
| /* search the relevant memory slot */ |
| pslot = pused_head->next; |
| |
| while (pslot != NULL) { |
| seq_printf(m, "%p-%p %10i %5i %-10s\n", |
| pslot->paddr, pslot->paddr + pslot->size, |
| pslot->size, pslot->pid, "ALLOCATED"); |
| |
| pslot = pslot->next; |
| } |
| |
| pslot = pfree_head->next; |
| |
| while (pslot != NULL) { |
| seq_printf(m, "%p-%p %10i %5i %-10s\n", |
| pslot->paddr, pslot->paddr + pslot->size, |
| pslot->size, pslot->pid, "FREE"); |
| |
| pslot = pslot->next; |
| } |
| |
| return 0; |
| } |
| static int sram_proc_show(struct seq_file *m, void *v) |
| { |
| unsigned int cpu; |
| |
| for (cpu = 0; cpu < num_possible_cpus(); ++cpu) { |
| if (_sram_proc_show(m, "Scratchpad", |
| &per_cpu(free_l1_ssram_head, cpu), &per_cpu(used_l1_ssram_head, cpu))) |
| goto not_done; |
| #if L1_DATA_A_LENGTH != 0 |
| if (_sram_proc_show(m, "L1 Data A", |
| &per_cpu(free_l1_data_A_sram_head, cpu), |
| &per_cpu(used_l1_data_A_sram_head, cpu))) |
| goto not_done; |
| #endif |
| #if L1_DATA_B_LENGTH != 0 |
| if (_sram_proc_show(m, "L1 Data B", |
| &per_cpu(free_l1_data_B_sram_head, cpu), |
| &per_cpu(used_l1_data_B_sram_head, cpu))) |
| goto not_done; |
| #endif |
| #if L1_CODE_LENGTH != 0 |
| if (_sram_proc_show(m, "L1 Instruction", |
| &per_cpu(free_l1_inst_sram_head, cpu), |
| &per_cpu(used_l1_inst_sram_head, cpu))) |
| goto not_done; |
| #endif |
| } |
| #if L2_LENGTH != 0 |
| if (_sram_proc_show(m, "L2", &free_l2_sram_head, &used_l2_sram_head)) |
| goto not_done; |
| #endif |
| not_done: |
| return 0; |
| } |
| |
| static int sram_proc_open(struct inode *inode, struct file *file) |
| { |
| return single_open(file, sram_proc_show, NULL); |
| } |
| |
| static const struct file_operations sram_proc_ops = { |
| .open = sram_proc_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static int __init sram_proc_init(void) |
| { |
| struct proc_dir_entry *ptr; |
| |
| ptr = proc_create("sram", S_IRUGO, NULL, &sram_proc_ops); |
| if (!ptr) { |
| printk(KERN_WARNING "unable to create /proc/sram\n"); |
| return -1; |
| } |
| return 0; |
| } |
| late_initcall(sram_proc_init); |
| #endif |