| /* |
| Driver for Philips tda1004xh OFDM Demodulator |
| |
| (c) 2003, 2004 Andrew de Quincey & Robert Schlabbach |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| |
| */ |
| /* |
| * This driver needs external firmware. Please use the commands |
| * "<kerneldir>/Documentation/dvb/get_dvb_firmware tda10045", |
| * "<kerneldir>/Documentation/dvb/get_dvb_firmware tda10046" to |
| * download/extract them, and then copy them to /usr/lib/hotplug/firmware |
| * or /lib/firmware (depending on configuration of firmware hotplug). |
| */ |
| #define TDA10045_DEFAULT_FIRMWARE "dvb-fe-tda10045.fw" |
| #define TDA10046_DEFAULT_FIRMWARE "dvb-fe-tda10046.fw" |
| |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/device.h> |
| #include <linux/jiffies.h> |
| #include <linux/string.h> |
| #include <linux/slab.h> |
| |
| #include "dvb_frontend.h" |
| #include "tda1004x.h" |
| |
| enum tda1004x_demod { |
| TDA1004X_DEMOD_TDA10045, |
| TDA1004X_DEMOD_TDA10046, |
| }; |
| |
| struct tda1004x_state { |
| struct i2c_adapter* i2c; |
| struct dvb_frontend_ops ops; |
| const struct tda1004x_config* config; |
| struct dvb_frontend frontend; |
| |
| /* private demod data */ |
| enum tda1004x_demod demod_type; |
| }; |
| |
| static int debug; |
| #define dprintk(args...) \ |
| do { \ |
| if (debug) printk(KERN_DEBUG "tda1004x: " args); \ |
| } while (0) |
| |
| #define TDA1004X_CHIPID 0x00 |
| #define TDA1004X_AUTO 0x01 |
| #define TDA1004X_IN_CONF1 0x02 |
| #define TDA1004X_IN_CONF2 0x03 |
| #define TDA1004X_OUT_CONF1 0x04 |
| #define TDA1004X_OUT_CONF2 0x05 |
| #define TDA1004X_STATUS_CD 0x06 |
| #define TDA1004X_CONFC4 0x07 |
| #define TDA1004X_DSSPARE2 0x0C |
| #define TDA10045H_CODE_IN 0x0D |
| #define TDA10045H_FWPAGE 0x0E |
| #define TDA1004X_SCAN_CPT 0x10 |
| #define TDA1004X_DSP_CMD 0x11 |
| #define TDA1004X_DSP_ARG 0x12 |
| #define TDA1004X_DSP_DATA1 0x13 |
| #define TDA1004X_DSP_DATA2 0x14 |
| #define TDA1004X_CONFADC1 0x15 |
| #define TDA1004X_CONFC1 0x16 |
| #define TDA10045H_S_AGC 0x1a |
| #define TDA10046H_AGC_TUN_LEVEL 0x1a |
| #define TDA1004X_SNR 0x1c |
| #define TDA1004X_CONF_TS1 0x1e |
| #define TDA1004X_CONF_TS2 0x1f |
| #define TDA1004X_CBER_RESET 0x20 |
| #define TDA1004X_CBER_MSB 0x21 |
| #define TDA1004X_CBER_LSB 0x22 |
| #define TDA1004X_CVBER_LUT 0x23 |
| #define TDA1004X_VBER_MSB 0x24 |
| #define TDA1004X_VBER_MID 0x25 |
| #define TDA1004X_VBER_LSB 0x26 |
| #define TDA1004X_UNCOR 0x27 |
| |
| #define TDA10045H_CONFPLL_P 0x2D |
| #define TDA10045H_CONFPLL_M_MSB 0x2E |
| #define TDA10045H_CONFPLL_M_LSB 0x2F |
| #define TDA10045H_CONFPLL_N 0x30 |
| |
| #define TDA10046H_CONFPLL1 0x2D |
| #define TDA10046H_CONFPLL2 0x2F |
| #define TDA10046H_CONFPLL3 0x30 |
| #define TDA10046H_TIME_WREF1 0x31 |
| #define TDA10046H_TIME_WREF2 0x32 |
| #define TDA10046H_TIME_WREF3 0x33 |
| #define TDA10046H_TIME_WREF4 0x34 |
| #define TDA10046H_TIME_WREF5 0x35 |
| |
| #define TDA10045H_UNSURW_MSB 0x31 |
| #define TDA10045H_UNSURW_LSB 0x32 |
| #define TDA10045H_WREF_MSB 0x33 |
| #define TDA10045H_WREF_MID 0x34 |
| #define TDA10045H_WREF_LSB 0x35 |
| #define TDA10045H_MUXOUT 0x36 |
| #define TDA1004X_CONFADC2 0x37 |
| |
| #define TDA10045H_IOFFSET 0x38 |
| |
| #define TDA10046H_CONF_TRISTATE1 0x3B |
| #define TDA10046H_CONF_TRISTATE2 0x3C |
| #define TDA10046H_CONF_POLARITY 0x3D |
| #define TDA10046H_FREQ_OFFSET 0x3E |
| #define TDA10046H_GPIO_OUT_SEL 0x41 |
| #define TDA10046H_GPIO_SELECT 0x42 |
| #define TDA10046H_AGC_CONF 0x43 |
| #define TDA10046H_AGC_THR 0x44 |
| #define TDA10046H_AGC_RENORM 0x45 |
| #define TDA10046H_AGC_GAINS 0x46 |
| #define TDA10046H_AGC_TUN_MIN 0x47 |
| #define TDA10046H_AGC_TUN_MAX 0x48 |
| #define TDA10046H_AGC_IF_MIN 0x49 |
| #define TDA10046H_AGC_IF_MAX 0x4A |
| |
| #define TDA10046H_FREQ_PHY2_MSB 0x4D |
| #define TDA10046H_FREQ_PHY2_LSB 0x4E |
| |
| #define TDA10046H_CVBER_CTRL 0x4F |
| #define TDA10046H_AGC_IF_LEVEL 0x52 |
| #define TDA10046H_CODE_CPT 0x57 |
| #define TDA10046H_CODE_IN 0x58 |
| |
| |
| static int tda1004x_write_byteI(struct tda1004x_state *state, int reg, int data) |
| { |
| int ret; |
| u8 buf[] = { reg, data }; |
| struct i2c_msg msg = { .flags = 0, .buf = buf, .len = 2 }; |
| |
| dprintk("%s: reg=0x%x, data=0x%x\n", __FUNCTION__, reg, data); |
| |
| msg.addr = state->config->demod_address; |
| ret = i2c_transfer(state->i2c, &msg, 1); |
| |
| if (ret != 1) |
| dprintk("%s: error reg=0x%x, data=0x%x, ret=%i\n", |
| __FUNCTION__, reg, data, ret); |
| |
| dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __FUNCTION__, |
| reg, data, ret); |
| return (ret != 1) ? -1 : 0; |
| } |
| |
| static int tda1004x_read_byte(struct tda1004x_state *state, int reg) |
| { |
| int ret; |
| u8 b0[] = { reg }; |
| u8 b1[] = { 0 }; |
| struct i2c_msg msg[] = {{ .flags = 0, .buf = b0, .len = 1 }, |
| { .flags = I2C_M_RD, .buf = b1, .len = 1 }}; |
| |
| dprintk("%s: reg=0x%x\n", __FUNCTION__, reg); |
| |
| msg[0].addr = state->config->demod_address; |
| msg[1].addr = state->config->demod_address; |
| ret = i2c_transfer(state->i2c, msg, 2); |
| |
| if (ret != 2) { |
| dprintk("%s: error reg=0x%x, ret=%i\n", __FUNCTION__, reg, |
| ret); |
