| /* |
| * Copyright 2011 Tilera Corporation. All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation, version 2. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for |
| * more details. |
| * |
| * Linux interrupt vectors. |
| */ |
| |
| #include <linux/linkage.h> |
| #include <linux/errno.h> |
| #include <linux/unistd.h> |
| #include <linux/init.h> |
| #include <asm/ptrace.h> |
| #include <asm/thread_info.h> |
| #include <asm/irqflags.h> |
| #include <asm/asm-offsets.h> |
| #include <asm/types.h> |
| #include <asm/traps.h> |
| #include <asm/signal.h> |
| #include <hv/hypervisor.h> |
| #include <arch/abi.h> |
| #include <arch/interrupts.h> |
| #include <arch/spr_def.h> |
| |
| #define PTREGS_PTR(reg, ptreg) addli reg, sp, C_ABI_SAVE_AREA_SIZE + (ptreg) |
| |
| #define PTREGS_OFFSET_SYSCALL PTREGS_OFFSET_REG(TREG_SYSCALL_NR) |
| |
| #if CONFIG_KERNEL_PL == 1 || CONFIG_KERNEL_PL == 2 |
| /* |
| * Set "result" non-zero if ex1 holds the PL of the kernel |
| * (with or without ICS being set). Note this works only |
| * because we never find the PL at level 3. |
| */ |
| # define IS_KERNEL_EX1(result, ex1) andi result, ex1, CONFIG_KERNEL_PL |
| #else |
| # error Recode IS_KERNEL_EX1 for CONFIG_KERNEL_PL |
| #endif |
| |
| .macro push_reg reg, ptr=sp, delta=-8 |
| { |
| st \ptr, \reg |
| addli \ptr, \ptr, \delta |
| } |
| .endm |
| |
| .macro pop_reg reg, ptr=sp, delta=8 |
| { |
| ld \reg, \ptr |
| addli \ptr, \ptr, \delta |
| } |
| .endm |
| |
| .macro pop_reg_zero reg, zreg, ptr=sp, delta=8 |
| { |
| move \zreg, zero |
| ld \reg, \ptr |
| addi \ptr, \ptr, \delta |
| } |
| .endm |
| |
| .macro push_extra_callee_saves reg |
| PTREGS_PTR(\reg, PTREGS_OFFSET_REG(51)) |
| push_reg r51, \reg |
| push_reg r50, \reg |
| push_reg r49, \reg |
| push_reg r48, \reg |
| push_reg r47, \reg |
| push_reg r46, \reg |
| push_reg r45, \reg |
| push_reg r44, \reg |
| push_reg r43, \reg |
| push_reg r42, \reg |
| push_reg r41, \reg |
| push_reg r40, \reg |
| push_reg r39, \reg |
| push_reg r38, \reg |
| push_reg r37, \reg |
| push_reg r36, \reg |
| push_reg r35, \reg |
| push_reg r34, \reg, PTREGS_OFFSET_BASE - PTREGS_OFFSET_REG(34) |
| .endm |
| |
| .macro panic str |
| .pushsection .rodata, "a" |
| 1: |
| .asciz "\str" |
| .popsection |
| { |
| moveli r0, hw2_last(1b) |
| } |
| { |
| shl16insli r0, r0, hw1(1b) |
| } |
| { |
| shl16insli r0, r0, hw0(1b) |
| jal panic |
| } |
| .endm |
| |
| /* |
| * Unalign data exception fast handling: In order to handle |
| * unaligned data access, a fast JIT version is generated and stored |
| * in a specific area in user space. We first need to do a quick poke |
| * to see if the JIT is available. We use certain bits in the fault |
| * PC (3 to 9 is used for 16KB page size) as index to address the JIT |
| * code area. The first 64bit word is the fault PC, and the 2nd one is |
| * the fault bundle itself. If these 2 words both match, then we |
| * directly "iret" to JIT code. If not, a slow path is invoked to |
| * generate new JIT code. Note: the current JIT code WILL be |
| * overwritten if it existed. So, ideally we can handle 128 unalign |
| * fixups via JIT. For lookup efficiency and to effectively support |
| * tight loops with multiple unaligned reference, a simple |
| * direct-mapped cache is used. |
| * |
| * SPR_EX_CONTEXT_K_0 is modified to return to JIT code. |
| * SPR_EX_CONTEXT_K_1 has ICS set. |
| * SPR_EX_CONTEXT_0_0 is setup to user program's next PC. |
| * SPR_EX_CONTEXT_0_1 = 0. |
| */ |
| .macro int_hand_unalign_fast vecnum, vecname |
| .org (\vecnum << 8) |
| intvec_\vecname: |
| /* Put r3 in SPR_SYSTEM_SAVE_K_1. */ |
| mtspr SPR_SYSTEM_SAVE_K_1, r3 |
| |
| mfspr r3, SPR_EX_CONTEXT_K_1 |
| /* |
| * Examine if exception comes from user without ICS set. |
| * If not, just go directly to the slow path. |
| */ |
| bnez r3, hand_unalign_slow_nonuser |
| |
| mfspr r3, SPR_SYSTEM_SAVE_K_0 |
| |
| /* Get &thread_info->unalign_jit_tmp[0] in r3. */ |
| bfexts r3, r3, 0, CPU_SHIFT-1 |
| mm r3, zero, LOG2_THREAD_SIZE, 63 |
| addli r3, r3, THREAD_INFO_UNALIGN_JIT_TMP_OFFSET |
| |
| /* |
| * Save r0, r1, r2 into thread_info array r3 points to |
| * from low to high memory in order. |
| */ |
| st_add r3, r0, 8 |
| st_add r3, r1, 8 |
| { |
| st_add r3, r2, 8 |
| andi r2, sp, 7 |
| } |
| |
| /* Save stored r3 value so we can revert it on a page fault. */ |
| mfspr r1, SPR_SYSTEM_SAVE_K_1 |
| st r3, r1 |
| |
| { |
| /* Generate a SIGBUS if sp is not 8-byte aligned. */ |
| bnez r2, hand_unalign_slow_badsp |
| } |
| |
| /* |
| * Get the thread_info in r0; load r1 with pc. Set the low bit of sp |
| * as an indicator to the page fault code in case we fault. |
| */ |
| { |
| ori sp, sp, 1 |
| mfspr r1, SPR_EX_CONTEXT_K_0 |
| } |
| |
| /* Add the jit_info offset in thread_info; extract r1 [3:9] into r2. */ |
| { |
| addli r0, r3, THREAD_INFO_UNALIGN_JIT_BASE_OFFSET - \ |
| (THREAD_INFO_UNALIGN_JIT_TMP_OFFSET + (3 * 8)) |
| bfextu r2, r1, 3, (2 + PAGE_SHIFT - UNALIGN_JIT_SHIFT) |
| } |
| |
| /* Load the jit_info; multiply r2 by 128. */ |
| { |
| ld r0, r0 |
| shli r2, r2, UNALIGN_JIT_SHIFT |
| } |
| |
| /* |
| * If r0 is NULL, the JIT page is not mapped, so go to slow path; |
| * add offset r2 to r0 at the same time. |
| */ |
| { |
| beqz r0, hand_unalign_slow |
| add r2, r0, r2 |
| } |
| |
| /* |
| * We are loading from userspace (both the JIT info PC and |
| * instruction word, and the instruction word we executed) |
| * and since either could fault while holding the interrupt |
| * critical section, we must tag this region and check it in |
| * do_page_fault() to handle it properly. |
| */ |
| ENTRY(__start_unalign_asm_code) |
| |
