blob: 13ab4d7eb7aaa7e6582d76129c0ec54ebbab04de [file] [log] [blame]
/*
* Copyright (c) 2008-2009 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/**
* DOC: Programming Atheros 802.11n analog front end radios
*
* AR5416 MAC based PCI devices and AR518 MAC based PCI-Express
* devices have either an external AR2133 analog front end radio for single
* band 2.4 GHz communication or an AR5133 analog front end radio for dual
* band 2.4 GHz / 5 GHz communication.
*
* All devices after the AR5416 and AR5418 family starting with the AR9280
* have their analog front radios, MAC/BB and host PCIe/USB interface embedded
* into a single-chip and require less programming.
*
* The following single-chips exist with a respective embedded radio:
*
* AR9280 - 11n dual-band 2x2 MIMO for PCIe
* AR9281 - 11n single-band 1x2 MIMO for PCIe
* AR9285 - 11n single-band 1x1 for PCIe
* AR9287 - 11n single-band 2x2 MIMO for PCIe
*
* AR9220 - 11n dual-band 2x2 MIMO for PCI
* AR9223 - 11n single-band 2x2 MIMO for PCI
*
* AR9287 - 11n single-band 1x1 MIMO for USB
*/
#include "hw.h"
/**
* ath9k_hw_write_regs - ??
*
* @ah: atheros hardware structure
* @freqIndex:
* @regWrites:
*
* Used for both the chipsets with an external AR2133/AR5133 radios and
* single-chip devices.
*/
void ath9k_hw_write_regs(struct ath_hw *ah, u32 freqIndex, int regWrites)
{
REG_WRITE_ARRAY(&ah->iniBB_RfGain, freqIndex, regWrites);
}
/**
* ath9k_hw_ar9280_set_channel - set channel on single-chip device
* @ah: atheros hardware structure
* @chan:
*
* This is the function to change channel on single-chip devices, that is
* all devices after ar9280.
*
* This function takes the channel value in MHz and sets
* hardware channel value. Assumes writes have been enabled to analog bus.
*
* Actual Expression,
*
* For 2GHz channel,
* Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
* (freq_ref = 40MHz)
*
* For 5GHz channel,
* Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
* (freq_ref = 40MHz/(24>>amodeRefSel))
*/
int ath9k_hw_ar9280_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
{
u16 bMode, fracMode, aModeRefSel = 0;
u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
struct chan_centers centers;
u32 refDivA = 24;
ath9k_hw_get_channel_centers(ah, chan, &centers);
freq = centers.synth_center;
reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL);
reg32 &= 0xc0000000;
if (freq < 4800) { /* 2 GHz, fractional mode */
u32 txctl;
int regWrites = 0;
bMode = 1;
fracMode = 1;
aModeRefSel = 0;
channelSel = (freq * 0x10000) / 15;
if (AR_SREV_9287_11_OR_LATER(ah)) {
if (freq == 2484) {
/* Enable channel spreading for channel 14 */
REG_WRITE_ARRAY(&ah->iniCckfirJapan2484,
1, regWrites);
} else {
REG_WRITE_ARRAY(&ah->iniCckfirNormal,
1, regWrites);
}
} else {
txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
if (freq == 2484) {
/* Enable channel spreading for channel 14 */
REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
} else {
REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
}
}
} else {
bMode = 0;
fracMode = 0;
switch(ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) {
case 0:
if ((freq % 20) == 0) {
aModeRefSel = 3;
} else if ((freq % 10) == 0) {
aModeRefSel = 2;
}
if (aModeRefSel)
break;
case 1:
default:
aModeRefSel = 0;
/*
* Enable 2G (fractional) mode for channels
* which are 5MHz spaced.