| return -1; |
| } |
| |
| dprintk("%s: success reg=0x%x, data=0x%x, ret=%i\n", __FUNCTION__, |
| reg, b1[0], ret); |
| return b1[0]; |
| } |
| |
| static int tda1004x_write_mask(struct tda1004x_state *state, int reg, int mask, int data) |
| { |
| int val; |
| dprintk("%s: reg=0x%x, mask=0x%x, data=0x%x\n", __FUNCTION__, reg, |
| mask, data); |
| |
| // read a byte and check |
| val = tda1004x_read_byte(state, reg); |
| if (val < 0) |
| return val; |
| |
| // mask if off |
| val = val & ~mask; |
| val |= data & 0xff; |
| |
| // write it out again |
| return tda1004x_write_byteI(state, reg, val); |
| } |
| |
| static int tda1004x_write_buf(struct tda1004x_state *state, int reg, unsigned char *buf, int len) |
| { |
| int i; |
| int result; |
| |
| dprintk("%s: reg=0x%x, len=0x%x\n", __FUNCTION__, reg, len); |
| |
| result = 0; |
| for (i = 0; i < len; i++) { |
| result = tda1004x_write_byteI(state, reg + i, buf[i]); |
| if (result != 0) |
| break; |
| } |
| |
| return result; |
| } |
| |
| static int tda1004x_enable_tuner_i2c(struct tda1004x_state *state) |
| { |
| int result; |
| dprintk("%s\n", __FUNCTION__); |
| |
| result = tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 2); |
| msleep(20); |
| return result; |
| } |
| |
| static int tda1004x_disable_tuner_i2c(struct tda1004x_state *state) |
| { |
| dprintk("%s\n", __FUNCTION__); |
| |
| return tda1004x_write_mask(state, TDA1004X_CONFC4, 2, 0); |
| } |
| |
| static int tda10045h_set_bandwidth(struct tda1004x_state *state, |
| fe_bandwidth_t bandwidth) |
| { |
| static u8 bandwidth_6mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x60, 0x1e, 0xa7, 0x45, 0x4f }; |
| static u8 bandwidth_7mhz[] = { 0x02, 0x00, 0x37, 0x00, 0x4a, 0x2f, 0x6d, 0x76, 0xdb }; |
| static u8 bandwidth_8mhz[] = { 0x02, 0x00, 0x3d, 0x00, 0x48, 0x17, 0x89, 0xc7, 0x14 }; |
| |
| switch (bandwidth) { |
| case BANDWIDTH_6_MHZ: |
| tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_6mhz, sizeof(bandwidth_6mhz)); |
| break; |
| |
| case BANDWIDTH_7_MHZ: |
| tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_7mhz, sizeof(bandwidth_7mhz)); |
| break; |
| |
| case BANDWIDTH_8_MHZ: |
| tda1004x_write_buf(state, TDA10045H_CONFPLL_P, bandwidth_8mhz, sizeof(bandwidth_8mhz)); |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| tda1004x_write_byteI(state, TDA10045H_IOFFSET, 0); |
| |
| return 0; |
| } |
| |
| static int tda10046h_set_bandwidth(struct tda1004x_state *state, |
| fe_bandwidth_t bandwidth) |
| { |
| static u8 bandwidth_6mhz_53M[] = { 0x7b, 0x2e, 0x11, 0xf0, 0xd2 }; |
| static u8 bandwidth_7mhz_53M[] = { 0x6a, 0x02, 0x6a, 0x43, 0x9f }; |
| static u8 bandwidth_8mhz_53M[] = { 0x5c, 0x32, 0xc2, 0x96, 0x6d }; |
| |
| static u8 bandwidth_6mhz_48M[] = { 0x70, 0x02, 0x49, 0x24, 0x92 }; |
| static u8 bandwidth_7mhz_48M[] = { 0x60, 0x02, 0xaa, 0xaa, 0xab }; |
| static u8 bandwidth_8mhz_48M[] = { 0x54, 0x03, 0x0c, 0x30, 0xc3 }; |
| int tda10046_clk53m; |
| |
| if ((state->config->if_freq == TDA10046_FREQ_045) || |
| (state->config->if_freq == TDA10046_FREQ_052)) |
| tda10046_clk53m = 0; |
| else |
| tda10046_clk53m = 1; |
| switch (bandwidth) { |
| case BANDWIDTH_6_MHZ: |
| if (tda10046_clk53m) |
| tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz_53M, |
| sizeof(bandwidth_6mhz_53M)); |
| else |
| tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_6mhz_48M, |
| sizeof(bandwidth_6mhz_48M)); |
| if (state->config->if_freq == TDA10046_FREQ_045) { |
| tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0a); |
| tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xab); |
| } |
| break; |
| |
| case BANDWIDTH_7_MHZ: |
| if (tda10046_clk53m) |
| tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz_53M, |
| sizeof(bandwidth_7mhz_53M)); |
| else |
| tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_7mhz_48M, |
| sizeof(bandwidth_7mhz_48M)); |
| if (state->config->if_freq == TDA10046_FREQ_045) { |
| tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0c); |
| tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x00); |
| } |
| break; |
| |
| case BANDWIDTH_8_MHZ: |
| if (tda10046_clk53m) |
| tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz_53M, |
| sizeof(bandwidth_8mhz_53M)); |
| else |
| tda1004x_write_buf(state, TDA10046H_TIME_WREF1, bandwidth_8mhz_48M, |
| sizeof(bandwidth_8mhz_48M)); |
| if (state->config->if_freq == TDA10046_FREQ_045) { |
| tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0d); |
| tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x55); |
| } |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int tda1004x_do_upload(struct tda1004x_state *state, |
| unsigned char *mem, unsigned int len, |
| u8 dspCodeCounterReg, u8 dspCodeInReg) |
| { |
| u8 buf[65]; |
| struct i2c_msg fw_msg = { .flags = 0, .buf = buf, .len = 0 }; |
| int tx_size; |
| int pos = 0; |
| |
| /* clear code counter */ |
| tda1004x_write_byteI(state, dspCodeCounterReg, 0); |
| fw_msg.addr = state->config->demod_address; |
| |
| buf[0] = dspCodeInReg; |
| while (pos != len) { |
| // work out how much to send this time |
| tx_size = len - pos; |
| if (tx_size > 0x10) |
| tx_size = 0x10; |
| |
| // send the chunk |