| /* Load first word of JIT in r0 and increment r2 by 8. */ |
| ld_add r0, r2, 8 |
| |
| /* |
| * Compare the PC with the 1st word in JIT; load the fault bundle |
| * into r1. |
| */ |
| { |
| cmpeq r0, r0, r1 |
| ld r1, r1 |
| } |
| |
| /* Go to slow path if PC doesn't match. */ |
| beqz r0, hand_unalign_slow |
| |
| /* |
| * Load the 2nd word of JIT, which is supposed to be the fault |
| * bundle for a cache hit. Increment r2; after this bundle r2 will |
| * point to the potential start of the JIT code we want to run. |
| */ |
| ld_add r0, r2, 8 |
| |
| /* No further accesses to userspace are done after this point. */ |
| ENTRY(__end_unalign_asm_code) |
| |
| /* Compare the real bundle with what is saved in the JIT area. */ |
| { |
| cmpeq r0, r1, r0 |
| mtspr SPR_EX_CONTEXT_0_1, zero |
| } |
| |
| /* Go to slow path if the fault bundle does not match. */ |
| beqz r0, hand_unalign_slow |
| |
| /* |
| * A cache hit is found. |
| * r2 points to start of JIT code (3rd word). |
| * r0 is the fault pc. |
| * r1 is the fault bundle. |
| * Reset the low bit of sp. |
| */ |
| { |
| mfspr r0, SPR_EX_CONTEXT_K_0 |
| andi sp, sp, ~1 |
| } |
| |
| /* Write r2 into EX_CONTEXT_K_0 and increment PC. */ |
| { |
| mtspr SPR_EX_CONTEXT_K_0, r2 |
| addi r0, r0, 8 |
| } |
| |
| /* |
| * Set ICS on kernel EX_CONTEXT_K_1 in order to "iret" to |
| * user with ICS set. This way, if the JIT fixup causes another |
| * unalign exception (which shouldn't be possible) the user |
| * process will be terminated with SIGBUS. Also, our fixup will |
| * run without interleaving with external interrupts. |
| * Each fixup is at most 14 bundles, so it won't hold ICS for long. |
| */ |
| { |
| movei r1, PL_ICS_EX1(USER_PL, 1) |
| mtspr SPR_EX_CONTEXT_0_0, r0 |
| } |
| |
| { |
| mtspr SPR_EX_CONTEXT_K_1, r1 |
| addi r3, r3, -(3 * 8) |
| } |
| |
| /* Restore r0..r3. */ |
| ld_add r0, r3, 8 |
| ld_add r1, r3, 8 |
| ld_add r2, r3, 8 |
| ld r3, r3 |
| |
| iret |
| ENDPROC(intvec_\vecname) |
| .endm |
| |
| #ifdef __COLLECT_LINKER_FEEDBACK__ |
| .pushsection .text.intvec_feedback,"ax" |
| intvec_feedback: |
| .popsection |
| #endif |
| |
| /* |
| * Default interrupt handler. |
| * |
| * vecnum is where we'll put this code. |
| * c_routine is the C routine we'll call. |
| * |
| * The C routine is passed two arguments: |
| * - A pointer to the pt_regs state. |
| * - The interrupt vector number. |
| * |
| * The "processing" argument specifies the code for processing |
| * the interrupt. Defaults to "handle_interrupt". |
| */ |
| .macro __int_hand vecnum, vecname, c_routine,processing=handle_interrupt |
| intvec_\vecname: |
| /* Temporarily save a register so we have somewhere to work. */ |
| |
| mtspr SPR_SYSTEM_SAVE_K_1, r0 |
| mfspr r0, SPR_EX_CONTEXT_K_1 |
| |
| /* |
| * The unalign data fastpath code sets the low bit in sp to |
| * force us to reset it here on fault. |
| */ |
| { |
| blbs sp, 2f |
| IS_KERNEL_EX1(r0, r0) |
| } |
| |
| .ifc \vecnum, INT_DOUBLE_FAULT |
| /* |
| * For double-faults from user-space, fall through to the normal |
| * register save and stack setup path. Otherwise, it's the |
| * hypervisor giving us one last chance to dump diagnostics, and we |
| * branch to the kernel_double_fault routine to do so. |
| */ |
| beqz r0, 1f |
| j _kernel_double_fault |
| 1: |
| .else |
| /* |
| * If we're coming from user-space, then set sp to the top of |
| * the kernel stack. Otherwise, assume sp is already valid. |
| */ |
| { |
| bnez r0, 0f |
| move r0, sp |
| } |
| .endif |
| |
| .ifc \c_routine, do_page_fault |
| /* |
| * The page_fault handler may be downcalled directly by the |
| * hypervisor even when Linux is running and has ICS set. |
| * |
| * In this case the contents of EX_CONTEXT_K_1 reflect the |
| * previous fault and can't be relied on to choose whether or |
| * not to reinitialize the stack pointer. So we add a test |
| * to see whether SYSTEM_SAVE_K_2 has the high bit set, |
| * and if so we don't reinitialize sp, since we must be coming |
| * from Linux. (In fact the precise case is !(val & ~1), |
| * but any Linux PC has to have the high bit set.) |
| * |
| * Note that the hypervisor *always* sets SYSTEM_SAVE_K_2 for |
| * any path that turns into a downcall to one of our TLB handlers. |
| * |
| * FIXME: if we end up never using this path, perhaps we should |
| * prevent the hypervisor from generating downcalls in this case. |
| * The advantage of getting a downcall is we can panic in Linux. |
| */ |
| mfspr r0, SPR_SYSTEM_SAVE_K_2 |
| { |
| bltz r0, 0f /* high bit in S_S_1_2 is for a PC to use */ |
| move r0, sp |
| } |
| .endif |
| |
| 2: |
| /* |
| * SYSTEM_SAVE_K_0 holds the cpu number in the high bits, and |
| * the current stack top in the lower bits. So we recover |
| * our starting stack value by sign-extending the low bits, then |
| * point sp at the top aligned address on the actual stack page. |
| */ |
| mfspr r0, SPR_SYSTEM_SAVE_K_0 |
| bfexts r0, r0, 0, CPU_SHIFT-1 |
| |
| 0: |
| /* |
| * Align the stack mod 64 so we can properly predict what |
| * cache lines we need to write-hint to reduce memory fetch |
| * latency as we enter the kernel. The layout of memory is |
| * as follows, with cache line 0 at the lowest VA, and cache |
| * line 8 just below the r0 value this "andi" computes. |
| * Note that we never write to cache line 8, and we skip |
| * cache lines 1-3 for syscalls. |
| * |
| * cache line 8: ptregs padding (two words) |
| * cache line 7: sp, lr, pc, ex1, faultnum, orig_r0, flags, cmpexch |
| * cache line 6: r46...r53 (tp) |
| * cache line 5: r38...r45 |
| * cache line 4: r30...r37 |
| * cache line 3: r22...r29 |
| * cache line 2: r14...r21 |
| * cache line 1: r6...r13 |
