| /******************************************************************************* |
| |
| Intel PRO/1000 Linux driver |
| Copyright(c) 1999 - 2008 Intel Corporation. |
| |
| This program is free software; you can redistribute it and/or modify it |
| under the terms and conditions of the GNU General Public License, |
| version 2, as published by the Free Software Foundation. |
| |
| This program is distributed in the hope it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| more details. |
| |
| You should have received a copy of the GNU General Public License along with |
| this program; if not, write to the Free Software Foundation, Inc., |
| 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| |
| The full GNU General Public License is included in this distribution in |
| the file called "COPYING". |
| |
| Contact Information: |
| Linux NICS <linux.nics@intel.com> |
| e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> |
| Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| |
| *******************************************************************************/ |
| |
| /* |
| * 82562G 10/100 Network Connection |
| * 82562G-2 10/100 Network Connection |
| * 82562GT 10/100 Network Connection |
| * 82562GT-2 10/100 Network Connection |
| * 82562V 10/100 Network Connection |
| * 82562V-2 10/100 Network Connection |
| * 82566DC-2 Gigabit Network Connection |
| * 82566DC Gigabit Network Connection |
| * 82566DM-2 Gigabit Network Connection |
| * 82566DM Gigabit Network Connection |
| * 82566MC Gigabit Network Connection |
| * 82566MM Gigabit Network Connection |
| * 82567LM Gigabit Network Connection |
| * 82567LF Gigabit Network Connection |
| * 82567V Gigabit Network Connection |
| * 82567LM-2 Gigabit Network Connection |
| * 82567LF-2 Gigabit Network Connection |
| * 82567V-2 Gigabit Network Connection |
| * 82567LF-3 Gigabit Network Connection |
| * 82567LM-3 Gigabit Network Connection |
| * 82567LM-4 Gigabit Network Connection |
| * 82577LM Gigabit Network Connection |
| * 82577LC Gigabit Network Connection |
| * 82578DM Gigabit Network Connection |
| * 82578DC Gigabit Network Connection |
| */ |
| |
| #include <linux/netdevice.h> |
| #include <linux/ethtool.h> |
| #include <linux/delay.h> |
| #include <linux/pci.h> |
| |
| #include "e1000.h" |
| |
| #define ICH_FLASH_GFPREG 0x0000 |
| #define ICH_FLASH_HSFSTS 0x0004 |
| #define ICH_FLASH_HSFCTL 0x0006 |
| #define ICH_FLASH_FADDR 0x0008 |
| #define ICH_FLASH_FDATA0 0x0010 |
| #define ICH_FLASH_PR0 0x0074 |
| |
| #define ICH_FLASH_READ_COMMAND_TIMEOUT 500 |
| #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500 |
| #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000 |
| #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF |
| #define ICH_FLASH_CYCLE_REPEAT_COUNT 10 |
| |
| #define ICH_CYCLE_READ 0 |
| #define ICH_CYCLE_WRITE 2 |
| #define ICH_CYCLE_ERASE 3 |
| |
| #define FLASH_GFPREG_BASE_MASK 0x1FFF |
| #define FLASH_SECTOR_ADDR_SHIFT 12 |
| |
| #define ICH_FLASH_SEG_SIZE_256 256 |
| #define ICH_FLASH_SEG_SIZE_4K 4096 |
| #define ICH_FLASH_SEG_SIZE_8K 8192 |
| #define ICH_FLASH_SEG_SIZE_64K 65536 |
| |
| |
| #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */ |
| |
| #define E1000_ICH_MNG_IAMT_MODE 0x2 |
| |
| #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \ |
| (ID_LED_DEF1_OFF2 << 8) | \ |
| (ID_LED_DEF1_ON2 << 4) | \ |
| (ID_LED_DEF1_DEF2)) |
| |
| #define E1000_ICH_NVM_SIG_WORD 0x13 |
| #define E1000_ICH_NVM_SIG_MASK 0xC000 |
| #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0 |
| #define E1000_ICH_NVM_SIG_VALUE 0x80 |
| |
| #define E1000_ICH8_LAN_INIT_TIMEOUT 1500 |
| |
| #define E1000_FEXTNVM_SW_CONFIG 1 |
| #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */ |
| |
| #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL |
| |
| #define E1000_ICH_RAR_ENTRIES 7 |
| |
| #define PHY_PAGE_SHIFT 5 |
| #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \ |
| ((reg) & MAX_PHY_REG_ADDRESS)) |
| #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */ |
| #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */ |
| |
| #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 |
| #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300 |
| #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200 |
| |
| #define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */ |
| |
| #define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */ |
| |
| /* OEM Bits Phy Register */ |
| #define HV_OEM_BITS PHY_REG(768, 25) |
| #define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */ |
| #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */ |
| |
| /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ |
| /* Offset 04h HSFSTS */ |
| union ich8_hws_flash_status { |
| struct ich8_hsfsts { |
| u16 flcdone :1; /* bit 0 Flash Cycle Done */ |
| u16 flcerr :1; /* bit 1 Flash Cycle Error */ |
| u16 dael :1; /* bit 2 Direct Access error Log */ |
| u16 berasesz :2; /* bit 4:3 Sector Erase Size */ |
| u16 flcinprog :1; /* bit 5 flash cycle in Progress */ |
| u16 reserved1 :2; /* bit 13:6 Reserved */ |
| u16 reserved2 :6; /* bit 13:6 Reserved */ |
| u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */ |
| u16 flockdn :1; /* bit 15 Flash Config Lock-Down */ |
| } hsf_status; |
| u16 regval; |
| }; |
| |
| /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ |
| /* Offset 06h FLCTL */ |
| union ich8_hws_flash_ctrl { |
| struct ich8_hsflctl { |
| u16 flcgo :1; /* 0 Flash Cycle Go */ |
| u16 flcycle :2; /* 2:1 Flash Cycle */ |
| u16 reserved :5; /* 7:3 Reserved */ |
| u16 fldbcount :2; /* 9:8 Flash Data Byte Count */ |
| u16 flockdn :6; /* 15:10 Reserved */ |
| } hsf_ctrl; |
| u16 regval; |
| }; |
| |
| /* ICH Flash Region Access Permissions */ |
| union ich8_hws_flash_regacc { |
| struct ich8_flracc { |
| u32 grra :8; /* 0:7 GbE region Read Access */ |
| u32 grwa :8; /* 8:15 GbE region Write Access */ |
| u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */ |
| u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */ |
| } hsf_flregacc; |
| u16 regval; |
| }; |
| |
| /* ICH Flash Protected Region */ |
| union ich8_flash_protected_range { |
| struct ich8_pr { |
| u32 base:13; /* 0:12 Protected Range Base */ |
| u32 reserved1:2; /* 13:14 Reserved */ |
| u32 rpe:1; /* 15 Read Protection Enable */ |
| u32 limit:13; /* 16:28 Protected Range Limit */ |
| u32 reserved2:2; /* 29:30 Reserved */ |
| u32 wpe:1; /* 31 Write Protection Enable */ |
| } range; |
| u32 regval; |
| }; |
| |
| static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw); |
| static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); |
| static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); |
| static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw); |
| static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); |
| static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, |
| u32 offset, u8 byte); |
| static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, |
| u8 *data); |
| static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, |
| u16 *data); |
| static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, |
| u8 size, u16 *data); |
| static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw); |
| static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); |
| static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw); |
| static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); |
| static s32 e1000_led_on_ich8lan(struct e1000_hw *hw); |
| static s32 e1000_led_off_ich8lan(struct e1000_hw *hw); |
| static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); |
| static s32 e1000_setup_led_pchlan(struct e1000_hw *hw); |
| static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); |
| static s32 e1000_led_on_pchlan(struct e1000_hw *hw); |
| static s32 e1000_led_off_pchlan(struct e1000_hw *hw); |
| static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); |
| |
| static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg) |
| { |
| return readw(hw->flash_address + reg); |
| } |
| |
| static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg) |
| { |
| return readl(hw->flash_address + reg); |
| } |
| |
| static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val) |
| { |
| writew(val, hw->flash_address + reg); |
| } |
| |
| static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val) |
| { |
| writel(val, hw->flash_address + reg); |
| } |
| |
| #define er16flash(reg) __er16flash(hw, (reg)) |
| #define er32flash(reg) __er32flash(hw, (reg)) |
| #define ew16flash(reg,val) __ew16flash(hw, (reg), (val)) |
| #define ew32flash(reg,val) __ew32flash(hw, (reg), (val)) |
| |
| /** |
| * e1000_init_phy_params_pchlan - Initialize PHY function pointers |
| * @hw: pointer to the HW structure |
| * |
| * Initialize family-specific PHY parameters and function pointers. |
| **/ |
| static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val = 0; |
| |
| phy->addr = 1; |
| phy->reset_delay_us = 100; |
| |
| phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan; |
| phy->ops.read_phy_reg = e1000_read_phy_reg_hv; |
| phy->ops.read_phy_reg_locked = e1000_read_phy_reg_hv_locked; |
| phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan; |
| phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan; |
| phy->ops.write_phy_reg = e1000_write_phy_reg_hv; |
| phy->ops.write_phy_reg_locked = e1000_write_phy_reg_hv_locked; |
| phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| |
| phy->id = e1000_phy_unknown; |
| e1000e_get_phy_id(hw); |
| phy->type = e1000e_get_phy_type_from_id(phy->id); |
| |
| if (phy->type == e1000_phy_82577) { |
| phy->ops.check_polarity = e1000_check_polarity_82577; |
| phy->ops.force_speed_duplex = |
| e1000_phy_force_speed_duplex_82577; |
| phy->ops.get_cable_length = e1000_get_cable_length_82577; |
| phy->ops.get_phy_info = e1000_get_phy_info_82577; |
| phy->ops.commit_phy = e1000e_phy_sw_reset; |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_init_phy_params_ich8lan - Initialize PHY function pointers |
| * @hw: pointer to the HW structure |
| * |
| * Initialize family-specific PHY parameters and function pointers. |
| **/ |
| static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 i = 0; |
| |
| phy->addr = 1; |
| phy->reset_delay_us = 100; |
| |
| /* |
| * We may need to do this twice - once for IGP and if that fails, |
| * we'll set BM func pointers and try again |
| */ |
| ret_val = e1000e_determine_phy_address(hw); |
| if (ret_val) { |
| hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm; |
| hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm; |
| ret_val = e1000e_determine_phy_address(hw); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| phy->id = 0; |
| while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) && |
| (i++ < 100)) { |
| msleep(1); |
| ret_val = e1000e_get_phy_id(hw); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* Verify phy id */ |
| switch (phy->id) { |
| case IGP03E1000_E_PHY_ID: |
| phy->type = e1000_phy_igp_3; |
| phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| phy->ops.read_phy_reg_locked = e1000e_read_phy_reg_igp_locked; |
| phy->ops.write_phy_reg_locked = e1000e_write_phy_reg_igp_locked; |
| break; |
| case IFE_E_PHY_ID: |
| case IFE_PLUS_E_PHY_ID: |
| case IFE_C_E_PHY_ID: |
| phy->type = e1000_phy_ife; |
| phy->autoneg_mask = E1000_ALL_NOT_GIG; |
| break; |
| case BME1000_E_PHY_ID: |
| phy->type = e1000_phy_bm; |
| phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm; |
| hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm; |
| hw->phy.ops.commit_phy = e1000e_phy_sw_reset; |
| break; |
| default: |
| return -E1000_ERR_PHY; |
| break; |
| } |
| |
| phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan; |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers |
| * @hw: pointer to the HW structure |
