| /* |
| * This file is part of UBIFS. |
| * |
| * Copyright (C) 2006-2008 Nokia Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published by |
| * the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., 51 |
| * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| * |
| * Authors: Adrian Hunter |
| * Artem Bityutskiy (Битюцкий Артём) |
| */ |
| |
| /* |
| * This file implements the LEB properties tree (LPT) area. The LPT area |
| * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and |
| * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits |
| * between the log and the orphan area. |
| * |
| * The LPT area is like a miniature self-contained file system. It is required |
| * that it never runs out of space, is fast to access and update, and scales |
| * logarithmically. The LEB properties tree is implemented as a wandering tree |
| * much like the TNC, and the LPT area has its own garbage collection. |
| * |
| * The LPT has two slightly different forms called the "small model" and the |
| * "big model". The small model is used when the entire LEB properties table |
| * can be written into a single eraseblock. In that case, garbage collection |
| * consists of just writing the whole table, which therefore makes all other |
| * eraseblocks reusable. In the case of the big model, dirty eraseblocks are |
| * selected for garbage collection, which consists of marking the clean nodes in |
| * that LEB as dirty, and then only the dirty nodes are written out. Also, in |
| * the case of the big model, a table of LEB numbers is saved so that the entire |
| * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first |
| * mounted. |
| */ |
| |
| #include <linux/crc16.h> |
| #include "ubifs.h" |
| |
| /** |
| * do_calc_lpt_geom - calculate sizes for the LPT area. |
| * @c: the UBIFS file-system description object |
| * |
| * Calculate the sizes of LPT bit fields, nodes, and tree, based on the |
| * properties of the flash and whether LPT is "big" (c->big_lpt). |
| */ |
| static void do_calc_lpt_geom(struct ubifs_info *c) |
| { |
| int i, n, bits, per_leb_wastage, max_pnode_cnt; |
| long long sz, tot_wastage; |
| |
| n = c->main_lebs + c->max_leb_cnt - c->leb_cnt; |
| max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT); |
| |
| c->lpt_hght = 1; |
| n = UBIFS_LPT_FANOUT; |
| while (n < max_pnode_cnt) { |
| c->lpt_hght += 1; |
| n <<= UBIFS_LPT_FANOUT_SHIFT; |
| } |
| |
| c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT); |
| |
| n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT); |
| c->nnode_cnt = n; |
| for (i = 1; i < c->lpt_hght; i++) { |
| n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT); |
| c->nnode_cnt += n; |
| } |
| |
| c->space_bits = fls(c->leb_size) - 3; |
| c->lpt_lnum_bits = fls(c->lpt_lebs); |
| c->lpt_offs_bits = fls(c->leb_size - 1); |
| c->lpt_spc_bits = fls(c->leb_size); |
| |
| n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT); |
| c->pcnt_bits = fls(n - 1); |
| |
| c->lnum_bits = fls(c->max_leb_cnt - 1); |
| |
| bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS + |
| (c->big_lpt ? c->pcnt_bits : 0) + |
| (c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT; |
| c->pnode_sz = (bits + 7) / 8; |
| |
| bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS + |
| (c->big_lpt ? c->pcnt_bits : 0) + |
| (c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT; |
| c->nnode_sz = (bits + 7) / 8; |
| |
| bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS + |
| c->lpt_lebs * c->lpt_spc_bits * 2; |
| c->ltab_sz = (bits + 7) / 8; |
| |
| bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS + |
| c->lnum_bits * c->lsave_cnt; |
| c->lsave_sz = (bits + 7) / 8; |
| |
| /* Calculate the minimum LPT size */ |
| c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz; |
| c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz; |
| c->lpt_sz += c->ltab_sz; |
| if (c->big_lpt) |
| c->lpt_sz += c->lsave_sz; |
| |
| /* Add wastage */ |
| sz = c->lpt_sz; |
| per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz); |
| sz += per_leb_wastage; |
| tot_wastage = per_leb_wastage; |
| while (sz > c->leb_size) { |
| sz += per_leb_wastage; |
| sz -= c->leb_size; |
| tot_wastage += per_leb_wastage; |
| } |
| tot_wastage += ALIGN(sz, c->min_io_size) - sz; |
| c->lpt_sz += tot_wastage; |
| } |
| |
| /** |
| * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area. |
| * @c: the UBIFS file-system description object |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| int ubifs_calc_lpt_geom(struct ubifs_info *c) |
| { |
| int lebs_needed; |
| uint64_t sz; |
| |
| do_calc_lpt_geom(c); |
| |
| /* Verify that lpt_lebs is big enough */ |
| sz = c->lpt_sz * 2; /* Must have at least 2 times the size */ |
| sz += c->leb_size - 1; |
| do_div(sz, c->leb_size); |
| lebs_needed = sz; |
| if (lebs_needed > c->lpt_lebs) { |
| ubifs_err("too few LPT LEBs"); |
| return -EINVAL; |
| } |
| |
| /* Verify that ltab fits in a single LEB (since ltab is a single node */ |
| if (c->ltab_sz > c->leb_size) { |
| ubifs_err("LPT ltab too big"); |
| return -EINVAL; |
| } |
| |
| c->check_lpt_free = c->big_lpt; |
| return 0; |
| } |
| |
| /** |
| * calc_dflt_lpt_geom - calculate default LPT geometry. |
| * @c: the UBIFS file-system description object |
| * @main_lebs: number of main area LEBs is passed and returned here |
| * @big_lpt: whether the LPT area is "big" is returned here |
| * |
| * The size of the LPT area depends on parameters that themselves are dependent |
| * on the size of the LPT area. This function, successively recalculates the LPT |
| * area geometry until the parameters and resultant geometry are consistent. |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs, |
| int *big_lpt) |
| { |
| int i, lebs_needed; |
| uint64_t sz; |
| |
| /* Start by assuming the minimum number of LPT LEBs */ |
| c->lpt_lebs = UBIFS_MIN_LPT_LEBS; |
| c->main_lebs = *main_lebs - c->lpt_lebs; |
| if (c->main_lebs <= 0) |
| return -EINVAL; |
| |
| /* And assume we will use the small LPT model */ |
| c->big_lpt = 0; |
| |
| /* |
| * Calculate the geometry based on assumptions above and then see if it |
| * makes sense |
| */ |
| do_calc_lpt_geom(c); |
| |
| /* Small LPT model must have lpt_sz < leb_size */ |
| if (c->lpt_sz > c->leb_size) { |
| /* Nope, so try again using big LPT model */ |
| c->big_lpt = 1; |
| do_calc_lpt_geom(c); |
| } |
| |
| /* Now check there are enough LPT LEBs */ |
| for (i = 0; i < 64 ; i++) { |
| sz = c->lpt_sz * 4; /* Allow 4 times the size */ |
| sz += c->leb_size - 1; |
| do_div(sz, c->leb_size); |
| lebs_needed = sz; |
| if (lebs_needed > c->lpt_lebs) { |
| /* Not enough LPT LEBs so try again with more */ |
| c->lpt_lebs = lebs_needed; |
| c->main_lebs = *main_lebs - c->lpt_lebs; |
| if (c->main_lebs <= 0) |
| return -EINVAL; |
| do_calc_lpt_geom(c); |
| continue; |
| } |
| if (c->ltab_sz > c->leb_size) { |
| ubifs_err("LPT ltab too big"); |
| return -EINVAL; |
| } |
| *main_lebs = c->main_lebs; |
| *big_lpt = c->big_lpt; |
| return 0; |
| } |
| return -EINVAL; |
| } |
| |
| /** |
| * pack_bits - pack bit fields end-to-end. |
| * @addr: address at which to pack (passed and next address returned) |
| * @pos: bit position at which to pack (passed and next position returned) |
| * @val: value to pack |
| * @nrbits: number of bits of value to pack (1-32) |
| */ |
| static void pack_bits(uint8_t **addr, int *pos, uint32_t val, int nrbits) |
| { |
| uint8_t *p = *addr; |
| int b = *pos; |
| |
| ubifs_assert(nrbits > 0); |
| ubifs_assert(nrbits <= 32); |
| ubifs_assert(*pos >= 0); |
| ubifs_assert(*pos < 8); |
| ubifs_assert((val >> nrbits) == 0 || nrbits == 32); |
| if (b) { |
| *p |= ((uint8_t)val) << b; |
| nrbits += b; |
| if (nrbits > 8) { |
| *++p = (uint8_t)(val >>= (8 - b)); |
| if (nrbits > 16) { |
| *++p = (uint8_t)(val >>= 8); |
| if (nrbits > 24) { |
| *++p = (uint8_t)(val >>= 8); |
| if (nrbits > 32) |
| *++p = (uint8_t)(val >>= 8); |
| } |
| } |
| } |