| * cache line 0: 2 x frame, r0..r5 |
| */ |
| #if STACK_TOP_DELTA != 64 |
| #error STACK_TOP_DELTA must be 64 for assumptions here and in task_pt_regs() |
| #endif |
| andi r0, r0, -64 |
| |
| /* |
| * Push the first four registers on the stack, so that we can set |
| * them to vector-unique values before we jump to the common code. |
| * |
| * Registers are pushed on the stack as a struct pt_regs, |
| * with the sp initially just above the struct, and when we're |
| * done, sp points to the base of the struct, minus |
| * C_ABI_SAVE_AREA_SIZE, so we can directly jal to C code. |
| * |
| * This routine saves just the first four registers, plus the |
| * stack context so we can do proper backtracing right away, |
| * and defers to handle_interrupt to save the rest. |
| * The backtracer needs pc, ex1, lr, sp, r52, and faultnum, |
| * and needs sp set to its final location at the bottom of |
| * the stack frame. |
| */ |
| addli r0, r0, PTREGS_OFFSET_LR - (PTREGS_SIZE + KSTK_PTREGS_GAP) |
| wh64 r0 /* cache line 7 */ |
| { |
| st r0, lr |
| addli r0, r0, PTREGS_OFFSET_SP - PTREGS_OFFSET_LR |
| } |
| { |
| st r0, sp |
| addli sp, r0, PTREGS_OFFSET_REG(52) - PTREGS_OFFSET_SP |
| } |
| wh64 sp /* cache line 6 */ |
| { |
| st sp, r52 |
| addli sp, sp, PTREGS_OFFSET_REG(1) - PTREGS_OFFSET_REG(52) |
| } |
| wh64 sp /* cache line 0 */ |
| { |
| st sp, r1 |
| addli sp, sp, PTREGS_OFFSET_REG(2) - PTREGS_OFFSET_REG(1) |
| } |
| { |
| st sp, r2 |
| addli sp, sp, PTREGS_OFFSET_REG(3) - PTREGS_OFFSET_REG(2) |
| } |
| { |
| st sp, r3 |
| addli sp, sp, PTREGS_OFFSET_PC - PTREGS_OFFSET_REG(3) |
| } |
| mfspr r0, SPR_EX_CONTEXT_K_0 |
| .ifc \processing,handle_syscall |
| /* |
| * Bump the saved PC by one bundle so that when we return, we won't |
| * execute the same swint instruction again. We need to do this while |
| * we're in the critical section. |
| */ |
| addi r0, r0, 8 |
| .endif |
| { |
| st sp, r0 |
| addli sp, sp, PTREGS_OFFSET_EX1 - PTREGS_OFFSET_PC |
| } |
| mfspr r0, SPR_EX_CONTEXT_K_1 |
| { |
| st sp, r0 |
| addi sp, sp, PTREGS_OFFSET_FAULTNUM - PTREGS_OFFSET_EX1 |
| /* |
| * Use r0 for syscalls so it's a temporary; use r1 for interrupts |
| * so that it gets passed through unchanged to the handler routine. |
| * Note that the .if conditional confusingly spans bundles. |
| */ |
| .ifc \processing,handle_syscall |
| movei r0, \vecnum |
| } |
| { |
| st sp, r0 |
| .else |
| movei r1, \vecnum |
| } |
| { |
| st sp, r1 |
| .endif |
| addli sp, sp, PTREGS_OFFSET_REG(0) - PTREGS_OFFSET_FAULTNUM |
| } |
| mfspr r0, SPR_SYSTEM_SAVE_K_1 /* Original r0 */ |
| { |
| st sp, r0 |
| addi sp, sp, -PTREGS_OFFSET_REG(0) - 8 |
| } |
| { |
| st sp, zero /* write zero into "Next SP" frame pointer */ |
| addi sp, sp, -8 /* leave SP pointing at bottom of frame */ |
| } |
| .ifc \processing,handle_syscall |
| j handle_syscall |
| .else |
| /* Capture per-interrupt SPR context to registers. */ |
| .ifc \c_routine, do_page_fault |
| mfspr r2, SPR_SYSTEM_SAVE_K_3 /* address of page fault */ |
| mfspr r3, SPR_SYSTEM_SAVE_K_2 /* info about page fault */ |
| .else |
| .ifc \vecnum, INT_ILL_TRANS |
| mfspr r2, ILL_VA_PC |
| .else |
| .ifc \vecnum, INT_DOUBLE_FAULT |
| mfspr r2, SPR_SYSTEM_SAVE_K_2 /* double fault info from HV */ |
| .else |
| .ifc \c_routine, do_trap |
| mfspr r2, GPV_REASON |
| .else |
| .ifc \c_routine, op_handle_perf_interrupt |
| mfspr r2, PERF_COUNT_STS |
| .else |
| .ifc \c_routine, op_handle_aux_perf_interrupt |
| mfspr r2, AUX_PERF_COUNT_STS |
| .endif |
| .endif |
| .endif |
| .endif |
| .endif |
| .endif |
| /* Put function pointer in r0 */ |
| moveli r0, hw2_last(\c_routine) |
| shl16insli r0, r0, hw1(\c_routine) |
| { |
| shl16insli r0, r0, hw0(\c_routine) |
| j \processing |
| } |
| .endif |
| ENDPROC(intvec_\vecname) |
| |
| #ifdef __COLLECT_LINKER_FEEDBACK__ |
| .pushsection .text.intvec_feedback,"ax" |
| .org (\vecnum << 5) |
| FEEDBACK_ENTER_EXPLICIT(intvec_\vecname, .intrpt, 1 << 8) |
| jrp lr |
| .popsection |
| #endif |
| |
| .endm |
| |
| |
| /* |
| * Save the rest of the registers that we didn't save in the actual |
| * vector itself. We can't use r0-r10 inclusive here. |
| */ |
| .macro finish_interrupt_save, function |
| |
| /* If it's a syscall, save a proper orig_r0, otherwise just zero. */ |
| PTREGS_PTR(r52, PTREGS_OFFSET_ORIG_R0) |
| { |
| .ifc \function,handle_syscall |
| st r52, r0 |
| .else |
| st r52, zero |
| .endif |
| PTREGS_PTR(r52, PTREGS_OFFSET_TP) |
| } |
| st r52, tp |
| { |
| mfspr tp, CMPEXCH_VALUE |
| PTREGS_PTR(r52, PTREGS_OFFSET_CMPEXCH) |
| } |
| |
| /* |
| * For ordinary syscalls, we save neither caller- nor callee- |
| * save registers, since the syscall invoker doesn't expect the |
| * caller-saves to be saved, and the called kernel functions will |
| * take care of saving the callee-saves for us. |
| * |
| * For interrupts we save just the caller-save registers. Saving |
| * them is required (since the "caller" can't save them). Again, |
| * the called kernel functions will restore the callee-save |
| * registers for us appropriately. |
| * |
| * On return, we normally restore nothing special for syscalls, |
| * and just the caller-save registers for interrupts. |
| * |
| * However, there are some important caveats to all this: |
| * |
| * - We always save a few callee-save registers to give us |
| * some scratchpad registers to carry across function calls. |
| * |
| * - fork/vfork/etc require us to save all the callee-save |
| * registers, which we do in PTREGS_SYSCALL_ALL_REGS, below. |
| * |
| * - We always save r0..r5 and r10 for syscalls, since we need |
| * to reload them a bit later for the actual kernel call, and |