*/
fracMode = 1;
refDivA = 1;
channelSel = (freq * 0x8000) / 15;
/* RefDivA setting */
REG_RMW_FIELD(ah, AR_AN_SYNTH9,
AR_AN_SYNTH9_REFDIVA, refDivA);
}
if (!fracMode) {
ndiv = (freq * (refDivA >> aModeRefSel)) / 60;
channelSel = ndiv & 0x1ff;
channelFrac = (ndiv & 0xfffffe00) * 2;
channelSel = (channelSel << 17) | channelFrac;
}
}
reg32 = reg32 |
(bMode << 29) |
(fracMode << 28) | (aModeRefSel << 26) | (channelSel);
REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
ah->curchan = chan;
ah->curchan_rad_index = -1;
return 0;
}
/**
* ath9k_hw_9280_spur_mitigate - convert baseband spur frequency
* @ah: atheros hardware structure
* @chan:
*
* For single-chip solutions. Converts to baseband spur frequency given the
* input channel frequency and compute register settings below.
*/
void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
{
int bb_spur = AR_NO_SPUR;
int freq;
int bin, cur_bin;
int bb_spur_off, spur_subchannel_sd;
int spur_freq_sd;
int spur_delta_phase;
int denominator;
int upper, lower, cur_vit_mask;
int tmp, newVal;
int i;
int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
};
int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
};
int inc[4] = { 0, 100, 0, 0 };
struct chan_centers centers;
int8_t mask_m[123];
int8_t mask_p[123];
int8_t mask_amt;
int tmp_mask;
int cur_bb_spur;
bool is2GHz = IS_CHAN_2GHZ(chan);
memset(&mask_m, 0, sizeof(int8_t) * 123);
memset(&mask_p, 0, sizeof(int8_t) * 123);
ath9k_hw_get_channel_centers(ah, chan, &centers);
freq = centers.synth_center;
ah->config.spurmode = SPUR_ENABLE_EEPROM;
for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
if (is2GHz)
cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
else
cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
if (AR_NO_SPUR == cur_bb_spur)
break;
cur_bb_spur = cur_bb_spur - freq;
if (IS_CHAN_HT40(chan)) {
if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
(cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
bb_spur = cur_bb_spur;
break;
}
} else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
(cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
bb_spur = cur_bb_spur;
break;
}
}
if (AR_NO_SPUR == bb_spur) {
REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
return;
} else {
REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
}
bin = bb_spur * 320;
tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
AR_PHY_SPUR_REG_MASK_RATE_SELECT |
AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
if (IS_CHAN_HT40(chan)) {
if (bb_spur < 0) {
spur_subchannel_sd = 1;
bb_spur_off = bb_spur + 10;
} else {
spur_subchannel_sd = 0;
bb_spur_off = bb_spur - 10;
}
} else {
spur_subchannel_sd = 0;
bb_spur_off = bb_spur;
}
if (IS_CHAN_HT40(chan))
spur_delta_phase =
((bb_spur * 262144) /
10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
else
spur_delta_phase =
((bb_spur * 524288) /
10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
REG_WRITE(ah, AR_PHY_TIMING11, newVal);
newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
cur_bin = -6000;
upper = bin + 100;
lower = bin - 100;
for (i = 0; i < 4; i++) {
int pilot_mask = 0;
int chan_mask = 0;
int bp = 0;
for (bp = 0; bp < 30; bp++) {
if ((cur_bin > lower) && (cur_bin < upper)) {
pilot_mask = pilot_mask | 0x1 << bp;
chan_mask = chan_mask | 0x1 << bp;
}
cur_bin += 100;
}
cur_bin += inc[i];
REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
REG_WRITE(ah, chan_mask_reg[i], chan_mask);
}
cur_vit_mask = 6100;
upper = bin + 120;
lower = bin - 120;