| } else { |
| *p = (uint8_t)val; |
| if (nrbits > 8) { |
| *++p = (uint8_t)(val >>= 8); |
| if (nrbits > 16) { |
| *++p = (uint8_t)(val >>= 8); |
| if (nrbits > 24) |
| *++p = (uint8_t)(val >>= 8); |
| } |
| } |
| } |
| b = nrbits & 7; |
| if (b == 0) |
| p++; |
| *addr = p; |
| *pos = b; |
| } |
| |
| /** |
| * ubifs_unpack_bits - unpack bit fields. |
| * @addr: address at which to unpack (passed and next address returned) |
| * @pos: bit position at which to unpack (passed and next position returned) |
| * @nrbits: number of bits of value to unpack (1-32) |
| * |
| * This functions returns the value unpacked. |
| */ |
| uint32_t ubifs_unpack_bits(uint8_t **addr, int *pos, int nrbits) |
| { |
| const int k = 32 - nrbits; |
| uint8_t *p = *addr; |
| int b = *pos; |
| uint32_t uninitialized_var(val); |
| const int bytes = (nrbits + b + 7) >> 3; |
| |
| ubifs_assert(nrbits > 0); |
| ubifs_assert(nrbits <= 32); |
| ubifs_assert(*pos >= 0); |
| ubifs_assert(*pos < 8); |
| if (b) { |
| switch (bytes) { |
| case 2: |
| val = p[1]; |
| break; |
| case 3: |
| val = p[1] | ((uint32_t)p[2] << 8); |
| break; |
| case 4: |
| val = p[1] | ((uint32_t)p[2] << 8) | |
| ((uint32_t)p[3] << 16); |
| break; |
| case 5: |
| val = p[1] | ((uint32_t)p[2] << 8) | |
| ((uint32_t)p[3] << 16) | |
| ((uint32_t)p[4] << 24); |
| } |
| val <<= (8 - b); |
| val |= *p >> b; |
| nrbits += b; |
| } else { |
| switch (bytes) { |
| case 1: |
| val = p[0]; |
| break; |
| case 2: |
| val = p[0] | ((uint32_t)p[1] << 8); |
| break; |
| case 3: |
| val = p[0] | ((uint32_t)p[1] << 8) | |
| ((uint32_t)p[2] << 16); |
| break; |
| case 4: |
| val = p[0] | ((uint32_t)p[1] << 8) | |
| ((uint32_t)p[2] << 16) | |
| ((uint32_t)p[3] << 24); |
| break; |
| } |
| } |
| val <<= k; |
| val >>= k; |
| b = nrbits & 7; |
| p += nrbits >> 3; |
| *addr = p; |
| *pos = b; |
| ubifs_assert((val >> nrbits) == 0 || nrbits - b == 32); |
| return val; |
| } |
| |
| /** |
| * ubifs_pack_pnode - pack all the bit fields of a pnode. |
| * @c: UBIFS file-system description object |
| * @buf: buffer into which to pack |
| * @pnode: pnode to pack |
| */ |
| void ubifs_pack_pnode(struct ubifs_info *c, void *buf, |
| struct ubifs_pnode *pnode) |
| { |
| uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; |
| int i, pos = 0; |
| uint16_t crc; |
| |
| pack_bits(&addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS); |
| if (c->big_lpt) |
| pack_bits(&addr, &pos, pnode->num, c->pcnt_bits); |
| for (i = 0; i < UBIFS_LPT_FANOUT; i++) { |
| pack_bits(&addr, &pos, pnode->lprops[i].free >> 3, |
| c->space_bits); |
| pack_bits(&addr, &pos, pnode->lprops[i].dirty >> 3, |
| c->space_bits); |
| if (pnode->lprops[i].flags & LPROPS_INDEX) |
| pack_bits(&addr, &pos, 1, 1); |
| else |
| pack_bits(&addr, &pos, 0, 1); |
| } |
| crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, |
| c->pnode_sz - UBIFS_LPT_CRC_BYTES); |
| addr = buf; |
| pos = 0; |
| pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS); |
| } |
| |
| /** |
| * ubifs_pack_nnode - pack all the bit fields of a nnode. |
| * @c: UBIFS file-system description object |
| * @buf: buffer into which to pack |
| * @nnode: nnode to pack |
| */ |
| void ubifs_pack_nnode(struct ubifs_info *c, void *buf, |
| struct ubifs_nnode *nnode) |
| { |
| uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; |
| int i, pos = 0; |
| uint16_t crc; |
| |
| pack_bits(&addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS); |
| if (c->big_lpt) |
| pack_bits(&addr, &pos, nnode->num, c->pcnt_bits); |
| for (i = 0; i < UBIFS_LPT_FANOUT; i++) { |
| int lnum = nnode->nbranch[i].lnum; |
| |
| if (lnum == 0) |
| lnum = c->lpt_last + 1; |
| pack_bits(&addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits); |
| pack_bits(&addr, &pos, nnode->nbranch[i].offs, |
| c->lpt_offs_bits); |
| } |
| crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, |
| c->nnode_sz - UBIFS_LPT_CRC_BYTES); |
| addr = buf; |
| pos = 0; |
| pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS); |
| } |
| |
| /** |
| * ubifs_pack_ltab - pack the LPT's own lprops table. |
| * @c: UBIFS file-system description object |
| * @buf: buffer into which to pack |
| * @ltab: LPT's own lprops table to pack |
| */ |
| void ubifs_pack_ltab(struct ubifs_info *c, void *buf, |
| struct ubifs_lpt_lprops *ltab) |
| { |
| uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; |
| int i, pos = 0; |
| uint16_t crc; |
| |
| pack_bits(&addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS); |
| for (i = 0; i < c->lpt_lebs; i++) { |
| pack_bits(&addr, &pos, ltab[i].free, c->lpt_spc_bits); |
| pack_bits(&addr, &pos, ltab[i].dirty, c->lpt_spc_bits); |
| } |
| crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, |
| c->ltab_sz - UBIFS_LPT_CRC_BYTES); |
| addr = buf; |
| pos = 0; |
| pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS); |
| } |
| |
| /** |
| * ubifs_pack_lsave - pack the LPT's save table. |
| * @c: UBIFS file-system description object |
| * @buf: buffer into which to pack |
| * @lsave: LPT's save table to pack |
| */ |
| void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave) |
| { |
| uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; |
| int i, pos = 0; |
| uint16_t crc; |
| |
| pack_bits(&addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS); |
| for (i = 0; i < c->lsave_cnt; i++) |
| pack_bits(&addr, &pos, lsave[i], c->lnum_bits); |
| crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, |
| c->lsave_sz - UBIFS_LPT_CRC_BYTES); |
| addr = buf; |
| pos = 0; |
| pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS); |
| } |
| |
| /** |
| * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties. |
| * @c: UBIFS file-system description object |
| * @lnum: LEB number to which to add dirty space |
| * @dirty: amount of dirty space to add |
| */ |
| void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty) |
| { |
| if (!dirty || !lnum) |
| return; |
| dbg_lp("LEB %d add %d to %d", |
| lnum, dirty, c->ltab[lnum - c->lpt_first].dirty); |
| ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last); |
| c->ltab[lnum - c->lpt_first].dirty += dirty; |
| } |
| |
| /** |
| * set_ltab - set LPT LEB properties. |
| * @c: UBIFS file-system description object |
| * @lnum: LEB number |
| * @free: amount of free space |
| * @dirty: amount of dirty space |
| */ |
| static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty) |
| { |
| dbg_lp("LEB %d free %d dirty %d to %d %d", |
| lnum, c->ltab[lnum - c->lpt_first].free, |
| c->ltab[lnum - c->lpt_first].dirty, free, dirty); |
| ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last); |
| c->ltab[lnum - c->lpt_first].free = free; |
| c->ltab[lnum - c->lpt_first].dirty = dirty; |
| } |
| |
| /** |
| * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties. |
| * @c: UBIFS file-system description object |
| * @nnode: nnode for which to add dirt |
| */ |
| void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode) |
| { |
| struct ubifs_nnode *np = nnode->parent; |
| |
| if (np) |
| ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum, |
| c->nnode_sz); |
| else { |
| ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz); |
| if (!(c->lpt_drty_flgs & LTAB_DIRTY)) { |
| c->lpt_drty_flgs |= LTAB_DIRTY; |
| ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz); |
| } |
| } |
| } |
| |
| /** |
| * add_pnode_dirt - add dirty space to LPT LEB properties. |
| * @c: UBIFS file-system description object |
| * @pnode: pnode for which to add dirt |
| */ |
| static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode) |
| { |
| ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum, |
| c->pnode_sz); |
| } |
| |
| /** |
| * calc_nnode_num - calculate nnode number. |
| * @row: the row in the tree (root is zero) |
| * @col: the column in the row (leftmost is zero) |
| * |
| * The nnode number is a number that uniquely identifies a nnode and can be used |
| * easily to traverse the tree from the root to that nnode. |