| * |
| * Initialize family-specific NVM parameters and function |
| * pointers. |
| **/ |
| static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
| u32 gfpreg, sector_base_addr, sector_end_addr; |
| u16 i; |
| |
| /* Can't read flash registers if the register set isn't mapped. */ |
| if (!hw->flash_address) { |
| hw_dbg(hw, "ERROR: Flash registers not mapped\n"); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| nvm->type = e1000_nvm_flash_sw; |
| |
| gfpreg = er32flash(ICH_FLASH_GFPREG); |
| |
| /* |
| * sector_X_addr is a "sector"-aligned address (4096 bytes) |
| * Add 1 to sector_end_addr since this sector is included in |
| * the overall size. |
| */ |
| sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; |
| sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; |
| |
| /* flash_base_addr is byte-aligned */ |
| nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT; |
| |
| /* |
| * find total size of the NVM, then cut in half since the total |
| * size represents two separate NVM banks. |
| */ |
| nvm->flash_bank_size = (sector_end_addr - sector_base_addr) |
| << FLASH_SECTOR_ADDR_SHIFT; |
| nvm->flash_bank_size /= 2; |
| /* Adjust to word count */ |
| nvm->flash_bank_size /= sizeof(u16); |
| |
| nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS; |
| |
| /* Clear shadow ram */ |
| for (i = 0; i < nvm->word_size; i++) { |
| dev_spec->shadow_ram[i].modified = 0; |
| dev_spec->shadow_ram[i].value = 0xFFFF; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_init_mac_params_ich8lan - Initialize MAC function pointers |
| * @hw: pointer to the HW structure |
| * |
| * Initialize family-specific MAC parameters and function |
| * pointers. |
| **/ |
| static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| struct e1000_mac_info *mac = &hw->mac; |
| |
| /* Set media type function pointer */ |
| hw->phy.media_type = e1000_media_type_copper; |
| |
| /* Set mta register count */ |
| mac->mta_reg_count = 32; |
| /* Set rar entry count */ |
| mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; |
| if (mac->type == e1000_ich8lan) |
| mac->rar_entry_count--; |
| /* Set if manageability features are enabled. */ |
| mac->arc_subsystem_valid = 1; |
| |
| /* LED operations */ |
| switch (mac->type) { |
| case e1000_ich8lan: |
| case e1000_ich9lan: |
| case e1000_ich10lan: |
| /* ID LED init */ |
| mac->ops.id_led_init = e1000e_id_led_init; |
| /* setup LED */ |
| mac->ops.setup_led = e1000e_setup_led_generic; |
| /* cleanup LED */ |
| mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; |
| /* turn on/off LED */ |
| mac->ops.led_on = e1000_led_on_ich8lan; |
| mac->ops.led_off = e1000_led_off_ich8lan; |
| break; |
| case e1000_pchlan: |
| /* ID LED init */ |
| mac->ops.id_led_init = e1000_id_led_init_pchlan; |
| /* setup LED */ |
| mac->ops.setup_led = e1000_setup_led_pchlan; |
| /* cleanup LED */ |
| mac->ops.cleanup_led = e1000_cleanup_led_pchlan; |
| /* turn on/off LED */ |
| mac->ops.led_on = e1000_led_on_pchlan; |
| mac->ops.led_off = e1000_led_off_pchlan; |
| break; |
| default: |
| break; |
| } |
| |
| /* Enable PCS Lock-loss workaround for ICH8 */ |
| if (mac->type == e1000_ich8lan) |
| e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_check_for_copper_link_ich8lan - Check for link (Copper) |
| * @hw: pointer to the HW structure |
| * |
| * Checks to see of the link status of the hardware has changed. If a |
| * change in link status has been detected, then we read the PHY registers |
| * to get the current speed/duplex if link exists. |
| **/ |
| static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| s32 ret_val; |
| bool link; |
| |
| /* |
| * We only want to go out to the PHY registers to see if Auto-Neg |
| * has completed and/or if our link status has changed. The |
| * get_link_status flag is set upon receiving a Link Status |
| * Change or Rx Sequence Error interrupt. |
| */ |
| if (!mac->get_link_status) { |
| ret_val = 0; |
| goto out; |
| } |
| |
| if (hw->mac.type == e1000_pchlan) { |
| ret_val = e1000e_write_kmrn_reg(hw, |
| E1000_KMRNCTRLSTA_K1_CONFIG, |
| E1000_KMRNCTRLSTA_K1_ENABLE); |
| if (ret_val) |
| goto out; |
| } |
| |
| /* |
| * First we want to see if the MII Status Register reports |
| * link. If so, then we want to get the current speed/duplex |
| * of the PHY. |
| */ |
| ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); |
| if (ret_val) |
| goto out; |
| |
| if (!link) |
| goto out; /* No link detected */ |
| |
| mac->get_link_status = false; |
| |
| if (hw->phy.type == e1000_phy_82578) { |
| ret_val = e1000_link_stall_workaround_hv(hw); |
| if (ret_val) |
| goto out; |
| } |
| |
| /* |
| * Check if there was DownShift, must be checked |
| * immediately after link-up |
| */ |
| e1000e_check_downshift(hw); |
| |
| /* |
| * If we are forcing speed/duplex, then we simply return since |
| * we have already determined whether we have link or not. |
| */ |
| if (!mac->autoneg) { |
| ret_val = -E1000_ERR_CONFIG; |
| goto out; |
| } |
| |
| /* |
| * Auto-Neg is enabled. Auto Speed Detection takes care |
| * of MAC speed/duplex configuration. So we only need to |
| * configure Collision Distance in the MAC. |
| */ |
| e1000e_config_collision_dist(hw); |
| |
| /* |
| * Configure Flow Control now that Auto-Neg has completed. |
| * First, we need to restore the desired flow control |
| * settings because we may have had to re-autoneg with a |
| * different link partner. |
| */ |
| ret_val = e1000e_config_fc_after_link_up(hw); |
| if (ret_val) |
| hw_dbg(hw, "Error configuring flow control\n"); |
| |
| out: |
| return ret_val; |
| } |
| |
| static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter) |
| { |
| struct e1000_hw *hw = &adapter->hw; |
| s32 rc; |
| |
| rc = e1000_init_mac_params_ich8lan(adapter); |
| if (rc) |
| return rc; |
| |
| rc = e1000_init_nvm_params_ich8lan(hw); |
| if (rc) |
| return rc; |
| |
| if (hw->mac.type == e1000_pchlan) |
| rc = e1000_init_phy_params_pchlan(hw); |
| else |
| rc = e1000_init_phy_params_ich8lan(hw); |
| if (rc) |
| return rc; |
| |
| if (adapter->hw.phy.type == e1000_phy_ife) { |
| adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES; |
| adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN; |
| } |
| |
| if ((adapter->hw.mac.type == e1000_ich8lan) && |
| (adapter->hw.phy.type == e1000_phy_igp_3)) |
| adapter->flags |= FLAG_LSC_GIG_SPEED_DROP; |
| |
| return 0; |
| } |
| |
| static DEFINE_MUTEX(nvm_mutex); |
| |
| /** |
| * e1000_acquire_nvm_ich8lan - Acquire NVM mutex |
| * @hw: pointer to the HW structure |
| * |
| * Acquires the mutex for performing NVM operations. |
| **/ |
| static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw) |
| { |
| mutex_lock(&nvm_mutex); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_release_nvm_ich8lan - Release NVM mutex |
| * @hw: pointer to the HW structure |
| * |
| * Releases the mutex used while performing NVM operations. |
| **/ |
| static void e1000_release_nvm_ich8lan(struct e1000_hw *hw) |
| { |
| mutex_unlock(&nvm_mutex); |
| |
| return; |
| } |
| |
| static DEFINE_MUTEX(swflag_mutex); |
| |
| /** |
| * e1000_acquire_swflag_ich8lan - Acquire software control flag |
| * @hw: pointer to the HW structure |
| * |
| * Acquires the software control flag for performing PHY and select |
| * MAC CSR accesses. |
| **/ |
| static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) |
| { |
| u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; |
| s32 ret_val = 0; |
| |
| might_sleep(); |
| |
| mutex_lock(&swflag_mutex); |
| |
| while (timeout) { |
| extcnf_ctrl = er32(EXTCNF_CTRL); |
| if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) |
| break; |
| |
| mdelay(1); |
| timeout--; |
| } |
| |
| if (!timeout) { |
| hw_dbg(hw, "SW/FW/HW has locked the resource for too long.\n"); |
| ret_val = -E1000_ERR_CONFIG; |
| goto out; |
| } |
| |
| timeout = SW_FLAG_TIMEOUT; |
| |
| extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; |
| ew32(EXTCNF_CTRL, extcnf_ctrl); |
| |
| while (timeout) { |
| extcnf_ctrl = er32(EXTCNF_CTRL); |
| if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) |
| break; |
| |
| mdelay(1); |
| timeout--; |
| } |
| |
| if (!timeout) { |
| hw_dbg(hw, "Failed to acquire the semaphore.\n"); |
| extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; |
| ew32(EXTCNF_CTRL, extcnf_ctrl); |
| ret_val = -E1000_ERR_CONFIG; |
| goto out; |
| } |
| |
| out: |
| if (ret_val) |
| mutex_unlock(&swflag_mutex); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_release_swflag_ich8lan - Release software control flag |
| * @hw: pointer to the HW structure |
| * |
| * Releases the software control flag for performing PHY and select |
| * MAC CSR accesses. |
| **/ |
| static void e1000_release_swflag_ich8lan(struct e1000_hw *hw) |
| { |
| u32 extcnf_ctrl; |
| |
| extcnf_ctrl = er32(EXTCNF_CTRL); |
| extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; |
| ew32(EXTCNF_CTRL, extcnf_ctrl); |
| |
| mutex_unlock(&swflag_mutex); |
| |
| return; |
| } |
| |
| /** |
| * e1000_check_mng_mode_ich8lan - Checks management mode |
| * @hw: pointer to the HW structure |
| * |
| * This checks if the adapter has manageability enabled. |
| * This is a function pointer entry point only called by read/write |
| * routines for the PHY and NVM parts. |
| **/ |
| static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) |
| { |
| u32 fwsm = er32(FWSM); |
| |
| return (fwsm & E1000_FWSM_MODE_MASK) == |
| (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT); |
| } |
| |
| /** |
| * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked |
| * @hw: pointer to the HW structure |
| * |
| * Checks if firmware is blocking the reset of the PHY. |
| * This is a function pointer entry point only called by |
| * reset routines. |
| **/ |
| static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) |
| { |
| u32 fwsm; |
| |
| fwsm = er32(FWSM); |
| |
| return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET; |
| } |
| |
| /** |
| * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex |
| * @hw: pointer to the HW structure |
| * |
| * Forces the speed and duplex settings of the PHY. |
| * This is a function pointer entry point only called by |
| * PHY setup routines. |
| **/ |
| static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 data; |
| bool link; |
| |
| if (phy->type != e1000_phy_ife) { |
| ret_val = e1000e_phy_force_speed_duplex_igp(hw); |
| return ret_val; |
| } |
| |
| ret_val = e1e_rphy(hw, PHY_CONTROL, &data); |
| if (ret_val) |
| return ret_val; |
| |
| e1000e_phy_force_speed_duplex_setup(hw, &data); |
| |
| ret_val = e1e_wphy(hw, PHY_CONTROL, data); |
| if (ret_val) |
| return ret_val; |
| |
| /* Disable MDI-X support for 10/100 */ |
| ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data); |
| if (ret_val) |
| return ret_val; |
| |
| data &= ~IFE_PMC_AUTO_MDIX; |
| data &= ~IFE_PMC_FORCE_MDIX; |
| |
| ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data); |
| if (ret_val) |
| return ret_val; |
| |
| hw_dbg(hw, "IFE PMC: %X\n", data); |
| |
| udelay(1); |
| |
| if (phy->autoneg_wait_to_complete) { |
| hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n"); |
| |
| ret_val = e1000e_phy_has_link_generic(hw, |
| PHY_FORCE_LIMIT, |
| 100000, |
| &link); |
| if (ret_val) |
| return ret_val; |
| |
| if (!link) |
| hw_dbg(hw, "Link taking longer than expected.\n"); |
| |
| /* Try once more */ |
| ret_val = e1000e_phy_has_link_generic(hw, |
| PHY_FORCE_LIMIT, |
| 100000, |
| &link); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be |
| * done after every PHY reset. |
| **/ |
| static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) |
| { |
| s32 ret_val = 0; |
| |
| if (hw->mac.type != e1000_pchlan) |
| return ret_val; |
| |
| if (((hw->phy.type == e1000_phy_82577) && |
| ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || |
| ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { |
| /* Disable generation of early preamble */ |
| ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431); |
| if (ret_val) |
| return ret_val; |
| |
| /* Preamble tuning for SSC */ |
| ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| if (hw->phy.type == e1000_phy_82578) { |
| /* |
| * Return registers to default by doing a soft reset then |
| * writing 0x3140 to the control register. |
| */ |
| if (hw->phy.revision < 2) { |
| e1000e_phy_sw_reset(hw); |
| ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140); |
| } |
| } |
| |
| /* Select page 0 */ |
| ret_val = hw->phy.ops.acquire_phy(hw); |
| if (ret_val) |
| return ret_val; |
| hw->phy.addr = 1; |
| e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); |
| hw->phy.ops.release_phy(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_lan_init_done_ich8lan - Check for PHY config completion |
| * @hw: pointer to the HW structure |
| * |
| * Check the appropriate indication the MAC has finished configuring the |
| * PHY after a software reset. |
| **/ |
| static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw) |
| { |
| u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; |
| |
| /* Wait for basic configuration completes before proceeding */ |
| do { |
| data = er32(STATUS); |
| data &= E1000_STATUS_LAN_INIT_DONE; |
| udelay(100); |
| } while ((!data) && --loop); |
| |
| /* |
| * If basic configuration is incomplete before the above loop |
| * count reaches 0, loading the configuration from NVM will |
| * leave the PHY in a bad state possibly resulting in no link. |
| */ |
| if (loop == 0) |
| hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n"); |
| |
| /* Clear the Init Done bit for the next init event */ |
| data = er32(STATUS); |
| data &= ~E1000_STATUS_LAN_INIT_DONE; |
| ew32(STATUS, data); |
| } |
| |
| /** |
| * e1000_phy_hw_reset_ich8lan - Performs a PHY reset |
| * @hw: pointer to the HW structure |
| * |
| * Resets the PHY |
| * This is a function pointer entry point called by drivers |
| * or other shared routines. |
| **/ |
| static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| u32 i; |
| u32 data, cnf_size, cnf_base_addr, sw_cfg_mask; |
| s32 ret_val; |
| u16 reg, word_addr, reg_data, reg_addr, phy_page = 0; |
| |
| ret_val = e1000e_phy_hw_reset_generic(hw); |
| if (ret_val) |
| return ret_val; |
| |
| /* Allow time for h/w to get to a quiescent state after reset */ |
| mdelay(10); |
| |
| if (hw->mac.type == e1000_pchlan) { |
| ret_val = e1000_hv_phy_workarounds_ich8lan(hw); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* Dummy read to clear the phy wakeup bit after lcd reset */ |
| if (hw->mac.type == e1000_pchlan) |
| e1e_rphy(hw, BM_WUC, ®); |
| |
| /* |
| * Initialize the PHY from the NVM on ICH platforms. This |
| * is needed due to an issue where the NVM configuration is |
| * not properly autoloaded after power transitions. |
| * Therefore, after each PHY reset, we will load the |
| * configuration data out of the NVM manually. |
| */ |
| if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) { |
| struct e1000_adapter *adapter = hw->adapter; |
| |
| /* Check if SW needs configure the PHY */ |
| if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) || |
| (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M)) |
| sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; |
| else |
| sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; |
| |
| data = er32(FEXTNVM); |
| if (!(data & sw_cfg_mask)) |
| return 0; |
| |
| /* Wait for basic configuration completes before proceeding */ |
| e1000_lan_init_done_ich8lan(hw); |
| |
| /* |
| * Make sure HW does not configure LCD from PHY |
| * extended configuration before SW configuration |
| */ |
| data = er32(EXTCNF_CTRL); |
| if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) |
| return 0; |
| |
| cnf_size = er32(EXTCNF_SIZE); |
| cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; |
| cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; |
| if (!cnf_size) |
| return 0; |
| |
| cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; |
| cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; |
| |
| /* Configure LCD from extended configuration region. */ |
| |
| /* cnf_base_addr is in DWORD */ |
| word_addr = (u16)(cnf_base_addr << 1); |
| |
| for (i = 0; i < cnf_size; i++) { |
| ret_val = e1000_read_nvm(hw, |
| (word_addr + i * 2), |
| 1, |
| ®_data); |
| if (ret_val) |
| return ret_val; |
| |
| ret_val = e1000_read_nvm(hw, |
| (word_addr + i * 2 + 1), |
| 1, |
| ®_addr); |
| if (ret_val) |
| return ret_val; |
| |
| /* Save off the PHY page for future writes. */ |
| if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { |
| phy_page = reg_data; |
| continue; |
| } |
| |
| reg_addr |= phy_page; |
| |
| ret_val = e1e_wphy(hw, (u32)reg_addr, reg_data); |
| if (ret_val) |
| return ret_val; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states |
| * @hw: pointer to the HW structure |
| * |
| * Populates "phy" structure with various feature states. |
| * This function is only called by other family-specific |
| * routines. |
| **/ |
| static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 data; |
| bool link; |
| |
| ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); |
| if (ret_val) |
| return ret_val; |
| |
| if (!link) { |
| hw_dbg(hw, "Phy info is only valid if link is up\n"); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data); |
| if (ret_val) |
| return ret_val; |
| phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE)); |
| |
| if (phy->polarity_correction) { |
| ret_val = phy->ops.check_polarity(hw); |
| if (ret_val) |
| return ret_val; |
| } else { |
| /* Polarity is forced */ |
| phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY) |
| ? e1000_rev_polarity_reversed |
| : e1000_rev_polarity_normal; |
| } |
| |
| ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data); |
| if (ret_val) |
| return ret_val; |
| |
| phy->is_mdix = (data & IFE_PMC_MDIX_STATUS); |
| |
| /* The following parameters are undefined for 10/100 operation. */ |
| phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; |
| phy->local_rx = e1000_1000t_rx_status_undefined; |
| phy->remote_rx = e1000_1000t_rx_status_undefined; |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info |
| * @hw: pointer to the HW structure |
| * |
| * Wrapper for calling the get_phy_info routines for the appropriate phy type. |
| * This is a function pointer entry point called by drivers |
| * or other shared routines. |
| **/ |
| static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw) |
| { |
| switch (hw->phy.type) { |
| case e1000_phy_ife: |
| return e1000_get_phy_info_ife_ich8lan(hw); |
| break; |
| case e1000_phy_igp_3: |
| case e1000_phy_bm: |
| case e1000_phy_82578: |
| case e1000_phy_82577: |
| return e1000e_get_phy_info_igp(hw); |
| break; |
| default: |
| break; |
| } |
| |
| return -E1000_ERR_PHY_TYPE; |
| } |
| |
| /** |
| * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY |
| * @hw: pointer to the HW structure |
| * |
| * Polarity is determined on the polarity reversal feature being enabled. |
| * This function is only called by other family-specific |
| * routines. |
| **/ |
| static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| s32 ret_val; |
| u16 phy_data, offset, mask; |
| |
| /* |
| * Polarity is determined based on the reversal feature being enabled. |
| */ |
| if (phy->polarity_correction) { |
| offset = IFE_PHY_EXTENDED_STATUS_CONTROL; |
| mask = IFE_PESC_POLARITY_REVERSED; |
| } else { |
| offset = IFE_PHY_SPECIAL_CONTROL; |
| mask = IFE_PSC_FORCE_POLARITY; |
| } |
| |
| ret_val = e1e_rphy(hw, offset, &phy_data); |
| |
| if (!ret_val) |
| phy->cable_polarity = (phy_data & mask) |
| ? e1000_rev_polarity_reversed |
| : e1000_rev_polarity_normal; |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_set_lplu_state_pchlan - Set Low Power Link Up state |
| * @hw: pointer to the HW structure |
| * @active: true to enable LPLU, false to disable |
| * |
| * Sets the LPLU state according to the active flag. For PCH, if OEM write |
| * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set |
| * the phy speed. This function will manually set the LPLU bit and restart |
| * auto-neg as hw would do. D3 and D0 LPLU will call the same function |
| * since it configures the same bit. |
| **/ |
| static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) |
| { |
| s32 ret_val = 0; |
| u16 oem_reg; |
| |
| ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg); |
| if (ret_val) |
| goto out; |
| |
| if (active) |
| oem_reg |= HV_OEM_BITS_LPLU; |
| else |
| oem_reg &= ~HV_OEM_BITS_LPLU; |
| |
| oem_reg |= HV_OEM_BITS_RESTART_AN; |
| ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg); |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state |
| * @hw: pointer to the HW structure |
| * @active: TRUE to enable LPLU, FALSE to disable |
| * |
| * Sets the LPLU D0 state according to the active flag. When |
| * activating LPLU this function also disables smart speed |
| * and vice versa. LPLU will not be activated unless the |
| * device autonegotiation advertisement meets standards of |
| * either 10 or 10/100 or 10/100/1000 at all duplexes. |
| * This is a function pointer entry point only called by |
| * PHY setup routines. |
| **/ |
| static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| u32 phy_ctrl; |
| s32 ret_val = 0; |
| u16 data; |
| |
| if (phy->type == e1000_phy_ife) |
| return ret_val; |
| |
| phy_ctrl = er32(PHY_CTRL); |
| |
| if (active) { |
| phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; |
| ew32(PHY_CTRL, phy_ctrl); |
| |
| if (phy->type != e1000_phy_igp_3) |
| return 0; |
| |
| /* |
| * Call gig speed drop workaround on LPLU before accessing |
| * any PHY registers |
| */ |
| if (hw->mac.type == e1000_ich8lan) |
| e1000e_gig_downshift_workaround_ich8lan(hw); |
| |
| /* When LPLU is enabled, we should disable SmartSpeed */ |
| ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); |
| data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); |
| if (ret_val) |
| return ret_val; |
| } else { |
| phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; |
| ew32(PHY_CTRL, phy_ctrl); |
| |
| if (phy->type != e1000_phy_igp_3) |
| return 0; |
| |
| /* |
| * LPLU and SmartSpeed are mutually exclusive. LPLU is used |
| * during Dx states where the power conservation is most |
| * important. During driver activity we should enable |
| * SmartSpeed, so performance is maintained. |
| */ |
| if (phy->smart_speed == e1000_smart_speed_on) { |
| ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| &data); |
| if (ret_val) |
| return ret_val; |
| |
| data |= IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| data); |
| if (ret_val) |
| return ret_val; |
| } else if (phy->smart_speed == e1000_smart_speed_off) { |
| ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| &data); |
| if (ret_val) |
| return ret_val; |
| |
| data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| data); |
| if (ret_val) |
| return ret_val; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state |
| * @hw: pointer to the HW structure |
| * @active: TRUE to enable LPLU, FALSE to disable |
| * |
| * Sets the LPLU D3 state according to the active flag. When |
| * activating LPLU this function also disables smart speed |
| * and vice versa. LPLU will not be activated unless the |
| * device autonegotiation advertisement meets standards of |
| * either 10 or 10/100 or 10/100/1000 at all duplexes. |
| * This is a function pointer entry point only called by |
| * PHY setup routines. |
| **/ |
| static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) |
| { |
| struct e1000_phy_info *phy = &hw->phy; |
| u32 phy_ctrl; |