for (i = 0; i < 123; i++) {
if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
/* workaround for gcc bug #37014 */
volatile int tmp_v = abs(cur_vit_mask - bin);
if (tmp_v < 75)
mask_amt = 1;
else
mask_amt = 0;
if (cur_vit_mask < 0)
mask_m[abs(cur_vit_mask / 100)] = mask_amt;
else
mask_p[cur_vit_mask / 100] = mask_amt;
}
cur_vit_mask -= 100;
}
tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
| (mask_m[48] << 26) | (mask_m[49] << 24)
| (mask_m[50] << 22) | (mask_m[51] << 20)
| (mask_m[52] << 18) | (mask_m[53] << 16)
| (mask_m[54] << 14) | (mask_m[55] << 12)
| (mask_m[56] << 10) | (mask_m[57] << 8)
| (mask_m[58] << 6) | (mask_m[59] << 4)
| (mask_m[60] << 2) | (mask_m[61] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
tmp_mask = (mask_m[31] << 28)
| (mask_m[32] << 26) | (mask_m[33] << 24)
| (mask_m[34] << 22) | (mask_m[35] << 20)
| (mask_m[36] << 18) | (mask_m[37] << 16)
| (mask_m[48] << 14) | (mask_m[39] << 12)
| (mask_m[40] << 10) | (mask_m[41] << 8)
| (mask_m[42] << 6) | (mask_m[43] << 4)
| (mask_m[44] << 2) | (mask_m[45] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
| (mask_m[18] << 26) | (mask_m[18] << 24)
| (mask_m[20] << 22) | (mask_m[20] << 20)
| (mask_m[22] << 18) | (mask_m[22] << 16)
| (mask_m[24] << 14) | (mask_m[24] << 12)
| (mask_m[25] << 10) | (mask_m[26] << 8)
| (mask_m[27] << 6) | (mask_m[28] << 4)
| (mask_m[29] << 2) | (mask_m[30] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
| (mask_m[2] << 26) | (mask_m[3] << 24)
| (mask_m[4] << 22) | (mask_m[5] << 20)
| (mask_m[6] << 18) | (mask_m[7] << 16)
| (mask_m[8] << 14) | (mask_m[9] << 12)
| (mask_m[10] << 10) | (mask_m[11] << 8)
| (mask_m[12] << 6) | (mask_m[13] << 4)
| (mask_m[14] << 2) | (mask_m[15] << 0);
REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
tmp_mask = (mask_p[15] << 28)
| (mask_p[14] << 26) | (mask_p[13] << 24)
| (mask_p[12] << 22) | (mask_p[11] << 20)
| (mask_p[10] << 18) | (mask_p[9] << 16)
| (mask_p[8] << 14) | (mask_p[7] << 12)
| (mask_p[6] << 10) | (mask_p[5] << 8)
| (mask_p[4] << 6) | (mask_p[3] << 4)
| (mask_p[2] << 2) | (mask_p[1] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
tmp_mask = (mask_p[30] << 28)
| (mask_p[29] << 26) | (mask_p[28] << 24)
| (mask_p[27] << 22) | (mask_p[26] << 20)
| (mask_p[25] << 18) | (mask_p[24] << 16)
| (mask_p[23] << 14) | (mask_p[22] << 12)
| (mask_p[21] << 10) | (mask_p[20] << 8)
| (mask_p[19] << 6) | (mask_p[18] << 4)
| (mask_p[17] << 2) | (mask_p[16] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
tmp_mask = (mask_p[45] << 28)
| (mask_p[44] << 26) | (mask_p[43] << 24)
| (mask_p[42] << 22) | (mask_p[41] << 20)
| (mask_p[40] << 18) | (mask_p[39] << 16)
| (mask_p[38] << 14) | (mask_p[37] << 12)
| (mask_p[36] << 10) | (mask_p[35] << 8)
| (mask_p[34] << 6) | (mask_p[33] << 4)
| (mask_p[32] << 2) | (mask_p[31] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
| (mask_p[59] << 26) | (mask_p[58] << 24)
| (mask_p[57] << 22) | (mask_p[56] << 20)
| (mask_p[55] << 18) | (mask_p[54] << 16)
| (mask_p[53] << 14) | (mask_p[52] << 12)
| (mask_p[51] << 10) | (mask_p[50] << 8)
| (mask_p[49] << 6) | (mask_p[48] << 4)
| (mask_p[47] << 2) | (mask_p[46] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
}
/* All code below is for non single-chip solutions */
/**
* ath9k_phy_modify_rx_buffer() - perform analog swizzling of parameters
* @rfbuf:
* @reg32:
* @numBits:
* @firstBit:
* @column:
*
* Performs analog "swizzling" of parameters into their location.
* Used on external AR2133/AR5133 radios.