| * |
| * This function calculates and returns the nnode number for the nnode at @row |
| * and @col. |
| */ |
| static int calc_nnode_num(int row, int col) |
| { |
| int num, bits; |
| |
| num = 1; |
| while (row--) { |
| bits = (col & (UBIFS_LPT_FANOUT - 1)); |
| col >>= UBIFS_LPT_FANOUT_SHIFT; |
| num <<= UBIFS_LPT_FANOUT_SHIFT; |
| num |= bits; |
| } |
| return num; |
| } |
| |
| /** |
| * calc_nnode_num_from_parent - calculate nnode number. |
| * @c: UBIFS file-system description object |
| * @parent: parent nnode |
| * @iip: index in parent |
| * |
| * The nnode number is a number that uniquely identifies a nnode and can be used |
| * easily to traverse the tree from the root to that nnode. |
| * |
| * This function calculates and returns the nnode number based on the parent's |
| * nnode number and the index in parent. |
| */ |
| static int calc_nnode_num_from_parent(const struct ubifs_info *c, |
| struct ubifs_nnode *parent, int iip) |
| { |
| int num, shft; |
| |
| if (!parent) |
| return 1; |
| shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT; |
| num = parent->num ^ (1 << shft); |
| num |= (UBIFS_LPT_FANOUT + iip) << shft; |
| return num; |
| } |
| |
| /** |
| * calc_pnode_num_from_parent - calculate pnode number. |
| * @c: UBIFS file-system description object |
| * @parent: parent nnode |
| * @iip: index in parent |
| * |
| * The pnode number is a number that uniquely identifies a pnode and can be used |
| * easily to traverse the tree from the root to that pnode. |
| * |
| * This function calculates and returns the pnode number based on the parent's |
| * nnode number and the index in parent. |
| */ |
| static int calc_pnode_num_from_parent(const struct ubifs_info *c, |
| struct ubifs_nnode *parent, int iip) |
| { |
| int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0; |
| |
| for (i = 0; i < n; i++) { |
| num <<= UBIFS_LPT_FANOUT_SHIFT; |
| num |= pnum & (UBIFS_LPT_FANOUT - 1); |
| pnum >>= UBIFS_LPT_FANOUT_SHIFT; |
| } |
| num <<= UBIFS_LPT_FANOUT_SHIFT; |
| num |= iip; |
| return num; |
| } |
| |
| /** |
| * ubifs_create_dflt_lpt - create default LPT. |
| * @c: UBIFS file-system description object |
| * @main_lebs: number of main area LEBs is passed and returned here |
| * @lpt_first: LEB number of first LPT LEB |
| * @lpt_lebs: number of LEBs for LPT is passed and returned here |
| * @big_lpt: use big LPT model is passed and returned here |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first, |
| int *lpt_lebs, int *big_lpt) |
| { |
| int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row; |
| int blnum, boffs, bsz, bcnt; |
| struct ubifs_pnode *pnode = NULL; |
| struct ubifs_nnode *nnode = NULL; |
| void *buf = NULL, *p; |
| struct ubifs_lpt_lprops *ltab = NULL; |
| int *lsave = NULL; |
| |
| err = calc_dflt_lpt_geom(c, main_lebs, big_lpt); |
| if (err) |
| return err; |
| *lpt_lebs = c->lpt_lebs; |
| |
| /* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */ |
| c->lpt_first = lpt_first; |
| /* Needed by 'set_ltab()' */ |
| c->lpt_last = lpt_first + c->lpt_lebs - 1; |
| /* Needed by 'ubifs_pack_lsave()' */ |
| c->main_first = c->leb_cnt - *main_lebs; |
| |
| lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_KERNEL); |
| pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL); |
| nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL); |
| buf = vmalloc(c->leb_size); |
| ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs); |
| if (!pnode || !nnode || !buf || !ltab || !lsave) { |
| err = -ENOMEM; |
| goto out; |
| } |
| |
| ubifs_assert(!c->ltab); |
| c->ltab = ltab; /* Needed by set_ltab */ |
| |
| /* Initialize LPT's own lprops */ |
| for (i = 0; i < c->lpt_lebs; i++) { |
| ltab[i].free = c->leb_size; |
| ltab[i].dirty = 0; |
| ltab[i].tgc = 0; |
| ltab[i].cmt = 0; |
| } |
| |
| lnum = lpt_first; |
| p = buf; |
| /* Number of leaf nodes (pnodes) */ |
| cnt = c->pnode_cnt; |
| |
| /* |
| * The first pnode contains the LEB properties for the LEBs that contain |
| * the root inode node and the root index node of the index tree. |
| */ |
| node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8); |
| iopos = ALIGN(node_sz, c->min_io_size); |
| pnode->lprops[0].free = c->leb_size - iopos; |
| pnode->lprops[0].dirty = iopos - node_sz; |
| pnode->lprops[0].flags = LPROPS_INDEX; |
| |
| node_sz = UBIFS_INO_NODE_SZ; |
| iopos = ALIGN(node_sz, c->min_io_size); |
| pnode->lprops[1].free = c->leb_size - iopos; |
| pnode->lprops[1].dirty = iopos - node_sz; |
| |
| for (i = 2; i < UBIFS_LPT_FANOUT; i++) |
| pnode->lprops[i].free = c->leb_size; |
| |
| /* Add first pnode */ |
| ubifs_pack_pnode(c, p, pnode); |
| p += c->pnode_sz; |
| len = c->pnode_sz; |
| pnode->num += 1; |
| |
| /* Reset pnode values for remaining pnodes */ |
| pnode->lprops[0].free = c->leb_size; |
| pnode->lprops[0].dirty = 0; |
| pnode->lprops[0].flags = 0; |
| |
| pnode->lprops[1].free = c->leb_size; |
| pnode->lprops[1].dirty = 0; |
| |
| /* |
| * To calculate the internal node branches, we keep information about |
| * the level below. |
| */ |
| blnum = lnum; /* LEB number of level below */ |
| boffs = 0; /* Offset of level below */ |
| bcnt = cnt; /* Number of nodes in level below */ |
| bsz = c->pnode_sz; /* Size of nodes in level below */ |
| |
| /* Add all remaining pnodes */ |
| for (i = 1; i < cnt; i++) { |
| if (len + c->pnode_sz > c->leb_size) { |
| alen = ALIGN(len, c->min_io_size); |
| set_ltab(c, lnum, c->leb_size - alen, alen - len); |
| memset(p, 0xff, alen - len); |
| err = ubi_leb_change(c->ubi, lnum++, buf, alen, |
| UBI_SHORTTERM); |
| if (err) |
| goto out; |
| p = buf; |
| len = 0; |
| } |
| ubifs_pack_pnode(c, p, pnode); |
| p += c->pnode_sz; |
| len += c->pnode_sz; |
| /* |
| * pnodes are simply numbered left to right starting at zero, |
| * which means the pnode number can be used easily to traverse |
| * down the tree to the corresponding pnode. |
| */ |
| pnode->num += 1; |
| } |
| |
| row = 0; |
| for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT) |
| row += 1; |
| /* Add all nnodes, one level at a time */ |
| while (1) { |
| /* Number of internal nodes (nnodes) at next level */ |
| cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT); |
| for (i = 0; i < cnt; i++) { |
| if (len + c->nnode_sz > c->leb_size) { |
| alen = ALIGN(len, c->min_io_size); |
| set_ltab(c, lnum, c->leb_size - alen, |
| alen - len); |
| memset(p, 0xff, alen - len); |
| err = ubi_leb_change(c->ubi, lnum++, buf, alen, |
| UBI_SHORTTERM); |
| if (err) |
| goto out; |
| p = buf; |
| len = 0; |
| } |
| /* Only 1 nnode at this level, so it is the root */ |
| if (cnt == 1) { |
| c->lpt_lnum = lnum; |
| c->lpt_offs = len; |
| } |
| /* Set branches to the level below */ |
| for (j = 0; j < UBIFS_LPT_FANOUT; j++) { |
| if (bcnt) { |
| if (boffs + bsz > c->leb_size) { |
| blnum += 1; |
| boffs = 0; |
| } |
| nnode->nbranch[j].lnum = blnum; |
| nnode->nbranch[j].offs = boffs; |
| boffs += bsz; |
| bcnt--; |
| } else { |
| nnode->nbranch[j].lnum = 0; |
| nnode->nbranch[j].offs = 0; |
| } |
| } |
| nnode->num = calc_nnode_num(row, i); |
| ubifs_pack_nnode(c, p, nnode); |
| p += c->nnode_sz; |
| len += c->nnode_sz; |
| } |
| /* Only 1 nnode at this level, so it is the root */ |
| if (cnt == 1) |
| break; |
| /* Update the information about the level below */ |
| bcnt = cnt; |
| bsz = c->nnode_sz; |
| row -= 1; |
| } |
| |
| if (*big_lpt) { |
| /* Need to add LPT's save table */ |
| if (len + c->lsave_sz > c->leb_size) { |
| alen = ALIGN(len, c->min_io_size); |
| set_ltab(c, lnum, c->leb_size - alen, alen - len); |
| memset(p, 0xff, alen - len); |
| err = ubi_leb_change(c->ubi, lnum++, buf, alen, |
| UBI_SHORTTERM); |
| if (err) |
| goto out; |
| p = buf; |
| len = 0; |
| } |
| |
| c->lsave_lnum = lnum; |
| c->lsave_offs = len; |
| |
| for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++) |
| lsave[i] = c->main_first + i; |
| for (; i < c->lsave_cnt; i++) |
| lsave[i] = c->main_first; |