| s32 ret_val; |
| u16 data; |
| |
| phy_ctrl = er32(PHY_CTRL); |
| |
| if (!active) { |
| phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; |
| ew32(PHY_CTRL, phy_ctrl); |
| |
| if (phy->type != e1000_phy_igp_3) |
| return 0; |
| |
| /* |
| * LPLU and SmartSpeed are mutually exclusive. LPLU is used |
| * during Dx states where the power conservation is most |
| * important. During driver activity we should enable |
| * SmartSpeed, so performance is maintained. |
| */ |
| if (phy->smart_speed == e1000_smart_speed_on) { |
| ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| &data); |
| if (ret_val) |
| return ret_val; |
| |
| data |= IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| data); |
| if (ret_val) |
| return ret_val; |
| } else if (phy->smart_speed == e1000_smart_speed_off) { |
| ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| &data); |
| if (ret_val) |
| return ret_val; |
| |
| data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, |
| data); |
| if (ret_val) |
| return ret_val; |
| } |
| } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || |
| (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || |
| (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { |
| phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; |
| ew32(PHY_CTRL, phy_ctrl); |
| |
| if (phy->type != e1000_phy_igp_3) |
| return 0; |
| |
| /* |
| * Call gig speed drop workaround on LPLU before accessing |
| * any PHY registers |
| */ |
| if (hw->mac.type == e1000_ich8lan) |
| e1000e_gig_downshift_workaround_ich8lan(hw); |
| |
| /* When LPLU is enabled, we should disable SmartSpeed */ |
| ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); |
| if (ret_val) |
| return ret_val; |
| |
| data &= ~IGP01E1000_PSCFR_SMART_SPEED; |
| ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 |
| * @hw: pointer to the HW structure |
| * @bank: pointer to the variable that returns the active bank |
| * |
| * Reads signature byte from the NVM using the flash access registers. |
| * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. |
| **/ |
| static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) |
| { |
| u32 eecd; |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); |
| u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; |
| u8 sig_byte = 0; |
| s32 ret_val = 0; |
| |
| switch (hw->mac.type) { |
| case e1000_ich8lan: |
| case e1000_ich9lan: |
| eecd = er32(EECD); |
| if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == |
| E1000_EECD_SEC1VAL_VALID_MASK) { |
| if (eecd & E1000_EECD_SEC1VAL) |
| *bank = 1; |
| else |
| *bank = 0; |
| |
| return 0; |
| } |
| hw_dbg(hw, "Unable to determine valid NVM bank via EEC - " |
| "reading flash signature\n"); |
| /* fall-thru */ |
| default: |
| /* set bank to 0 in case flash read fails */ |
| *bank = 0; |
| |
| /* Check bank 0 */ |
| ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, |
| &sig_byte); |
| if (ret_val) |
| return ret_val; |
| if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == |
| E1000_ICH_NVM_SIG_VALUE) { |
| *bank = 0; |
| return 0; |
| } |
| |
| /* Check bank 1 */ |
| ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + |
| bank1_offset, |
| &sig_byte); |
| if (ret_val) |
| return ret_val; |
| if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == |
| E1000_ICH_NVM_SIG_VALUE) { |
| *bank = 1; |
| return 0; |
| } |
| |
| hw_dbg(hw, "ERROR: No valid NVM bank present\n"); |
| return -E1000_ERR_NVM; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_read_nvm_ich8lan - Read word(s) from the NVM |
| * @hw: pointer to the HW structure |
| * @offset: The offset (in bytes) of the word(s) to read. |
| * @words: Size of data to read in words |
| * @data: Pointer to the word(s) to read at offset. |
| * |
| * Reads a word(s) from the NVM using the flash access registers. |
| **/ |
| static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, |
| u16 *data) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
| u32 act_offset; |
| s32 ret_val = 0; |
| u32 bank = 0; |
| u16 i, word; |
| |
| if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || |
| (words == 0)) { |
| hw_dbg(hw, "nvm parameter(s) out of bounds\n"); |
| ret_val = -E1000_ERR_NVM; |
| goto out; |
| } |
| |
| nvm->ops.acquire_nvm(hw); |
| |
| ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); |
| if (ret_val) { |
| hw_dbg(hw, "Could not detect valid bank, assuming bank 0\n"); |
| bank = 0; |
| } |
| |
| act_offset = (bank) ? nvm->flash_bank_size : 0; |
| act_offset += offset; |
| |
| ret_val = 0; |
| for (i = 0; i < words; i++) { |
| if ((dev_spec->shadow_ram) && |
| (dev_spec->shadow_ram[offset+i].modified)) { |
| data[i] = dev_spec->shadow_ram[offset+i].value; |
| } else { |
| ret_val = e1000_read_flash_word_ich8lan(hw, |
| act_offset + i, |
| &word); |
| if (ret_val) |
| break; |
| data[i] = word; |
| } |
| } |
| |
| nvm->ops.release_nvm(hw); |
| |
| out: |
| if (ret_val) |
| hw_dbg(hw, "NVM read error: %d\n", ret_val); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_flash_cycle_init_ich8lan - Initialize flash |
| * @hw: pointer to the HW structure |
| * |
| * This function does initial flash setup so that a new read/write/erase cycle |
| * can be started. |
| **/ |
| static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) |
| { |
| union ich8_hws_flash_status hsfsts; |
| s32 ret_val = -E1000_ERR_NVM; |
| s32 i = 0; |
| |
| hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
| |
| /* Check if the flash descriptor is valid */ |
| if (hsfsts.hsf_status.fldesvalid == 0) { |
| hw_dbg(hw, "Flash descriptor invalid. " |
| "SW Sequencing must be used."); |
| return -E1000_ERR_NVM; |
| } |
| |
| /* Clear FCERR and DAEL in hw status by writing 1 */ |
| hsfsts.hsf_status.flcerr = 1; |
| hsfsts.hsf_status.dael = 1; |
| |
| ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); |
| |
| /* |
| * Either we should have a hardware SPI cycle in progress |
| * bit to check against, in order to start a new cycle or |
| * FDONE bit should be changed in the hardware so that it |
| * is 1 after hardware reset, which can then be used as an |
| * indication whether a cycle is in progress or has been |
| * completed. |
| */ |
| |
| if (hsfsts.hsf_status.flcinprog == 0) { |
| /* |
| * There is no cycle running at present, |
| * so we can start a cycle |
| * Begin by setting Flash Cycle Done. |
| */ |
| hsfsts.hsf_status.flcdone = 1; |
| ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); |
| ret_val = 0; |
| } else { |
| /* |
| * otherwise poll for sometime so the current |
| * cycle has a chance to end before giving up. |
| */ |
| for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { |
| hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS); |
| if (hsfsts.hsf_status.flcinprog == 0) { |
| ret_val = 0; |
| break; |
| } |
| udelay(1); |
| } |
| if (ret_val == 0) { |
| /* |
| * Successful in waiting for previous cycle to timeout, |
| * now set the Flash Cycle Done. |
| */ |
| hsfsts.hsf_status.flcdone = 1; |
| ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); |
| } else { |
| hw_dbg(hw, "Flash controller busy, cannot get access"); |
| } |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) |
| * @hw: pointer to the HW structure |
| * @timeout: maximum time to wait for completion |
| * |
| * This function starts a flash cycle and waits for its completion. |
| **/ |
| static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) |
| { |
| union ich8_hws_flash_ctrl hsflctl; |
| union ich8_hws_flash_status hsfsts; |
| s32 ret_val = -E1000_ERR_NVM; |
| u32 i = 0; |
| |
| /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ |
| hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); |
| hsflctl.hsf_ctrl.flcgo = 1; |
| ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); |
| |
| /* wait till FDONE bit is set to 1 */ |
| do { |
| hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
| if (hsfsts.hsf_status.flcdone == 1) |
| break; |
| udelay(1); |
| } while (i++ < timeout); |
| |
| if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) |
| return 0; |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_read_flash_word_ich8lan - Read word from flash |
| * @hw: pointer to the HW structure |
| * @offset: offset to data location |
| * @data: pointer to the location for storing the data |
| * |
| * Reads the flash word at offset into data. Offset is converted |
| * to bytes before read. |
| **/ |
| static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, |
| u16 *data) |
| { |
| /* Must convert offset into bytes. */ |
| offset <<= 1; |
| |
| return e1000_read_flash_data_ich8lan(hw, offset, 2, data); |
| } |
| |
| /** |
| * e1000_read_flash_byte_ich8lan - Read byte from flash |
| * @hw: pointer to the HW structure |
| * @offset: The offset of the byte to read. |
| * @data: Pointer to a byte to store the value read. |
| * |
| * Reads a single byte from the NVM using the flash access registers. |
| **/ |
| static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, |
| u8 *data) |
| { |
| s32 ret_val; |
| u16 word = 0; |
| |
| ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); |
| if (ret_val) |
| return ret_val; |
| |
| *data = (u8)word; |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_read_flash_data_ich8lan - Read byte or word from NVM |
| * @hw: pointer to the HW structure |
| * @offset: The offset (in bytes) of the byte or word to read. |
| * @size: Size of data to read, 1=byte 2=word |
| * @data: Pointer to the word to store the value read. |
| * |
| * Reads a byte or word from the NVM using the flash access registers. |
| **/ |
| static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, |
| u8 size, u16 *data) |
| { |
| union ich8_hws_flash_status hsfsts; |
| union ich8_hws_flash_ctrl hsflctl; |
| u32 flash_linear_addr; |
| u32 flash_data = 0; |
| s32 ret_val = -E1000_ERR_NVM; |
| u8 count = 0; |
| |
| if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) |
| return -E1000_ERR_NVM; |
| |
| flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) + |
| hw->nvm.flash_base_addr; |
| |
| do { |
| udelay(1); |
| /* Steps */ |
| ret_val = e1000_flash_cycle_init_ich8lan(hw); |
| if (ret_val != 0) |
| break; |
| |
| hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); |
| /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ |
| hsflctl.hsf_ctrl.fldbcount = size - 1; |
| hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; |
| ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); |
| |
| ew32flash(ICH_FLASH_FADDR, flash_linear_addr); |
| |
| ret_val = e1000_flash_cycle_ich8lan(hw, |
| ICH_FLASH_READ_COMMAND_TIMEOUT); |
| |
| /* |
| * Check if FCERR is set to 1, if set to 1, clear it |
| * and try the whole sequence a few more times, else |
| * read in (shift in) the Flash Data0, the order is |
| * least significant byte first msb to lsb |
| */ |
| if (ret_val == 0) { |
| flash_data = er32flash(ICH_FLASH_FDATA0); |
| if (size == 1) { |
| *data = (u8)(flash_data & 0x000000FF); |
| } else if (size == 2) { |
| *data = (u16)(flash_data & 0x0000FFFF); |
| } |
| break; |
| } else { |
| /* |
| * If we've gotten here, then things are probably |
| * completely hosed, but if the error condition is |
| * detected, it won't hurt to give it another try... |
| * ICH_FLASH_CYCLE_REPEAT_COUNT times. |
| */ |
| hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
| if (hsfsts.hsf_status.flcerr == 1) { |
| /* Repeat for some time before giving up. */ |
| continue; |
| } else if (hsfsts.hsf_status.flcdone == 0) { |
| hw_dbg(hw, "Timeout error - flash cycle " |
| "did not complete."); |
| break; |
| } |
| } |
| } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_write_nvm_ich8lan - Write word(s) to the NVM |
| * @hw: pointer to the HW structure |
| * @offset: The offset (in bytes) of the word(s) to write. |
| * @words: Size of data to write in words |
