blob: 6019fa5a60c58b70df58b893df86ad931f216c4d [file] [log] [blame]
/*
* s2mu004_fuelgauge.c
* Samsung S2MU004 Fuel Gauge Driver
*
* Copyright (C) 2015 Samsung Electronics
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define DEBUG
#define SINGLE_BYTE 1
#define TABLE_SIZE 22
#define FAKE_TEMP 1
#include <linux/power/s2mu004_fuelgauge.h>
#include <linux/of_gpio.h>
static enum power_supply_property s2mu004_fuelgauge_props[] = {
};
static int s2mu004_get_vbat(struct s2mu004_fuelgauge_data *fuelgauge);
static int s2mu004_get_ocv(struct s2mu004_fuelgauge_data *fuelgauge);
static int s2mu004_get_current(struct s2mu004_fuelgauge_data *fuelgauge);
static int s2mu004_get_avgcurrent(struct s2mu004_fuelgauge_data *fuelgauge);
static int s2mu004_get_avgvbat(struct s2mu004_fuelgauge_data *fuelgauge);
static int s2mu004_get_monout_avgvbat(struct s2mu004_fuelgauge_data *fuelgauge);
static int s2mu004_write_reg_byte(struct i2c_client *client, int reg, u8 data)
{
int ret, i = 0;
ret = i2c_smbus_write_byte_data(client, reg, data);
if (ret < 0) {
for (i = 0; i < 3; i++) {
ret = i2c_smbus_write_byte_data(client, reg, data);
if (ret >= 0)
break;
}
if (i >= 3)
dev_err(&client->dev, "%s: Error(%d)\n", __func__, ret);
}
return ret;
}
static int s2mu004_write_reg(struct i2c_client *client, int reg, u8 *buf)
{
#if SINGLE_BYTE
int ret = 0;
s2mu004_write_reg_byte(client, reg, buf[0]);
s2mu004_write_reg_byte(client, reg+1, buf[1]);
#else
int ret, i = 0;
ret = i2c_smbus_write_i2c_block_data(client, reg, 2, buf);
if (ret < 0) {
for (i = 0; i < 3; i++) {
ret = i2c_smbus_write_i2c_block_data(client, reg, 2, buf);
if (ret >= 0)
break;
}
if (i >= 3)
dev_err(&client->dev, "%s: Error(%d)\n", __func__, ret);
}
#endif
return ret;
}
static int s2mu004_read_reg_byte(struct i2c_client *client, int reg, void *data)
{
int ret = 0;
ret = i2c_smbus_read_byte_data(client, reg);
if (ret < 0)
return ret;
*(u8 *)data = (u8)ret;
return ret;
}
static int s2mu004_read_reg(struct i2c_client *client, int reg, u8 *buf)
{
#if SINGLE_BYTE
int ret = 0;
u8 data1 = 0, data2 = 0;
s2mu004_read_reg_byte(client, reg, &data1);
s2mu004_read_reg_byte(client, reg+1, &data2);
buf[0] = data1;
buf[1] = data2;
#else
int ret = 0, i = 0;
ret = i2c_smbus_read_i2c_block_data(client, reg, 2, buf);
if (ret < 0) {
for (i = 0; i < 3; i++) {
ret = i2c_smbus_read_i2c_block_data(client, reg, 2, buf);
if (ret >= 0)
break;
}
if (i >= 3)
dev_err(&client->dev, "%s: Error(%d)\n", __func__, ret);
}
#endif
return ret;
}
static void s2mu004_fg_test_read(struct i2c_client *client)
{
u8 data;
char str[1016] = {0,};
int i;
/* address 0x00 ~ 0x1f */
for (i = 0x0; i <= 0x1F; i++) {
s2mu004_read_reg_byte(client, i, &data);
sprintf(str+strlen(str), "0x%02x:0x%02x, ", i, data);
}
/* address 0x25 */
s2mu004_read_reg_byte(client, 0x25, &data);
sprintf(str+strlen(str), "0x25:0x%02x, ", data);
/* address 0x27 */
s2mu004_read_reg_byte(client, 0x27, &data);
sprintf(str+strlen(str), "0x27:0x%02x, ", data);
/* print buffer */
pr_info("[FG]%s: %s\n", __func__, str);
}
static void WA_0_issue_at_init(struct s2mu004_fuelgauge_data *fuelgauge)
{
int a = 0;
u8 v_4e = 0, v_4f = 0, temp1, temp2;
int FG_volt, UI_volt, offset;
u8 v_40 = 0;
u8 temp_REG26 = 0, temp_REG27 = 0, temp = 0;
/* Step 1: [Surge test] get UI voltage (0.1mV)*/
UI_volt = s2mu004_get_ocv(fuelgauge);
/* current fix for soc */
s2mu004_read_reg_byte(fuelgauge->i2c, 0x27, &temp_REG27);
temp = temp_REG27;
temp |= 0x0F;
s2mu004_write_reg_byte(fuelgauge->i2c, 0x27, temp);
s2mu004_read_reg_byte(fuelgauge->i2c, 0x26, &temp_REG26);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x26, 0xFF);
/* avgvbat factor value set to 0xFF */
s2mu004_read_reg_byte(fuelgauge->i2c, 0x40, &v_40);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x40, 0xFF);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x1E, 0x0F);
msleep(50);
/* Step 2: [Surge test] get FG voltage (0.1mV) */
FG_volt = s2mu004_get_vbat(fuelgauge) * 10;
/* Step 3: [Surge test] get offset */
offset = UI_volt - FG_volt;
pr_err("%s: UI_volt(%d), FG_volt(%d), offset(%d)\n",
__func__, UI_volt, FG_volt, offset);
/* Step 4: [Surge test] */
s2mu004_read_reg_byte(fuelgauge->i2c, 0x4f, &v_4f);
s2mu004_read_reg_byte(fuelgauge->i2c, 0x4e, &v_4e);
pr_err("%s: v_4f(0x%x), v_4e(0x%x)\n", __func__, v_4f, v_4e);
a = (v_4f & 0x0F) << 8;
a += v_4e;
pr_err("%s: a before add offset (0x%x)\n", __func__, a);
/* 2`s complement */
if (a & (0x01 << 11))
a = (-10000 * ((a^0xFFF) + 1)) >> 13;
else
a = (10000 * a) >> 13;
a = a + offset;
pr_err("%s: a after add offset (0x%x)\n", __func__, a);
/* limit upper/lower offset */
if (a > 2490)
a = 2490;
if (a < (-2490))
a = -2490;
a = (a << 13) / 10000;
if (a < 0)
a = -1*((a^0xFFF)+1);
pr_err("%s: a after add offset (0x%x)\n", __func__, a);
a &= 0xfff;
pr_err("%s: (a)&0xFFF (0x%x)\n", __func__, a);
/* modify 0x4f[3:0] */
temp1 = v_4f & 0xF0;
temp2 = (u8)((a&0xF00) >> 8);
temp1 |= temp2;
s2mu004_write_reg_byte(fuelgauge->i2c, 0x4f, temp1);
/* modify 0x4e[7:0] */
temp2 = (u8)(a & 0xFF);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x4e, temp2);
/* restart and dumpdone */
s2mu004_write_reg_byte(fuelgauge->i2c, 0x1E, 0x0F);
msleep(300);
/* restore current register */
s2mu004_write_reg_byte(fuelgauge->i2c, 0x27, temp_REG27);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x26, temp_REG26);
/* recovery 0x4e and 0x4f */