| |
| ubifs_pack_lsave(c, p, lsave); |
| p += c->lsave_sz; |
| len += c->lsave_sz; |
| } |
| |
| /* Need to add LPT's own LEB properties table */ |
| if (len + c->ltab_sz > c->leb_size) { |
| alen = ALIGN(len, c->min_io_size); |
| set_ltab(c, lnum, c->leb_size - alen, alen - len); |
| memset(p, 0xff, alen - len); |
| err = ubi_leb_change(c->ubi, lnum++, buf, alen, UBI_SHORTTERM); |
| if (err) |
| goto out; |
| p = buf; |
| len = 0; |
| } |
| |
| c->ltab_lnum = lnum; |
| c->ltab_offs = len; |
| |
| /* Update ltab before packing it */ |
| len += c->ltab_sz; |
| alen = ALIGN(len, c->min_io_size); |
| set_ltab(c, lnum, c->leb_size - alen, alen - len); |
| |
| ubifs_pack_ltab(c, p, ltab); |
| p += c->ltab_sz; |
| |
| /* Write remaining buffer */ |
| memset(p, 0xff, alen - len); |
| err = ubi_leb_change(c->ubi, lnum, buf, alen, UBI_SHORTTERM); |
| if (err) |
| goto out; |
| |
| c->nhead_lnum = lnum; |
| c->nhead_offs = ALIGN(len, c->min_io_size); |
| |
| dbg_lp("space_bits %d", c->space_bits); |
| dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits); |
| dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits); |
| dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits); |
| dbg_lp("pcnt_bits %d", c->pcnt_bits); |
| dbg_lp("lnum_bits %d", c->lnum_bits); |
| dbg_lp("pnode_sz %d", c->pnode_sz); |
| dbg_lp("nnode_sz %d", c->nnode_sz); |
| dbg_lp("ltab_sz %d", c->ltab_sz); |
| dbg_lp("lsave_sz %d", c->lsave_sz); |
| dbg_lp("lsave_cnt %d", c->lsave_cnt); |
| dbg_lp("lpt_hght %d", c->lpt_hght); |
| dbg_lp("big_lpt %d", c->big_lpt); |
| dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs); |
| dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs); |
| dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs); |
| if (c->big_lpt) |
| dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs); |
| out: |
| c->ltab = NULL; |
| kfree(lsave); |
| vfree(ltab); |
| vfree(buf); |
| kfree(nnode); |
| kfree(pnode); |
| return err; |
| } |
| |
| /** |
| * update_cats - add LEB properties of a pnode to LEB category lists and heaps. |
| * @c: UBIFS file-system description object |
| * @pnode: pnode |
| * |
| * When a pnode is loaded into memory, the LEB properties it contains are added, |
| * by this function, to the LEB category lists and heaps. |
| */ |
| static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode) |
| { |
| int i; |
| |
| for (i = 0; i < UBIFS_LPT_FANOUT; i++) { |
| int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK; |
| int lnum = pnode->lprops[i].lnum; |
| |
| if (!lnum) |
| return; |
| ubifs_add_to_cat(c, &pnode->lprops[i], cat); |
| } |
| } |
| |
| /** |
| * replace_cats - add LEB properties of a pnode to LEB category lists and heaps. |
| * @c: UBIFS file-system description object |
| * @old_pnode: pnode copied |
| * @new_pnode: pnode copy |
| * |
| * During commit it is sometimes necessary to copy a pnode |
| * (see dirty_cow_pnode). When that happens, references in |
| * category lists and heaps must be replaced. This function does that. |
| */ |
| static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode, |
| struct ubifs_pnode *new_pnode) |
| { |
| int i; |
| |
| for (i = 0; i < UBIFS_LPT_FANOUT; i++) { |
| if (!new_pnode->lprops[i].lnum) |
| return; |
| ubifs_replace_cat(c, &old_pnode->lprops[i], |
| &new_pnode->lprops[i]); |
| } |
| } |
| |
| /** |
| * check_lpt_crc - check LPT node crc is correct. |
| * @c: UBIFS file-system description object |
| * @buf: buffer containing node |
| * @len: length of node |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| static int check_lpt_crc(void *buf, int len) |
| { |
| int pos = 0; |
| uint8_t *addr = buf; |
| uint16_t crc, calc_crc; |
| |
| crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS); |
| calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, |
| len - UBIFS_LPT_CRC_BYTES); |
| if (crc != calc_crc) { |
| ubifs_err("invalid crc in LPT node: crc %hx calc %hx", crc, |
| calc_crc); |
| dbg_dump_stack(); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /** |
| * check_lpt_type - check LPT node type is correct. |
| * @c: UBIFS file-system description object |
| * @addr: address of type bit field is passed and returned updated here |
| * @pos: position of type bit field is passed and returned updated here |
| * @type: expected type |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| static int check_lpt_type(uint8_t **addr, int *pos, int type) |
| { |
| int node_type; |
| |
| node_type = ubifs_unpack_bits(addr, pos, UBIFS_LPT_TYPE_BITS); |
| if (node_type != type) { |
| ubifs_err("invalid type (%d) in LPT node type %d", node_type, |
| type); |
| dbg_dump_stack(); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /** |
| * unpack_pnode - unpack a pnode. |
| * @c: UBIFS file-system description object |
| * @buf: buffer containing packed pnode to unpack |
| * @pnode: pnode structure to fill |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| static int unpack_pnode(const struct ubifs_info *c, void *buf, |
| struct ubifs_pnode *pnode) |
| { |
| uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; |
| int i, pos = 0, err; |
| |
| err = check_lpt_type(&addr, &pos, UBIFS_LPT_PNODE); |
| if (err) |
| return err; |
| if (c->big_lpt) |
| pnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits); |
| for (i = 0; i < UBIFS_LPT_FANOUT; i++) { |
| struct ubifs_lprops * const lprops = &pnode->lprops[i]; |
| |
| lprops->free = ubifs_unpack_bits(&addr, &pos, c->space_bits); |
| lprops->free <<= 3; |
| lprops->dirty = ubifs_unpack_bits(&addr, &pos, c->space_bits); |
| lprops->dirty <<= 3; |
| |
| if (ubifs_unpack_bits(&addr, &pos, 1)) |
| lprops->flags = LPROPS_INDEX; |
| else |
| lprops->flags = 0; |
| lprops->flags |= ubifs_categorize_lprops(c, lprops); |
| } |
| err = check_lpt_crc(buf, c->pnode_sz); |
| return err; |
| } |
| |
| /** |
| * ubifs_unpack_nnode - unpack a nnode. |
| * @c: UBIFS file-system description object |
| * @buf: buffer containing packed nnode to unpack |
| * @nnode: nnode structure to fill |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf, |
| struct ubifs_nnode *nnode) |
| { |
| uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; |
| int i, pos = 0, err; |
| |
| err = check_lpt_type(&addr, &pos, UBIFS_LPT_NNODE); |
| if (err) |
| return err; |
| if (c->big_lpt) |
| nnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits); |
| for (i = 0; i < UBIFS_LPT_FANOUT; i++) { |
| int lnum; |
| |
| lnum = ubifs_unpack_bits(&addr, &pos, c->lpt_lnum_bits) + |
| c->lpt_first; |
| if (lnum == c->lpt_last + 1) |
| lnum = 0; |
| nnode->nbranch[i].lnum = lnum; |
| nnode->nbranch[i].offs = ubifs_unpack_bits(&addr, &pos, |
| c->lpt_offs_bits); |
| } |
| err = check_lpt_crc(buf, c->nnode_sz); |
| return err; |
| } |
| |
| /** |
| * unpack_ltab - unpack the LPT's own lprops table. |
| * @c: UBIFS file-system description object |
| * @buf: buffer from which to unpack |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| static int unpack_ltab(const struct ubifs_info *c, void *buf) |
| { |
| uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; |
| int i, pos = 0, err; |
| |
| err = check_lpt_type(&addr, &pos, UBIFS_LPT_LTAB); |
| if (err) |
| return err; |
| for (i = 0; i < c->lpt_lebs; i++) { |
| int free = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits); |
| int dirty = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits); |
| |
| if (free < 0 || free > c->leb_size || dirty < 0 || |
| dirty > c->leb_size || free + dirty > c->leb_size) |
| return -EINVAL; |
| |
| c->ltab[i].free = free; |
| c->ltab[i].dirty = dirty; |
| c->ltab[i].tgc = 0; |
| c->ltab[i].cmt = 0; |
| } |
| err = check_lpt_crc(buf, c->ltab_sz); |
| return err; |
| } |
| |
| /** |
| * unpack_lsave - unpack the LPT's save table. |
| * @c: UBIFS file-system description object |
| * @buf: buffer from which to unpack |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| static int unpack_lsave(const struct ubifs_info *c, void *buf) |