| * @data: Pointer to the word(s) to write at offset. |
| * |
| * Writes a byte or word to the NVM using the flash access registers. |
| **/ |
| static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, |
| u16 *data) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
| u16 i; |
| |
| if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || |
| (words == 0)) { |
| hw_dbg(hw, "nvm parameter(s) out of bounds\n"); |
| return -E1000_ERR_NVM; |
| } |
| |
| nvm->ops.acquire_nvm(hw); |
| |
| for (i = 0; i < words; i++) { |
| dev_spec->shadow_ram[offset+i].modified = 1; |
| dev_spec->shadow_ram[offset+i].value = data[i]; |
| } |
| |
| nvm->ops.release_nvm(hw); |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM |
| * @hw: pointer to the HW structure |
| * |
| * The NVM checksum is updated by calling the generic update_nvm_checksum, |
| * which writes the checksum to the shadow ram. The changes in the shadow |
| * ram are then committed to the EEPROM by processing each bank at a time |
| * checking for the modified bit and writing only the pending changes. |
| * After a successful commit, the shadow ram is cleared and is ready for |
| * future writes. |
| **/ |
| static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
| u32 i, act_offset, new_bank_offset, old_bank_offset, bank; |
| s32 ret_val; |
| u16 data; |
| |
| ret_val = e1000e_update_nvm_checksum_generic(hw); |
| if (ret_val) |
| goto out; |
| |
| if (nvm->type != e1000_nvm_flash_sw) |
| goto out; |
| |
| nvm->ops.acquire_nvm(hw); |
| |
| /* |
| * We're writing to the opposite bank so if we're on bank 1, |
| * write to bank 0 etc. We also need to erase the segment that |
| * is going to be written |
| */ |
| ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); |
| if (ret_val) { |
| hw_dbg(hw, "Could not detect valid bank, assuming bank 0\n"); |
| bank = 0; |
| } |
| |
| if (bank == 0) { |
| new_bank_offset = nvm->flash_bank_size; |
| old_bank_offset = 0; |
| ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); |
| if (ret_val) { |
| nvm->ops.release_nvm(hw); |
| goto out; |
| } |
| } else { |
| old_bank_offset = nvm->flash_bank_size; |
| new_bank_offset = 0; |
| ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); |
| if (ret_val) { |
| nvm->ops.release_nvm(hw); |
| goto out; |
| } |
| } |
| |
| for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { |
| /* |
| * Determine whether to write the value stored |
| * in the other NVM bank or a modified value stored |
| * in the shadow RAM |
| */ |
| if (dev_spec->shadow_ram[i].modified) { |
| data = dev_spec->shadow_ram[i].value; |
| } else { |
| ret_val = e1000_read_flash_word_ich8lan(hw, i + |
| old_bank_offset, |
| &data); |
| if (ret_val) |
| break; |
| } |
| |
| /* |
| * If the word is 0x13, then make sure the signature bits |
| * (15:14) are 11b until the commit has completed. |
| * This will allow us to write 10b which indicates the |
| * signature is valid. We want to do this after the write |
| * has completed so that we don't mark the segment valid |
| * while the write is still in progress |
| */ |
| if (i == E1000_ICH_NVM_SIG_WORD) |
| data |= E1000_ICH_NVM_SIG_MASK; |
| |
| /* Convert offset to bytes. */ |
| act_offset = (i + new_bank_offset) << 1; |
| |
| udelay(100); |
| /* Write the bytes to the new bank. */ |
| ret_val = e1000_retry_write_flash_byte_ich8lan(hw, |
| act_offset, |
| (u8)data); |
| if (ret_val) |
| break; |
| |
| udelay(100); |
| ret_val = e1000_retry_write_flash_byte_ich8lan(hw, |
| act_offset + 1, |
| (u8)(data >> 8)); |
| if (ret_val) |
| break; |
| } |
| |
| /* |
| * Don't bother writing the segment valid bits if sector |
| * programming failed. |
| */ |
| if (ret_val) { |
| /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ |
| hw_dbg(hw, "Flash commit failed.\n"); |
| nvm->ops.release_nvm(hw); |
| goto out; |
| } |
| |
| /* |
| * Finally validate the new segment by setting bit 15:14 |
| * to 10b in word 0x13 , this can be done without an |
| * erase as well since these bits are 11 to start with |
| * and we need to change bit 14 to 0b |
| */ |
| act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; |
| ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); |
| if (ret_val) { |
| nvm->ops.release_nvm(hw); |
| goto out; |
| } |
| data &= 0xBFFF; |
| ret_val = e1000_retry_write_flash_byte_ich8lan(hw, |
| act_offset * 2 + 1, |
| (u8)(data >> 8)); |
| if (ret_val) { |
| nvm->ops.release_nvm(hw); |
| goto out; |
| } |
| |
| /* |
| * And invalidate the previously valid segment by setting |
| * its signature word (0x13) high_byte to 0b. This can be |
| * done without an erase because flash erase sets all bits |
| * to 1's. We can write 1's to 0's without an erase |
| */ |
| act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; |
| ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); |
| if (ret_val) { |
| nvm->ops.release_nvm(hw); |
| goto out; |
| } |
| |
| /* Great! Everything worked, we can now clear the cached entries. */ |
| for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { |
| dev_spec->shadow_ram[i].modified = 0; |
| dev_spec->shadow_ram[i].value = 0xFFFF; |
| } |
| |
| nvm->ops.release_nvm(hw); |
| |
| /* |
| * Reload the EEPROM, or else modifications will not appear |
| * until after the next adapter reset. |
| */ |
| e1000e_reload_nvm(hw); |
| msleep(10); |
| |
| out: |
| if (ret_val) |
| hw_dbg(hw, "NVM update error: %d\n", ret_val); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum |
| * @hw: pointer to the HW structure |
| * |
| * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. |
| * If the bit is 0, that the EEPROM had been modified, but the checksum was not |
| * calculated, in which case we need to calculate the checksum and set bit 6. |
| **/ |
| static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 data; |
| |
| /* |
| * Read 0x19 and check bit 6. If this bit is 0, the checksum |
| * needs to be fixed. This bit is an indication that the NVM |
| * was prepared by OEM software and did not calculate the |
| * checksum...a likely scenario. |
| */ |
| ret_val = e1000_read_nvm(hw, 0x19, 1, &data); |
| if (ret_val) |
| return ret_val; |
| |
| if ((data & 0x40) == 0) { |
| data |= 0x40; |
| ret_val = e1000_write_nvm(hw, 0x19, 1, &data); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000e_update_nvm_checksum(hw); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| return e1000e_validate_nvm_checksum_generic(hw); |
| } |
| |
| /** |
| * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only |
| * @hw: pointer to the HW structure |
| * |
| * To prevent malicious write/erase of the NVM, set it to be read-only |
| * so that the hardware ignores all write/erase cycles of the NVM via |
| * the flash control registers. The shadow-ram copy of the NVM will |
| * still be updated, however any updates to this copy will not stick |
| * across driver reloads. |
| **/ |
| void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| union ich8_flash_protected_range pr0; |
| union ich8_hws_flash_status hsfsts; |
| u32 gfpreg; |
| |
| nvm->ops.acquire_nvm(hw); |
| |
| gfpreg = er32flash(ICH_FLASH_GFPREG); |
| |
| /* Write-protect GbE Sector of NVM */ |
| pr0.regval = er32flash(ICH_FLASH_PR0); |
| pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK; |
| pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK); |
| pr0.range.wpe = true; |
| ew32flash(ICH_FLASH_PR0, pr0.regval); |
| |
| /* |
| * Lock down a subset of GbE Flash Control Registers, e.g. |
| * PR0 to prevent the write-protection from being lifted. |
| * Once FLOCKDN is set, the registers protected by it cannot |
| * be written until FLOCKDN is cleared by a hardware reset. |
| */ |
| hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
| hsfsts.hsf_status.flockdn = true; |
| ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval); |
| |
| nvm->ops.release_nvm(hw); |
| } |
| |
| /** |
| * e1000_write_flash_data_ich8lan - Writes bytes to the NVM |
| * @hw: pointer to the HW structure |
| * @offset: The offset (in bytes) of the byte/word to read. |
| * @size: Size of data to read, 1=byte 2=word |
| * @data: The byte(s) to write to the NVM. |
| * |
| * Writes one/two bytes to the NVM using the flash access registers. |
| **/ |
| static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, |
| u8 size, u16 data) |
| { |
| union ich8_hws_flash_status hsfsts; |
| union ich8_hws_flash_ctrl hsflctl; |
| u32 flash_linear_addr; |
| u32 flash_data = 0; |
| s32 ret_val; |
| u8 count = 0; |
| |
| if (size < 1 || size > 2 || data > size * 0xff || |
| offset > ICH_FLASH_LINEAR_ADDR_MASK) |
| return -E1000_ERR_NVM; |
| |
| flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) + |
| hw->nvm.flash_base_addr; |
| |
| do { |
| udelay(1); |
| /* Steps */ |
| ret_val = e1000_flash_cycle_init_ich8lan(hw); |
| if (ret_val) |
| break; |
| |
| hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); |
| /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ |
| hsflctl.hsf_ctrl.fldbcount = size -1; |
| hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; |
| ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); |
| |
| ew32flash(ICH_FLASH_FADDR, flash_linear_addr); |
| |
| if (size == 1) |
| flash_data = (u32)data & 0x00FF; |
| else |
| flash_data = (u32)data; |
| |
| ew32flash(ICH_FLASH_FDATA0, flash_data); |
| |
| /* |
| * check if FCERR is set to 1 , if set to 1, clear it |
| * and try the whole sequence a few more times else done |
| */ |
| ret_val = e1000_flash_cycle_ich8lan(hw, |
| ICH_FLASH_WRITE_COMMAND_TIMEOUT); |
| if (!ret_val) |
| break; |
| |
| /* |
| * If we're here, then things are most likely |
| * completely hosed, but if the error condition |
| * is detected, it won't hurt to give it another |
| * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. |
| */ |
| hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
| if (hsfsts.hsf_status.flcerr == 1) |
| /* Repeat for some time before giving up. */ |
| continue; |
| if (hsfsts.hsf_status.flcdone == 0) { |
| hw_dbg(hw, "Timeout error - flash cycle " |
| "did not complete."); |
| break; |
| } |
| } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_write_flash_byte_ich8lan - Write a single byte to NVM |
| * @hw: pointer to the HW structure |
| * @offset: The index of the byte to read. |
| * @data: The byte to write to the NVM. |
| * |
| * Writes a single byte to the NVM using the flash access registers. |
| **/ |
| static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, |
| u8 data) |
| { |
| u16 word = (u16)data; |
| |
| return e1000_write_flash_data_ich8lan(hw, offset, 1, word); |
| } |
| |
| /** |
| * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM |
| * @hw: pointer to the HW structure |
| * @offset: The offset of the byte to write. |
| * @byte: The byte to write to the NVM. |
| * |
| * Writes a single byte to the NVM using the flash access registers. |
| * Goes through a retry algorithm before giving up. |
| **/ |
| static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, |
| u32 offset, u8 byte) |
| { |
| s32 ret_val; |
| u16 program_retries; |
| |
| ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); |
| if (!ret_val) |
| return ret_val; |
| |
| for (program_retries = 0; program_retries < 100; program_retries++) { |
| hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset); |
| udelay(100); |
| ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); |
| if (!ret_val) |
| break; |
| } |
| if (program_retries == 100) |
| return -E1000_ERR_NVM; |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM |
| * @hw: pointer to the HW structure |
| * @bank: 0 for first bank, 1 for second bank, etc. |
| * |
| * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. |
| * bank N is 4096 * N + flash_reg_addr. |
| **/ |
| static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) |