| * since we might need them for -ERESTARTNOINTR, etc. |
| * |
| * - Before invoking a signal handler, we save the unsaved |
| * callee-save registers so they are visible to the |
| * signal handler or any ptracer. |
| * |
| * - If the unsaved callee-save registers are modified, we set |
| * a bit in pt_regs so we know to reload them from pt_regs |
| * and not just rely on the kernel function unwinding. |
| * (Done for ptrace register writes and SA_SIGINFO handler.) |
| */ |
| { |
| st r52, tp |
| PTREGS_PTR(r52, PTREGS_OFFSET_REG(33)) |
| } |
| wh64 r52 /* cache line 4 */ |
| push_reg r33, r52 |
| push_reg r32, r52 |
| push_reg r31, r52 |
| .ifc \function,handle_syscall |
| push_reg r30, r52, PTREGS_OFFSET_SYSCALL - PTREGS_OFFSET_REG(30) |
| push_reg TREG_SYSCALL_NR_NAME, r52, \ |
| PTREGS_OFFSET_REG(5) - PTREGS_OFFSET_SYSCALL |
| .else |
| |
| push_reg r30, r52, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(30) |
| wh64 r52 /* cache line 3 */ |
| push_reg r29, r52 |
| push_reg r28, r52 |
| push_reg r27, r52 |
| push_reg r26, r52 |
| push_reg r25, r52 |
| push_reg r24, r52 |
| push_reg r23, r52 |
| push_reg r22, r52 |
| wh64 r52 /* cache line 2 */ |
| push_reg r21, r52 |
| push_reg r20, r52 |
| push_reg r19, r52 |
| push_reg r18, r52 |
| push_reg r17, r52 |
| push_reg r16, r52 |
| push_reg r15, r52 |
| push_reg r14, r52 |
| wh64 r52 /* cache line 1 */ |
| push_reg r13, r52 |
| push_reg r12, r52 |
| push_reg r11, r52 |
| push_reg r10, r52 |
| push_reg r9, r52 |
| push_reg r8, r52 |
| push_reg r7, r52 |
| push_reg r6, r52 |
| |
| .endif |
| |
| push_reg r5, r52 |
| st r52, r4 |
| |
| /* |
| * If we will be returning to the kernel, we will need to |
| * reset the interrupt masks to the state they had before. |
| * Set DISABLE_IRQ in flags iff we came from kernel pl with |
| * irqs disabled. |
| */ |
| mfspr r32, SPR_EX_CONTEXT_K_1 |
| { |
| IS_KERNEL_EX1(r22, r22) |
| PTREGS_PTR(r21, PTREGS_OFFSET_FLAGS) |
| } |
| beqzt r32, 1f /* zero if from user space */ |
| IRQS_DISABLED(r32) /* zero if irqs enabled */ |
| #if PT_FLAGS_DISABLE_IRQ != 1 |
| # error Value of IRQS_DISABLED used to set PT_FLAGS_DISABLE_IRQ; fix |
| #endif |
| 1: |
| .ifnc \function,handle_syscall |
| /* Record the fact that we saved the caller-save registers above. */ |
| ori r32, r32, PT_FLAGS_CALLER_SAVES |
| .endif |
| st r21, r32 |
| |
| /* |
| * we've captured enough state to the stack (including in |
| * particular our EX_CONTEXT state) that we can now release |
| * the interrupt critical section and replace it with our |
| * standard "interrupts disabled" mask value. This allows |
| * synchronous interrupts (and profile interrupts) to punch |
| * through from this point onwards. |
| * |
| * It's important that no code before this point touch memory |
| * other than our own stack (to keep the invariant that this |
| * is all that gets touched under ICS), and that no code after |
| * this point reference any interrupt-specific SPR, in particular |
| * the EX_CONTEXT_K_ values. |
| */ |
| .ifc \function,handle_nmi |
| IRQ_DISABLE_ALL(r20) |
| .else |
| IRQ_DISABLE(r20, r21) |
| .endif |
| mtspr INTERRUPT_CRITICAL_SECTION, zero |
| |
| /* Load tp with our per-cpu offset. */ |
| #ifdef CONFIG_SMP |
| { |
| mfspr r20, SPR_SYSTEM_SAVE_K_0 |
| moveli r21, hw2_last(__per_cpu_offset) |
| } |
| { |
| shl16insli r21, r21, hw1(__per_cpu_offset) |
| bfextu r20, r20, CPU_SHIFT, 63 |
| } |
| shl16insli r21, r21, hw0(__per_cpu_offset) |
| shl3add r20, r20, r21 |
| ld tp, r20 |
| #else |
| move tp, zero |
| #endif |
| |
| #ifdef __COLLECT_LINKER_FEEDBACK__ |
| /* |
| * Notify the feedback routines that we were in the |
| * appropriate fixed interrupt vector area. Note that we |
| * still have ICS set at this point, so we can't invoke any |
| * atomic operations or we will panic. The feedback |
| * routines internally preserve r0..r10 and r30 up. |
| */ |
| .ifnc \function,handle_syscall |
| shli r20, r1, 5 |
| .else |
| moveli r20, INT_SWINT_1 << 5 |
| .endif |
| moveli r21, hw2_last(intvec_feedback) |
| shl16insli r21, r21, hw1(intvec_feedback) |
| shl16insli r21, r21, hw0(intvec_feedback) |
| add r20, r20, r21 |
| jalr r20 |
| |
| /* And now notify the feedback routines that we are here. */ |
| FEEDBACK_ENTER(\function) |
| #endif |
| |
| /* |
| * Prepare the first 256 stack bytes to be rapidly accessible |
| * without having to fetch the background data. |
| */ |
| addi r52, sp, -64 |
| { |
| wh64 r52 |
| addi r52, r52, -64 |
| } |
| { |
| wh64 r52 |
| addi r52, r52, -64 |
| } |
| { |
| wh64 r52 |
| addi r52, r52, -64 |
| } |
| wh64 r52 |
| |
| #ifdef CONFIG_TRACE_IRQFLAGS |
| .ifnc \function,handle_nmi |
| /* |
| * We finally have enough state set up to notify the irq |
| * tracing code that irqs were disabled on entry to the handler. |
| * The TRACE_IRQS_OFF call clobbers registers r0-r29. |
| * For syscalls, we already have the register state saved away |
| * on the stack, so we don't bother to do any register saves here, |
| * and later we pop the registers back off the kernel stack. |
| * For interrupt handlers, save r0-r3 in callee-saved registers. |
| */ |
| .ifnc \function,handle_syscall |
| { move r30, r0; move r31, r1 } |
| { move r32, r2; move r33, r3 } |
| .endif |
| TRACE_IRQS_OFF |
| .ifnc \function,handle_syscall |
| { move r0, r30; move r1, r31 } |
| { move r2, r32; move r3, r33 } |
| .endif |
| .endif |
| #endif |
| |
| .endm |
| |
| /* |
| * Redispatch a downcall. |
| */ |
| .macro dc_dispatch vecnum, vecname |
| .org (\vecnum << 8) |
| intvec_\vecname: |
| j _hv_downcall_dispatch |
| ENDPROC(intvec_\vecname) |
| .endm |
| |
| /* |
| * Common code for most interrupts. The C function we're eventually |