s2mu004_read_reg_byte(fuelgauge->i2c, 0x4f, &temp1);
temp1 &= 0xF0;
temp1 |= (v_4f & 0x0F);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x4f, temp1);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x4e, v_4e);
/* restore monout avgvbat factor value */
s2mu004_write_reg_byte(fuelgauge->i2c, 0x40, v_40);
}
static int s2mu004_get_soc_from_ocv(struct s2mu004_fuelgauge_data *fuelgauge, int target_ocv)
{
/* 22 values of mapping table for EVT1*/
int *soc_arr;
int *ocv_arr;
int soc = 0;
int ocv = target_ocv * 10;
int high_index = TABLE_SIZE - 1;
int low_index = 0;
int mid_index = 0;
soc_arr = fuelgauge->info.soc_arr_val;
ocv_arr = fuelgauge->info.ocv_arr_val;
pr_err("%s: soc_arr(%d) ocv_arr(%d)\n", __func__, *soc_arr, *ocv_arr);
if (ocv <= ocv_arr[TABLE_SIZE - 1]) {
soc = soc_arr[TABLE_SIZE - 1];
goto soc_ocv_mapping;
} else if (ocv >= ocv_arr[0]) {
soc = soc_arr[0];
goto soc_ocv_mapping;
}
while (low_index <= high_index) {
mid_index = (low_index + high_index) >> 1;
if (ocv_arr[mid_index] > ocv)
low_index = mid_index + 1;
else if (ocv_arr[mid_index] < ocv)
high_index = mid_index - 1;
else {
soc = soc_arr[mid_index];
goto soc_ocv_mapping;
}
}
soc = soc_arr[high_index];
soc += ((soc_arr[low_index] - soc_arr[high_index]) *
(ocv - ocv_arr[high_index])) /
(ocv_arr[low_index] - ocv_arr[high_index]);
soc_ocv_mapping:
dev_info(&fuelgauge->i2c->dev, "%s: ocv (%d), soc (%d)\n", __func__, ocv, soc);
return soc;
}
static void WA_0_issue_at_init1(struct s2mu004_fuelgauge_data *fuelgauge, int target_ocv)
{
int a = 0;
u8 v_4e = 0, v_4f = 0, temp1, temp2;
int FG_volt, UI_volt, offset;
u8 v_40 = 0;
u8 temp_REG26 = 0, temp_REG27 = 0, temp = 0;
/* Step 1: [Surge test] get UI voltage (0.1mV)*/
UI_volt = target_ocv * 10;
/* avgvbat factor value set to 0xFF */
s2mu004_read_reg_byte(fuelgauge->i2c, 0x40, &v_40);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x40, 0xFF);
/* current fix for soc */
s2mu004_read_reg_byte(fuelgauge->i2c, 0x27, &temp_REG27);
temp = temp_REG27;
temp |= 0x0F;
s2mu004_write_reg_byte(fuelgauge->i2c, 0x27, temp);
s2mu004_read_reg_byte(fuelgauge->i2c, 0x26, &temp_REG26);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x26, 0xFF);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x1E, 0x0F);
msleep(50);
/* Step 2: [Surge test] get FG voltage (0.1mV) */
FG_volt = s2mu004_get_vbat(fuelgauge) * 10;
/* Step 3: [Surge test] get offset */
offset = UI_volt - FG_volt;
pr_err("%s: UI_volt(%d), FG_volt(%d), offset(%d)\n",
__func__, UI_volt, FG_volt, offset);
/* Step 4: [Surge test] */
s2mu004_read_reg_byte(fuelgauge->i2c, 0x4f, &v_4f);
s2mu004_read_reg_byte(fuelgauge->i2c, 0x4e, &v_4e);
pr_err("%s: v_4f(0x%x), v_4e(0x%x)\n", __func__, v_4f, v_4e);
a = (v_4f & 0x0F) << 8;
a += v_4e;
pr_err("%s: a before add offset (0x%x)\n", __func__, a);
/* 2`s complement */
if (a & (0x01 << 11))
a = (-10000 * ((a^0xFFF) + 1)) >> 13;
else
a = (10000 * a) >> 13;
a = a + offset;
pr_err("%s: a after add offset (0x%x)\n", __func__, a);
/* limit upper/lower offset */
if (a > 2490)
a = 2490;
if (a < (-2490))
a = -2490;
a = (a << 13) / 10000;
if (a < 0)
a = -1*((a^0xFFF)+1);
pr_err("%s: a after add offset (0x%x)\n", __func__, a);
a &= 0xfff;
pr_err("%s: (a)&0xFFF (0x%x)\n", __func__, a);
/* modify 0x4f[3:0] */
temp1 = v_4f & 0xF0;
temp2 = (u8)((a&0xF00) >> 8);
temp1 |= temp2;
s2mu004_write_reg_byte(fuelgauge->i2c, 0x4f, temp1);
/* modify 0x4e[7:0] */
temp2 = (u8)(a & 0xFF);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x4e, temp2);
/* restart and dumpdone */
s2mu004_write_reg_byte(fuelgauge->i2c, 0x1E, 0x0F);
msleep(300);
/* restore current register */
s2mu004_write_reg_byte(fuelgauge->i2c, 0x27, temp_REG27);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x26, temp_REG26);
pr_info("%s: S2MU004 VBAT : %d\n", __func__, s2mu004_get_vbat(fuelgauge) * 10);
/* recovery 0x4e and 0x4f */
s2mu004_read_reg_byte(fuelgauge->i2c, 0x4f, &temp1);
temp1 &= 0xF0;
temp1 |= (v_4f & 0x0F);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x4f, temp1);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x4e, v_4e);
/* restore monout avgvbat factor value */
s2mu004_write_reg_byte(fuelgauge->i2c, 0x40, v_40);
}
static void s2mu004_reset_fg(struct s2mu004_fuelgauge_data *fuelgauge)
{
int i;
u8 temp = 0;
/* step 0: [Surge test] initialize register of FG */
s2mu004_write_reg_byte(fuelgauge->i2c, 0x0E, fuelgauge->info.batcap[0]);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x0F, fuelgauge->info.batcap[1]);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x10, fuelgauge->info.batcap[2]);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x11, fuelgauge->info.batcap[3]);
for (i = 0x92; i <= 0xe9; i++)
s2mu004_write_reg_byte(fuelgauge->i2c, i, fuelgauge->info.battery_table3[i - 0x92]);
for (i = 0xea; i <= 0xff; i++)
s2mu004_write_reg_byte(fuelgauge->i2c, i, fuelgauge->info.battery_table4[i - 0xea]);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x21, 0x13);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x14, 0x40);
s2mu004_read_reg_byte(fuelgauge->i2c, 0x45, &temp);
temp &= 0xF0;
temp |= fuelgauge->info.accum[0];
s2mu004_write_reg_byte(fuelgauge->i2c, 0x45, temp);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x44, fuelgauge->info.accum[1]);
s2mu004_read_reg_byte(fuelgauge->i2c, 0x27, &temp);
temp |= 0x10;
s2mu004_write_reg_byte(fuelgauge->i2c, 0x27, temp);