| memcpy(buf + 1, mem + pos, tx_size); |
| fw_msg.len = tx_size + 1; |
| if (i2c_transfer(state->i2c, &fw_msg, 1) != 1) { |
| printk(KERN_ERR "tda1004x: Error during firmware upload\n"); |
| return -EIO; |
| } |
| pos += tx_size; |
| |
| dprintk("%s: fw_pos=0x%x\n", __FUNCTION__, pos); |
| } |
| // give the DSP a chance to settle 03/10/05 Hac |
| msleep(100); |
| |
| return 0; |
| } |
| |
| static int tda1004x_check_upload_ok(struct tda1004x_state *state) |
| { |
| u8 data1, data2; |
| unsigned long timeout; |
| |
| if (state->demod_type == TDA1004X_DEMOD_TDA10046) { |
| timeout = jiffies + 2 * HZ; |
| while(!(tda1004x_read_byte(state, TDA1004X_STATUS_CD) & 0x20)) { |
| if (time_after(jiffies, timeout)) { |
| printk(KERN_ERR "tda1004x: timeout waiting for DSP ready\n"); |
| break; |
| } |
| msleep(1); |
| } |
| } else |
| msleep(100); |
| |
| // check upload was OK |
| tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0); // we want to read from the DSP |
| tda1004x_write_byteI(state, TDA1004X_DSP_CMD, 0x67); |
| |
| data1 = tda1004x_read_byte(state, TDA1004X_DSP_DATA1); |
| data2 = tda1004x_read_byte(state, TDA1004X_DSP_DATA2); |
| if (data1 != 0x67 || data2 < 0x20 || data2 > 0x2e) { |
| printk(KERN_INFO "tda1004x: found firmware revision %x -- invalid\n", data2); |
| return -EIO; |
| } |
| printk(KERN_INFO "tda1004x: found firmware revision %x -- ok\n", data2); |
| return 0; |
| } |
| |
| static int tda10045_fwupload(struct dvb_frontend* fe) |
| { |
| struct tda1004x_state* state = fe->demodulator_priv; |
| int ret; |
| const struct firmware *fw; |
| |
| /* don't re-upload unless necessary */ |
| if (tda1004x_check_upload_ok(state) == 0) |
| return 0; |
| |
| /* request the firmware, this will block until someone uploads it */ |
| printk(KERN_INFO "tda1004x: waiting for firmware upload (%s)...\n", TDA10045_DEFAULT_FIRMWARE); |
| ret = state->config->request_firmware(fe, &fw, TDA10045_DEFAULT_FIRMWARE); |
| if (ret) { |
| printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n"); |
| return ret; |
| } |
| |
| /* reset chip */ |
| tda1004x_write_mask(state, TDA1004X_CONFC4, 0x10, 0); |
| tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8); |
| tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0); |
| msleep(10); |
| |
| /* set parameters */ |
| tda10045h_set_bandwidth(state, BANDWIDTH_8_MHZ); |
| |
| ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10045H_FWPAGE, TDA10045H_CODE_IN); |
| release_firmware(fw); |
| if (ret) |
| return ret; |
| printk(KERN_INFO "tda1004x: firmware upload complete\n"); |
| |
| /* wait for DSP to initialise */ |
| /* DSPREADY doesn't seem to work on the TDA10045H */ |
| msleep(100); |
| |
| return tda1004x_check_upload_ok(state); |
| } |
| |
| static void tda10046_init_plls(struct dvb_frontend* fe) |
| { |
| struct tda1004x_state* state = fe->demodulator_priv; |
| int tda10046_clk53m; |
| |
| if ((state->config->if_freq == TDA10046_FREQ_045) || |
| (state->config->if_freq == TDA10046_FREQ_052)) |
| tda10046_clk53m = 0; |
| else |
| tda10046_clk53m = 1; |
| |
| tda1004x_write_byteI(state, TDA10046H_CONFPLL1, 0xf0); |
| if(tda10046_clk53m) { |
| printk(KERN_INFO "tda1004x: setting up plls for 53MHz sampling clock\n"); |
| tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 0x08); // PLL M = 8 |
| } else { |
| printk(KERN_INFO "tda1004x: setting up plls for 48MHz sampling clock\n"); |
| tda1004x_write_byteI(state, TDA10046H_CONFPLL2, 0x03); // PLL M = 3 |
| } |
| if (state->config->xtal_freq == TDA10046_XTAL_4M ) { |
| dprintk("%s: setting up PLLs for a 4 MHz Xtal\n", __FUNCTION__); |
| tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 0); // PLL P = N = 0 |
| } else { |
| dprintk("%s: setting up PLLs for a 16 MHz Xtal\n", __FUNCTION__); |
| tda1004x_write_byteI(state, TDA10046H_CONFPLL3, 3); // PLL P = 0, N = 3 |
| } |
| if(tda10046_clk53m) |
| tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 0x67); |
| else |
| tda1004x_write_byteI(state, TDA10046H_FREQ_OFFSET, 0x72); |
| /* Note clock frequency is handled implicitly */ |
| switch (state->config->if_freq) { |
| case TDA10046_FREQ_045: |
| tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0c); |
| tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x00); |
| break; |
| case TDA10046_FREQ_052: |
| tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0x0d); |
| tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0xc7); |
| break; |
| case TDA10046_FREQ_3617: |
| tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd7); |
| tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x59); |
| break; |
| case TDA10046_FREQ_3613: |
| tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_MSB, 0xd7); |
| tda1004x_write_byteI(state, TDA10046H_FREQ_PHY2_LSB, 0x3f); |
| break; |
| } |
| tda10046h_set_bandwidth(state, BANDWIDTH_8_MHZ); // default bandwidth 8 MHz |
| /* let the PLLs settle */ |
| msleep(120); |
| } |
| |
| static int tda10046_fwupload(struct dvb_frontend* fe) |
| { |
| struct tda1004x_state* state = fe->demodulator_priv; |
| int ret; |
| const struct firmware *fw; |
| |
| /* reset + wake up chip */ |
| if (state->config->xtal_freq == TDA10046_XTAL_4M) { |