| * going to is in r0, and the faultnum is in r1; the original |
| * values for those registers are on the stack. |
| */ |
| .pushsection .text.handle_interrupt,"ax" |
| handle_interrupt: |
| finish_interrupt_save handle_interrupt |
| |
| /* Jump to the C routine; it should enable irqs as soon as possible. */ |
| { |
| jalr r0 |
| PTREGS_PTR(r0, PTREGS_OFFSET_BASE) |
| } |
| FEEDBACK_REENTER(handle_interrupt) |
| { |
| movei r30, 0 /* not an NMI */ |
| j interrupt_return |
| } |
| STD_ENDPROC(handle_interrupt) |
| |
| /* |
| * This routine takes a boolean in r30 indicating if this is an NMI. |
| * If so, we also expect a boolean in r31 indicating whether to |
| * re-enable the oprofile interrupts. |
| * |
| * Note that .Lresume_userspace is jumped to directly in several |
| * places, and we need to make sure r30 is set correctly in those |
| * callers as well. |
| */ |
| STD_ENTRY(interrupt_return) |
| /* If we're resuming to kernel space, don't check thread flags. */ |
| { |
| bnez r30, .Lrestore_all /* NMIs don't special-case user-space */ |
| PTREGS_PTR(r29, PTREGS_OFFSET_EX1) |
| } |
| ld r29, r29 |
| IS_KERNEL_EX1(r29, r29) |
| { |
| beqzt r29, .Lresume_userspace |
| move r29, sp |
| } |
| |
| #ifdef CONFIG_PREEMPT |
| /* Returning to kernel space. Check if we need preemption. */ |
| EXTRACT_THREAD_INFO(r29) |
| addli r28, r29, THREAD_INFO_FLAGS_OFFSET |
| { |
| ld r28, r28 |
| addli r29, r29, THREAD_INFO_PREEMPT_COUNT_OFFSET |
| } |
| { |
| andi r28, r28, _TIF_NEED_RESCHED |
| ld4s r29, r29 |
| } |
| beqzt r28, 1f |
| bnez r29, 1f |
| jal preempt_schedule_irq |
| FEEDBACK_REENTER(interrupt_return) |
| 1: |
| #endif |
| |
| /* If we're resuming to _cpu_idle_nap, bump PC forward by 8. */ |
| { |
| moveli r27, hw2_last(_cpu_idle_nap) |
| PTREGS_PTR(r29, PTREGS_OFFSET_PC) |
| } |
| { |
| ld r28, r29 |
| shl16insli r27, r27, hw1(_cpu_idle_nap) |
| } |
| { |
| shl16insli r27, r27, hw0(_cpu_idle_nap) |
| } |
| { |
| cmpeq r27, r27, r28 |
| } |
| { |
| blbc r27, .Lrestore_all |
| addi r28, r28, 8 |
| } |
| st r29, r28 |
| j .Lrestore_all |
| |
| .Lresume_userspace: |
| FEEDBACK_REENTER(interrupt_return) |
| |
| /* |
| * Use r33 to hold whether we have already loaded the callee-saves |
| * into ptregs. We don't want to do it twice in this loop, since |
| * then we'd clobber whatever changes are made by ptrace, etc. |
| */ |
| { |
| movei r33, 0 |
| move r32, sp |
| } |
| |
| /* Get base of stack in r32. */ |
| EXTRACT_THREAD_INFO(r32) |
| |
| .Lretry_work_pending: |
| /* |
| * Disable interrupts so as to make sure we don't |
| * miss an interrupt that sets any of the thread flags (like |
| * need_resched or sigpending) between sampling and the iret. |
| * Routines like schedule() or do_signal() may re-enable |
| * interrupts before returning. |
| */ |
| IRQ_DISABLE(r20, r21) |
| TRACE_IRQS_OFF /* Note: clobbers registers r0-r29 */ |
| |
| |
| /* Check to see if there is any work to do before returning to user. */ |
| { |
| addi r29, r32, THREAD_INFO_FLAGS_OFFSET |
| moveli r1, hw1_last(_TIF_ALLWORK_MASK) |
| } |
| { |
| ld r29, r29 |
| shl16insli r1, r1, hw0(_TIF_ALLWORK_MASK) |
| } |
| and r1, r29, r1 |
| beqzt r1, .Lrestore_all |
| |
| /* |
| * Make sure we have all the registers saved for signal |
| * handling or notify-resume. Call out to C code to figure out |
| * exactly what we need to do for each flag bit, then if |
| * necessary, reload the flags and recheck. |
| */ |
| { |
| PTREGS_PTR(r0, PTREGS_OFFSET_BASE) |
| bnez r33, 1f |
| } |
| push_extra_callee_saves r0 |
| movei r33, 1 |
| 1: jal do_work_pending |
| bnez r0, .Lretry_work_pending |
| |
| /* |
| * In the NMI case we |
| * omit the call to single_process_check_nohz, which normally checks |
| * to see if we should start or stop the scheduler tick, because |
| * we can't call arbitrary Linux code from an NMI context. |
| * We always call the homecache TLB deferral code to re-trigger |
| * the deferral mechanism. |
| * |
| * The other chunk of responsibility this code has is to reset the |
| * interrupt masks appropriately to reset irqs and NMIs. We have |
| * to call TRACE_IRQS_OFF and TRACE_IRQS_ON to support all the |
| * lockdep-type stuff, but we can't set ICS until afterwards, since |
| * ICS can only be used in very tight chunks of code to avoid |
| * tripping over various assertions that it is off. |
| */ |
| .Lrestore_all: |
| PTREGS_PTR(r0, PTREGS_OFFSET_EX1) |
| { |
| ld r0, r0 |
| PTREGS_PTR(r32, PTREGS_OFFSET_FLAGS) |
| } |
| { |
| IS_KERNEL_EX1(r0, r0) |
| ld r32, r32 |
| } |
| bnez r0, 1f |
| j 2f |
| #if PT_FLAGS_DISABLE_IRQ != 1 |
| # error Assuming PT_FLAGS_DISABLE_IRQ == 1 so we can use blbct below |
| #endif |
| 1: blbct r32, 2f |
| IRQ_DISABLE(r20,r21) |
| TRACE_IRQS_OFF |
| movei r0, 1 |
| mtspr INTERRUPT_CRITICAL_SECTION, r0 |
| beqzt r30, .Lrestore_regs |
| j 3f |
| 2: TRACE_IRQS_ON |
| IRQ_ENABLE_LOAD(r20, r21) |
| movei r0, 1 |
| mtspr INTERRUPT_CRITICAL_SECTION, r0 |
| IRQ_ENABLE_APPLY(r20, r21) |
| beqzt r30, .Lrestore_regs |
| 3: |
| |
| |
| /* |
| * We now commit to returning from this interrupt, since we will be |
| * doing things like setting EX_CONTEXT SPRs and unwinding the stack |
| * frame. No calls should be made to any other code after this point. |
| * This code should only be entered with ICS set. |
| * r32 must still be set to ptregs.flags. |
| * We launch loads to each cache line separately first, so we can |
| * get some parallelism out of the memory subsystem. |
| * We start zeroing caller-saved registers throughout, since |
| * that will save some cycles if this turns out to be a syscall. |
| */ |
| .Lrestore_regs: |
| |
| /* |