| { |
| struct e1000_nvm_info *nvm = &hw->nvm; |
| union ich8_hws_flash_status hsfsts; |
| union ich8_hws_flash_ctrl hsflctl; |
| u32 flash_linear_addr; |
| /* bank size is in 16bit words - adjust to bytes */ |
| u32 flash_bank_size = nvm->flash_bank_size * 2; |
| s32 ret_val; |
| s32 count = 0; |
| s32 iteration; |
| s32 sector_size; |
| s32 j; |
| |
| hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
| |
| /* |
| * Determine HW Sector size: Read BERASE bits of hw flash status |
| * register |
| * 00: The Hw sector is 256 bytes, hence we need to erase 16 |
| * consecutive sectors. The start index for the nth Hw sector |
| * can be calculated as = bank * 4096 + n * 256 |
| * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. |
| * The start index for the nth Hw sector can be calculated |
| * as = bank * 4096 |
| * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 |
| * (ich9 only, otherwise error condition) |
| * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 |
| */ |
| switch (hsfsts.hsf_status.berasesz) { |
| case 0: |
| /* Hw sector size 256 */ |
| sector_size = ICH_FLASH_SEG_SIZE_256; |
| iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; |
| break; |
| case 1: |
| sector_size = ICH_FLASH_SEG_SIZE_4K; |
| iteration = 1; |
| break; |
| case 2: |
| sector_size = ICH_FLASH_SEG_SIZE_8K; |
| iteration = 1; |
| break; |
| case 3: |
| sector_size = ICH_FLASH_SEG_SIZE_64K; |
| iteration = 1; |
| break; |
| default: |
| return -E1000_ERR_NVM; |
| } |
| |
| /* Start with the base address, then add the sector offset. */ |
| flash_linear_addr = hw->nvm.flash_base_addr; |
| flash_linear_addr += (bank) ? flash_bank_size : 0; |
| |
| for (j = 0; j < iteration ; j++) { |
| do { |
| /* Steps */ |
| ret_val = e1000_flash_cycle_init_ich8lan(hw); |
| if (ret_val) |
| return ret_val; |
| |
| /* |
| * Write a value 11 (block Erase) in Flash |
| * Cycle field in hw flash control |
| */ |
| hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); |
| hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; |
| ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); |
| |
| /* |
| * Write the last 24 bits of an index within the |
| * block into Flash Linear address field in Flash |
| * Address. |
| */ |
| flash_linear_addr += (j * sector_size); |
| ew32flash(ICH_FLASH_FADDR, flash_linear_addr); |
| |
| ret_val = e1000_flash_cycle_ich8lan(hw, |
| ICH_FLASH_ERASE_COMMAND_TIMEOUT); |
| if (ret_val == 0) |
| break; |
| |
| /* |
| * Check if FCERR is set to 1. If 1, |
| * clear it and try the whole sequence |
| * a few more times else Done |
| */ |
| hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); |
| if (hsfsts.hsf_status.flcerr == 1) |
| /* repeat for some time before giving up */ |
| continue; |
| else if (hsfsts.hsf_status.flcdone == 0) |
| return ret_val; |
| } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_valid_led_default_ich8lan - Set the default LED settings |
| * @hw: pointer to the HW structure |
| * @data: Pointer to the LED settings |
| * |
| * Reads the LED default settings from the NVM to data. If the NVM LED |
| * settings is all 0's or F's, set the LED default to a valid LED default |
| * setting. |
| **/ |
| static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) |
| { |
| s32 ret_val; |
| |
| ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); |
| if (ret_val) { |
| hw_dbg(hw, "NVM Read Error\n"); |
| return ret_val; |
| } |
| |
| if (*data == ID_LED_RESERVED_0000 || |
| *data == ID_LED_RESERVED_FFFF) |
| *data = ID_LED_DEFAULT_ICH8LAN; |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_id_led_init_pchlan - store LED configurations |
| * @hw: pointer to the HW structure |
| * |
| * PCH does not control LEDs via the LEDCTL register, rather it uses |
| * the PHY LED configuration register. |
| * |
| * PCH also does not have an "always on" or "always off" mode which |
| * complicates the ID feature. Instead of using the "on" mode to indicate |
| * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()), |
| * use "link_up" mode. The LEDs will still ID on request if there is no |
| * link based on logic in e1000_led_[on|off]_pchlan(). |
| **/ |
| static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| s32 ret_val; |
| const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; |
| const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; |
| u16 data, i, temp, shift; |
| |
| /* Get default ID LED modes */ |
| ret_val = hw->nvm.ops.valid_led_default(hw, &data); |
| if (ret_val) |
| goto out; |
| |
| mac->ledctl_default = er32(LEDCTL); |
| mac->ledctl_mode1 = mac->ledctl_default; |
| mac->ledctl_mode2 = mac->ledctl_default; |
| |
| for (i = 0; i < 4; i++) { |
| temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; |
| shift = (i * 5); |
| switch (temp) { |
| case ID_LED_ON1_DEF2: |
| case ID_LED_ON1_ON2: |
| case ID_LED_ON1_OFF2: |
| mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); |
| mac->ledctl_mode1 |= (ledctl_on << shift); |
| break; |
| case ID_LED_OFF1_DEF2: |
| case ID_LED_OFF1_ON2: |
| case ID_LED_OFF1_OFF2: |
| mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); |
| mac->ledctl_mode1 |= (ledctl_off << shift); |
| break; |
| default: |
| /* Do nothing */ |
| break; |
| } |
| switch (temp) { |
| case ID_LED_DEF1_ON2: |
| case ID_LED_ON1_ON2: |
| case ID_LED_OFF1_ON2: |
| mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); |
| mac->ledctl_mode2 |= (ledctl_on << shift); |
| break; |
| case ID_LED_DEF1_OFF2: |
| case ID_LED_ON1_OFF2: |
| case ID_LED_OFF1_OFF2: |
| mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); |
| mac->ledctl_mode2 |= (ledctl_off << shift); |
| break; |
| default: |
| /* Do nothing */ |
| break; |
| } |
| } |
| |
| out: |
| return ret_val; |
| } |
| |
| /** |
| * e1000_get_bus_info_ich8lan - Get/Set the bus type and width |
| * @hw: pointer to the HW structure |
| * |
| * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability |
| * register, so the the bus width is hard coded. |
| **/ |
| static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) |
| { |
| struct e1000_bus_info *bus = &hw->bus; |
| s32 ret_val; |
| |
| ret_val = e1000e_get_bus_info_pcie(hw); |
| |
| /* |
| * ICH devices are "PCI Express"-ish. They have |
| * a configuration space, but do not contain |
| * PCI Express Capability registers, so bus width |
| * must be hardcoded. |
| */ |
| if (bus->width == e1000_bus_width_unknown) |
| bus->width = e1000_bus_width_pcie_x1; |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_reset_hw_ich8lan - Reset the hardware |
| * @hw: pointer to the HW structure |
| * |
| * Does a full reset of the hardware which includes a reset of the PHY and |
| * MAC. |
| **/ |
| static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) |
| { |
| u16 reg; |
| u32 ctrl, icr, kab; |
| s32 ret_val; |
| |
| /* |
| * Prevent the PCI-E bus from sticking if there is no TLP connection |
| * on the last TLP read/write transaction when MAC is reset. |
| */ |
| ret_val = e1000e_disable_pcie_master(hw); |
| if (ret_val) { |
| hw_dbg(hw, "PCI-E Master disable polling has failed.\n"); |
| } |
| |
| hw_dbg(hw, "Masking off all interrupts\n"); |
| ew32(IMC, 0xffffffff); |
| |
| /* |
| * Disable the Transmit and Receive units. Then delay to allow |
| * any pending transactions to complete before we hit the MAC |
| * with the global reset. |
| */ |
| ew32(RCTL, 0); |
| ew32(TCTL, E1000_TCTL_PSP); |
| e1e_flush(); |
| |
| msleep(10); |
| |
| /* Workaround for ICH8 bit corruption issue in FIFO memory */ |
| if (hw->mac.type == e1000_ich8lan) { |
| /* Set Tx and Rx buffer allocation to 8k apiece. */ |
| ew32(PBA, E1000_PBA_8K); |
| /* Set Packet Buffer Size to 16k. */ |
| ew32(PBS, E1000_PBS_16K); |
| } |
| |
| ctrl = er32(CTRL); |
| |
| if (!e1000_check_reset_block(hw)) { |
| /* Clear PHY Reset Asserted bit */ |
| if (hw->mac.type >= e1000_pchlan) { |
| u32 status = er32(STATUS); |
| ew32(STATUS, status & ~E1000_STATUS_PHYRA); |
| } |
| |
| /* |
| * PHY HW reset requires MAC CORE reset at the same |
| * time to make sure the interface between MAC and the |
| * external PHY is reset. |
| */ |
| ctrl |= E1000_CTRL_PHY_RST; |
| } |
| ret_val = e1000_acquire_swflag_ich8lan(hw); |
| /* Whether or not the swflag was acquired, we need to reset the part */ |
| hw_dbg(hw, "Issuing a global reset to ich8lan\n"); |
| ew32(CTRL, (ctrl | E1000_CTRL_RST)); |
| msleep(20); |
| |
| if (!ret_val) |
| e1000_release_swflag_ich8lan(hw); |
| |
| if (ctrl & E1000_CTRL_PHY_RST) |
| ret_val = hw->phy.ops.get_cfg_done(hw); |
| |
| if (hw->mac.type >= e1000_ich10lan) { |
| e1000_lan_init_done_ich8lan(hw); |
| } else { |
| ret_val = e1000e_get_auto_rd_done(hw); |
| if (ret_val) { |
| /* |
| * When auto config read does not complete, do not |
| * return with an error. This can happen in situations |
| * where there is no eeprom and prevents getting link. |
| */ |
| hw_dbg(hw, "Auto Read Done did not complete\n"); |
| } |
| } |
| /* Dummy read to clear the phy wakeup bit after lcd reset */ |
| if (hw->mac.type == e1000_pchlan) |
| e1e_rphy(hw, BM_WUC, ®); |
| |
| /* |
| * For PCH, this write will make sure that any noise |
| * will be detected as a CRC error and be dropped rather than show up |
| * as a bad packet to the DMA engine. |
| */ |
| if (hw->mac.type == e1000_pchlan) |
| ew32(CRC_OFFSET, 0x65656565); |
| |
| ew32(IMC, 0xffffffff); |
| icr = er32(ICR); |
| |
| kab = er32(KABGTXD); |
| kab |= E1000_KABGTXD_BGSQLBIAS; |
| ew32(KABGTXD, kab); |
| |
| if (hw->mac.type == e1000_pchlan) |
| ret_val = e1000_hv_phy_workarounds_ich8lan(hw); |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_init_hw_ich8lan - Initialize the hardware |
| * @hw: pointer to the HW structure |
| * |
| * Prepares the hardware for transmit and receive by doing the following: |
| * - initialize hardware bits |
| * - initialize LED identification |
| * - setup receive address registers |
| * - setup flow control |
| * - setup transmit descriptors |
| * - clear statistics |
| **/ |
| static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) |
| { |
| struct e1000_mac_info *mac = &hw->mac; |
| u32 ctrl_ext, txdctl, snoop; |
| s32 ret_val; |
| u16 i; |
| |
| e1000_initialize_hw_bits_ich8lan(hw); |
| |
| /* Initialize identification LED */ |
| ret_val = mac->ops.id_led_init(hw); |
| if (ret_val) { |
| hw_dbg(hw, "Error initializing identification LED\n"); |
| return ret_val; |
| } |
| |
| /* Setup the receive address. */ |
| e1000e_init_rx_addrs(hw, mac->rar_entry_count); |
| |
| /* Zero out the Multicast HASH table */ |
| hw_dbg(hw, "Zeroing the MTA\n"); |
| for (i = 0; i < mac->mta_reg_count; i++) |
| E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); |
| |
| /* |
| * The 82578 Rx buffer will stall if wakeup is enabled in host and |
| * the ME. Reading the BM_WUC register will clear the host wakeup bit. |
| * Reset the phy after disabling host wakeup to reset the Rx buffer. |
| */ |
| if (hw->phy.type == e1000_phy_82578) { |
| hw->phy.ops.read_phy_reg(hw, BM_WUC, &i); |
| ret_val = e1000_phy_hw_reset_ich8lan(hw); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| /* Setup link and flow control */ |
| ret_val = e1000_setup_link_ich8lan(hw); |
| |
| /* Set the transmit descriptor write-back policy for both queues */ |
| txdctl = er32(TXDCTL(0)); |
| txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | |
| E1000_TXDCTL_FULL_TX_DESC_WB; |
| txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) | |
| E1000_TXDCTL_MAX_TX_DESC_PREFETCH; |
| ew32(TXDCTL(0), txdctl); |
| txdctl = er32(TXDCTL(1)); |
| txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | |
| E1000_TXDCTL_FULL_TX_DESC_WB; |
| txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) | |
| E1000_TXDCTL_MAX_TX_DESC_PREFETCH; |
| ew32(TXDCTL(1), txdctl); |
| |
| /* |
| * ICH8 has opposite polarity of no_snoop bits. |