/* Interrupt source reference at mixed mode */
s2mu004_read_reg_byte(fuelgauge->i2c, 0x43, &temp);
temp &= 0xF3;
temp |= 0x08;
s2mu004_write_reg_byte(fuelgauge->i2c, 0x43, temp);
/* Charger top off current sensing method change for int. 0x49[7]=0 */
s2mu004_read_reg_byte(fuelgauge->i2c, 0x49, &temp);
temp &= 0x7F;
s2mu004_write_reg_byte(fuelgauge->i2c, 0x49, temp);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x4B, 0x0B);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x4A, 0x10);
s2mu004_read_reg_byte(fuelgauge->i2c, 0x03, &temp);
temp |= 0x10;
s2mu004_write_reg_byte(fuelgauge->i2c, 0x03, temp);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x40, 0x08);
WA_0_issue_at_init(fuelgauge);
pr_err("%s: Reset FG completed\n", __func__);
}
static void s2mu004_restart_gauging(struct s2mu004_fuelgauge_data *fuelgauge)
{
u8 temp = 0, temp_REG26 = 0, temp_REG27 = 0;
u8 data[2], r_data[2];
u8 v_40;
pr_err("%s: Re-calculate SOC and voltage\n", __func__);
s2mu004_read_reg(fuelgauge->i2c, S2MU004_REG_IRQ, data);
pr_info("%s: irq_reg data (%02x%02x)\n", __func__, data[1], data[0]);
/* store data for interrupt mask */
r_data[0] = data[0];
r_data[1] = data[1];
/* disable irq for unwanted interrupt */
data[1] |= 0x0f;
s2mu004_write_reg(fuelgauge->i2c, S2MU004_REG_IRQ, data);
s2mu004_read_reg_byte(fuelgauge->i2c, 0x27, &temp_REG27);
temp = temp_REG27;
temp |= 0x0F;
s2mu004_write_reg_byte(fuelgauge->i2c, 0x27, temp);
s2mu004_read_reg_byte(fuelgauge->i2c, 0x26, &temp_REG26);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x26, 0xFF);
/* avgvbat factor value set to 0xFF */
s2mu004_read_reg_byte(fuelgauge->i2c, 0x40, &v_40);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x40, 0xFF);
/* restart gauge */
/* s2mu004_write_reg_byte(fuelgauge->i2c, 0x1f, 0x01); */
s2mu004_write_reg_byte(fuelgauge->i2c, 0x21, 0x13);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x1E, 0x0F);
msleep(300);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x27, temp_REG27);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x26, temp_REG26);
s2mu004_read_reg_byte(fuelgauge->i2c, 0x27, &temp);
pr_info("%s: 0x27 : %02x\n", __func__, temp);
s2mu004_read_reg_byte(fuelgauge->i2c, 0x26, &temp);
pr_info("%s: 0x26 : %02x\n", __func__, temp);
/* restore monout avgvbat factor value */
s2mu004_write_reg_byte(fuelgauge->i2c, 0x40, v_40);
/* enable irq after reset */
s2mu004_write_reg(fuelgauge->i2c, S2MU004_REG_IRQ, r_data);
pr_info("%s: re-store irq_reg data (%02x%02x)\n", __func__, r_data[1], r_data[0]);
}
static void s2mu004_init_regs(struct s2mu004_fuelgauge_data *fuelgauge)
{
u8 temp = 0;
pr_err("%s: s2mu004 fuelgauge initialize\n", __func__);
/* Reduce top-off current difference between
* Power on charging and Power off charging
*/
s2mu004_read_reg_byte(fuelgauge->i2c, 0x27, &temp);
temp |= 0x10;
s2mu004_write_reg_byte(fuelgauge->i2c, 0x27, temp);
/* Interrupt source reference at mixed mode */
s2mu004_read_reg_byte(fuelgauge->i2c, 0x43, &temp);
temp &= 0xF3;
temp |= 0x08;
s2mu004_write_reg_byte(fuelgauge->i2c, 0x43, temp);
/* Charger top off current sensing method change for int. 0x49[7]=0 */
s2mu004_read_reg_byte(fuelgauge->i2c, 0x49, &temp);
temp &= 0x7F;
s2mu004_write_reg_byte(fuelgauge->i2c, 0x49, temp);
s2mu004_read_reg_byte(fuelgauge->i2c, 0x4F, &temp);
fuelgauge->reg_OTP_4F = temp;
s2mu004_read_reg_byte(fuelgauge->i2c, 0x4E, &temp);
fuelgauge->reg_OTP_4E = temp;
}
static void s2mu004_alert_init(struct s2mu004_fuelgauge_data *fuelgauge)
{
u8 data[2];
/* VBAT Threshold setting */
data[0] = ((fuelgauge->pdata->fuel_alert_vol - 2800) / 50) & 0x0f;
/* SOC Threshold setting */
data[0] = data[0] | (fuelgauge->pdata->fuel_alert_soc << 4);
data[1] = 0x00;
s2mu004_write_reg(fuelgauge->i2c, S2MU004_REG_IRQ_LVL, data);
pr_info("%s: irq_lvl(vbat:0x%x, soc:0x%x)\n", __func__, data[0] & 0x0F, data[0] & 0xF0);
}
static int s2mu004_set_temperature(struct s2mu004_fuelgauge_data *fuelgauge,
int temperature)
{
/*
* s5mu004 include temperature sensor so,
* do not need to set temperature value.
*/
return temperature;
}
static int s2mu004_get_temperature(struct s2mu004_fuelgauge_data *fuelgauge)
{
u8 data[2];
u16 compliment;
s32 temperature = 0;
/*
* use monitor regiser.
* monitor register default setting is temperature
*/
mutex_lock(&fuelgauge->fg_lock);
s2mu004_write_reg_byte(fuelgauge->i2c, S2MU004_REG_MONOUT_SEL, 0x10);
if (s2mu004_read_reg(fuelgauge->i2c, S2MU004_REG_MONOUT, data) < 0)
goto err;
mutex_unlock(&fuelgauge->fg_lock);
compliment = (data[1] << 8) | (data[0]);
/* data[] store 2's compliment format number */
if (compliment & (0x1 << 15)) {
/* Negative */
temperature = -1 * ((~compliment & 0xFFFF) + 1);
} else {
temperature = compliment & 0x7FFF;
}
temperature = ((temperature * 100) >> 8)/10;
dev_dbg(&fuelgauge->i2c->dev, "%s: temperature (%d)\n",
__func__, temperature);
/* For test, return room temperature */
/* To use IC's value, check there is NTC & register setting is right*/
#if FAKE_TEMP
temperature = 250;
#endif
return temperature;
err:
mutex_unlock(&fuelgauge->fg_lock);
return -ERANGE;
}
static int s2mu004_get_rawsoc(struct s2mu004_fuelgauge_data *fuelgauge)
{
u8 data[2], check_data[2];
u16 compliment;
int rsoc, i;
u8 por_state = 0;
u8 reg = S2MU004_REG_RSOC;
u8 reg_OTP_4E = 0, reg_OTP_4F = 0;
int fg_reset = 0;
bool charging_enabled = false;
union power_supply_propval value;