*/
static void ath9k_phy_modify_rx_buffer(u32 *rfBuf, u32 reg32,
u32 numBits, u32 firstBit,
u32 column)
{
u32 tmp32, mask, arrayEntry, lastBit;
int32_t bitPosition, bitsLeft;
tmp32 = ath9k_hw_reverse_bits(reg32, numBits);
arrayEntry = (firstBit - 1) / 8;
bitPosition = (firstBit - 1) % 8;
bitsLeft = numBits;
while (bitsLeft > 0) {
lastBit = (bitPosition + bitsLeft > 8) ?
8 : bitPosition + bitsLeft;
mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
(column * 8);
rfBuf[arrayEntry] &= ~mask;
rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
(column * 8)) & mask;
bitsLeft -= 8 - bitPosition;
tmp32 = tmp32 >> (8 - bitPosition);
bitPosition = 0;
arrayEntry++;
}
}
/*
* Fix on 2.4 GHz band for orientation sensitivity issue by increasing
* rf_pwd_icsyndiv.
*
* Theoretical Rules:
* if 2 GHz band
* if forceBiasAuto
* if synth_freq < 2412
* bias = 0
* else if 2412 <= synth_freq <= 2422
* bias = 1
* else // synth_freq > 2422
* bias = 2
* else if forceBias > 0
* bias = forceBias & 7
* else
* no change, use value from ini file
* else
* no change, invalid band
*
* 1st Mod:
* 2422 also uses value of 2
* <approved>
*
* 2nd Mod:
* Less than 2412 uses value of 0, 2412 and above uses value of 2
*/
static void ath9k_hw_force_bias(struct ath_hw *ah, u16 synth_freq)
{
struct ath_common *common = ath9k_hw_common(ah);
u32 tmp_reg;
int reg_writes = 0;
u32 new_bias = 0;
if (!AR_SREV_5416(ah) || synth_freq >= 3000) {
return;
}
BUG_ON(AR_SREV_9280_10_OR_LATER(ah));
if (synth_freq < 2412)
new_bias = 0;
else if (synth_freq < 2422)
new_bias = 1;
else
new_bias = 2;
/* pre-reverse this field */
tmp_reg = ath9k_hw_reverse_bits(new_bias, 3);
ath_print(common, ATH_DBG_CONFIG,
"Force rf_pwd_icsyndiv to %1d on %4d\n",
new_bias, synth_freq);
/* swizzle rf_pwd_icsyndiv */
ath9k_phy_modify_rx_buffer(ah->analogBank6Data, tmp_reg, 3, 181, 3);
/* write Bank 6 with new params */
REG_WRITE_RF_ARRAY(&ah->iniBank6, ah->analogBank6Data, reg_writes);
}
/**
* ath9k_hw_decrease_chain_power()
*
* @ah: atheros hardware structure
* @chan:
*
* Only used on the AR5416 and AR5418 with the external AR2133/AR5133 radios.
*
* Sets a chain internal RF path to the lowest output power. Any
* further writes to bank6 after this setting will override these
* changes. Thus this function must be the last function in the
* sequence to modify bank 6.
*
* This function must be called after ar5416SetRfRegs() which is
* called from ath9k_hw_process_ini() due to swizzling of bank 6.
* Depends on ah->analogBank6Data being initialized by
* ath9k_hw_set_rf_regs()
*
* Additional additive reduction in power -
* change chain's switch table so chain's tx state is actually the rx
* state value. May produce different results in 2GHz/5GHz as well as
* board to board but in general should be a reduction.
*
* Activated by #ifdef ALTER_SWITCH. Not tried yet. If so, must be
* called after ah->eep_ops->set_board_values() due to RMW of
* PHY_SWITCH_CHAIN_0.
*/
void ath9k_hw_decrease_chain_power(struct ath_hw *ah,
struct ath9k_channel *chan)
{
int i, regWrites = 0;
u32 bank6SelMask;
u32 *bank6Temp = ah->bank6Temp;
BUG_ON(AR_SREV_9280_10_OR_LATER(ah));
switch (ah->config.diversity_control) {
case ATH9K_ANT_FIXED_A:
bank6SelMask =
(ah->config.antenna_switch_swap & ANTSWAP_AB) ?
REDUCE_CHAIN_0 : /* swapped, reduce chain 0 */
REDUCE_CHAIN_1; /* normal, select chain 1/2 to reduce */
break;
case ATH9K_ANT_FIXED_B:
bank6SelMask =
(ah->config.antenna_switch_swap & ANTSWAP_AB) ?