| * By default, we should use snoop behavior. |
| */ |
| if (mac->type == e1000_ich8lan) |
| snoop = PCIE_ICH8_SNOOP_ALL; |
| else |
| snoop = (u32) ~(PCIE_NO_SNOOP_ALL); |
| e1000e_set_pcie_no_snoop(hw, snoop); |
| |
| ctrl_ext = er32(CTRL_EXT); |
| ctrl_ext |= E1000_CTRL_EXT_RO_DIS; |
| ew32(CTRL_EXT, ctrl_ext); |
| |
| /* |
| * Clear all of the statistics registers (clear on read). It is |
| * important that we do this after we have tried to establish link |
| * because the symbol error count will increment wildly if there |
| * is no link. |
| */ |
| e1000_clear_hw_cntrs_ich8lan(hw); |
| |
| return 0; |
| } |
| /** |
| * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits |
| * @hw: pointer to the HW structure |
| * |
| * Sets/Clears required hardware bits necessary for correctly setting up the |
| * hardware for transmit and receive. |
| **/ |
| static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) |
| { |
| u32 reg; |
| |
| /* Extended Device Control */ |
| reg = er32(CTRL_EXT); |
| reg |= (1 << 22); |
| /* Enable PHY low-power state when MAC is at D3 w/o WoL */ |
| if (hw->mac.type >= e1000_pchlan) |
| reg |= E1000_CTRL_EXT_PHYPDEN; |
| ew32(CTRL_EXT, reg); |
| |
| /* Transmit Descriptor Control 0 */ |
| reg = er32(TXDCTL(0)); |
| reg |= (1 << 22); |
| ew32(TXDCTL(0), reg); |
| |
| /* Transmit Descriptor Control 1 */ |
| reg = er32(TXDCTL(1)); |
| reg |= (1 << 22); |
| ew32(TXDCTL(1), reg); |
| |
| /* Transmit Arbitration Control 0 */ |
| reg = er32(TARC(0)); |
| if (hw->mac.type == e1000_ich8lan) |
| reg |= (1 << 28) | (1 << 29); |
| reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27); |
| ew32(TARC(0), reg); |
| |
| /* Transmit Arbitration Control 1 */ |
| reg = er32(TARC(1)); |
| if (er32(TCTL) & E1000_TCTL_MULR) |
| reg &= ~(1 << 28); |
| else |
| reg |= (1 << 28); |
| reg |= (1 << 24) | (1 << 26) | (1 << 30); |
| ew32(TARC(1), reg); |
| |
| /* Device Status */ |
| if (hw->mac.type == e1000_ich8lan) { |
| reg = er32(STATUS); |
| reg &= ~(1 << 31); |
| ew32(STATUS, reg); |
| } |
| } |
| |
| /** |
| * e1000_setup_link_ich8lan - Setup flow control and link settings |
| * @hw: pointer to the HW structure |
| * |
| * Determines which flow control settings to use, then configures flow |
| * control. Calls the appropriate media-specific link configuration |
| * function. Assuming the adapter has a valid link partner, a valid link |
| * should be established. Assumes the hardware has previously been reset |
| * and the transmitter and receiver are not enabled. |
| **/ |
| static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| |
| if (e1000_check_reset_block(hw)) |
| return 0; |
| |
| /* |
| * ICH parts do not have a word in the NVM to determine |
| * the default flow control setting, so we explicitly |
| * set it to full. |
| */ |
| if (hw->fc.requested_mode == e1000_fc_default) { |
| /* Workaround h/w hang when Tx flow control enabled */ |
| if (hw->mac.type == e1000_pchlan) |
| hw->fc.requested_mode = e1000_fc_rx_pause; |
| else |
| hw->fc.requested_mode = e1000_fc_full; |
| } |
| |
| /* |
| * Save off the requested flow control mode for use later. Depending |
| * on the link partner's capabilities, we may or may not use this mode. |
| */ |
| hw->fc.current_mode = hw->fc.requested_mode; |
| |
| hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", |
| hw->fc.current_mode); |
| |
| /* Continue to configure the copper link. */ |
| ret_val = e1000_setup_copper_link_ich8lan(hw); |
| if (ret_val) |
| return ret_val; |
| |
| ew32(FCTTV, hw->fc.pause_time); |
| if ((hw->phy.type == e1000_phy_82578) || |
| (hw->phy.type == e1000_phy_82577)) { |
| ret_val = hw->phy.ops.write_phy_reg(hw, |
| PHY_REG(BM_PORT_CTRL_PAGE, 27), |
| hw->fc.pause_time); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| return e1000e_set_fc_watermarks(hw); |
| } |
| |
| /** |
| * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface |
| * @hw: pointer to the HW structure |
| * |
| * Configures the kumeran interface to the PHY to wait the appropriate time |
| * when polling the PHY, then call the generic setup_copper_link to finish |
| * configuring the copper link. |
| **/ |
| static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) |
| { |
| u32 ctrl; |
| s32 ret_val; |
| u16 reg_data; |
| |
| ctrl = er32(CTRL); |
| ctrl |= E1000_CTRL_SLU; |
| ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| ew32(CTRL, ctrl); |
| |
| /* |
| * Set the mac to wait the maximum time between each iteration |
| * and increase the max iterations when polling the phy; |
| * this fixes erroneous timeouts at 10Mbps. |
| */ |
| ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF); |
| if (ret_val) |
| return ret_val; |
| ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data); |
| if (ret_val) |
| return ret_val; |
| reg_data |= 0x3F; |
| ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data); |
| if (ret_val) |
| return ret_val; |
| |
| switch (hw->phy.type) { |
| case e1000_phy_igp_3: |
| ret_val = e1000e_copper_link_setup_igp(hw); |
| if (ret_val) |
| return ret_val; |
| break; |
| case e1000_phy_bm: |
| case e1000_phy_82578: |
| ret_val = e1000e_copper_link_setup_m88(hw); |
| if (ret_val) |
| return ret_val; |
| break; |
| case e1000_phy_82577: |
| ret_val = e1000_copper_link_setup_82577(hw); |
| if (ret_val) |
| return ret_val; |
| break; |
| case e1000_phy_ife: |
| ret_val = hw->phy.ops.read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, |
| ®_data); |
| if (ret_val) |
| return ret_val; |
| |
| reg_data &= ~IFE_PMC_AUTO_MDIX; |
| |
| switch (hw->phy.mdix) { |
| case 1: |
| reg_data &= ~IFE_PMC_FORCE_MDIX; |
| break; |
| case 2: |
| reg_data |= IFE_PMC_FORCE_MDIX; |
| break; |
| case 0: |
| default: |
| reg_data |= IFE_PMC_AUTO_MDIX; |
| break; |
| } |
| ret_val = hw->phy.ops.write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, |
| reg_data); |
| if (ret_val) |
| return ret_val; |
| break; |
| default: |
| break; |
| } |
| return e1000e_setup_copper_link(hw); |
| } |
| |
| /** |
| * e1000_get_link_up_info_ich8lan - Get current link speed and duplex |
| * @hw: pointer to the HW structure |
| * @speed: pointer to store current link speed |
| * @duplex: pointer to store the current link duplex |
| * |
| * Calls the generic get_speed_and_duplex to retrieve the current link |
| * information and then calls the Kumeran lock loss workaround for links at |
| * gigabit speeds. |
| **/ |
| static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, |
| u16 *duplex) |
| { |
| s32 ret_val; |
| |
| ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex); |
| if (ret_val) |
| return ret_val; |
| |
| if ((hw->mac.type == e1000_pchlan) && (*speed == SPEED_1000)) { |
| ret_val = e1000e_write_kmrn_reg(hw, |
| E1000_KMRNCTRLSTA_K1_CONFIG, |
| E1000_KMRNCTRLSTA_K1_DISABLE); |
| if (ret_val) |
| return ret_val; |
| } |
| |
| if ((hw->mac.type == e1000_ich8lan) && |
| (hw->phy.type == e1000_phy_igp_3) && |
| (*speed == SPEED_1000)) { |
| ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); |
| } |
| |
| return ret_val; |
| } |
| |
| /** |
| * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround |
| * @hw: pointer to the HW structure |
| * |
| * Work-around for 82566 Kumeran PCS lock loss: |
| * On link status change (i.e. PCI reset, speed change) and link is up and |
| * speed is gigabit- |
| * 0) if workaround is optionally disabled do nothing |
| * 1) wait 1ms for Kumeran link to come up |
| * 2) check Kumeran Diagnostic register PCS lock loss bit |
| * 3) if not set the link is locked (all is good), otherwise... |
| * 4) reset the PHY |
| * 5) repeat up to 10 times |
| * Note: this is only called for IGP3 copper when speed is 1gb. |
| **/ |
| static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) |
| { |
| struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
| u32 phy_ctrl; |
| s32 ret_val; |
| u16 i, data; |
| bool link; |
| |
| if (!dev_spec->kmrn_lock_loss_workaround_enabled) |
| return 0; |
| |
| /* |
| * Make sure link is up before proceeding. If not just return. |
| * Attempting this while link is negotiating fouled up link |
| * stability |
| */ |
| ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); |
| if (!link) |
| return 0; |
| |
| for (i = 0; i < 10; i++) { |
| /* read once to clear */ |
| ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); |
| if (ret_val) |
| return ret_val; |
| /* and again to get new status */ |
| ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); |
| if (ret_val) |
| return ret_val; |
| |
| /* check for PCS lock */ |
| if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) |
| return 0; |
| |
| /* Issue PHY reset */ |
| e1000_phy_hw_reset(hw); |
| mdelay(5); |
| } |
| /* Disable GigE link negotiation */ |
| phy_ctrl = er32(PHY_CTRL); |
| phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | |
| E1000_PHY_CTRL_NOND0A_GBE_DISABLE); |
| ew32(PHY_CTRL, phy_ctrl); |
| |
| /* |
| * Call gig speed drop workaround on Gig disable before accessing |
| * any PHY registers |
| */ |
| e1000e_gig_downshift_workaround_ich8lan(hw); |
| |
| /* unable to acquire PCS lock */ |
| return -E1000_ERR_PHY; |
| } |
| |
| /** |
| * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state |
| * @hw: pointer to the HW structure |
| * @state: boolean value used to set the current Kumeran workaround state |
| * |
| * If ICH8, set the current Kumeran workaround state (enabled - TRUE |
| * /disabled - FALSE). |
| **/ |
| void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, |
| bool state) |
| { |
| struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; |
| |
| if (hw->mac.type != e1000_ich8lan) { |
| hw_dbg(hw, "Workaround applies to ICH8 only.\n"); |
| return; |
| } |
| |
| dev_spec->kmrn_lock_loss_workaround_enabled = state; |
| } |
| |
| /** |
| * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 |
| * @hw: pointer to the HW structure |
| * |
| * Workaround for 82566 power-down on D3 entry: |
| * 1) disable gigabit link |
| * 2) write VR power-down enable |
| * 3) read it back |
| * Continue if successful, else issue LCD reset and repeat |
| **/ |
| void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) |
| { |
| u32 reg; |
| u16 data; |
| u8 retry = 0; |
| |
| if (hw->phy.type != e1000_phy_igp_3) |
| return; |
| |
| /* Try the workaround twice (if needed) */ |
| do { |
| /* Disable link */ |
| reg = er32(PHY_CTRL); |
| reg |= (E1000_PHY_CTRL_GBE_DISABLE | |
| E1000_PHY_CTRL_NOND0A_GBE_DISABLE); |
| ew32(PHY_CTRL, reg); |
| |
| /* |
| * Call gig speed drop workaround on Gig disable before |
| * accessing any PHY registers |
| */ |
| if (hw->mac.type == e1000_ich8lan) |
| e1000e_gig_downshift_workaround_ich8lan(hw); |
| |
| /* Write VR power-down enable */ |
| e1e_rphy(hw, IGP3_VR_CTRL, &data); |
| data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; |
| e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN); |
| |
| /* Read it back and test */ |
| e1e_rphy(hw, IGP3_VR_CTRL, &data); |
| data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; |
| if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) |
| break; |
| |
| /* Issue PHY reset and repeat at most one more time */ |
| reg = er32(CTRL); |
| ew32(CTRL, reg | E1000_CTRL_PHY_RST); |
| retry++; |
| } while (retry); |
| } |
| |
| /** |
| * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working |
| * @hw: pointer to the HW structure |
| * |
| * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), |
| * LPLU, Gig disable, MDIC PHY reset): |
| * 1) Set Kumeran Near-end loopback |
| * 2) Clear Kumeran Near-end loopback |
| * Should only be called for ICH8[m] devices with IGP_3 Phy. |
| **/ |
| void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) |
| { |
| s32 ret_val; |
| u16 reg_data; |
| |
| if ((hw->mac.type != e1000_ich8lan) || |
| (hw->phy.type != e1000_phy_igp_3)) |