| tda1004x_write_byteI(state, TDA1004X_CONFC4, 0); |
| } else { |
| dprintk("%s: 16MHz Xtal, reducing I2C speed\n", __FUNCTION__); |
| tda1004x_write_byteI(state, TDA1004X_CONFC4, 0x80); |
| } |
| tda1004x_write_mask(state, TDA10046H_CONF_TRISTATE1, 1, 0); |
| /* let the clocks recover from sleep */ |
| msleep(5); |
| |
| /* The PLLs need to be reprogrammed after sleep */ |
| tda10046_init_plls(fe); |
| |
| /* don't re-upload unless necessary */ |
| if (tda1004x_check_upload_ok(state) == 0) |
| return 0; |
| |
| if (state->config->request_firmware != NULL) { |
| /* request the firmware, this will block until someone uploads it */ |
| printk(KERN_INFO "tda1004x: waiting for firmware upload...\n"); |
| ret = state->config->request_firmware(fe, &fw, TDA10046_DEFAULT_FIRMWARE); |
| if (ret) { |
| printk(KERN_ERR "tda1004x: no firmware upload (timeout or file not found?)\n"); |
| return ret; |
| } |
| tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8); // going to boot from HOST |
| ret = tda1004x_do_upload(state, fw->data, fw->size, TDA10046H_CODE_CPT, TDA10046H_CODE_IN); |
| release_firmware(fw); |
| if (ret) |
| return ret; |
| } else { |
| /* boot from firmware eeprom */ |
| printk(KERN_INFO "tda1004x: booting from eeprom\n"); |
| tda1004x_write_mask(state, TDA1004X_CONFC4, 4, 4); |
| msleep(300); |
| } |
| return tda1004x_check_upload_ok(state); |
| } |
| |
| static int tda1004x_encode_fec(int fec) |
| { |
| // convert known FEC values |
| switch (fec) { |
| case FEC_1_2: |
| return 0; |
| case FEC_2_3: |
| return 1; |
| case FEC_3_4: |
| return 2; |
| case FEC_5_6: |
| return 3; |
| case FEC_7_8: |
| return 4; |
| } |
| |
| // unsupported |
| return -EINVAL; |
| } |
| |
| static int tda1004x_decode_fec(int tdafec) |
| { |
| // convert known FEC values |
| switch (tdafec) { |
| case 0: |
| return FEC_1_2; |
| case 1: |
| return FEC_2_3; |
| case 2: |
| return FEC_3_4; |
| case 3: |
| return FEC_5_6; |
| case 4: |
| return FEC_7_8; |
| } |
| |
| // unsupported |
| return -1; |
| } |
| |
| int tda1004x_write_byte(struct dvb_frontend* fe, int reg, int data) |
| { |
| struct tda1004x_state* state = fe->demodulator_priv; |
| |
| return tda1004x_write_byteI(state, reg, data); |
| } |
| |
| static int tda10045_init(struct dvb_frontend* fe) |
| { |
| struct tda1004x_state* state = fe->demodulator_priv; |
| |
| dprintk("%s\n", __FUNCTION__); |
| |
| if (tda10045_fwupload(fe)) { |
| printk("tda1004x: firmware upload failed\n"); |
| return -EIO; |
| } |
| |
| tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0); // wake up the ADC |
| |
| // Init the PLL |
| if (state->config->pll_init) { |
| tda1004x_enable_tuner_i2c(state); |
| state->config->pll_init(fe); |
| tda1004x_disable_tuner_i2c(state); |
| } |
| |
| // tda setup |
| tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer |
| tda1004x_write_mask(state, TDA1004X_AUTO, 8, 0); // select HP stream |
| tda1004x_write_mask(state, TDA1004X_CONFC1, 0x40, 0); // set polarity of VAGC signal |
| tda1004x_write_mask(state, TDA1004X_CONFC1, 0x80, 0x80); // enable pulse killer |
| tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10); // enable auto offset |
| tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0x0); // no frequency offset |
| tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 0); // setup MPEG2 TS interface |
| tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0); // setup MPEG2 TS interface |
| tda1004x_write_mask(state, TDA1004X_VBER_MSB, 0xe0, 0xa0); // 10^6 VBER measurement bits |
| tda1004x_write_mask(state, TDA1004X_CONFC1, 0x10, 0); // VAGC polarity |
| tda1004x_write_byteI(state, TDA1004X_CONFADC1, 0x2e); |
| |
| tda1004x_write_mask(state, 0x1f, 0x01, state->config->invert_oclk); |
| |
| return 0; |
| } |
| |
| static int tda10046_init(struct dvb_frontend* fe) |
| { |
| struct tda1004x_state* state = fe->demodulator_priv; |
| dprintk("%s\n", __FUNCTION__); |
| |
| if (tda10046_fwupload(fe)) { |
| printk("tda1004x: firmware upload failed\n"); |
| return -EIO; |
| } |
| |
| // Init the tuner PLL |
| if (state->config->pll_init) { |
| tda1004x_enable_tuner_i2c(state); |
| if (state->config->pll_init(fe)) { |
| printk(KERN_ERR "tda1004x: pll init failed\n"); |
| return -EIO; |
| } |
| tda1004x_disable_tuner_i2c(state); |
| } |
| |
| // tda setup |
| tda1004x_write_mask(state, TDA1004X_CONFC4, 0x20, 0); // disable DSP watchdog timer |
| tda1004x_write_byteI(state, TDA1004X_AUTO, 0x87); // 100 ppm crystal, select HP stream |
| tda1004x_write_byteI(state, TDA1004X_CONFC1, 0x88); // enable pulse killer |
| |
| switch (state->config->agc_config) { |
| case TDA10046_AGC_DEFAULT: |
| tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x00); // AGC setup |
| tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x60); // set AGC polarities |
| break; |
| case TDA10046_AGC_IFO_AUTO_NEG: |
| tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup |
| tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x60); // set AGC polarities |
| break; |
| case TDA10046_AGC_IFO_AUTO_POS: |
| tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x0a); // AGC setup |
| tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x00); // set AGC polarities |
| break; |
| case TDA10046_AGC_TDA827X: |
| tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x02); // AGC setup |
| tda1004x_write_byteI(state, TDA10046H_AGC_THR, 0x70); // AGC Threshold |
| tda1004x_write_byteI(state, TDA10046H_AGC_RENORM, 0x08); // Gain Renormalize |
| tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x6a); // set AGC polarities |
| break; |
| case TDA10046_AGC_TDA827X_GPL: |
| tda1004x_write_byteI(state, TDA10046H_AGC_CONF, 0x02); // AGC setup |
| tda1004x_write_byteI(state, TDA10046H_AGC_THR, 0x70); // AGC Threshold |
| tda1004x_write_byteI(state, TDA10046H_AGC_RENORM, 0x08); // Gain Renormalize |
| tda1004x_write_byteI(state, TDA10046H_CONF_POLARITY, 0x60); // set AGC polarities |
| break; |
| } |
| tda1004x_write_byteI(state, TDA1004X_CONFADC2, 0x38); |
| tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE1, 0x61); // Turn both AGC outputs on |
| tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MIN, 0); // } |
| tda1004x_write_byteI(state, TDA10046H_AGC_TUN_MAX, 0xff); // } AGC min/max values |
| tda1004x_write_byteI(state, TDA10046H_AGC_IF_MIN, 0); // } |
| tda1004x_write_byteI(state, TDA10046H_AGC_IF_MAX, 0xff); // } |
| tda1004x_write_byteI(state, TDA10046H_AGC_GAINS, 0x12); // IF gain 2, TUN gain 1 |
| tda1004x_write_byteI(state, TDA10046H_CVBER_CTRL, 0x1a); // 10^6 VBER measurement bits |
| tda1004x_write_byteI(state, TDA1004X_CONF_TS1, 7); // MPEG2 interface config |
| tda1004x_write_byteI(state, TDA1004X_CONF_TS2, 0xc0); // MPEG2 interface config |
| // tda1004x_write_mask(state, 0x50, 0x80, 0x80); // handle out of guard echoes |
| tda1004x_write_mask(state, 0x3a, 0x80, state->config->invert_oclk << 7); |
| |
| return 0; |
| } |
| |
| static int tda1004x_set_fe(struct dvb_frontend* fe, |
| struct dvb_frontend_parameters *fe_params) |
| { |
| struct tda1004x_state* state = fe->demodulator_priv; |
| int tmp; |
| int inversion; |
| |
| dprintk("%s\n", __FUNCTION__); |
| |
| if (state->demod_type == TDA1004X_DEMOD_TDA10046) { |
| // setup auto offset |
| tda1004x_write_mask(state, TDA1004X_AUTO, 0x10, 0x10); |
| tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x80, 0); |
| tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0xC0, 0); |
| |
| // disable agc_conf[2] |
| tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 0); |
| } |
| |
| // set frequency |
| tda1004x_enable_tuner_i2c(state); |
| if (state->config->pll_set(fe, fe_params)) { |
| printk(KERN_ERR "tda1004x: pll set failed\n"); |
| return -EIO; |
| } |
| tda1004x_disable_tuner_i2c(state); |
| |
| // Hardcoded to use auto as much as possible on the TDA10045 as it |
| // is very unreliable if AUTO mode is _not_ used. |
| if (state->demod_type == TDA1004X_DEMOD_TDA10045) { |
| fe_params->u.ofdm.code_rate_HP = FEC_AUTO; |
| fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_AUTO; |
| fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_AUTO; |
| } |
| |
| // Set standard params.. or put them to auto |
| if ((fe_params->u.ofdm.code_rate_HP == FEC_AUTO) || |
| (fe_params->u.ofdm.code_rate_LP == FEC_AUTO) || |
| (fe_params->u.ofdm.constellation == QAM_AUTO) || |
| (fe_params->u.ofdm.hierarchy_information == HIERARCHY_AUTO)) { |
| tda1004x_write_mask(state, TDA1004X_AUTO, 1, 1); // enable auto |
| tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x03, 0); // turn off constellation bits |
| tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0); // turn off hierarchy bits |
| tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x3f, 0); // turn off FEC bits |
| } else { |
| tda1004x_write_mask(state, TDA1004X_AUTO, 1, 0); // disable auto |
| |
| // set HP FEC |
| tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_HP); |
| if (tmp < 0) |
| return tmp; |
| tda1004x_write_mask(state, TDA1004X_IN_CONF2, 7, tmp); |
| |
| // set LP FEC |
| tmp = tda1004x_encode_fec(fe_params->u.ofdm.code_rate_LP); |
| if (tmp < 0) |
| return tmp; |
| tda1004x_write_mask(state, TDA1004X_IN_CONF2, 0x38, tmp << 3); |
| |
| // set constellation |
| switch (fe_params->u.ofdm.constellation) { |
| case QPSK: |
| tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 0); |
| break; |
| |
| case QAM_16: |
| tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 1); |
| break; |
| |
| case QAM_64: |
| tda1004x_write_mask(state, TDA1004X_IN_CONF1, 3, 2); |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| // set hierarchy |
| switch (fe_params->u.ofdm.hierarchy_information) { |
| case HIERARCHY_NONE: |
| tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 0 << 5); |
| break; |
| |
| case HIERARCHY_1: |
| tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 1 << 5); |
| break; |
| |
| case HIERARCHY_2: |
| tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 2 << 5); |
| break; |
| |
| case HIERARCHY_4: |
| tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x60, 3 << 5); |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| // set bandwidth |
| switch (state->demod_type) { |
| case TDA1004X_DEMOD_TDA10045: |
| tda10045h_set_bandwidth(state, fe_params->u.ofdm.bandwidth); |
| break; |
| |