REDUCE_CHAIN_1 : /* swapped, reduce chain 1/2 */
REDUCE_CHAIN_0; /* normal, select chain 0 to reduce */
break;
case ATH9K_ANT_VARIABLE:
return; /* do not change anything */
break;
default:
return; /* do not change anything */
break;
}
for (i = 0; i < ah->iniBank6.ia_rows; i++)
bank6Temp[i] = ah->analogBank6Data[i];
/* Write Bank 5 to switch Bank 6 write to selected chain only */
REG_WRITE(ah, AR_PHY_BASE + 0xD8, bank6SelMask);
/*
* Modify Bank6 selected chain to use lowest amplification.
* Modifies the parameters to a value of 1.
* Depends on existing bank 6 values to be cached in
* ah->analogBank6Data
*/
ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 189, 0);
ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 190, 0);
ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 191, 0);
ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 192, 0);
ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 193, 0);
ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 222, 0);
ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 245, 0);
ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 246, 0);
ath9k_phy_modify_rx_buffer(bank6Temp, 1, 1, 247, 0);
REG_WRITE_RF_ARRAY(&ah->iniBank6, bank6Temp, regWrites);
REG_WRITE(ah, AR_PHY_BASE + 0xD8, 0x00000053);
#ifdef ALTER_SWITCH
REG_WRITE(ah, PHY_SWITCH_CHAIN_0,
(REG_READ(ah, PHY_SWITCH_CHAIN_0) & ~0x38)
| ((REG_READ(ah, PHY_SWITCH_CHAIN_0) >> 3) & 0x38));
#endif
}
/**
* ath9k_hw_set_channel - tune to a channel on the external AR2133/AR5133 radios
* @ah: atheros hardware stucture
* @chan:
*
* For the external AR2133/AR5133 radios, takes the MHz channel value and set
* the channel value. Assumes writes enabled to analog bus and bank6 register
* cache in ah->analogBank6Data.
*/
int ath9k_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
{
struct ath_common *common = ath9k_hw_common(ah);
u32 channelSel = 0;
u32 bModeSynth = 0;
u32 aModeRefSel = 0;
u32 reg32 = 0;
u16 freq;
struct chan_centers centers;
ath9k_hw_get_channel_centers(ah, chan, &centers);
freq = centers.synth_center;
if (freq < 4800) {
u32 txctl;
if (((freq - 2192) % 5) == 0) {
channelSel = ((freq - 672) * 2 - 3040) / 10;
bModeSynth = 0;
} else if (((freq - 2224) % 5) == 0) {
channelSel = ((freq - 704) * 2 - 3040) / 10;
bModeSynth = 1;
} else {
ath_print(common, ATH_DBG_FATAL,
"Invalid channel %u MHz\n", freq);
return -EINVAL;
}
channelSel = (channelSel << 2) & 0xff;
channelSel = ath9k_hw_reverse_bits(channelSel, 8);
txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
if (freq == 2484) {
REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
} else {
REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
}
} else if ((freq % 20) == 0 && freq >= 5120) {
channelSel =
ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8);
aModeRefSel = ath9k_hw_reverse_bits(1, 2);
} else if ((freq % 10) == 0) {
channelSel =
ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8);
if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
aModeRefSel = ath9k_hw_reverse_bits(2, 2);
else
aModeRefSel = ath9k_hw_reverse_bits(1, 2);
} else if ((freq % 5) == 0) {
channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8);
aModeRefSel = ath9k_hw_reverse_bits(1, 2);
} else {
ath_print(common, ATH_DBG_FATAL,
"Invalid channel %u MHz\n", freq);
return -EINVAL;
}
ath9k_hw_force_bias(ah, freq);
ath9k_hw_decrease_chain_power(ah, chan);
reg32 =
(channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
(1 << 5) | 0x1;
REG_WRITE(ah, AR_PHY(0x37), reg32);
ah->curchan = chan;
ah->curchan_rad_index = -1;
return 0;
}
/**
* ath9k_hw_spur_mitigate - convert baseband spur frequency for external radios
* @ah: atheros hardware structure
* @chan:
*
* For non single-chip solutions. Converts to baseband spur frequency given the
* input channel frequency and compute register settings below.