int force_power_off_voltage = 0;
int rbat = 0;
int avg_current = 0, avg_vbat = 0, vbat = 0, curr = 0, avg_monout_vbat = 0;
int ocv_pwroff = 0, ocv_pwr_voltagemode = 0;
int target_soc = 0;
/* SOC VM Monitoring For debugging SOC error */
u8 r_monoutsel;
u8 mount_data[2];
u32 mount_compliment;
int rvmsoc;
struct power_supply *psy;
int ret;
s2mu004_read_reg_byte(fuelgauge->i2c, 0x1F, &por_state);
s2mu004_read_reg_byte(fuelgauge->i2c, 0x4F, &reg_OTP_4F);
s2mu004_read_reg_byte(fuelgauge->i2c, 0x4E, &reg_OTP_4E);
dev_err(&fuelgauge->i2c->dev, "%s: OTP 4E(%02x) 4F(%02x) current 4E(%02x) 4F(%02x)\n",
__func__, fuelgauge->reg_OTP_4E, fuelgauge->reg_OTP_4F, reg_OTP_4E, reg_OTP_4F);
if ((por_state & 0x10) ||
(fuelgauge->probe_done == true &&
(fuelgauge->reg_OTP_4E != reg_OTP_4E || fuelgauge->reg_OTP_4F != reg_OTP_4F))) {
/* check charging enable */
psy = power_supply_get_by_name("s2mu004-charger");
if (!psy)
return -EINVAL;
ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_CHARGING_ENABLED, &value);
if (ret < 0)
pr_err("%s: Fail to execute property\n", __func__);
charging_enabled = value.intval;
value.intval = S2MU00X_BAT_CHG_MODE_CHARGING_OFF;
psy = power_supply_get_by_name("s2mu004-charger");
if (!psy)
return -EINVAL;
ret = power_supply_set_property(psy, POWER_SUPPLY_PROP_CHARGING_ENABLED, &value);
if (ret < 0)
pr_err("%s: Fail to execute property\n", __func__);
if (fuelgauge->reg_OTP_4E != reg_OTP_4E || fuelgauge->reg_OTP_4F != reg_OTP_4F) {
psy = power_supply_get_by_name("s2mu004-charger");
if (!psy)
return -EINVAL;
ret = power_supply_set_property(psy, POWER_SUPPLY_PROP_FUELGAUGE_RESET, &value);
if (ret < 0)
pr_err("%s: Fail to execute property\n", __func__);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x1F, 0x40);
msleep(50);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x1F, 0x01);
s2mu004_read_reg_byte(fuelgauge->i2c, 0x4F, &reg_OTP_4F);
s2mu004_read_reg_byte(fuelgauge->i2c, 0x4E, &reg_OTP_4E);
dev_err(&fuelgauge->i2c->dev, "1st reset after %s: OTP 4E(%02x) 4F(%02x) current 4E(%02x) 4F(%02x)\n",
__func__, fuelgauge->reg_OTP_4E, fuelgauge->reg_OTP_4F, reg_OTP_4E, reg_OTP_4F);
if (fuelgauge->reg_OTP_4E != reg_OTP_4E || fuelgauge->reg_OTP_4F != reg_OTP_4F) {
psy = power_supply_get_by_name("s2mu004-charger");
if (!psy)
return -EINVAL;
ret = power_supply_set_property(psy, POWER_SUPPLY_PROP_FUELGAUGE_RESET, &value);
if (ret < 0)
pr_err("%s: Fail to execute property\n", __func__);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x1F, 0x40);
msleep(50);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x1F, 0x01);
dev_err(&fuelgauge->i2c->dev, "%s : 2nd reset\n", __func__);
}
}
dev_info(&fuelgauge->i2c->dev, "%s: FG reset\n", __func__);
s2mu004_reset_fg(fuelgauge);
por_state &= ~0x10;
s2mu004_write_reg_byte(fuelgauge->i2c, 0x1F, por_state);
fg_reset = 1;
}
mutex_lock(&fuelgauge->fg_lock);
reg = S2MU004_REG_RSOC;
for (i = 0; i < 50; i++) {
if (s2mu004_read_reg(fuelgauge->i2c, reg, data) < 0)
goto err;
if (s2mu004_read_reg(fuelgauge->i2c, reg, check_data) < 0)
goto err;
dev_dbg(&fuelgauge->i2c->dev, "[DEBUG]%s: data0 (%d) data1 (%d)\n", __func__, data[0], data[1]);
if ((data[0] == check_data[0]) && (data[1] == check_data[1]))
break;
}
/* SOC VM Monitoring For debugging SOC error */
s2mu004_read_reg_byte(fuelgauge->i2c, S2MU004_REG_MONOUT_SEL, &r_monoutsel);
s2mu004_write_reg_byte(fuelgauge->i2c, S2MU004_REG_MONOUT_SEL, 0x02);
mdelay(10);
s2mu004_read_reg(fuelgauge->i2c, S2MU004_REG_MONOUT, mount_data);
s2mu004_write_reg_byte(fuelgauge->i2c, S2MU004_REG_MONOUT_SEL, r_monoutsel);
mutex_unlock(&fuelgauge->fg_lock);
/* SOC VM Monitoring For debugging SOC error */
mount_compliment = ((mount_data[0] + (mount_data[1] << 8)) * 10000) >> 12;
rvmsoc = mount_compliment;
dev_dbg(&fuelgauge->i2c->dev, "%s: vm soc raw data0 (%d) data1 (%d)\n", __func__, mount_data[0], mount_data[1]);
dev_info(&fuelgauge->i2c->dev, "%s: vm soc (%d)\n", __func__, rvmsoc);
if (fg_reset && charging_enabled) {
value.intval = S2MU00X_BAT_CHG_MODE_CHARGING;
psy = power_supply_get_by_name("s2mu004-charger");
if (!psy)
return -EINVAL;
ret = power_supply_set_property(psy, POWER_SUPPLY_PROP_CHARGING_ENABLED, &value);
if (ret < 0)
pr_err("%s: Fail to execute property\n", __func__);
}
compliment = (data[1] << 8) | (data[0]);
/* data[] store 2's compliment format number */
if (compliment & (0x1 << 15)) {
/* Negative */
rsoc = ((~compliment) & 0xFFFF) + 1;
rsoc = (rsoc * (-10000)) / (0x1 << 14);
} else {
rsoc = compliment & 0x7FFF;
rsoc = ((rsoc * 10000) / (0x1 << 14));
}
if (fg_reset)
fuelgauge->diff_soc = fuelgauge->info.soc - rsoc;
dev_info(&fuelgauge->i2c->dev, "%s: current_soc (%d), previous soc (%d), diff (%d), FG_mode(%d)\n",
__func__, rsoc, fuelgauge->info.soc, fuelgauge->diff_soc, fuelgauge->mode);
fuelgauge->info.soc = rsoc + fuelgauge->diff_soc;
avg_current = s2mu004_get_avgcurrent(fuelgauge);
avg_monout_vbat = s2mu004_get_monout_avgvbat(fuelgauge);
ocv_pwr_voltagemode = avg_monout_vbat - avg_current*30 / 100;
if (avg_current < (-500))
rbat = 10;
else
rbat = 30;
ocv_pwr_voltagemode = avg_monout_vbat - avg_current*rbat / 100;
/* switch to voltage mocd for accuracy */
if ((fuelgauge->info.soc <= 300) || ((ocv_pwr_voltagemode <= 3600) && (avg_current < 10))) {
if (fuelgauge->mode == CURRENT_MODE) { /* switch to VOLTAGE_MODE */
fuelgauge->mode = LOW_SOC_VOLTAGE_MODE;
s2mu004_write_reg_byte(fuelgauge->i2c, 0x4A, 0xFF);