| case TDA1004X_DEMOD_TDA10046: |
| tda10046h_set_bandwidth(state, fe_params->u.ofdm.bandwidth); |
| break; |
| } |
| |
| // set inversion |
| inversion = fe_params->inversion; |
| if (state->config->invert) |
| inversion = inversion ? INVERSION_OFF : INVERSION_ON; |
| switch (inversion) { |
| case INVERSION_OFF: |
| tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0); |
| break; |
| |
| case INVERSION_ON: |
| tda1004x_write_mask(state, TDA1004X_CONFC1, 0x20, 0x20); |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| // set guard interval |
| switch (fe_params->u.ofdm.guard_interval) { |
| case GUARD_INTERVAL_1_32: |
| tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0); |
| tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2); |
| break; |
| |
| case GUARD_INTERVAL_1_16: |
| tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0); |
| tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 1 << 2); |
| break; |
| |
| case GUARD_INTERVAL_1_8: |
| tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0); |
| tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 2 << 2); |
| break; |
| |
| case GUARD_INTERVAL_1_4: |
| tda1004x_write_mask(state, TDA1004X_AUTO, 2, 0); |
| tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 3 << 2); |
| break; |
| |
| case GUARD_INTERVAL_AUTO: |
| tda1004x_write_mask(state, TDA1004X_AUTO, 2, 2); |
| tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x0c, 0 << 2); |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| // set transmission mode |
| switch (fe_params->u.ofdm.transmission_mode) { |
| case TRANSMISSION_MODE_2K: |
| tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0); |
| tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0 << 4); |
| break; |
| |
| case TRANSMISSION_MODE_8K: |
| tda1004x_write_mask(state, TDA1004X_AUTO, 4, 0); |
| tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 1 << 4); |
| break; |
| |
| case TRANSMISSION_MODE_AUTO: |
| tda1004x_write_mask(state, TDA1004X_AUTO, 4, 4); |
| tda1004x_write_mask(state, TDA1004X_IN_CONF1, 0x10, 0); |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| // start the lock |
| switch (state->demod_type) { |
| case TDA1004X_DEMOD_TDA10045: |
| tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 8); |
| tda1004x_write_mask(state, TDA1004X_CONFC4, 8, 0); |
| break; |
| |
| case TDA1004X_DEMOD_TDA10046: |
| tda1004x_write_mask(state, TDA1004X_AUTO, 0x40, 0x40); |
| msleep(1); |
| tda1004x_write_mask(state, TDA10046H_AGC_CONF, 4, 1); |
| break; |
| } |
| |
| msleep(10); |
| |
| return 0; |
| } |
| |
| static int tda1004x_get_fe(struct dvb_frontend* fe, struct dvb_frontend_parameters *fe_params) |
| { |
| struct tda1004x_state* state = fe->demodulator_priv; |
| |
| dprintk("%s\n", __FUNCTION__); |
| |
| // inversion status |
| fe_params->inversion = INVERSION_OFF; |
| if (tda1004x_read_byte(state, TDA1004X_CONFC1) & 0x20) |
| fe_params->inversion = INVERSION_ON; |
| if (state->config->invert) |
| fe_params->inversion = fe_params->inversion ? INVERSION_OFF : INVERSION_ON; |
| |
| // bandwidth |
| switch (state->demod_type) { |
| case TDA1004X_DEMOD_TDA10045: |
| switch (tda1004x_read_byte(state, TDA10045H_WREF_LSB)) { |
| case 0x14: |
| fe_params->u.ofdm.bandwidth = BANDWIDTH_8_MHZ; |
| break; |
| case 0xdb: |
| fe_params->u.ofdm.bandwidth = BANDWIDTH_7_MHZ; |
| break; |
| case 0x4f: |
| fe_params->u.ofdm.bandwidth = BANDWIDTH_6_MHZ; |
| break; |
| } |
| break; |
| case TDA1004X_DEMOD_TDA10046: |
| switch (tda1004x_read_byte(state, TDA10046H_TIME_WREF1)) { |
| case 0x5c: |
| case 0x54: |
| fe_params->u.ofdm.bandwidth = BANDWIDTH_8_MHZ; |
| break; |
| case 0x6a: |
| case 0x60: |
| fe_params->u.ofdm.bandwidth = BANDWIDTH_7_MHZ; |
| break; |
| case 0x7b: |
| case 0x70: |
| fe_params->u.ofdm.bandwidth = BANDWIDTH_6_MHZ; |
| break; |
| } |
| break; |
| } |
| |
| // FEC |
| fe_params->u.ofdm.code_rate_HP = |
| tda1004x_decode_fec(tda1004x_read_byte(state, TDA1004X_OUT_CONF2) & 7); |
| fe_params->u.ofdm.code_rate_LP = |
| tda1004x_decode_fec((tda1004x_read_byte(state, TDA1004X_OUT_CONF2) >> 3) & 7); |
| |
| // constellation |
| switch (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 3) { |
| case 0: |
| fe_params->u.ofdm.constellation = QPSK; |
| break; |
| case 1: |
| fe_params->u.ofdm.constellation = QAM_16; |
| break; |
| case 2: |
| fe_params->u.ofdm.constellation = QAM_64; |
| break; |
| } |
| |
| // transmission mode |
| fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K; |
| if (tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x10) |
| fe_params->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K; |
| |
| // guard interval |
| switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x0c) >> 2) { |
| case 0: |
| fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_32; |
| break; |
| case 1: |
| fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_16; |
| break; |
| case 2: |
| fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_8; |
| break; |
| case 3: |
| fe_params->u.ofdm.guard_interval = GUARD_INTERVAL_1_4; |
| break; |
| } |
| |
| // hierarchy |
| switch ((tda1004x_read_byte(state, TDA1004X_OUT_CONF1) & 0x60) >> 5) { |