| return; |
| |
| ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, |
| ®_data); |
| if (ret_val) |
| return; |
| reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; |
| ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, |
| reg_data); |
| if (ret_val) |
| return; |
| reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; |
| ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, |
| reg_data); |
| } |
| |
| /** |
| * e1000e_disable_gig_wol_ich8lan - disable gig during WoL |
| * @hw: pointer to the HW structure |
| * |
| * During S0 to Sx transition, it is possible the link remains at gig |
| * instead of negotiating to a lower speed. Before going to Sx, set |
| * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation |
| * to a lower speed. |
| * |
| * Should only be called for applicable parts. |
| **/ |
| void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw) |
| { |
| u32 phy_ctrl; |
| |
| switch (hw->mac.type) { |
| case e1000_ich9lan: |
| case e1000_ich10lan: |
| case e1000_pchlan: |
| phy_ctrl = er32(PHY_CTRL); |
| phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | |
| E1000_PHY_CTRL_GBE_DISABLE; |
| ew32(PHY_CTRL, phy_ctrl); |
| |
| if (hw->mac.type == e1000_pchlan) |
| e1000_phy_hw_reset_ich8lan(hw); |
| default: |
| break; |
| } |
| |
| return; |
| } |
| |
| /** |
| * e1000_cleanup_led_ich8lan - Restore the default LED operation |
| * @hw: pointer to the HW structure |
| * |
| * Return the LED back to the default configuration. |
| **/ |
| static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) |
| { |
| if (hw->phy.type == e1000_phy_ife) |
| return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); |
| |
| ew32(LEDCTL, hw->mac.ledctl_default); |
| return 0; |
| } |
| |
| /** |
| * e1000_led_on_ich8lan - Turn LEDs on |
| * @hw: pointer to the HW structure |
| * |
| * Turn on the LEDs. |
| **/ |
| static s32 e1000_led_on_ich8lan(struct e1000_hw *hw) |
| { |
| if (hw->phy.type == e1000_phy_ife) |
| return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, |
| (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); |
| |
| ew32(LEDCTL, hw->mac.ledctl_mode2); |
| return 0; |
| } |
| |
| /** |
| * e1000_led_off_ich8lan - Turn LEDs off |
| * @hw: pointer to the HW structure |
| * |
| * Turn off the LEDs. |
| **/ |
| static s32 e1000_led_off_ich8lan(struct e1000_hw *hw) |
| { |
| if (hw->phy.type == e1000_phy_ife) |
| return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, |
| (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF)); |
| |
| ew32(LEDCTL, hw->mac.ledctl_mode1); |
| return 0; |
| } |
| |
| /** |
| * e1000_setup_led_pchlan - Configures SW controllable LED |
| * @hw: pointer to the HW structure |
| * |
| * This prepares the SW controllable LED for use. |
| **/ |
| static s32 e1000_setup_led_pchlan(struct e1000_hw *hw) |
| { |
| return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, |
| (u16)hw->mac.ledctl_mode1); |
| } |
| |
| /** |
| * e1000_cleanup_led_pchlan - Restore the default LED operation |
| * @hw: pointer to the HW structure |
| * |
| * Return the LED back to the default configuration. |
| **/ |
| static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw) |
| { |
| return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, |
| (u16)hw->mac.ledctl_default); |
| } |
| |
| /** |
| * e1000_led_on_pchlan - Turn LEDs on |
| * @hw: pointer to the HW structure |
| * |
| * Turn on the LEDs. |
| **/ |
| static s32 e1000_led_on_pchlan(struct e1000_hw *hw) |
| { |
| u16 data = (u16)hw->mac.ledctl_mode2; |
| u32 i, led; |
| |
| /* |
| * If no link, then turn LED on by setting the invert bit |
| * for each LED that's mode is "link_up" in ledctl_mode2. |
| */ |
| if (!(er32(STATUS) & E1000_STATUS_LU)) { |
| for (i = 0; i < 3; i++) { |
| led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; |
| if ((led & E1000_PHY_LED0_MODE_MASK) != |
| E1000_LEDCTL_MODE_LINK_UP) |
| continue; |
| if (led & E1000_PHY_LED0_IVRT) |
| data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); |
| else |
| data |= (E1000_PHY_LED0_IVRT << (i * 5)); |
| } |
| } |
| |
| return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, data); |
| } |
| |
| /** |
| * e1000_led_off_pchlan - Turn LEDs off |
| * @hw: pointer to the HW structure |
| * |
| * Turn off the LEDs. |
| **/ |
| static s32 e1000_led_off_pchlan(struct e1000_hw *hw) |
| { |
| u16 data = (u16)hw->mac.ledctl_mode1; |
| u32 i, led; |
| |
| /* |
| * If no link, then turn LED off by clearing the invert bit |
| * for each LED that's mode is "link_up" in ledctl_mode1. |
| */ |
| if (!(er32(STATUS) & E1000_STATUS_LU)) { |
| for (i = 0; i < 3; i++) { |
| led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; |
| if ((led & E1000_PHY_LED0_MODE_MASK) != |
| E1000_LEDCTL_MODE_LINK_UP) |
| continue; |
| if (led & E1000_PHY_LED0_IVRT) |
| data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); |
| else |
| data |= (E1000_PHY_LED0_IVRT << (i * 5)); |
| } |
| } |
| |
| return hw->phy.ops.write_phy_reg(hw, HV_LED_CONFIG, data); |
| } |
| |
| /** |
| * e1000_get_cfg_done_ich8lan - Read config done bit |
| * @hw: pointer to the HW structure |
| * |
| * Read the management control register for the config done bit for |
| * completion status. NOTE: silicon which is EEPROM-less will fail trying |
| * to read the config done bit, so an error is *ONLY* logged and returns |
| * 0. If we were to return with error, EEPROM-less silicon |
| * would not be able to be reset or change link. |
| **/ |
| static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) |
| { |
| u32 bank = 0; |
| |
| if (hw->mac.type >= e1000_pchlan) { |
| u32 status = er32(STATUS); |
| |
| if (status & E1000_STATUS_PHYRA) |
| ew32(STATUS, status & ~E1000_STATUS_PHYRA); |
| else |
| hw_dbg(hw, |
| "PHY Reset Asserted not set - needs delay\n"); |
| } |
| |
| e1000e_get_cfg_done(hw); |
| |
| /* If EEPROM is not marked present, init the IGP 3 PHY manually */ |
| if ((hw->mac.type != e1000_ich10lan) && |
| (hw->mac.type != e1000_pchlan)) { |
| if (((er32(EECD) & E1000_EECD_PRES) == 0) && |
| (hw->phy.type == e1000_phy_igp_3)) { |
| e1000e_phy_init_script_igp3(hw); |
| } |
| } else { |
| if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { |
| /* Maybe we should do a basic PHY config */ |
| hw_dbg(hw, "EEPROM not present\n"); |
| return -E1000_ERR_CONFIG; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters |
| * @hw: pointer to the HW structure |
| * |
| * Clears hardware counters specific to the silicon family and calls |
| * clear_hw_cntrs_generic to clear all general purpose counters. |
| **/ |
| static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) |
| { |
| u32 temp; |
| u16 phy_data; |
| |
| e1000e_clear_hw_cntrs_base(hw); |
| |
| temp = er32(ALGNERRC); |
| temp = er32(RXERRC); |
| temp = er32(TNCRS); |
| temp = er32(CEXTERR); |
| temp = er32(TSCTC); |
| temp = er32(TSCTFC); |
| |
| temp = er32(MGTPRC); |
| temp = er32(MGTPDC); |
| temp = er32(MGTPTC); |
| |
| temp = er32(IAC); |
| temp = er32(ICRXOC); |
| |
| /* Clear PHY statistics registers */ |
| if ((hw->phy.type == e1000_phy_82578) || |
| (hw->phy.type == e1000_phy_82577)) { |
| hw->phy.ops.read_phy_reg(hw, HV_SCC_UPPER, &phy_data); |
| hw->phy.ops.read_phy_reg(hw, HV_SCC_LOWER, &phy_data); |
| hw->phy.ops.read_phy_reg(hw, HV_ECOL_UPPER, &phy_data); |
| hw->phy.ops.read_phy_reg(hw, HV_ECOL_LOWER, &phy_data); |
| hw->phy.ops.read_phy_reg(hw, HV_MCC_UPPER, &phy_data); |
| hw->phy.ops.read_phy_reg(hw, HV_MCC_LOWER, &phy_data); |
| hw->phy.ops.read_phy_reg(hw, HV_LATECOL_UPPER, &phy_data); |
| hw->phy.ops.read_phy_reg(hw, HV_LATECOL_LOWER, &phy_data); |
| hw->phy.ops.read_phy_reg(hw, HV_COLC_UPPER, &phy_data); |
| hw->phy.ops.read_phy_reg(hw, HV_COLC_LOWER, &phy_data); |
| hw->phy.ops.read_phy_reg(hw, HV_DC_UPPER, &phy_data); |
| hw->phy.ops.read_phy_reg(hw, HV_DC_LOWER, &phy_data); |
| hw->phy.ops.read_phy_reg(hw, HV_TNCRS_UPPER, &phy_data); |
| hw->phy.ops.read_phy_reg(hw, HV_TNCRS_LOWER, &phy_data); |
| } |
| } |
| |
| static struct e1000_mac_operations ich8_mac_ops = { |
| .id_led_init = e1000e_id_led_init, |
| .check_mng_mode = e1000_check_mng_mode_ich8lan, |
| .check_for_link = e1000_check_for_copper_link_ich8lan, |
| /* cleanup_led dependent on mac type */ |
| .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan, |
| .get_bus_info = e1000_get_bus_info_ich8lan, |
| .get_link_up_info = e1000_get_link_up_info_ich8lan, |
| /* led_on dependent on mac type */ |
| /* led_off dependent on mac type */ |
| .update_mc_addr_list = e1000e_update_mc_addr_list_generic, |
| .reset_hw = e1000_reset_hw_ich8lan, |
| .init_hw = e1000_init_hw_ich8lan, |
| .setup_link = e1000_setup_link_ich8lan, |
| .setup_physical_interface= e1000_setup_copper_link_ich8lan, |
| /* id_led_init dependent on mac type */ |
| }; |
| |
| static struct e1000_phy_operations ich8_phy_ops = { |
| .acquire_phy = e1000_acquire_swflag_ich8lan, |
| .check_reset_block = e1000_check_reset_block_ich8lan, |
| .commit_phy = NULL, |
| .force_speed_duplex = e1000_phy_force_speed_duplex_ich8lan, |
| .get_cfg_done = e1000_get_cfg_done_ich8lan, |
| .get_cable_length = e1000e_get_cable_length_igp_2, |
| .get_phy_info = e1000_get_phy_info_ich8lan, |
| .read_phy_reg = e1000e_read_phy_reg_igp, |
| .release_phy = e1000_release_swflag_ich8lan, |
| .reset_phy = e1000_phy_hw_reset_ich8lan, |
| .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan, |
| .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan, |
| .write_phy_reg = e1000e_write_phy_reg_igp, |
| }; |
| |
| static struct e1000_nvm_operations ich8_nvm_ops = { |
| .acquire_nvm = e1000_acquire_nvm_ich8lan, |
| .read_nvm = e1000_read_nvm_ich8lan, |
| .release_nvm = e1000_release_nvm_ich8lan, |
| .update_nvm = e1000_update_nvm_checksum_ich8lan, |
| .valid_led_default = e1000_valid_led_default_ich8lan, |
| .validate_nvm = e1000_validate_nvm_checksum_ich8lan, |
| .write_nvm = e1000_write_nvm_ich8lan, |
| }; |
| |
| struct e1000_info e1000_ich8_info = { |
| .mac = e1000_ich8lan, |
| .flags = FLAG_HAS_WOL |
| | FLAG_IS_ICH |
| | FLAG_RX_CSUM_ENABLED |
| | FLAG_HAS_CTRLEXT_ON_LOAD |
| | FLAG_HAS_AMT |
| | FLAG_HAS_FLASH |
| | FLAG_APME_IN_WUC, |
| .pba = 8, |
| .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN, |
| .get_variants = e1000_get_variants_ich8lan, |
| .mac_ops = &ich8_mac_ops, |
| .phy_ops = &ich8_phy_ops, |
| .nvm_ops = &ich8_nvm_ops, |
| }; |
| |
| struct e1000_info e1000_ich9_info = { |
| .mac = e1000_ich9lan, |
| .flags = FLAG_HAS_JUMBO_FRAMES |
| | FLAG_IS_ICH |
| | FLAG_HAS_WOL |
| | FLAG_RX_CSUM_ENABLED |
| | FLAG_HAS_CTRLEXT_ON_LOAD |
| | FLAG_HAS_AMT |
| | FLAG_HAS_ERT |
| | FLAG_HAS_FLASH |
| | FLAG_APME_IN_WUC, |
| .pba = 10, |
| .max_hw_frame_size = DEFAULT_JUMBO, |
| .get_variants = e1000_get_variants_ich8lan, |
| .mac_ops = &ich8_mac_ops, |
| .phy_ops = &ich8_phy_ops, |
| .nvm_ops = &ich8_nvm_ops, |
| }; |
| |
| struct e1000_info e1000_ich10_info = { |
| .mac = e1000_ich10lan, |
| .flags = FLAG_HAS_JUMBO_FRAMES |
| | FLAG_IS_ICH |
| | FLAG_HAS_WOL |
| | FLAG_RX_CSUM_ENABLED |
| | FLAG_HAS_CTRLEXT_ON_LOAD |
| | FLAG_HAS_AMT |
| | FLAG_HAS_ERT |
| | FLAG_HAS_FLASH |
| | FLAG_APME_IN_WUC, |
| .pba = 10, |
| .max_hw_frame_size = DEFAULT_JUMBO, |
| .get_variants = e1000_get_variants_ich8lan, |
| .mac_ops = &ich8_mac_ops, |
| .phy_ops = &ich8_phy_ops, |
| .nvm_ops = &ich8_nvm_ops, |
| }; |
| |
| struct e1000_info e1000_pch_info = { |
| .mac = e1000_pchlan, |
| .flags = FLAG_IS_ICH |
| | FLAG_HAS_WOL |
| | FLAG_RX_CSUM_ENABLED |
| | FLAG_HAS_CTRLEXT_ON_LOAD |
| | FLAG_HAS_AMT |
| | FLAG_HAS_FLASH |
| | FLAG_HAS_JUMBO_FRAMES |
| | FLAG_APME_IN_WUC, |
| .pba = 26, |
| .max_hw_frame_size = 4096, |
| .get_variants = e1000_get_variants_ich8lan, |
| .mac_ops = &ich8_mac_ops, |
| .phy_ops = &ich8_phy_ops, |
| .nvm_ops = &ich8_nvm_ops, |
| }; |