| * Rotate so we have one high bit and one low bit to test. |
| * - low bit says whether to restore all the callee-saved registers, |
| * or just r30-r33, and r52 up. |
| * - high bit (i.e. sign bit) says whether to restore all the |
| * caller-saved registers, or just r0. |
| */ |
| #if PT_FLAGS_CALLER_SAVES != 2 || PT_FLAGS_RESTORE_REGS != 4 |
| # error Rotate trick does not work :-) |
| #endif |
| { |
| rotli r20, r32, 62 |
| PTREGS_PTR(sp, PTREGS_OFFSET_REG(0)) |
| } |
| |
| /* |
| * Load cache lines 0, 4, 6 and 7, in that order, then use |
| * the last loaded value, which makes it likely that the other |
| * cache lines have also loaded, at which point we should be |
| * able to safely read all the remaining words on those cache |
| * lines without waiting for the memory subsystem. |
| */ |
| pop_reg r0, sp, PTREGS_OFFSET_REG(30) - PTREGS_OFFSET_REG(0) |
| pop_reg r30, sp, PTREGS_OFFSET_REG(52) - PTREGS_OFFSET_REG(30) |
| pop_reg_zero r52, r3, sp, PTREGS_OFFSET_CMPEXCH - PTREGS_OFFSET_REG(52) |
| pop_reg_zero r21, r27, sp, PTREGS_OFFSET_EX1 - PTREGS_OFFSET_CMPEXCH |
| pop_reg_zero lr, r2, sp, PTREGS_OFFSET_PC - PTREGS_OFFSET_EX1 |
| { |
| mtspr CMPEXCH_VALUE, r21 |
| move r4, zero |
| } |
| pop_reg r21, sp, PTREGS_OFFSET_REG(31) - PTREGS_OFFSET_PC |
| { |
| mtspr SPR_EX_CONTEXT_K_1, lr |
| IS_KERNEL_EX1(lr, lr) |
| } |
| { |
| mtspr SPR_EX_CONTEXT_K_0, r21 |
| move r5, zero |
| } |
| |
| /* Restore callee-saveds that we actually use. */ |
| pop_reg_zero r31, r6 |
| pop_reg_zero r32, r7 |
| pop_reg_zero r33, r8, sp, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(33) |
| |
| /* |
| * If we modified other callee-saveds, restore them now. |
| * This is rare, but could be via ptrace or signal handler. |
| */ |
| { |
| move r9, zero |
| blbs r20, .Lrestore_callees |
| } |
| .Lcontinue_restore_regs: |
| |
| /* Check if we're returning from a syscall. */ |
| { |
| move r10, zero |
| bltzt r20, 1f /* no, so go restore callee-save registers */ |
| } |
| |
| /* |
| * Check if we're returning to userspace. |
| * Note that if we're not, we don't worry about zeroing everything. |
| */ |
| { |
| addli sp, sp, PTREGS_OFFSET_LR - PTREGS_OFFSET_REG(29) |
| bnez lr, .Lkernel_return |
| } |
| |
| /* |
| * On return from syscall, we've restored r0 from pt_regs, but we |
| * clear the remainder of the caller-saved registers. We could |
| * restore the syscall arguments, but there's not much point, |
| * and it ensures user programs aren't trying to use the |
| * caller-saves if we clear them, as well as avoiding leaking |
| * kernel pointers into userspace. |
| */ |
| pop_reg_zero lr, r11, sp, PTREGS_OFFSET_TP - PTREGS_OFFSET_LR |
| pop_reg_zero tp, r12, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_TP |
| { |
| ld sp, sp |
| move r13, zero |
| move r14, zero |
| } |
| { move r15, zero; move r16, zero } |
| { move r17, zero; move r18, zero } |
| { move r19, zero; move r20, zero } |
| { move r21, zero; move r22, zero } |
| { move r23, zero; move r24, zero } |
| { move r25, zero; move r26, zero } |
| |
| /* Set r1 to errno if we are returning an error, otherwise zero. */ |
| { |
| moveli r29, 4096 |
| sub r1, zero, r0 |
| } |
| { |
| move r28, zero |
| cmpltu r29, r1, r29 |
| } |
| { |
| mnz r1, r29, r1 |
| move r29, zero |
| } |
| iret |
| |
| /* |
| * Not a syscall, so restore caller-saved registers. |
| * First kick off loads for cache lines 1-3, which we're touching |
| * for the first time here. |
| */ |
| .align 64 |
| 1: pop_reg r29, sp, PTREGS_OFFSET_REG(21) - PTREGS_OFFSET_REG(29) |
| pop_reg r21, sp, PTREGS_OFFSET_REG(13) - PTREGS_OFFSET_REG(21) |
| pop_reg r13, sp, PTREGS_OFFSET_REG(1) - PTREGS_OFFSET_REG(13) |
| pop_reg r1 |
| pop_reg r2 |
| pop_reg r3 |
| pop_reg r4 |
| pop_reg r5 |
| pop_reg r6 |
| pop_reg r7 |
| pop_reg r8 |
| pop_reg r9 |
| pop_reg r10 |
| pop_reg r11 |
| pop_reg r12, sp, 16 |
| /* r13 already restored above */ |
| pop_reg r14 |
| pop_reg r15 |
| pop_reg r16 |
| pop_reg r17 |
| pop_reg r18 |
| pop_reg r19 |
| pop_reg r20, sp, 16 |
| /* r21 already restored above */ |
| pop_reg r22 |
| pop_reg r23 |
| pop_reg r24 |
| pop_reg r25 |
| pop_reg r26 |
| pop_reg r27 |
| pop_reg r28, sp, PTREGS_OFFSET_LR - PTREGS_OFFSET_REG(28) |
| /* r29 already restored above */ |
| bnez lr, .Lkernel_return |
| pop_reg lr, sp, PTREGS_OFFSET_TP - PTREGS_OFFSET_LR |
| pop_reg tp, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_TP |
| ld sp, sp |
| iret |
| |
| /* |
| * We can't restore tp when in kernel mode, since a thread might |
| * have migrated from another cpu and brought a stale tp value. |
| */ |
| .Lkernel_return: |
| pop_reg lr, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_LR |
| ld sp, sp |
| iret |
| |
| /* Restore callee-saved registers from r34 to r51. */ |
| .Lrestore_callees: |
| addli sp, sp, PTREGS_OFFSET_REG(34) - PTREGS_OFFSET_REG(29) |
| pop_reg r34 |
| pop_reg r35 |
| pop_reg r36 |
| pop_reg r37 |
| pop_reg r38 |
| pop_reg r39 |
| pop_reg r40 |
| pop_reg r41 |
| pop_reg r42 |
| pop_reg r43 |
| pop_reg r44 |
| pop_reg r45 |
| pop_reg r46 |
| pop_reg r47 |
| pop_reg r48 |
| pop_reg r49 |
| pop_reg r50 |
| pop_reg r51, sp, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(51) |
| j .Lcontinue_restore_regs |
| STD_ENDPROC(interrupt_return) |
| |
| /* |
| * "NMI" interrupts mask ALL interrupts before calling the |
| * handler, and don't check thread flags, etc., on the way |
| * back out. In general, the only things we do here for NMIs |
| * are register save/restore and dataplane kernel-TLB management. |
| * We don't (for example) deal with start/stop of the sched tick. |
| */ |
| .pushsection .text.handle_nmi,"ax" |
| handle_nmi: |