| case 0: |
| fe_params->u.ofdm.hierarchy_information = HIERARCHY_NONE; |
| break; |
| case 1: |
| fe_params->u.ofdm.hierarchy_information = HIERARCHY_1; |
| break; |
| case 2: |
| fe_params->u.ofdm.hierarchy_information = HIERARCHY_2; |
| break; |
| case 3: |
| fe_params->u.ofdm.hierarchy_information = HIERARCHY_4; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static int tda1004x_read_status(struct dvb_frontend* fe, fe_status_t * fe_status) |
| { |
| struct tda1004x_state* state = fe->demodulator_priv; |
| int status; |
| int cber; |
| int vber; |
| |
| dprintk("%s\n", __FUNCTION__); |
| |
| // read status |
| status = tda1004x_read_byte(state, TDA1004X_STATUS_CD); |
| if (status == -1) |
| return -EIO; |
| |
| // decode |
| *fe_status = 0; |
| if (status & 4) |
| *fe_status |= FE_HAS_SIGNAL; |
| if (status & 2) |
| *fe_status |= FE_HAS_CARRIER; |
| if (status & 8) |
| *fe_status |= FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK; |
| |
| // if we don't already have VITERBI (i.e. not LOCKED), see if the viterbi |
| // is getting anything valid |
| if (!(*fe_status & FE_HAS_VITERBI)) { |
| // read the CBER |
| cber = tda1004x_read_byte(state, TDA1004X_CBER_LSB); |
| if (cber == -1) |
| return -EIO; |
| status = tda1004x_read_byte(state, TDA1004X_CBER_MSB); |
| if (status == -1) |
| return -EIO; |
| cber |= (status << 8); |
| // The address 0x20 should be read to cope with a TDA10046 bug |
| tda1004x_read_byte(state, TDA1004X_CBER_RESET); |
| |
| if (cber != 65535) |
| *fe_status |= FE_HAS_VITERBI; |
| } |
| |
| // if we DO have some valid VITERBI output, but don't already have SYNC |
| // bytes (i.e. not LOCKED), see if the RS decoder is getting anything valid. |
| if ((*fe_status & FE_HAS_VITERBI) && (!(*fe_status & FE_HAS_SYNC))) { |
| // read the VBER |
| vber = tda1004x_read_byte(state, TDA1004X_VBER_LSB); |
| if (vber == -1) |
| return -EIO; |
| status = tda1004x_read_byte(state, TDA1004X_VBER_MID); |
| if (status == -1) |
| return -EIO; |
| vber |= (status << 8); |
| status = tda1004x_read_byte(state, TDA1004X_VBER_MSB); |
| if (status == -1) |
| return -EIO; |
| vber |= (status & 0x0f) << 16; |
| // The CVBER_LUT should be read to cope with TDA10046 hardware bug |
| tda1004x_read_byte(state, TDA1004X_CVBER_LUT); |
| |
| // if RS has passed some valid TS packets, then we must be |
| // getting some SYNC bytes |
| if (vber < 16632) |
| *fe_status |= FE_HAS_SYNC; |
| } |
| |
| // success |
| dprintk("%s: fe_status=0x%x\n", __FUNCTION__, *fe_status); |
| return 0; |
| } |
| |
| static int tda1004x_read_signal_strength(struct dvb_frontend* fe, u16 * signal) |
| { |
| struct tda1004x_state* state = fe->demodulator_priv; |
| int tmp; |
| int reg = 0; |
| |
| dprintk("%s\n", __FUNCTION__); |
| |
| // determine the register to use |
| switch (state->demod_type) { |
| case TDA1004X_DEMOD_TDA10045: |
| reg = TDA10045H_S_AGC; |
| break; |
| |
| case TDA1004X_DEMOD_TDA10046: |
| reg = TDA10046H_AGC_IF_LEVEL; |
| break; |
| } |
| |
| // read it |
| tmp = tda1004x_read_byte(state, reg); |
| if (tmp < 0) |
| return -EIO; |
| |
| *signal = (tmp << 8) | tmp; |
| dprintk("%s: signal=0x%x\n", __FUNCTION__, *signal); |
| return 0; |
| } |
| |
| static int tda1004x_read_snr(struct dvb_frontend* fe, u16 * snr) |
| { |
| struct tda1004x_state* state = fe->demodulator_priv; |
| int tmp; |
| |
| dprintk("%s\n", __FUNCTION__); |
| |
| // read it |
| tmp = tda1004x_read_byte(state, TDA1004X_SNR); |
| if (tmp < 0) |
| return -EIO; |
| tmp = 255 - tmp; |
| |
| *snr = ((tmp << 8) | tmp); |
| dprintk("%s: snr=0x%x\n", __FUNCTION__, *snr); |
| return 0; |
| } |
| |
| static int tda1004x_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks) |
| { |
| struct tda1004x_state* state = fe->demodulator_priv; |
| int tmp; |
| int tmp2; |
| int counter; |
| |
| dprintk("%s\n", __FUNCTION__); |
| |
| // read the UCBLOCKS and reset |
| counter = 0; |
| tmp = tda1004x_read_byte(state, TDA1004X_UNCOR); |
| if (tmp < 0) |
| return -EIO; |
| tmp &= 0x7f; |
| while (counter++ < 5) { |
| tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0); |
| tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0); |
| tda1004x_write_mask(state, TDA1004X_UNCOR, 0x80, 0); |
| |
| tmp2 = tda1004x_read_byte(state, TDA1004X_UNCOR); |
| if (tmp2 < 0) |
| return -EIO; |
| tmp2 &= 0x7f; |
| if ((tmp2 < tmp) || (tmp2 == 0)) |
| break; |
| } |
| |
| if (tmp != 0x7f) |
| *ucblocks = tmp; |
| else |
| *ucblocks = 0xffffffff; |
| |
| dprintk("%s: ucblocks=0x%x\n", __FUNCTION__, *ucblocks); |
| return 0; |
| } |
| |
| static int tda1004x_read_ber(struct dvb_frontend* fe, u32* ber) |
| { |
| struct tda1004x_state* state = fe->demodulator_priv; |
| int tmp; |
| |
| dprintk("%s\n", __FUNCTION__); |
| |
| // read it in |
| tmp = tda1004x_read_byte(state, TDA1004X_CBER_LSB); |
| if (tmp < 0) |
| return -EIO; |
| *ber = tmp << 1; |
| tmp = tda1004x_read_byte(state, TDA1004X_CBER_MSB); |
| if (tmp < 0) |
| return -EIO; |
| *ber |= (tmp << 9); |
| // The address 0x20 should be read to cope with a TDA10046 bug |
| tda1004x_read_byte(state, TDA1004X_CBER_RESET); |
| |
| dprintk("%s: ber=0x%x\n", __FUNCTION__, *ber); |