*/
void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
{
int bb_spur = AR_NO_SPUR;
int bin, cur_bin;
int spur_freq_sd;
int spur_delta_phase;
int denominator;
int upper, lower, cur_vit_mask;
int tmp, new;
int i;
int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
};
int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
};
int inc[4] = { 0, 100, 0, 0 };
int8_t mask_m[123];
int8_t mask_p[123];
int8_t mask_amt;
int tmp_mask;
int cur_bb_spur;
bool is2GHz = IS_CHAN_2GHZ(chan);
memset(&mask_m, 0, sizeof(int8_t) * 123);
memset(&mask_p, 0, sizeof(int8_t) * 123);
for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
if (AR_NO_SPUR == cur_bb_spur)
break;
cur_bb_spur = cur_bb_spur - (chan->channel * 10);
if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
bb_spur = cur_bb_spur;
break;
}
}
if (AR_NO_SPUR == bb_spur)
return;
bin = bb_spur * 32;
tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
AR_PHY_SPUR_REG_MASK_RATE_SELECT |
AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
REG_WRITE(ah, AR_PHY_SPUR_REG, new);
spur_delta_phase = ((bb_spur * 524288) / 100) &
AR_PHY_TIMING11_SPUR_DELTA_PHASE;
denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
REG_WRITE(ah, AR_PHY_TIMING11, new);
cur_bin = -6000;
upper = bin + 100;
lower = bin - 100;
for (i = 0; i < 4; i++) {
int pilot_mask = 0;
int chan_mask = 0;
int bp = 0;
for (bp = 0; bp < 30; bp++) {
if ((cur_bin > lower) && (cur_bin < upper)) {
pilot_mask = pilot_mask | 0x1 << bp;
chan_mask = chan_mask | 0x1 << bp;
}
cur_bin += 100;
}
cur_bin += inc[i];
REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
REG_WRITE(ah, chan_mask_reg[i], chan_mask);
}
cur_vit_mask = 6100;
upper = bin + 120;
lower = bin - 120;
for (i = 0; i < 123; i++) {
if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
/* workaround for gcc bug #37014 */
volatile int tmp_v = abs(cur_vit_mask - bin);
if (tmp_v < 75)
mask_amt = 1;
else
mask_amt = 0;
if (cur_vit_mask < 0)
mask_m[abs(cur_vit_mask / 100)] = mask_amt;
else
mask_p[cur_vit_mask / 100] = mask_amt;
}
cur_vit_mask -= 100;
}
tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
| (mask_m[48] << 26) | (mask_m[49] << 24)
| (mask_m[50] << 22) | (mask_m[51] << 20)
| (mask_m[52] << 18) | (mask_m[53] << 16)
| (mask_m[54] << 14) | (mask_m[55] << 12)
| (mask_m[56] << 10) | (mask_m[57] << 8)
| (mask_m[58] << 6) | (mask_m[59] << 4)
| (mask_m[60] << 2) | (mask_m[61] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
tmp_mask = (mask_m[31] << 28)
| (mask_m[32] << 26) | (mask_m[33] << 24)
| (mask_m[34] << 22) | (mask_m[35] << 20)
| (mask_m[36] << 18) | (mask_m[37] << 16)
| (mask_m[48] << 14) | (mask_m[39] << 12)
| (mask_m[40] << 10) | (mask_m[41] << 8)
| (mask_m[42] << 6) | (mask_m[43] << 4)
| (mask_m[44] << 2) | (mask_m[45] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
| (mask_m[18] << 26) | (mask_m[18] << 24)
| (mask_m[20] << 22) | (mask_m[20] << 20)
| (mask_m[22] << 18) | (mask_m[22] << 16)
| (mask_m[24] << 14) | (mask_m[24] << 12)
| (mask_m[25] << 10) | (mask_m[26] << 8)
| (mask_m[27] << 6) | (mask_m[28] << 4)
| (mask_m[29] << 2) | (mask_m[30] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