| finish_interrupt_save handle_nmi |
| { |
| jalr r0 |
| PTREGS_PTR(r0, PTREGS_OFFSET_BASE) |
| } |
| FEEDBACK_REENTER(handle_nmi) |
| { |
| movei r30, 1 |
| move r31, r0 |
| } |
| j interrupt_return |
| STD_ENDPROC(handle_nmi) |
| |
| /* |
| * Parallel code for syscalls to handle_interrupt. |
| */ |
| .pushsection .text.handle_syscall,"ax" |
| handle_syscall: |
| finish_interrupt_save handle_syscall |
| |
| /* Enable irqs. */ |
| TRACE_IRQS_ON |
| IRQ_ENABLE(r20, r21) |
| |
| /* Bump the counter for syscalls made on this tile. */ |
| moveli r20, hw2_last(irq_stat + IRQ_CPUSTAT_SYSCALL_COUNT_OFFSET) |
| shl16insli r20, r20, hw1(irq_stat + IRQ_CPUSTAT_SYSCALL_COUNT_OFFSET) |
| shl16insli r20, r20, hw0(irq_stat + IRQ_CPUSTAT_SYSCALL_COUNT_OFFSET) |
| add r20, r20, tp |
| ld4s r21, r20 |
| { |
| addi r21, r21, 1 |
| move r31, sp |
| } |
| { |
| st4 r20, r21 |
| EXTRACT_THREAD_INFO(r31) |
| } |
| |
| /* Trace syscalls, if requested. */ |
| addi r31, r31, THREAD_INFO_FLAGS_OFFSET |
| { |
| ld r30, r31 |
| moveli r32, _TIF_SYSCALL_ENTRY_WORK |
| } |
| and r30, r30, r32 |
| { |
| addi r30, r31, THREAD_INFO_STATUS_OFFSET - THREAD_INFO_FLAGS_OFFSET |
| beqzt r30, .Lrestore_syscall_regs |
| } |
| { |
| PTREGS_PTR(r0, PTREGS_OFFSET_BASE) |
| jal do_syscall_trace_enter |
| } |
| FEEDBACK_REENTER(handle_syscall) |
| |
| /* |
| * We always reload our registers from the stack at this |
| * point. They might be valid, if we didn't build with |
| * TRACE_IRQFLAGS, and this isn't a dataplane tile, and we're not |
| * doing syscall tracing, but there are enough cases now that it |
| * seems simplest just to do the reload unconditionally. |
| */ |
| .Lrestore_syscall_regs: |
| { |
| ld r30, r30 |
| PTREGS_PTR(r11, PTREGS_OFFSET_REG(0)) |
| } |
| pop_reg r0, r11 |
| pop_reg r1, r11 |
| pop_reg r2, r11 |
| pop_reg r3, r11 |
| pop_reg r4, r11 |
| pop_reg r5, r11, PTREGS_OFFSET_SYSCALL - PTREGS_OFFSET_REG(5) |
| { |
| ld TREG_SYSCALL_NR_NAME, r11 |
| moveli r21, __NR_syscalls |
| } |
| |
| /* Ensure that the syscall number is within the legal range. */ |
| { |
| moveli r20, hw2(sys_call_table) |
| #ifdef CONFIG_COMPAT |
| blbs r30, .Lcompat_syscall |
| #endif |
| } |
| { |
| cmpltu r21, TREG_SYSCALL_NR_NAME, r21 |
| shl16insli r20, r20, hw1(sys_call_table) |
| } |
| { |
| blbc r21, .Linvalid_syscall |
| shl16insli r20, r20, hw0(sys_call_table) |
| } |
| .Lload_syscall_pointer: |
| shl3add r20, TREG_SYSCALL_NR_NAME, r20 |
| ld r20, r20 |
| |
| /* Jump to syscall handler. */ |
| jalr r20 |
| .Lhandle_syscall_link: /* value of "lr" after "jalr r20" above */ |
| |
| /* |
| * Write our r0 onto the stack so it gets restored instead |
| * of whatever the user had there before. |
| * In compat mode, sign-extend r0 before storing it. |
| */ |
| { |
| PTREGS_PTR(r29, PTREGS_OFFSET_REG(0)) |
| blbct r30, 1f |
| } |
| addxi r0, r0, 0 |
| 1: st r29, r0 |
| |
| .Lsyscall_sigreturn_skip: |
| FEEDBACK_REENTER(handle_syscall) |
| |
| /* Do syscall trace again, if requested. */ |
| { |
| ld r30, r31 |
| moveli r32, _TIF_SYSCALL_EXIT_WORK |
| } |
| and r0, r30, r32 |
| { |
| andi r0, r30, _TIF_SINGLESTEP |
| beqzt r0, 1f |
| } |
| { |
| PTREGS_PTR(r0, PTREGS_OFFSET_BASE) |
| jal do_syscall_trace_exit |
| } |
| FEEDBACK_REENTER(handle_syscall) |
| andi r0, r30, _TIF_SINGLESTEP |
| |
| 1: beqzt r0, 2f |
| |
| /* Single stepping -- notify ptrace. */ |
| { |
| movei r0, SIGTRAP |
| jal ptrace_notify |
| } |
| FEEDBACK_REENTER(handle_syscall) |
| |
| 2: { |
| movei r30, 0 /* not an NMI */ |
| j .Lresume_userspace /* jump into middle of interrupt_return */ |
| } |
| |
| #ifdef CONFIG_COMPAT |
| .Lcompat_syscall: |
| /* |
| * Load the base of the compat syscall table in r20, and |
| * range-check the syscall number (duplicated from 64-bit path). |
| * Sign-extend all the user's passed arguments to make them consistent. |
| * Also save the original "r(n)" values away in "r(11+n)" in |
| * case the syscall table entry wants to validate them. |
| */ |
| moveli r20, hw2(compat_sys_call_table) |
| { |
| cmpltu r21, TREG_SYSCALL_NR_NAME, r21 |
| shl16insli r20, r20, hw1(compat_sys_call_table) |
| } |
| { |
| blbc r21, .Linvalid_syscall |
| shl16insli r20, r20, hw0(compat_sys_call_table) |
| } |
| { move r11, r0; addxi r0, r0, 0 } |
| { move r12, r1; addxi r1, r1, 0 } |
| { move r13, r2; addxi r2, r2, 0 } |
| { move r14, r3; addxi r3, r3, 0 } |
| { move r15, r4; addxi r4, r4, 0 } |
| { move r16, r5; addxi r5, r5, 0 } |
| j .Lload_syscall_pointer |
| #endif |
| |
| .Linvalid_syscall: |
| /* Report an invalid syscall back to the user program */ |
| { |
| PTREGS_PTR(r29, PTREGS_OFFSET_REG(0)) |
| movei r28, -ENOSYS |
| } |
| st r29, r28 |
| { |
| movei r30, 0 /* not an NMI */ |
| j .Lresume_userspace /* jump into middle of interrupt_return */ |
| } |
| STD_ENDPROC(handle_syscall) |
| |
| /* Return the address for oprofile to suppress in backtraces. */ |
| STD_ENTRY_SECTION(handle_syscall_link_address, .text.handle_syscall) |
| lnk r0 |
| { |
| addli r0, r0, .Lhandle_syscall_link - . |
| jrp lr |
| } |
| STD_ENDPROC(handle_syscall_link_address) |
| |
| STD_ENTRY(ret_from_fork) |
| jal sim_notify_fork |
| jal schedule_tail |
| FEEDBACK_REENTER(ret_from_fork) |
| { |
| movei r30, 0 /* not an NMI */ |
| j .Lresume_userspace /* jump into middle of interrupt_return */ |
| } |
| STD_ENDPROC(ret_from_fork) |
| |
| STD_ENTRY(ret_from_kernel_thread) |
| jal sim_notify_fork |
| jal schedule_tail |
| FEEDBACK_REENTER(ret_from_fork) |
| { |
| move r0, r31 |
| jalr r30 |
| } |
| FEEDBACK_REENTER(ret_from_kernel_thread) |
| { |
| movei r30, 0 /* not an NMI */ |
| j .Lresume_userspace /* jump into middle of interrupt_return */ |
| } |