| return 0; |
| } |
| |
| static int tda1004x_sleep(struct dvb_frontend* fe) |
| { |
| struct tda1004x_state* state = fe->demodulator_priv; |
| |
| switch (state->demod_type) { |
| case TDA1004X_DEMOD_TDA10045: |
| tda1004x_write_mask(state, TDA1004X_CONFADC1, 0x10, 0x10); |
| break; |
| |
| case TDA1004X_DEMOD_TDA10046: |
| if (state->config->pll_sleep != NULL) { |
| tda1004x_enable_tuner_i2c(state); |
| state->config->pll_sleep(fe); |
| if (state->config->if_freq != TDA10046_FREQ_052) { |
| /* special hack for Philips EUROPA Based boards: |
| * keep the I2c bridge open for tuner access in analog mode |
| */ |
| tda1004x_disable_tuner_i2c(state); |
| } |
| } |
| /* set outputs to tristate */ |
| tda1004x_write_byteI(state, TDA10046H_CONF_TRISTATE1, 0xff); |
| tda1004x_write_mask(state, TDA1004X_CONFC4, 1, 1); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static int tda1004x_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings) |
| { |
| fesettings->min_delay_ms = 800; |
| /* Drift compensation makes no sense for DVB-T */ |
| fesettings->step_size = 0; |
| fesettings->max_drift = 0; |
| return 0; |
| } |
| |
| static void tda1004x_release(struct dvb_frontend* fe) |
| { |
| struct tda1004x_state *state = fe->demodulator_priv; |
| kfree(state); |
| } |
| |
| static struct dvb_frontend_ops tda10045_ops = { |
| .info = { |
| .name = "Philips TDA10045H DVB-T", |
| .type = FE_OFDM, |
| .frequency_min = 51000000, |
| .frequency_max = 858000000, |
| .frequency_stepsize = 166667, |
| .caps = |
| FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | |
| FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | |
| FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | |
| FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO |
| }, |
| |
| .release = tda1004x_release, |
| |
| .init = tda10045_init, |
| .sleep = tda1004x_sleep, |
| |
| .set_frontend = tda1004x_set_fe, |
| .get_frontend = tda1004x_get_fe, |
| .get_tune_settings = tda1004x_get_tune_settings, |
| |
| .read_status = tda1004x_read_status, |
| .read_ber = tda1004x_read_ber, |
| .read_signal_strength = tda1004x_read_signal_strength, |
| .read_snr = tda1004x_read_snr, |
| .read_ucblocks = tda1004x_read_ucblocks, |
| }; |
| |
| struct dvb_frontend* tda10045_attach(const struct tda1004x_config* config, |
| struct i2c_adapter* i2c) |
| { |
| struct tda1004x_state *state; |
| |
| /* allocate memory for the internal state */ |
| state = kmalloc(sizeof(struct tda1004x_state), GFP_KERNEL); |
| if (!state) |
| return NULL; |
| |
| /* setup the state */ |
| state->config = config; |
| state->i2c = i2c; |
| memcpy(&state->ops, &tda10045_ops, sizeof(struct dvb_frontend_ops)); |
| state->demod_type = TDA1004X_DEMOD_TDA10045; |
| |
| /* check if the demod is there */ |
| if (tda1004x_read_byte(state, TDA1004X_CHIPID) != 0x25) { |
| kfree(state); |
| return NULL; |
| } |
| |
| /* create dvb_frontend */ |
| state->frontend.ops = &state->ops; |
| state->frontend.demodulator_priv = state; |
| return &state->frontend; |
| } |
| |
| static struct dvb_frontend_ops tda10046_ops = { |
| .info = { |
| .name = "Philips TDA10046H DVB-T", |
| .type = FE_OFDM, |
| .frequency_min = 51000000, |
| .frequency_max = 858000000, |
| .frequency_stepsize = 166667, |
| .caps = |
| FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | |
| FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | |
| FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | |
| FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO |
| }, |
| |
| .release = tda1004x_release, |
| |
| .init = tda10046_init, |
| .sleep = tda1004x_sleep, |
| |
| .set_frontend = tda1004x_set_fe, |
| .get_frontend = tda1004x_get_fe, |
| .get_tune_settings = tda1004x_get_tune_settings, |
| |
| .read_status = tda1004x_read_status, |
| .read_ber = tda1004x_read_ber, |
| .read_signal_strength = tda1004x_read_signal_strength, |
| .read_snr = tda1004x_read_snr, |
| .read_ucblocks = tda1004x_read_ucblocks, |
| }; |
| |
| struct dvb_frontend* tda10046_attach(const struct tda1004x_config* config, |
| struct i2c_adapter* i2c) |
| { |
| struct tda1004x_state *state; |
| |
| /* allocate memory for the internal state */ |
| state = kmalloc(sizeof(struct tda1004x_state), GFP_KERNEL); |
| if (!state) |
| return NULL; |
| |
| /* setup the state */ |
| state->config = config; |
| state->i2c = i2c; |
| memcpy(&state->ops, &tda10046_ops, sizeof(struct dvb_frontend_ops)); |
| state->demod_type = TDA1004X_DEMOD_TDA10046; |
| |
| /* check if the demod is there */ |
| if (tda1004x_read_byte(state, TDA1004X_CHIPID) != 0x46) { |
| kfree(state); |
| return NULL; |
| } |
| |
| /* create dvb_frontend */ |
| state->frontend.ops = &state->ops; |
| state->frontend.demodulator_priv = state; |
| return &state->frontend; |
| } |
| |
| module_param(debug, int, 0644); |
| MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off)."); |
| |
| MODULE_DESCRIPTION("Philips TDA10045H & TDA10046H DVB-T Demodulator"); |
| MODULE_AUTHOR("Andrew de Quincey & Robert Schlabbach"); |
| MODULE_LICENSE("GPL"); |
| |
| EXPORT_SYMBOL(tda10045_attach); |
| EXPORT_SYMBOL(tda10046_attach); |
| EXPORT_SYMBOL(tda1004x_write_byte); |