dev_info(&fuelgauge->i2c->dev, "%s: FG is in low soc voltage mode\n", __func__);
}
} else if ((fuelgauge->info.soc > 325) && ((ocv_pwr_voltagemode > 3650) || (avg_current >= 10))) {
if (fuelgauge->mode == LOW_SOC_VOLTAGE_MODE) {
fuelgauge->mode = CURRENT_MODE;
s2mu004_write_reg_byte(fuelgauge->i2c, 0x4A, 0x10);
dev_info(&fuelgauge->i2c->dev, "%s: FG is in current mode\n", __func__);
}
}
psy = power_supply_get_by_name("battery");
if (!psy)
return -EINVAL;
ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_CAPACITY, &value);
if (ret < 0)
pr_err("%s: Fail to execute property\n", __func__);
if (value.intval >= 98) {
if (fuelgauge->mode == CURRENT_MODE) { /* switch to VOLTAGE_MODE */
fuelgauge->mode = HIGH_SOC_VOLTAGE_MODE;
s2mu004_write_reg_byte(fuelgauge->i2c, 0x4A, 0xFF);
dev_info(&fuelgauge->i2c->dev, "%s: FG is in high soc voltage mode\n", __func__);
}
} else if (value.intval < 97) {
if (fuelgauge->mode == HIGH_SOC_VOLTAGE_MODE) {
fuelgauge->mode = CURRENT_MODE;
s2mu004_write_reg_byte(fuelgauge->i2c, 0x4A, 0x10);
dev_info(&fuelgauge->i2c->dev, "%s: FG is in current mode\n", __func__);
}
}
avg_vbat = s2mu004_get_avgvbat(fuelgauge);
vbat = s2mu004_get_vbat(fuelgauge);
curr = s2mu004_get_current(fuelgauge);
psy = power_supply_get_by_name("battery");
if (!psy)
return -EINVAL;
ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &value);
if (ret < 0)
pr_err("%s: Fail to execute property\n", __func__);
if (value.intval <= (-150))
force_power_off_voltage = 3550;
else
force_power_off_voltage = 3300;
dev_info(&fuelgauge->i2c->dev,
"%s: Fuelgauge Mode: %d, Force power-off voltage: %d\n",
__func__, fuelgauge->mode, force_power_off_voltage);
if (((avg_current < (-17)) && (curr < (-17))) &&
((avg_monout_vbat - avg_current*rbat / 100) <= 3500) && (fuelgauge->info.soc > 100)) {
ocv_pwroff = 3300;
target_soc = s2mu004_get_soc_from_ocv(fuelgauge, ocv_pwroff);
pr_info("%s : F/G reset Start - current flunctuation\n", __func__);
WA_0_issue_at_init1(fuelgauge, ocv_pwroff);
} else if (avg_current < (-60) && avg_vbat <= force_power_off_voltage) {
if (fuelgauge->mode == CURRENT_MODE) {
if (abs(avg_vbat - vbat) <= 20 && abs(avg_current - curr) <= 30) {
ocv_pwroff = avg_vbat - avg_current * 15 / 100;
target_soc = s2mu004_get_soc_from_ocv(fuelgauge, ocv_pwroff);
if (abs(target_soc - fuelgauge->info.soc) > 300) {
pr_info("%s : F/G reset Start - current mode: %d\n", __func__, target_soc);
WA_0_issue_at_init1(fuelgauge, ocv_pwroff);
}
}
} else {
if (abs(avg_vbat - vbat) <= 20) {
ocv_pwroff = avg_vbat;
target_soc = s2mu004_get_soc_from_ocv(fuelgauge, ocv_pwroff);
if (abs(target_soc - fuelgauge->info.soc) > 300) {
pr_info("%s : F/G reset Start\n", __func__);
WA_0_issue_at_init1(fuelgauge, ocv_pwroff);
}
}
}
}
s2mu004_fg_test_read(fuelgauge->i2c);
return min(fuelgauge->info.soc, 10000);
err:
mutex_unlock(&fuelgauge->fg_lock);
return -EINVAL;
}
static int s2mu004_get_current(struct s2mu004_fuelgauge_data *fuelgauge)
{
u8 data[2];
u16 compliment;
int curr = 0;
if (s2mu004_read_reg(fuelgauge->i2c, S2MU004_REG_RCUR_CC, data) < 0)
return -EINVAL;
compliment = (data[1] << 8) | (data[0]);
dev_dbg(&fuelgauge->i2c->dev, "%s: rCUR_CC(0x%4x)\n", __func__, compliment);
if (compliment & (0x1 << 15)) { /* Charging */
curr = ((~compliment) & 0xFFFF) + 1;
curr = (curr * 1000) >> 12;
} else { /* dischaging */
curr = compliment & 0x7FFF;
curr = (curr * (-1000)) >> 12;
}
dev_info(&fuelgauge->i2c->dev, "%s: current (%d)mA\n", __func__, curr);
return curr;
}
#define TABLE_SIZE 22
static int s2mu004_get_ocv(struct s2mu004_fuelgauge_data *fuelgauge)
{
/* 22 values of mapping table for EVT1*/
int *soc_arr;
int *ocv_arr;
int soc = fuelgauge->info.soc;
int ocv = 0;
int high_index = TABLE_SIZE - 1;
int low_index = 0;
int mid_index = 0;
soc_arr = fuelgauge->info.soc_arr_val;
ocv_arr = fuelgauge->info.ocv_arr_val;
dev_err(&fuelgauge->i2c->dev,
"%s: soc (%d) soc_arr[TABLE_SIZE-1] (%d) ocv_arr[TABLE_SIZE-1) (%d)\n",
__func__, soc, soc_arr[TABLE_SIZE-1], ocv_arr[TABLE_SIZE-1]);
if (soc <= soc_arr[TABLE_SIZE - 1]) {
ocv = ocv_arr[TABLE_SIZE - 1];
goto ocv_soc_mapping;
} else if (soc >= soc_arr[0]) {
ocv = ocv_arr[0];
goto ocv_soc_mapping;
}
while (low_index <= high_index) {
mid_index = (low_index + high_index) >> 1;
if (soc_arr[mid_index] > soc)
low_index = mid_index + 1;
else if (soc_arr[mid_index] < soc)
high_index = mid_index - 1;
else {
ocv = ocv_arr[mid_index];
goto ocv_soc_mapping;
}
}
ocv = ocv_arr[high_index];
ocv += ((ocv_arr[low_index] - ocv_arr[high_index]) *
(soc - soc_arr[high_index])) /
(soc_arr[low_index] - soc_arr[high_index]);
ocv_soc_mapping:
dev_info(&fuelgauge->i2c->dev, "%s: soc (%d), ocv (%d)\n", __func__, soc, ocv);
return ocv;
}
static int s2mu004_get_avgcurrent(struct s2mu004_fuelgauge_data *fuelgauge)
{
u8 data[2];
u16 compliment;
int curr = 0;
mutex_lock(&fuelgauge->fg_lock);
s2mu004_write_reg_byte(fuelgauge->i2c, S2MU004_REG_MONOUT_SEL, 0x26);
if (s2mu004_read_reg(fuelgauge->i2c, S2MU004_REG_MONOUT, data) < 0)
goto err;
compliment = (data[1] << 8) | (data[0]);
if (compliment & (0x1 << 15)) { /* Charging */
curr = ((~compliment) & 0xFFFF) + 1;
curr = (curr * 1000) >> 12;
} else { /* dischaging */
curr = compliment & 0x7FFF;
curr = (curr * (-1000)) >> 12;
}
s2mu004_write_reg_byte(fuelgauge->i2c, S2MU004_REG_MONOUT_SEL, 0x10);
mutex_unlock(&fuelgauge->fg_lock);