| { |
| uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; |
| int i, pos = 0, err; |
| |
| err = check_lpt_type(&addr, &pos, UBIFS_LPT_LSAVE); |
| if (err) |
| return err; |
| for (i = 0; i < c->lsave_cnt; i++) { |
| int lnum = ubifs_unpack_bits(&addr, &pos, c->lnum_bits); |
| |
| if (lnum < c->main_first || lnum >= c->leb_cnt) |
| return -EINVAL; |
| c->lsave[i] = lnum; |
| } |
| err = check_lpt_crc(buf, c->lsave_sz); |
| return err; |
| } |
| |
| /** |
| * validate_nnode - validate a nnode. |
| * @c: UBIFS file-system description object |
| * @nnode: nnode to validate |
| * @parent: parent nnode (or NULL for the root nnode) |
| * @iip: index in parent |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| static int validate_nnode(const struct ubifs_info *c, struct ubifs_nnode *nnode, |
| struct ubifs_nnode *parent, int iip) |
| { |
| int i, lvl, max_offs; |
| |
| if (c->big_lpt) { |
| int num = calc_nnode_num_from_parent(c, parent, iip); |
| |
| if (nnode->num != num) |
| return -EINVAL; |
| } |
| lvl = parent ? parent->level - 1 : c->lpt_hght; |
| if (lvl < 1) |
| return -EINVAL; |
| if (lvl == 1) |
| max_offs = c->leb_size - c->pnode_sz; |
| else |
| max_offs = c->leb_size - c->nnode_sz; |
| for (i = 0; i < UBIFS_LPT_FANOUT; i++) { |
| int lnum = nnode->nbranch[i].lnum; |
| int offs = nnode->nbranch[i].offs; |
| |
| if (lnum == 0) { |
| if (offs != 0) |
| return -EINVAL; |
| continue; |
| } |
| if (lnum < c->lpt_first || lnum > c->lpt_last) |
| return -EINVAL; |
| if (offs < 0 || offs > max_offs) |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /** |
| * validate_pnode - validate a pnode. |
| * @c: UBIFS file-system description object |
| * @pnode: pnode to validate |
| * @parent: parent nnode |
| * @iip: index in parent |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| static int validate_pnode(const struct ubifs_info *c, struct ubifs_pnode *pnode, |
| struct ubifs_nnode *parent, int iip) |
| { |
| int i; |
| |
| if (c->big_lpt) { |
| int num = calc_pnode_num_from_parent(c, parent, iip); |
| |
| if (pnode->num != num) |
| return -EINVAL; |
| } |
| for (i = 0; i < UBIFS_LPT_FANOUT; i++) { |
| int free = pnode->lprops[i].free; |
| int dirty = pnode->lprops[i].dirty; |
| |
| if (free < 0 || free > c->leb_size || free % c->min_io_size || |
| (free & 7)) |
| return -EINVAL; |
| if (dirty < 0 || dirty > c->leb_size || (dirty & 7)) |
| return -EINVAL; |
| if (dirty + free > c->leb_size) |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /** |
| * set_pnode_lnum - set LEB numbers on a pnode. |
| * @c: UBIFS file-system description object |
| * @pnode: pnode to update |
| * |
| * This function calculates the LEB numbers for the LEB properties it contains |
| * based on the pnode number. |
| */ |
| static void set_pnode_lnum(const struct ubifs_info *c, |
| struct ubifs_pnode *pnode) |
| { |
| int i, lnum; |
| |
| lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + c->main_first; |
| for (i = 0; i < UBIFS_LPT_FANOUT; i++) { |
| if (lnum >= c->leb_cnt) |
| return; |
| pnode->lprops[i].lnum = lnum++; |
| } |
| } |
| |
| /** |
| * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory. |
| * @c: UBIFS file-system description object |
| * @parent: parent nnode (or NULL for the root) |
| * @iip: index in parent |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip) |
| { |
| struct ubifs_nbranch *branch = NULL; |
| struct ubifs_nnode *nnode = NULL; |
| void *buf = c->lpt_nod_buf; |
| int err, lnum, offs; |
| |
| if (parent) { |
| branch = &parent->nbranch[iip]; |
| lnum = branch->lnum; |
| offs = branch->offs; |
| } else { |
| lnum = c->lpt_lnum; |
| offs = c->lpt_offs; |
| } |
| nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_NOFS); |
| if (!nnode) { |
| err = -ENOMEM; |
| goto out; |
| } |
| if (lnum == 0) { |
| /* |
| * This nnode was not written which just means that the LEB |
| * properties in the subtree below it describe empty LEBs. We |
| * make the nnode as though we had read it, which in fact means |
| * doing almost nothing. |
| */ |
| if (c->big_lpt) |
| nnode->num = calc_nnode_num_from_parent(c, parent, iip); |
| } else { |
| err = ubi_read(c->ubi, lnum, buf, offs, c->nnode_sz); |
| if (err) |
| goto out; |
| err = ubifs_unpack_nnode(c, buf, nnode); |
| if (err) |
| goto out; |
| } |
| err = validate_nnode(c, nnode, parent, iip); |
| if (err) |
| goto out; |
| if (!c->big_lpt) |
| nnode->num = calc_nnode_num_from_parent(c, parent, iip); |
| if (parent) { |
| branch->nnode = nnode; |
| nnode->level = parent->level - 1; |
| } else { |
| c->nroot = nnode; |
| nnode->level = c->lpt_hght; |
| } |
| nnode->parent = parent; |
| nnode->iip = iip; |
| return 0; |
| |
| out: |
| ubifs_err("error %d reading nnode at %d:%d", err, lnum, offs); |
| kfree(nnode); |
| return err; |
| } |
| |
| /** |
| * read_pnode - read a pnode from flash and link it to the tree in memory. |
| * @c: UBIFS file-system description object |
| * @parent: parent nnode |
| * @iip: index in parent |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip) |
| { |
| struct ubifs_nbranch *branch; |
| struct ubifs_pnode *pnode = NULL; |
| void *buf = c->lpt_nod_buf; |
| int err, lnum, offs; |
| |
| branch = &parent->nbranch[iip]; |
| lnum = branch->lnum; |
| offs = branch->offs; |
| pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS); |
| if (!pnode) { |
| err = -ENOMEM; |
| goto out; |
| } |
| if (lnum == 0) { |
| /* |
| * This pnode was not written which just means that the LEB |
| * properties in it describe empty LEBs. We make the pnode as |
| * though we had read it. |
| */ |
| int i; |
| |
| if (c->big_lpt) |
| pnode->num = calc_pnode_num_from_parent(c, parent, iip); |
| for (i = 0; i < UBIFS_LPT_FANOUT; i++) { |
| struct ubifs_lprops * const lprops = &pnode->lprops[i]; |
| |
| lprops->free = c->leb_size; |
| lprops->flags = ubifs_categorize_lprops(c, lprops); |
| } |
| } else { |
| err = ubi_read(c->ubi, lnum, buf, offs, c->pnode_sz); |
| if (err) |
| goto out; |
| err = unpack_pnode(c, buf, pnode); |
| if (err) |
| goto out; |
| } |
| err = validate_pnode(c, pnode, parent, iip); |
| if (err) |
| goto out; |
| if (!c->big_lpt) |
| pnode->num = calc_pnode_num_from_parent(c, parent, iip); |
| branch->pnode = pnode; |
| pnode->parent = parent; |
| pnode->iip = iip; |
| set_pnode_lnum(c, pnode); |
| c->pnodes_have += 1; |
| return 0; |
| |
| out: |
| ubifs_err("error %d reading pnode at %d:%d", err, lnum, offs); |
| dbg_dump_pnode(c, pnode, parent, iip); |
| dbg_msg("calc num: %d", calc_pnode_num_from_parent(c, parent, iip)); |
| kfree(pnode); |
| return err; |
| } |
| |
| /** |
| * read_ltab - read LPT's own lprops table. |
| * @c: UBIFS file-system description object |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| static int read_ltab(struct ubifs_info *c) |
| { |
| int err; |
| void *buf; |
| |
| buf = vmalloc(c->ltab_sz); |
| if (!buf) |
| return -ENOMEM; |
| err = ubi_read(c->ubi, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz); |
| if (err) |
| goto out; |
| err = unpack_ltab(c, buf); |
| out: |
| vfree(buf); |
| return err; |
| } |
| |
| /** |
| * read_lsave - read LPT's save table. |
| * @c: UBIFS file-system description object |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| static int read_lsave(struct ubifs_info *c) |
| { |
| int err, i; |
| void *buf; |
| |
| buf = vmalloc(c->lsave_sz); |
| if (!buf) |
| return -ENOMEM; |
| err = ubi_read(c->ubi, c->lsave_lnum, buf, c->lsave_offs, c->lsave_sz); |
| if (err) |
| goto out; |
| err = unpack_lsave(c, buf); |
| if (err) |
| goto out; |
| for (i = 0; i < c->lsave_cnt; i++) { |
| int lnum = c->lsave[i]; |
| |
| /* |
| * Due to automatic resizing, the values in the lsave table |
| * could be beyond the volume size - just ignore them. |
| */ |
| if (lnum >= c->leb_cnt) |
| continue; |
| ubifs_lpt_lookup(c, lnum); |
| } |
| out: |
| vfree(buf); |
| return err; |
| } |
| |
| /** |
| * ubifs_get_nnode - get a nnode. |