| (mask_m[2] << 26) | (mask_m[3] << 24)
| (mask_m[4] << 22) | (mask_m[5] << 20)
| (mask_m[6] << 18) | (mask_m[7] << 16)
| (mask_m[8] << 14) | (mask_m[9] << 12)
| (mask_m[10] << 10) | (mask_m[11] << 8)
| (mask_m[12] << 6) | (mask_m[13] << 4)
| (mask_m[14] << 2) | (mask_m[15] << 0);
REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
tmp_mask = (mask_p[15] << 28)
| (mask_p[14] << 26) | (mask_p[13] << 24)
| (mask_p[12] << 22) | (mask_p[11] << 20)
| (mask_p[10] << 18) | (mask_p[9] << 16)
| (mask_p[8] << 14) | (mask_p[7] << 12)
| (mask_p[6] << 10) | (mask_p[5] << 8)
| (mask_p[4] << 6) | (mask_p[3] << 4)
| (mask_p[2] << 2) | (mask_p[1] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
tmp_mask = (mask_p[30] << 28)
| (mask_p[29] << 26) | (mask_p[28] << 24)
| (mask_p[27] << 22) | (mask_p[26] << 20)
| (mask_p[25] << 18) | (mask_p[24] << 16)
| (mask_p[23] << 14) | (mask_p[22] << 12)
| (mask_p[21] << 10) | (mask_p[20] << 8)
| (mask_p[19] << 6) | (mask_p[18] << 4)
| (mask_p[17] << 2) | (mask_p[16] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
tmp_mask = (mask_p[45] << 28)
| (mask_p[44] << 26) | (mask_p[43] << 24)
| (mask_p[42] << 22) | (mask_p[41] << 20)
| (mask_p[40] << 18) | (mask_p[39] << 16)
| (mask_p[38] << 14) | (mask_p[37] << 12)
| (mask_p[36] << 10) | (mask_p[35] << 8)
| (mask_p[34] << 6) | (mask_p[33] << 4)
| (mask_p[32] << 2) | (mask_p[31] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
| (mask_p[59] << 26) | (mask_p[58] << 24)
| (mask_p[57] << 22) | (mask_p[56] << 20)
| (mask_p[55] << 18) | (mask_p[54] << 16)
| (mask_p[53] << 14) | (mask_p[52] << 12)
| (mask_p[51] << 10) | (mask_p[50] << 8)
| (mask_p[49] << 6) | (mask_p[48] << 4)
| (mask_p[47] << 2) | (mask_p[46] << 0);
REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
}
/**
* ath9k_hw_rf_alloc_ext_banks - allocates banks for external radio programming
* @ah: atheros hardware structure
*
* Only required for older devices with external AR2133/AR5133 radios.
*/
int ath9k_hw_rf_alloc_ext_banks(struct ath_hw *ah)
{
#define ATH_ALLOC_BANK(bank, size) do { \
bank = kzalloc((sizeof(u32) * size), GFP_KERNEL); \
if (!bank) { \
ath_print(common, ATH_DBG_FATAL, \
"Cannot allocate RF banks\n"); \
return -ENOMEM; \
} \
} while (0);
struct ath_common *common = ath9k_hw_common(ah);
BUG_ON(AR_SREV_9280_10_OR_LATER(ah));
ATH_ALLOC_BANK(ah->analogBank0Data, ah->iniBank0.ia_rows);
ATH_ALLOC_BANK(ah->analogBank1Data, ah->iniBank1.ia_rows);
ATH_ALLOC_BANK(ah->analogBank2Data, ah->iniBank2.ia_rows);
ATH_ALLOC_BANK(ah->analogBank3Data, ah->iniBank3.ia_rows);
ATH_ALLOC_BANK(ah->analogBank6Data, ah->iniBank6.ia_rows);
ATH_ALLOC_BANK(ah->analogBank6TPCData, ah->iniBank6TPC.ia_rows);
ATH_ALLOC_BANK(ah->analogBank7Data, ah->iniBank7.ia_rows);
ATH_ALLOC_BANK(ah->addac5416_21,
ah->iniAddac.ia_rows * ah->iniAddac.ia_columns);
ATH_ALLOC_BANK(ah->bank6Temp, ah->iniBank6.ia_rows);
return 0;
#undef ATH_ALLOC_BANK
}
/**
* ath9k_hw_rf_free_ext_banks - Free memory for analog bank scratch buffers
* @ah: atheros hardware struture
* For the external AR2133/AR5133 radios banks.