dev_info(&fuelgauge->i2c->dev, "%s: MONOUT(0x%4x), avg current (%d)mA\n",
__func__, compliment, curr);
return curr;
err:
mutex_unlock(&fuelgauge->fg_lock);
return -EINVAL;
}
static int s2mu004_maintain_avgcurrent(
struct s2mu004_fuelgauge_data *fuelgauge)
{
static int cnt;
int vcell = 0;
int curr = 0;
curr = s2mu004_get_avgcurrent(fuelgauge);
vcell = s2mu004_get_vbat(fuelgauge);
if ((cnt < 10) && (curr < 0) && (fuelgauge->is_charging) &&
(vcell < 3500)) {
curr = 1;
cnt++;
dev_info(&fuelgauge->i2c->dev, "%s: vcell (%d)mV, modified avg current (%d)mA\n",
__func__, vcell, curr);
}
return curr;
}
static int s2mu004_get_vbat(struct s2mu004_fuelgauge_data *fuelgauge)
{
u8 data[2];
u8 vbat_src;
u32 vbat = 0;
if (s2mu004_read_reg(fuelgauge->i2c, S2MU004_REG_RVBAT, data) < 0)
return -EINVAL;
dev_dbg(&fuelgauge->i2c->dev, "%s: data0 (%d) data1 (%d)\n", __func__, data[0], data[1]);
vbat = ((data[0] + (data[1] << 8)) * 1000) >> 13;
s2mu004_read_reg_byte(fuelgauge->i2c, S2MU004_REG_CTRL0, &vbat_src);
dev_info(&fuelgauge->i2c->dev, "%s: vbat (%d), src (0x%02X)\n",
__func__, vbat, (vbat_src & 0x30) >> 4);
return vbat;
}
static int s2mu004_get_monout_avgvbat(struct s2mu004_fuelgauge_data *fuelgauge)
{
u8 data[2];
u16 compliment, avg_vbat;
mutex_lock(&fuelgauge->fg_lock);
s2mu004_write_reg_byte(fuelgauge->i2c, S2MU004_REG_MONOUT_SEL, 0x27);
mdelay(50);
if (s2mu004_read_reg(fuelgauge->i2c, S2MU004_REG_MONOUT, data) < 0)
goto err;
compliment = (data[1] << 8) | (data[0]);
avg_vbat = (compliment * 1000) >> 12;
s2mu004_write_reg_byte(fuelgauge->i2c, S2MU004_REG_MONOUT_SEL, 0x10);
mutex_unlock(&fuelgauge->fg_lock);
dev_info(&fuelgauge->i2c->dev, "%s: avgvbat (%d)\n", __func__, avg_vbat);
return avg_vbat;
err:
mutex_unlock(&fuelgauge->fg_lock);
return -EINVAL;
}
static int s2mu004_get_avgvbat(struct s2mu004_fuelgauge_data *fuelgauge)
{
u8 data[2];
u32 new_vbat, old_vbat = 0;
int cnt;
for (cnt = 0; cnt < 5; cnt++) {
if (s2mu004_read_reg(fuelgauge->i2c, S2MU004_REG_RVBAT, data) < 0)
return -EINVAL;
new_vbat = ((data[0] + (data[1] << 8)) * 1000) >> 13;
if (cnt == 0)
old_vbat = new_vbat;
else
old_vbat = new_vbat / 2 + old_vbat / 2;
}
dev_dbg(&fuelgauge->i2c->dev, "%s: avgvbat (%d)\n", __func__, old_vbat);
return old_vbat;
}
bool s2mu004_fuelgauge_fuelalert_init(struct i2c_client *client, int soc)
{
struct s2mu004_fuelgauge_data *fuelgauge = i2c_get_clientdata(client);
u8 data[2];
fuelgauge->is_fuel_alerted = false;
/* 1. Set s2mu004 alert configuration. */
s2mu004_alert_init(fuelgauge);
if (s2mu004_read_reg(client, S2MU004_REG_IRQ, data) < 0)
return -1;
/*Enable VBAT, SOC */
data[1] &= 0xfc;
/*Disable IDLE_ST, INIT)ST */
data[1] |= 0x0c;
s2mu004_write_reg(client, S2MU004_REG_IRQ, data);
dev_dbg(&client->dev, "%s: irq_reg(%02x%02x) irq(%d)\n",
__func__, data[1], data[0], fuelgauge->pdata->fg_irq);
return true;
}
static int s2mu004_fg_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
struct s2mu004_fuelgauge_data *fuelgauge =
power_supply_get_drvdata(psy);
switch (psp) {
case POWER_SUPPLY_PROP_STATUS:
case POWER_SUPPLY_PROP_CHARGE_FULL:
return -ENODATA;
case POWER_SUPPLY_PROP_ENERGY_NOW:
val->intval = fuelgauge->pdata->capacity_full;
break;
/* Cell voltage (VCELL, mV) */
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
val->intval = s2mu004_get_vbat(fuelgauge);
break;
/* Additional Voltage Information (mV) */
case POWER_SUPPLY_PROP_VOLTAGE_AVG:
switch (val->intval) {
case S2MU00X_BATTERY_VOLTAGE_AVERAGE:
val->intval = s2mu004_get_monout_avgvbat(fuelgauge);
break;
case S2MU00X_BATTERY_VOLTAGE_OCV:
val->intval = s2mu004_get_ocv(fuelgauge);
break;
}
break;
/* Current (mA) */
case POWER_SUPPLY_PROP_CURRENT_NOW:
if (val->intval == S2MU00X_BATTERY_CURRENT_UA)
val->intval = s2mu004_get_current(fuelgauge) * 1000;
else
val->intval = s2mu004_get_current(fuelgauge);
break;
/* Average Current (mA) */
case POWER_SUPPLY_PROP_CURRENT_AVG:
if (val->intval == S2MU00X_BATTERY_CURRENT_UA)
val->intval = s2mu004_maintain_avgcurrent(fuelgauge) * 1000;
else
val->intval = s2mu004_maintain_avgcurrent(fuelgauge);
break;
case POWER_SUPPLY_PROP_CAPACITY:
val->intval = s2mu004_get_rawsoc(fuelgauge) / 10;
/* capacity should be between 0% and 100%
* (0.1% degree)
*/
if (val->intval > 1000)
val->intval = 1000;
if (val->intval < 0)
val->intval = 0;
/* get only integer part */
val->intval /= 10;
/* check whether doing the wake_unlock */
if ((val->intval > fuelgauge->pdata->fuel_alert_soc) &&
fuelgauge->is_fuel_alerted) {
wake_unlock(&fuelgauge->fuel_alert_wake_lock);
s2mu004_fuelgauge_fuelalert_init(fuelgauge->i2c,
fuelgauge->pdata->fuel_alert_soc);
}
break;
/* IFPMIC Temperature */
case POWER_SUPPLY_PROP_TEMP:
case POWER_SUPPLY_PROP_TEMP_AMBIENT:
val->intval = s2mu004_get_temperature(fuelgauge);
break;
case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
val->intval = fuelgauge->capacity_max;
break;
case POWER_SUPPLY_PROP_SCOPE:
val->intval = fuelgauge->mode;
break;
default:
return -EINVAL;
}
return 0;
}
static int s2mu004_fg_set_property(struct power_supply *psy,
enum power_supply_property psp,
const union power_supply_propval *val)
{
struct s2mu004_fuelgauge_data *fuelgauge =
power_supply_get_drvdata(psy);
switch (psp) {
case POWER_SUPPLY_PROP_STATUS:
break;
case POWER_SUPPLY_PROP_CHARGE_FULL:
/*full*/
break;
case POWER_SUPPLY_PROP_ONLINE:
fuelgauge->cable_type = val->intval;
break;
case POWER_SUPPLY_PROP_CHARGING_ENABLED:
if (val->intval)
fuelgauge->is_charging = true;
else
fuelgauge->is_charging = false;
break;
case POWER_SUPPLY_PROP_CAPACITY:
if (val->intval == S2MU00X_FUELGAUGE_CAPACITY_TYPE_RESET) {
fuelgauge->initial_update_of_soc = true;
s2mu004_restart_gauging(fuelgauge);
}
break;
case POWER_SUPPLY_PROP_TEMP:
case POWER_SUPPLY_PROP_TEMP_AMBIENT:
s2mu004_set_temperature(fuelgauge, val->intval);
break;
case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
dev_dbg(&fuelgauge->i2c->dev,
"%s: capacity_max changed, %d -> %d\n",
__func__, fuelgauge->capacity_max, val->intval);
fuelgauge->initial_update_of_soc = true;
break;
case POWER_SUPPLY_PROP_CHARGE_EMPTY:
pr_info("%s: WA for battery 0 percent\n", __func__);
s2mu004_write_reg_byte(fuelgauge->i2c, 0x1F, 0x01);
break;
case POWER_SUPPLY_PROP_ENERGY_AVG:
pr_info("%s: WA for power off issue: val(%d)\n", __func__, val->intval);
if (val->intval)
s2mu004_write_reg_byte(fuelgauge->i2c, 0x41, 0x10); /* charger start */
else
s2mu004_write_reg_byte(fuelgauge->i2c, 0x41, 0x04); /* charger end */
break;
default:
return -EINVAL;
}
return 0;
}
static void s2mu004_fg_isr_work(struct work_struct *work)
{
struct s2mu004_fuelgauge_data *fuelgauge =
container_of(work, struct s2mu004_fuelgauge_data, isr_work.work);
u8 fg_alert_status = 0;
s2mu004_read_reg_byte(fuelgauge->i2c, S2MU004_REG_STATUS, &fg_alert_status);
dev_info(&fuelgauge->i2c->dev, "%s : fg_alert_status(0x%x)\n",
__func__, fg_alert_status);
fg_alert_status &= 0x03;
if (fg_alert_status & 0x01)
pr_info("%s : Battery Level is very Low!\n", __func__);
if (fg_alert_status & 0x02) {
int voltage = s2mu004_get_vbat(fuelgauge);
pr_info("%s : Battery Votage is very Low! (%dmV)\n",
__func__, voltage);
}
if (!fg_alert_status) {
fuelgauge->is_fuel_alerted = false;
pr_info("%s : Battery Health is good!\n", __func__);
wake_unlock(&fuelgauge->fuel_alert_wake_lock);
}
}
static irqreturn_t s2mu004_fg_irq_thread(int irq, void *irq_data)
{
struct s2mu004_fuelgauge_data *fuelgauge = irq_data;
u8 fg_irq = 0;
s2mu004_read_reg_byte(fuelgauge->i2c, S2MU004_REG_IRQ, &fg_irq);
pr_info("%s: fg_irq(0x%x)\n", __func__, fg_irq);
if (fuelgauge->is_fuel_alerted) {
return IRQ_HANDLED;
} else {
wake_lock(&fuelgauge->fuel_alert_wake_lock);
fuelgauge->is_fuel_alerted = true;
schedule_delayed_work(&fuelgauge->isr_work, 0);
}
return IRQ_HANDLED;
}
#ifdef CONFIG_OF
static int s2mu004_fuelgauge_parse_dt(struct s2mu004_fuelgauge_data *fuelgauge)
{
struct device_node *np = of_find_node_by_name(NULL, "s2mu004-fuelgauge");
int ret;
/* reset, irq gpio info */
if (np == NULL) {
pr_err("%s np NULL\n", __func__);
} else {
fuelgauge->pdata->fg_irq = of_get_named_gpio(np, "fuelgauge,fuel_int", 0);
if (fuelgauge->pdata->fg_irq < 0)
pr_err("%s error reading fg_irq = %d\n",
__func__, fuelgauge->pdata->fg_irq);
ret = of_property_read_u32(np, "fuelgauge,capacity_max",
&fuelgauge->pdata->capacity_max);
if (ret < 0)
pr_err("%s error reading capacity_max %d\n", __func__, ret);
ret = of_property_read_u32(np, "fuelgauge,capacity_max_margin",
&fuelgauge->pdata->capacity_max_margin);
if (ret < 0)
pr_err("%s error reading capacity_max_margin %d\n", __func__, ret);
ret = of_property_read_u32(np, "fuelgauge,capacity_min",
&fuelgauge->pdata->capacity_min);
if (ret < 0)
pr_err("%s error reading capacity_min %d\n", __func__, ret);
ret = of_property_read_u32(np, "fuelgauge,fuel_alert_soc",
&fuelgauge->pdata->fuel_alert_soc);
if (ret < 0)
pr_err("%s error reading pdata->fuel_alert_soc %d\n",
__func__, ret);
ret = of_property_read_u32(np, "fuelgauge,capacity_full",
&fuelgauge->pdata->capacity_full);
if (ret < 0)
pr_err("%s error reading pdata->capacity_full %d\n",
__func__, ret);
ret = of_property_read_u32(np, "fuelgauge,fuel_alert_vol",
&fuelgauge->pdata->fuel_alert_vol);
if (ret < 0)
pr_err("%s error reading pdata->fuel_alert_vol %d\n",
__func__, ret);
fuelgauge->pdata->repeated_fuelalert = of_property_read_bool(np,
"fuelgauge,repeated_fuelalert");
}
/* get battery node */
np = of_find_node_by_name(NULL, "battery");
if (!np) {
pr_err("%s battery node NULL\n", __func__);
} else {
/* get battery_table */
ret = of_property_read_u32_array(np, "battery,battery_table3", fuelgauge->info.battery_table3, 88);
if (ret < 0)
pr_err("%s error reading battery,battery_table3\n", __func__);
ret = of_property_read_u32_array(np, "battery,battery_table4", fuelgauge->info.battery_table4, 22);
if (ret < 0)
pr_err("%s error reading battery,battery_table4\n", __func__);
ret = of_property_read_u32_array(np, "battery,batcap", fuelgauge->info.batcap, 4);
if (ret < 0)
pr_err("%s error reading battery,batcap\n", __func__);
ret = of_property_read_u32_array(np, "battery,accum", fuelgauge->info.accum, 2);
if (ret < 0)
pr_err("%s error reading battery,accum\n", __func__);
ret = of_property_read_u32_array(np, "battery,soc_arr_val", fuelgauge->info.soc_arr_val, 22);
if (ret < 0)
pr_err("%s error reading battery,soc_arr_val\n", __func__);
ret = of_property_read_u32_array(np, "battery,ocv_arr_val", fuelgauge->info.ocv_arr_val, 22);
if (ret < 0)
pr_err("%s error reading battery,ocv_arr_val\n", __func__);
}
return 0;
}
static const struct of_device_id s2mu004_fuelgauge_match_table[] = {
{ .compatible = "samsung,s2mu004-fuelgauge",},
{},
};
#else
static int s2mu004_fuelgauge_parse_dt(struct s2mu004_fuelgauge_data *fuelgauge)
{
return -ENOSYS;
}