| * @c: UBIFS file-system description object |
| * @parent: parent nnode (or NULL for the root) |
| * @iip: index in parent |
| * |
| * This function returns a pointer to the nnode on success or a negative error |
| * code on failure. |
| */ |
| struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c, |
| struct ubifs_nnode *parent, int iip) |
| { |
| struct ubifs_nbranch *branch; |
| struct ubifs_nnode *nnode; |
| int err; |
| |
| branch = &parent->nbranch[iip]; |
| nnode = branch->nnode; |
| if (nnode) |
| return nnode; |
| err = ubifs_read_nnode(c, parent, iip); |
| if (err) |
| return ERR_PTR(err); |
| return branch->nnode; |
| } |
| |
| /** |
| * ubifs_get_pnode - get a pnode. |
| * @c: UBIFS file-system description object |
| * @parent: parent nnode |
| * @iip: index in parent |
| * |
| * This function returns a pointer to the pnode on success or a negative error |
| * code on failure. |
| */ |
| struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c, |
| struct ubifs_nnode *parent, int iip) |
| { |
| struct ubifs_nbranch *branch; |
| struct ubifs_pnode *pnode; |
| int err; |
| |
| branch = &parent->nbranch[iip]; |
| pnode = branch->pnode; |
| if (pnode) |
| return pnode; |
| err = read_pnode(c, parent, iip); |
| if (err) |
| return ERR_PTR(err); |
| update_cats(c, branch->pnode); |
| return branch->pnode; |
| } |
| |
| /** |
| * ubifs_lpt_lookup - lookup LEB properties in the LPT. |
| * @c: UBIFS file-system description object |
| * @lnum: LEB number to lookup |
| * |
| * This function returns a pointer to the LEB properties on success or a |
| * negative error code on failure. |
| */ |
| struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum) |
| { |
| int err, i, h, iip, shft; |
| struct ubifs_nnode *nnode; |
| struct ubifs_pnode *pnode; |
| |
| if (!c->nroot) { |
| err = ubifs_read_nnode(c, NULL, 0); |
| if (err) |
| return ERR_PTR(err); |
| } |
| nnode = c->nroot; |
| i = lnum - c->main_first; |
| shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT; |
| for (h = 1; h < c->lpt_hght; h++) { |
| iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); |
| shft -= UBIFS_LPT_FANOUT_SHIFT; |
| nnode = ubifs_get_nnode(c, nnode, iip); |
| if (IS_ERR(nnode)) |
| return ERR_PTR(PTR_ERR(nnode)); |
| } |
| iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); |
| shft -= UBIFS_LPT_FANOUT_SHIFT; |
| pnode = ubifs_get_pnode(c, nnode, iip); |
| if (IS_ERR(pnode)) |
| return ERR_PTR(PTR_ERR(pnode)); |
| iip = (i & (UBIFS_LPT_FANOUT - 1)); |
| dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum, |
| pnode->lprops[iip].free, pnode->lprops[iip].dirty, |
| pnode->lprops[iip].flags); |
| return &pnode->lprops[iip]; |
| } |
| |
| /** |
| * dirty_cow_nnode - ensure a nnode is not being committed. |
| * @c: UBIFS file-system description object |
| * @nnode: nnode to check |
| * |
| * Returns dirtied nnode on success or negative error code on failure. |
| */ |
| static struct ubifs_nnode *dirty_cow_nnode(struct ubifs_info *c, |
| struct ubifs_nnode *nnode) |
| { |
| struct ubifs_nnode *n; |
| int i; |
| |
| if (!test_bit(COW_CNODE, &nnode->flags)) { |
| /* nnode is not being committed */ |
| if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) { |
| c->dirty_nn_cnt += 1; |
| ubifs_add_nnode_dirt(c, nnode); |
| } |
| return nnode; |
| } |
| |
| /* nnode is being committed, so copy it */ |
| n = kmalloc(sizeof(struct ubifs_nnode), GFP_NOFS); |
| if (unlikely(!n)) |
| return ERR_PTR(-ENOMEM); |
| |
| memcpy(n, nnode, sizeof(struct ubifs_nnode)); |
| n->cnext = NULL; |
| __set_bit(DIRTY_CNODE, &n->flags); |
| __clear_bit(COW_CNODE, &n->flags); |
| |
| /* The children now have new parent */ |
| for (i = 0; i < UBIFS_LPT_FANOUT; i++) { |
| struct ubifs_nbranch *branch = &n->nbranch[i]; |
| |
| if (branch->cnode) |
| branch->cnode->parent = n; |
| } |
| |
| ubifs_assert(!test_bit(OBSOLETE_CNODE, &nnode->flags)); |
| __set_bit(OBSOLETE_CNODE, &nnode->flags); |
| |
| c->dirty_nn_cnt += 1; |
| ubifs_add_nnode_dirt(c, nnode); |
| if (nnode->parent) |
| nnode->parent->nbranch[n->iip].nnode = n; |
| else |
| c->nroot = n; |
| return n; |
| } |
| |
| /** |
| * dirty_cow_pnode - ensure a pnode is not being committed. |
| * @c: UBIFS file-system description object |
| * @pnode: pnode to check |
| * |
| * Returns dirtied pnode on success or negative error code on failure. |
| */ |
| static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c, |
| struct ubifs_pnode *pnode) |
| { |
| struct ubifs_pnode *p; |
| |
| if (!test_bit(COW_CNODE, &pnode->flags)) { |
| /* pnode is not being committed */ |
| if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) { |
| c->dirty_pn_cnt += 1; |
| add_pnode_dirt(c, pnode); |
| } |
| return pnode; |
| } |
| |
| /* pnode is being committed, so copy it */ |
| p = kmalloc(sizeof(struct ubifs_pnode), GFP_NOFS); |
| if (unlikely(!p)) |
| return ERR_PTR(-ENOMEM); |
| |
| memcpy(p, pnode, sizeof(struct ubifs_pnode)); |
| p->cnext = NULL; |
| __set_bit(DIRTY_CNODE, &p->flags); |
| __clear_bit(COW_CNODE, &p->flags); |
| replace_cats(c, pnode, p); |
| |
| ubifs_assert(!test_bit(OBSOLETE_CNODE, &pnode->flags)); |
| __set_bit(OBSOLETE_CNODE, &pnode->flags); |
| |
| c->dirty_pn_cnt += 1; |
| add_pnode_dirt(c, pnode); |
| pnode->parent->nbranch[p->iip].pnode = p; |
| return p; |
| } |
| |
| /** |
| * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT. |
| * @c: UBIFS file-system description object |
| * @lnum: LEB number to lookup |
| * |
| * This function returns a pointer to the LEB properties on success or a |
| * negative error code on failure. |
| */ |
| struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum) |
| { |
| int err, i, h, iip, shft; |
| struct ubifs_nnode *nnode; |
| struct ubifs_pnode *pnode; |
| |
| if (!c->nroot) { |
| err = ubifs_read_nnode(c, NULL, 0); |
| if (err) |
| return ERR_PTR(err); |
| } |
| nnode = c->nroot; |
| nnode = dirty_cow_nnode(c, nnode); |
| if (IS_ERR(nnode)) |
| return ERR_PTR(PTR_ERR(nnode)); |
| i = lnum - c->main_first; |
| shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT; |
| for (h = 1; h < c->lpt_hght; h++) { |
| iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); |
| shft -= UBIFS_LPT_FANOUT_SHIFT; |
| nnode = ubifs_get_nnode(c, nnode, iip); |
| if (IS_ERR(nnode)) |
| return ERR_PTR(PTR_ERR(nnode)); |
| nnode = dirty_cow_nnode(c, nnode); |
| if (IS_ERR(nnode)) |
| return ERR_PTR(PTR_ERR(nnode)); |
| } |
| iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); |
| shft -= UBIFS_LPT_FANOUT_SHIFT; |
| pnode = ubifs_get_pnode(c, nnode, iip); |
| if (IS_ERR(pnode)) |
| return ERR_PTR(PTR_ERR(pnode)); |
| pnode = dirty_cow_pnode(c, pnode); |
| if (IS_ERR(pnode)) |
| return ERR_PTR(PTR_ERR(pnode)); |
| iip = (i & (UBIFS_LPT_FANOUT - 1)); |
| dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum, |
| pnode->lprops[iip].free, pnode->lprops[iip].dirty, |
| pnode->lprops[iip].flags); |
| ubifs_assert(test_bit(DIRTY_CNODE, &pnode->flags)); |
| return &pnode->lprops[iip]; |
| } |
| |
| /** |
| * lpt_init_rd - initialize the LPT for reading. |
| * @c: UBIFS file-system description object |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| static int lpt_init_rd(struct ubifs_info *c) |
| { |
| int err, i; |
| |
| c->ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs); |
| if (!c->ltab) |
| return -ENOMEM; |
| |
| i = max_t(int, c->nnode_sz, c->pnode_sz); |
| c->lpt_nod_buf = kmalloc(i, GFP_KERNEL); |
| if (!c->lpt_nod_buf) |
| return -ENOMEM; |
| |
| for (i = 0; i < LPROPS_HEAP_CNT; i++) { |
| c->lpt_heap[i].arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ, |
| GFP_KERNEL); |
| if (!c->lpt_heap[i].arr) |
| return -ENOMEM; |
| c->lpt_heap[i].cnt = 0; |
| c->lpt_heap[i].max_cnt = LPT_HEAP_SZ; |
| } |
| |
| c->dirty_idx.arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ, GFP_KERNEL); |
| if (!c->dirty_idx.arr) |
| return -ENOMEM; |
| c->dirty_idx.cnt = 0; |
| c->dirty_idx.max_cnt = LPT_HEAP_SZ; |
| |
| err = read_ltab(c); |