*/
void
ath9k_hw_rf_free_ext_banks(struct ath_hw *ah)
{
#define ATH_FREE_BANK(bank) do { \
kfree(bank); \
bank = NULL; \
} while (0);
BUG_ON(AR_SREV_9280_10_OR_LATER(ah));
ATH_FREE_BANK(ah->analogBank0Data);
ATH_FREE_BANK(ah->analogBank1Data);
ATH_FREE_BANK(ah->analogBank2Data);
ATH_FREE_BANK(ah->analogBank3Data);
ATH_FREE_BANK(ah->analogBank6Data);
ATH_FREE_BANK(ah->analogBank6TPCData);
ATH_FREE_BANK(ah->analogBank7Data);
ATH_FREE_BANK(ah->addac5416_21);
ATH_FREE_BANK(ah->bank6Temp);
#undef ATH_FREE_BANK
}
/* *
* ath9k_hw_set_rf_regs - programs rf registers based on EEPROM
* @ah: atheros hardware structure
* @chan:
* @modesIndex:
*
* Used for the external AR2133/AR5133 radios.
*
* Reads the EEPROM header info from the device structure and programs
* all rf registers. This routine requires access to the analog
* rf device. This is not required for single-chip devices.
*/
bool ath9k_hw_set_rf_regs(struct ath_hw *ah, struct ath9k_channel *chan,
u16 modesIndex)
{
u32 eepMinorRev;
u32 ob5GHz = 0, db5GHz = 0;
u32 ob2GHz = 0, db2GHz = 0;
int regWrites = 0;
/*
* Software does not need to program bank data
* for single chip devices, that is AR9280 or anything
* after that.
*/
if (AR_SREV_9280_10_OR_LATER(ah))
return true;
/* Setup rf parameters */
eepMinorRev = ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV);
/* Setup Bank 0 Write */
RF_BANK_SETUP(ah->analogBank0Data, &ah->iniBank0, 1);
/* Setup Bank 1 Write */
RF_BANK_SETUP(ah->analogBank1Data, &ah->iniBank1, 1);
/* Setup Bank 2 Write */
RF_BANK_SETUP(ah->analogBank2Data, &ah->iniBank2, 1);
/* Setup Bank 6 Write */
RF_BANK_SETUP(ah->analogBank3Data, &ah->iniBank3,
modesIndex);
{
int i;
for (i = 0; i < ah->iniBank6TPC.ia_rows; i++) {
ah->analogBank6Data[i] =
INI_RA(&ah->iniBank6TPC, i, modesIndex);
}
}
/* Only the 5 or 2 GHz OB/DB need to be set for a mode */
if (eepMinorRev >= 2) {
if (IS_CHAN_2GHZ(chan)) {
ob2GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_2);
db2GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_2);
ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
ob2GHz, 3, 197, 0);
ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
db2GHz, 3, 194, 0);
} else {
ob5GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_5);
db5GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_5);
ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
ob5GHz, 3, 203, 0);
ath9k_phy_modify_rx_buffer(ah->analogBank6Data,
db5GHz, 3, 200, 0);
}
}
/* Setup Bank 7 Setup */
RF_BANK_SETUP(ah->analogBank7Data, &ah->iniBank7, 1);
/* Write Analog registers */
REG_WRITE_RF_ARRAY(&ah->iniBank0, ah->analogBank0Data,
regWrites);
REG_WRITE_RF_ARRAY(&ah->iniBank1, ah->analogBank1Data,
regWrites);
REG_WRITE_RF_ARRAY(&ah->iniBank2, ah->analogBank2Data,
regWrites);
REG_WRITE_RF_ARRAY(&ah->iniBank3, ah->analogBank3Data,
regWrites);
REG_WRITE_RF_ARRAY(&ah->iniBank6TPC, ah->analogBank6Data,
regWrites);
REG_WRITE_RF_ARRAY(&ah->iniBank7, ah->analogBank7Data,
regWrites);
return true;
}