#define s2mu004_fuelgauge_match_table NULL
#endif /* CONFIG_OF */
static int s2mu004_fuelgauge_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct i2c_adapter *adapter = to_i2c_adapter(client->dev.parent);
struct s2mu004_fuelgauge_data *fuelgauge;
union power_supply_propval raw_soc_val;
struct power_supply_config psy_cfg = {};
int ret = 0;
u8 temp = 0;
pr_info("%s: S2MU004 Fuelgauge Driver Loading\n", __func__);
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE))
return -EIO;
fuelgauge = kzalloc(sizeof(*fuelgauge), GFP_KERNEL);
if (!fuelgauge)
return -ENOMEM;
mutex_init(&fuelgauge->fg_lock);
fuelgauge->i2c = client;
if (client->dev.of_node) {
fuelgauge->pdata = devm_kzalloc(&client->dev, sizeof(*(fuelgauge->pdata)),
GFP_KERNEL);
if (!fuelgauge->pdata) {
ret = -ENOMEM;
goto err_parse_dt_nomem;
}
ret = s2mu004_fuelgauge_parse_dt(fuelgauge);
if (ret < 0)
goto err_parse_dt;
} else {
fuelgauge->pdata = client->dev.platform_data;
}
i2c_set_clientdata(client, fuelgauge);
if (fuelgauge->pdata->fuelgauge_name == NULL)
fuelgauge->pdata->fuelgauge_name = "s2mu004-fuelgauge";
fuelgauge->psy_fg_desc.name = fuelgauge->pdata->fuelgauge_name;
fuelgauge->psy_fg_desc.type = POWER_SUPPLY_TYPE_UNKNOWN;
fuelgauge->psy_fg_desc.get_property = s2mu004_fg_get_property;
fuelgauge->psy_fg_desc.set_property = s2mu004_fg_set_property;
fuelgauge->psy_fg_desc.properties = s2mu004_fuelgauge_props;
fuelgauge->psy_fg_desc.num_properties =
ARRAY_SIZE(s2mu004_fuelgauge_props);
/* 0x48[7:4]=0010 : EVT2 */
fuelgauge->revision = 0;
s2mu004_read_reg_byte(fuelgauge->i2c, 0x48, &temp);
fuelgauge->revision = (temp & 0xF0) >> 4;
pr_info("%s: S2MU004 Fuelgauge revision: %d, reg 0x48 = 0x%x\n", __func__, fuelgauge->revision, temp);
fuelgauge->capacity_max = fuelgauge->pdata->capacity_max;
fuelgauge->info.soc = 0;
fuelgauge->mode = CURRENT_MODE;
raw_soc_val.intval = s2mu004_get_rawsoc(fuelgauge);
raw_soc_val.intval = raw_soc_val.intval / 10;
s2mu004_init_regs(fuelgauge);
psy_cfg.drv_data = fuelgauge;
fuelgauge->psy_fg = power_supply_register(&client->dev, &fuelgauge->psy_fg_desc, &psy_cfg);
if (IS_ERR(fuelgauge->psy_fg)) {
pr_err("%s: Failed to Register psy_fg\n", __func__);
ret = PTR_ERR(fuelgauge->psy_fg);
goto err_data_free;
}
fuelgauge->is_fuel_alerted = false;
if (fuelgauge->pdata->fuel_alert_soc >= 0) {
s2mu004_fuelgauge_fuelalert_init(fuelgauge->i2c,
fuelgauge->pdata->fuel_alert_soc);
wake_lock_init(&fuelgauge->fuel_alert_wake_lock,
WAKE_LOCK_SUSPEND, "fuel_alerted");
if (fuelgauge->pdata->fg_irq > 0) {
INIT_DELAYED_WORK(
&fuelgauge->isr_work, s2mu004_fg_isr_work);
fuelgauge->fg_irq = gpio_to_irq(fuelgauge->pdata->fg_irq);
dev_info(&client->dev,
"%s : fg_irq = %d\n", __func__, fuelgauge->fg_irq);
if (fuelgauge->fg_irq > 0) {
ret = request_threaded_irq(fuelgauge->fg_irq,
NULL, s2mu004_fg_irq_thread,
IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
"fuelgauge-irq", fuelgauge);
if (ret) {
dev_err(&client->dev,
"%s: Failed to Request IRQ\n", __func__);
goto err_supply_unreg;
}
ret = enable_irq_wake(fuelgauge->fg_irq);
if (ret < 0)
dev_err(&client->dev,
"%s: Failed to Enable Wakeup Source(%d)\n",
__func__, ret);
} else {
dev_err(&client->dev, "%s: Failed gpio_to_irq(%d)\n",
__func__, fuelgauge->fg_irq);
goto err_supply_unreg;
}
}
}
fuelgauge->sleep_initial_update_of_soc = false;
fuelgauge->initial_update_of_soc = true;
fuelgauge->cc_on = true;
fuelgauge->probe_done = true;
pr_info("%s: S2MU004 Fuelgauge Driver Loaded\n", __func__);
return 0;
err_supply_unreg:
power_supply_unregister(fuelgauge->psy_fg);
err_data_free:
if (client->dev.of_node)
kfree(fuelgauge->pdata);
err_parse_dt:
err_parse_dt_nomem:
mutex_destroy(&fuelgauge->fg_lock);
kfree(fuelgauge);
return ret;
}
static const struct i2c_device_id s2mu004_fuelgauge_id[] = {
{"s2mu004-fuelgauge", 0},
{}
};
static void s2mu004_fuelgauge_shutdown(struct i2c_client *client)
{
}
static int s2mu004_fuelgauge_remove(struct i2c_client *client)
{
struct s2mu004_fuelgauge_data *fuelgauge = i2c_get_clientdata(client);
if (fuelgauge->pdata->fuel_alert_soc >= 0)
wake_lock_destroy(&fuelgauge->fuel_alert_wake_lock);
return 0;
}
#if defined CONFIG_PM
static int s2mu004_fuelgauge_suspend(struct device *dev)
{
return 0;
}
static int s2mu004_fuelgauge_resume(struct device *dev)
{
struct s2mu004_fuelgauge_data *fuelgauge = dev_get_drvdata(dev);
fuelgauge->sleep_initial_update_of_soc = true;
return 0;
}
#else
#define s2mu004_fuelgauge_suspend NULL
#define s2mu004_fuelgauge_resume NULL
#endif
static SIMPLE_DEV_PM_OPS(s2mu004_fuelgauge_pm_ops, s2mu004_fuelgauge_suspend,
s2mu004_fuelgauge_resume);
static struct i2c_driver s2mu004_fuelgauge_driver = {
.driver = {
.name = "s2mu004-fuelgauge",
.owner = THIS_MODULE,
.pm = &s2mu004_fuelgauge_pm_ops,
.of_match_table = s2mu004_fuelgauge_match_table,
},
.probe = s2mu004_fuelgauge_probe,
.remove = s2mu004_fuelgauge_remove,
.shutdown = s2mu004_fuelgauge_shutdown,
.id_table = s2mu004_fuelgauge_id,
};
static int __init s2mu004_fuelgauge_init(void)
{
pr_info("%s: S2MU004 Fuelgauge Init\n", __func__);
return i2c_add_driver(&s2mu004_fuelgauge_driver);
}
static void __exit s2mu004_fuelgauge_exit(void)
{
i2c_del_driver(&s2mu004_fuelgauge_driver);
}
module_init(s2mu004_fuelgauge_init);
module_exit(s2mu004_fuelgauge_exit);
MODULE_DESCRIPTION("Samsung S2MU004 Fuel Gauge Driver");
MODULE_AUTHOR("Samsung Electronics");
MODULE_LICENSE("GPL");