| if (err) |
| return err; |
| |
| dbg_lp("space_bits %d", c->space_bits); |
| dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits); |
| dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits); |
| dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits); |
| dbg_lp("pcnt_bits %d", c->pcnt_bits); |
| dbg_lp("lnum_bits %d", c->lnum_bits); |
| dbg_lp("pnode_sz %d", c->pnode_sz); |
| dbg_lp("nnode_sz %d", c->nnode_sz); |
| dbg_lp("ltab_sz %d", c->ltab_sz); |
| dbg_lp("lsave_sz %d", c->lsave_sz); |
| dbg_lp("lsave_cnt %d", c->lsave_cnt); |
| dbg_lp("lpt_hght %d", c->lpt_hght); |
| dbg_lp("big_lpt %d", c->big_lpt); |
| dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs); |
| dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs); |
| dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs); |
| if (c->big_lpt) |
| dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs); |
| |
| return 0; |
| } |
| |
| /** |
| * lpt_init_wr - initialize the LPT for writing. |
| * @c: UBIFS file-system description object |
| * |
| * 'lpt_init_rd()' must have been called already. |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| static int lpt_init_wr(struct ubifs_info *c) |
| { |
| int err, i; |
| |
| c->ltab_cmt = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs); |
| if (!c->ltab_cmt) |
| return -ENOMEM; |
| |
| c->lpt_buf = vmalloc(c->leb_size); |
| if (!c->lpt_buf) |
| return -ENOMEM; |
| |
| if (c->big_lpt) { |
| c->lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_NOFS); |
| if (!c->lsave) |
| return -ENOMEM; |
| err = read_lsave(c); |
| if (err) |
| return err; |
| } |
| |
| for (i = 0; i < c->lpt_lebs; i++) |
| if (c->ltab[i].free == c->leb_size) { |
| err = ubifs_leb_unmap(c, i + c->lpt_first); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ubifs_lpt_init - initialize the LPT. |
| * @c: UBIFS file-system description object |
| * @rd: whether to initialize lpt for reading |
| * @wr: whether to initialize lpt for writing |
| * |
| * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true |
| * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is |
| * true. |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr) |
| { |
| int err; |
| |
| if (rd) { |
| err = lpt_init_rd(c); |
| if (err) |
| return err; |
| } |
| |
| if (wr) { |
| err = lpt_init_wr(c); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * struct lpt_scan_node - somewhere to put nodes while we scan LPT. |
| * @nnode: where to keep a nnode |
| * @pnode: where to keep a pnode |
| * @cnode: where to keep a cnode |
| * @in_tree: is the node in the tree in memory |
| * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in |
| * the tree |
| * @ptr.pnode: ditto for pnode |
| * @ptr.cnode: ditto for cnode |
| */ |
| struct lpt_scan_node { |
| union { |
| struct ubifs_nnode nnode; |
| struct ubifs_pnode pnode; |
| struct ubifs_cnode cnode; |
| }; |
| int in_tree; |
| union { |
| struct ubifs_nnode *nnode; |
| struct ubifs_pnode *pnode; |
| struct ubifs_cnode *cnode; |
| } ptr; |
| }; |
| |
| /** |
| * scan_get_nnode - for the scan, get a nnode from either the tree or flash. |
| * @c: the UBIFS file-system description object |
| * @path: where to put the nnode |
| * @parent: parent of the nnode |
| * @iip: index in parent of the nnode |
| * |
| * This function returns a pointer to the nnode on success or a negative error |
| * code on failure. |
| */ |
| static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c, |
| struct lpt_scan_node *path, |
| struct ubifs_nnode *parent, int iip) |
| { |
| struct ubifs_nbranch *branch; |
| struct ubifs_nnode *nnode; |
| void *buf = c->lpt_nod_buf; |
| int err; |
| |
| branch = &parent->nbranch[iip]; |
| nnode = branch->nnode; |
| if (nnode) { |
| path->in_tree = 1; |
| path->ptr.nnode = nnode; |
| return nnode; |
| } |
| nnode = &path->nnode; |
| path->in_tree = 0; |
| path->ptr.nnode = nnode; |
| memset(nnode, 0, sizeof(struct ubifs_nnode)); |
| if (branch->lnum == 0) { |
| /* |
| * This nnode was not written which just means that the LEB |
| * properties in the subtree below it describe empty LEBs. We |
| * make the nnode as though we had read it, which in fact means |
| * doing almost nothing. |
| */ |
| if (c->big_lpt) |
| nnode->num = calc_nnode_num_from_parent(c, parent, iip); |
| } else { |
| err = ubi_read(c->ubi, branch->lnum, buf, branch->offs, |
| c->nnode_sz); |
| if (err) |
| return ERR_PTR(err); |
| err = ubifs_unpack_nnode(c, buf, nnode); |
| if (err) |
| return ERR_PTR(err); |
| } |
| err = validate_nnode(c, nnode, parent, iip); |
| if (err) |
| return ERR_PTR(err); |
| if (!c->big_lpt) |
| nnode->num = calc_nnode_num_from_parent(c, parent, iip); |
| nnode->level = parent->level - 1; |
| nnode->parent = parent; |
| nnode->iip = iip; |
| return nnode; |
| } |
| |
| /** |
| * scan_get_pnode - for the scan, get a pnode from either the tree or flash. |
| * @c: the UBIFS file-system description object |
| * @path: where to put the pnode |
| * @parent: parent of the pnode |
| * @iip: index in parent of the pnode |
| * |
| * This function returns a pointer to the pnode on success or a negative error |
| * code on failure. |
| */ |
| static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c, |
| struct lpt_scan_node *path, |
| struct ubifs_nnode *parent, int iip) |
| { |
| struct ubifs_nbranch *branch; |
| struct ubifs_pnode *pnode; |
| void *buf = c->lpt_nod_buf; |
| int err; |
| |
| branch = &parent->nbranch[iip]; |
| pnode = branch->pnode; |
| if (pnode) { |
| path->in_tree = 1; |
| path->ptr.pnode = pnode; |
| return pnode; |
| } |
| pnode = &path->pnode; |
| path->in_tree = 0; |
| path->ptr.pnode = pnode; |
| memset(pnode, 0, sizeof(struct ubifs_pnode)); |
| if (branch->lnum == 0) { |
| /* |
| * This pnode was not written which just means that the LEB |
| * properties in it describe empty LEBs. We make the pnode as |
| * though we had read it. |
| */ |
| int i; |
| |
| if (c->big_lpt) |
| pnode->num = calc_pnode_num_from_parent(c, parent, iip); |
| for (i = 0; i < UBIFS_LPT_FANOUT; i++) { |
| struct ubifs_lprops * const lprops = &pnode->lprops[i]; |
| |
| lprops->free = c->leb_size; |
| lprops->flags = ubifs_categorize_lprops(c, lprops); |
| } |
| } else { |
| ubifs_assert(branch->lnum >= c->lpt_first && |
| branch->lnum <= c->lpt_last); |
| ubifs_assert(branch->offs >= 0 && branch->offs < c->leb_size); |
| err = ubi_read(c->ubi, branch->lnum, buf, branch->offs, |
| c->pnode_sz); |
| if (err) |
| return ERR_PTR(err); |
| err = unpack_pnode(c, buf, pnode); |
| if (err) |
| return ERR_PTR(err); |
| } |
| err = validate_pnode(c, pnode, parent, iip); |
| if (err) |
| return ERR_PTR(err); |
| if (!c->big_lpt) |
| pnode->num = calc_pnode_num_from_parent(c, parent, iip); |
| pnode->parent = parent; |
| pnode->iip = iip; |
| set_pnode_lnum(c, pnode); |
| return pnode; |
| } |
| |
| /** |
| * ubifs_lpt_scan_nolock - scan the LPT. |
| * @c: the UBIFS file-system description object |
| * @start_lnum: LEB number from which to start scanning |
| * @end_lnum: LEB number at which to stop scanning |
| * @scan_cb: callback function called for each lprops |
| * @data: data to be passed to the callback function |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum, |
| ubifs_lpt_scan_callback scan_cb, void *data) |
| { |
| int err = 0, i, h, iip, shft; |
| struct ubifs_nnode *nnode; |
| struct ubifs_pnode *pnode; |
| struct lpt_scan_node *path; |
| |
| if (start_lnum == -1) { |
| start_lnum = end_lnum + 1; |
| if (start_lnum >= c->leb_cnt) |
| start_lnum = c->main_first; |
| } |
| |
| ubifs_assert(start_lnum >= c->main_first && start_lnum < c->leb_cnt); |
| ubifs_assert(end_lnum >= c->main_first && end_lnum < c->leb_cnt); |
| |
| if (!c->nroot) { |
| err = ubifs_read_nnode(c, NULL, 0); |
| if (err) |
| return err; |
| } |
| |
| path = kmalloc(sizeof(struct lpt_scan_node) * (c->lpt_hght + 1), |
| GFP_NOFS); |
| if (!path) |
| return -ENOMEM; |
| |
| path[0].ptr.nnode = c->nroot; |