| STD_ENDPROC(ret_from_kernel_thread) |
| |
| /* Various stub interrupt handlers and syscall handlers */ |
| |
| STD_ENTRY_LOCAL(_kernel_double_fault) |
| mfspr r1, SPR_EX_CONTEXT_K_0 |
| move r2, lr |
| move r3, sp |
| move r4, r52 |
| addi sp, sp, -C_ABI_SAVE_AREA_SIZE |
| j kernel_double_fault |
| STD_ENDPROC(_kernel_double_fault) |
| |
| STD_ENTRY_LOCAL(bad_intr) |
| mfspr r2, SPR_EX_CONTEXT_K_0 |
| panic "Unhandled interrupt %#x: PC %#lx" |
| STD_ENDPROC(bad_intr) |
| |
| /* |
| * Special-case sigreturn to not write r0 to the stack on return. |
| * This is technically more efficient, but it also avoids difficulties |
| * in the 64-bit OS when handling 32-bit compat code, since we must not |
| * sign-extend r0 for the sigreturn return-value case. |
| */ |
| #define PTREGS_SYSCALL_SIGRETURN(x, reg) \ |
| STD_ENTRY(_##x); \ |
| addli lr, lr, .Lsyscall_sigreturn_skip - .Lhandle_syscall_link; \ |
| { \ |
| PTREGS_PTR(reg, PTREGS_OFFSET_BASE); \ |
| j x \ |
| }; \ |
| STD_ENDPROC(_##x) |
| |
| PTREGS_SYSCALL_SIGRETURN(sys_rt_sigreturn, r0) |
| #ifdef CONFIG_COMPAT |
| PTREGS_SYSCALL_SIGRETURN(compat_sys_rt_sigreturn, r0) |
| #endif |
| |
| /* Save additional callee-saves to pt_regs and jump to standard function. */ |
| STD_ENTRY(_sys_clone) |
| push_extra_callee_saves r4 |
| j sys_clone |
| STD_ENDPROC(_sys_clone) |
| |
| /* |
| * Recover r3, r2, r1 and r0 here saved by unalign fast vector. |
| * The vector area limit is 32 bundles, so we handle the reload here. |
| * r0, r1, r2 are in thread_info from low to high memory in order. |
| * r3 points to location the original r3 was saved. |
| * We put this code in the __HEAD section so it can be reached |
| * via a conditional branch from the fast path. |
| */ |
| __HEAD |
| hand_unalign_slow: |
| andi sp, sp, ~1 |
| hand_unalign_slow_badsp: |
| addi r3, r3, -(3 * 8) |
| ld_add r0, r3, 8 |
| ld_add r1, r3, 8 |
| ld r2, r3 |
| hand_unalign_slow_nonuser: |
| mfspr r3, SPR_SYSTEM_SAVE_K_1 |
| __int_hand INT_UNALIGN_DATA, UNALIGN_DATA_SLOW, int_unalign |
| |
| /* The unaligned data support needs to read all the registers. */ |
| int_unalign: |
| push_extra_callee_saves r0 |
| j do_unaligned |
| ENDPROC(hand_unalign_slow) |
| |
| /* Fill the return address stack with nonzero entries. */ |
| STD_ENTRY(fill_ra_stack) |
| { |
| move r0, lr |
| jal 1f |
| } |
| 1: jal 2f |
| 2: jal 3f |
| 3: jal 4f |
| 4: jrp r0 |
| STD_ENDPROC(fill_ra_stack) |
| |
| .macro int_hand vecnum, vecname, c_routine, processing=handle_interrupt |
| .org (\vecnum << 8) |
| __int_hand \vecnum, \vecname, \c_routine, \processing |
| .endm |
| |
| /* Include .intrpt array of interrupt vectors */ |
| .section ".intrpt", "ax" |
| .global intrpt_start |
| intrpt_start: |
| |
| #define op_handle_perf_interrupt bad_intr |
| #define op_handle_aux_perf_interrupt bad_intr |
| |
| #ifndef CONFIG_HARDWALL |
| #define do_hardwall_trap bad_intr |
| #endif |
| |
| int_hand INT_MEM_ERROR, MEM_ERROR, do_trap |
| int_hand INT_SINGLE_STEP_3, SINGLE_STEP_3, bad_intr |
| #if CONFIG_KERNEL_PL == 2 |
| int_hand INT_SINGLE_STEP_2, SINGLE_STEP_2, gx_singlestep_handle |
| int_hand INT_SINGLE_STEP_1, SINGLE_STEP_1, bad_intr |
| #else |
| int_hand INT_SINGLE_STEP_2, SINGLE_STEP_2, bad_intr |
| int_hand INT_SINGLE_STEP_1, SINGLE_STEP_1, gx_singlestep_handle |
| #endif |
| int_hand INT_SINGLE_STEP_0, SINGLE_STEP_0, bad_intr |
| int_hand INT_IDN_COMPLETE, IDN_COMPLETE, bad_intr |
| int_hand INT_UDN_COMPLETE, UDN_COMPLETE, bad_intr |
| int_hand INT_ITLB_MISS, ITLB_MISS, do_page_fault |
| int_hand INT_ILL, ILL, do_trap |
| int_hand INT_GPV, GPV, do_trap |
| int_hand INT_IDN_ACCESS, IDN_ACCESS, do_trap |
| int_hand INT_UDN_ACCESS, UDN_ACCESS, do_trap |
| int_hand INT_SWINT_3, SWINT_3, do_trap |
| int_hand INT_SWINT_2, SWINT_2, do_trap |
| int_hand INT_SWINT_1, SWINT_1, SYSCALL, handle_syscall |
| int_hand INT_SWINT_0, SWINT_0, do_trap |
| int_hand INT_ILL_TRANS, ILL_TRANS, do_trap |
| int_hand_unalign_fast INT_UNALIGN_DATA, UNALIGN_DATA |
| int_hand INT_DTLB_MISS, DTLB_MISS, do_page_fault |
| int_hand INT_DTLB_ACCESS, DTLB_ACCESS, do_page_fault |
| int_hand INT_IDN_FIREWALL, IDN_FIREWALL, do_hardwall_trap |
| int_hand INT_UDN_FIREWALL, UDN_FIREWALL, do_hardwall_trap |
| int_hand INT_TILE_TIMER, TILE_TIMER, do_timer_interrupt |
| int_hand INT_IDN_TIMER, IDN_TIMER, bad_intr |
| int_hand INT_UDN_TIMER, UDN_TIMER, bad_intr |
| int_hand INT_IDN_AVAIL, IDN_AVAIL, bad_intr |
| int_hand INT_UDN_AVAIL, UDN_AVAIL, bad_intr |
| int_hand INT_IPI_3, IPI_3, bad_intr |
| #if CONFIG_KERNEL_PL == 2 |
| int_hand INT_IPI_2, IPI_2, tile_dev_intr |
| int_hand INT_IPI_1, IPI_1, bad_intr |
| #else |
| int_hand INT_IPI_2, IPI_2, bad_intr |
| int_hand INT_IPI_1, IPI_1, tile_dev_intr |
| #endif |
| int_hand INT_IPI_0, IPI_0, bad_intr |
| int_hand INT_PERF_COUNT, PERF_COUNT, \ |
| op_handle_perf_interrupt, handle_nmi |
| int_hand INT_AUX_PERF_COUNT, AUX_PERF_COUNT, \ |
| op_handle_perf_interrupt, handle_nmi |
| int_hand INT_INTCTRL_3, INTCTRL_3, bad_intr |
| #if CONFIG_KERNEL_PL == 2 |
| dc_dispatch INT_INTCTRL_2, INTCTRL_2 |
| int_hand INT_INTCTRL_1, INTCTRL_1, bad_intr |
| #else |
| int_hand INT_INTCTRL_2, INTCTRL_2, bad_intr |
| dc_dispatch INT_INTCTRL_1, INTCTRL_1 |
| #endif |
| int_hand INT_INTCTRL_0, INTCTRL_0, bad_intr |
| int_hand INT_MESSAGE_RCV_DWNCL, MESSAGE_RCV_DWNCL, \ |
| hv_message_intr |
| int_hand INT_DEV_INTR_DWNCL, DEV_INTR_DWNCL, bad_intr |
| int_hand INT_I_ASID, I_ASID, bad_intr |
| int_hand INT_D_ASID, D_ASID, bad_intr |
| int_hand INT_DOUBLE_FAULT, DOUBLE_FAULT, do_trap |
| |
| /* Synthetic interrupt delivered only by the simulator */ |
| int_hand INT_BREAKPOINT, BREAKPOINT, do_breakpoint |