| path[0].in_tree = 1; |
| again: |
| /* Descend to the pnode containing start_lnum */ |
| nnode = c->nroot; |
| i = start_lnum - c->main_first; |
| shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT; |
| for (h = 1; h < c->lpt_hght; h++) { |
| iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); |
| shft -= UBIFS_LPT_FANOUT_SHIFT; |
| nnode = scan_get_nnode(c, path + h, nnode, iip); |
| if (IS_ERR(nnode)) { |
| err = PTR_ERR(nnode); |
| goto out; |
| } |
| } |
| iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); |
| shft -= UBIFS_LPT_FANOUT_SHIFT; |
| pnode = scan_get_pnode(c, path + h, nnode, iip); |
| if (IS_ERR(pnode)) { |
| err = PTR_ERR(pnode); |
| goto out; |
| } |
| iip = (i & (UBIFS_LPT_FANOUT - 1)); |
| |
| /* Loop for each lprops */ |
| while (1) { |
| struct ubifs_lprops *lprops = &pnode->lprops[iip]; |
| int ret, lnum = lprops->lnum; |
| |
| ret = scan_cb(c, lprops, path[h].in_tree, data); |
| if (ret < 0) { |
| err = ret; |
| goto out; |
| } |
| if (ret & LPT_SCAN_ADD) { |
| /* Add all the nodes in path to the tree in memory */ |
| for (h = 1; h < c->lpt_hght; h++) { |
| const size_t sz = sizeof(struct ubifs_nnode); |
| struct ubifs_nnode *parent; |
| |
| if (path[h].in_tree) |
| continue; |
| nnode = kmalloc(sz, GFP_NOFS); |
| if (!nnode) { |
| err = -ENOMEM; |
| goto out; |
| } |
| memcpy(nnode, &path[h].nnode, sz); |
| parent = nnode->parent; |
| parent->nbranch[nnode->iip].nnode = nnode; |
| path[h].ptr.nnode = nnode; |
| path[h].in_tree = 1; |
| path[h + 1].cnode.parent = nnode; |
| } |
| if (path[h].in_tree) |
| ubifs_ensure_cat(c, lprops); |
| else { |
| const size_t sz = sizeof(struct ubifs_pnode); |
| struct ubifs_nnode *parent; |
| |
| pnode = kmalloc(sz, GFP_NOFS); |
| if (!pnode) { |
| err = -ENOMEM; |
| goto out; |
| } |
| memcpy(pnode, &path[h].pnode, sz); |
| parent = pnode->parent; |
| parent->nbranch[pnode->iip].pnode = pnode; |
| path[h].ptr.pnode = pnode; |
| path[h].in_tree = 1; |
| update_cats(c, pnode); |
| c->pnodes_have += 1; |
| } |
| err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *) |
| c->nroot, 0, 0); |
| if (err) |
| goto out; |
| err = dbg_check_cats(c); |
| if (err) |
| goto out; |
| } |
| if (ret & LPT_SCAN_STOP) { |
| err = 0; |
| break; |
| } |
| /* Get the next lprops */ |
| if (lnum == end_lnum) { |
| /* |
| * We got to the end without finding what we were |
| * looking for |
| */ |
| err = -ENOSPC; |
| goto out; |
| } |
| if (lnum + 1 >= c->leb_cnt) { |
| /* Wrap-around to the beginning */ |
| start_lnum = c->main_first; |
| goto again; |
| } |
| if (iip + 1 < UBIFS_LPT_FANOUT) { |
| /* Next lprops is in the same pnode */ |
| iip += 1; |
| continue; |
| } |
| /* We need to get the next pnode. Go up until we can go right */ |
| iip = pnode->iip; |
| while (1) { |
| h -= 1; |
| ubifs_assert(h >= 0); |
| nnode = path[h].ptr.nnode; |
| if (iip + 1 < UBIFS_LPT_FANOUT) |
| break; |
| iip = nnode->iip; |
| } |
| /* Go right */ |
| iip += 1; |
| /* Descend to the pnode */ |
| h += 1; |
| for (; h < c->lpt_hght; h++) { |
| nnode = scan_get_nnode(c, path + h, nnode, iip); |
| if (IS_ERR(nnode)) { |
| err = PTR_ERR(nnode); |
| goto out; |
| } |
| iip = 0; |
| } |
| pnode = scan_get_pnode(c, path + h, nnode, iip); |
| if (IS_ERR(pnode)) { |
| err = PTR_ERR(pnode); |
| goto out; |
| } |
| iip = 0; |
| } |
| out: |
| kfree(path); |
| return err; |
| } |
| |
| #ifdef CONFIG_UBIFS_FS_DEBUG |
| |
| /** |
| * dbg_chk_pnode - check a pnode. |
| * @c: the UBIFS file-system description object |
| * @pnode: pnode to check |
| * @col: pnode column |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, |
| int col) |
| { |
| int i; |
| |
| if (pnode->num != col) { |
| dbg_err("pnode num %d expected %d parent num %d iip %d", |
| pnode->num, col, pnode->parent->num, pnode->iip); |
| return -EINVAL; |
| } |
| for (i = 0; i < UBIFS_LPT_FANOUT; i++) { |
| struct ubifs_lprops *lp, *lprops = &pnode->lprops[i]; |
| int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i + |
| c->main_first; |
| int found, cat = lprops->flags & LPROPS_CAT_MASK; |
| struct ubifs_lpt_heap *heap; |
| struct list_head *list = NULL; |
| |
| if (lnum >= c->leb_cnt) |
| continue; |
| if (lprops->lnum != lnum) { |
| dbg_err("bad LEB number %d expected %d", |
| lprops->lnum, lnum); |
| return -EINVAL; |
| } |
| if (lprops->flags & LPROPS_TAKEN) { |
| if (cat != LPROPS_UNCAT) { |
| dbg_err("LEB %d taken but not uncat %d", |
| lprops->lnum, cat); |
| return -EINVAL; |
| } |
| continue; |
| } |
| if (lprops->flags & LPROPS_INDEX) { |
| switch (cat) { |
| case LPROPS_UNCAT: |
| case LPROPS_DIRTY_IDX: |
| case LPROPS_FRDI_IDX: |
| break; |
| default: |
| dbg_err("LEB %d index but cat %d", |
| lprops->lnum, cat); |
| return -EINVAL; |
| } |
| } else { |
| switch (cat) { |
| case LPROPS_UNCAT: |
| case LPROPS_DIRTY: |
| case LPROPS_FREE: |
| case LPROPS_EMPTY: |
| case LPROPS_FREEABLE: |
| break; |
| default: |
| dbg_err("LEB %d not index but cat %d", |
| lprops->lnum, cat); |
| return -EINVAL; |
| } |
| } |
| switch (cat) { |
| case LPROPS_UNCAT: |
| list = &c->uncat_list; |
| break; |
| case LPROPS_EMPTY: |
| list = &c->empty_list; |
| break; |
| case LPROPS_FREEABLE: |
| list = &c->freeable_list; |
| break; |
| case LPROPS_FRDI_IDX: |
| list = &c->frdi_idx_list; |
| break; |
| } |
| found = 0; |
| switch (cat) { |
| case LPROPS_DIRTY: |
| case LPROPS_DIRTY_IDX: |
| case LPROPS_FREE: |
| heap = &c->lpt_heap[cat - 1]; |
| if (lprops->hpos < heap->cnt && |
| heap->arr[lprops->hpos] == lprops) |
| found = 1; |
| break; |
| case LPROPS_UNCAT: |
| case LPROPS_EMPTY: |
| case LPROPS_FREEABLE: |
| case LPROPS_FRDI_IDX: |
| list_for_each_entry(lp, list, list) |
| if (lprops == lp) { |
| found = 1; |
| break; |
| } |
| break; |
| } |
| if (!found) { |
| dbg_err("LEB %d cat %d not found in cat heap/list", |
| lprops->lnum, cat); |
| return -EINVAL; |
| } |
| switch (cat) { |
| case LPROPS_EMPTY: |
| if (lprops->free != c->leb_size) { |
| dbg_err("LEB %d cat %d free %d dirty %d", |
| lprops->lnum, cat, lprops->free, |
| lprops->dirty); |
| return -EINVAL; |
| } |
| case LPROPS_FREEABLE: |
| case LPROPS_FRDI_IDX: |
| if (lprops->free + lprops->dirty != c->leb_size) { |
| dbg_err("LEB %d cat %d free %d dirty %d", |
| lprops->lnum, cat, lprops->free, |
| lprops->dirty); |
| return -EINVAL; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /** |
| * dbg_check_lpt_nodes - check nnodes and pnodes. |
| * @c: the UBIFS file-system description object |
| * @cnode: next cnode (nnode or pnode) to check |
| * @row: row of cnode (root is zero) |
| * @col: column of cnode (leftmost is zero) |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode, |
| int row, int col) |
| { |
| struct ubifs_nnode *nnode, *nn; |
| struct ubifs_cnode *cn; |
| int num, iip = 0, err; |
| |
| if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS)) |
| return 0; |
| |
| while (cnode) { |
| ubifs_assert(row >= 0); |
| nnode = cnode->parent; |
| if (cnode->level) { |
| /* cnode is a nnode */ |
| num = calc_nnode_num(row, col); |
| if (cnode->num != num) { |
| dbg_err("nnode num %d expected %d " |
| "parent num %d iip %d", cnode->num, num, |
| (nnode ? nnode->num : 0), cnode->iip); |
| return -EINVAL; |
| } |
| nn = (struct ubifs_nnode *)cnode; |
| while (iip < UBIFS_LPT_FANOUT) { |
| cn = nn->nbranch[iip].cnode; |
| if (cn) { |
| /* Go down */ |
| row += 1; |
| col <<= UBIFS_LPT_FANOUT_SHIFT; |
| col += iip; |
| iip = 0; |
| cnode = cn; |
| break; |
| } |
| /* Go right */ |
| iip += 1; |
| } |
| if (iip < UBIFS_LPT_FANOUT) |
| continue; |
| } else { |
| struct ubifs_pnode *pnode; |
| |
| /* cnode is a pnode */ |
| pnode = (struct ubifs_pnode *)cnode; |
| err = dbg_chk_pnode(c, pnode, col); |
| if (err) |
| return err; |
| } |
| /* Go up and to the right */ |
| row -= 1; |
| col >>= UBIFS_LPT_FANOUT_SHIFT; |
| iip = cnode->iip + 1; |
| cnode = (struct ubifs_cnode *)nnode; |
| } |
| return 0; |
| } |
| |
| #endif /* CONFIG_UBIFS_FS_DEBUG */ |