| #ifndef _ASM_POWERPC_MMU_HASH64_H_ |
| #define _ASM_POWERPC_MMU_HASH64_H_ |
| /* |
| * PowerPC64 memory management structures |
| * |
| * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com> |
| * PPC64 rework. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #include <asm/asm-compat.h> |
| #include <asm/page.h> |
| |
| /* |
| * This is necessary to get the definition of PGTABLE_RANGE which we |
| * need for various slices related matters. Note that this isn't the |
| * complete pgtable.h but only a portion of it. |
| */ |
| #include <asm/pgtable-ppc64.h> |
| |
| /* |
| * Segment table |
| */ |
| |
| #define STE_ESID_V 0x80 |
| #define STE_ESID_KS 0x20 |
| #define STE_ESID_KP 0x10 |
| #define STE_ESID_N 0x08 |
| |
| #define STE_VSID_SHIFT 12 |
| |
| /* Location of cpu0's segment table */ |
| #define STAB0_PAGE 0x8 |
| #define STAB0_OFFSET (STAB0_PAGE << 12) |
| #define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START) |
| |
| #ifndef __ASSEMBLY__ |
| extern char initial_stab[]; |
| #endif /* ! __ASSEMBLY */ |
| |
| /* |
| * SLB |
| */ |
| |
| #define SLB_NUM_BOLTED 3 |
| #define SLB_CACHE_ENTRIES 8 |
| #define SLB_MIN_SIZE 32 |
| |
| /* Bits in the SLB ESID word */ |
| #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */ |
| |
| /* Bits in the SLB VSID word */ |
| #define SLB_VSID_SHIFT 12 |
| #define SLB_VSID_SHIFT_1T 24 |
| #define SLB_VSID_SSIZE_SHIFT 62 |
| #define SLB_VSID_B ASM_CONST(0xc000000000000000) |
| #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000) |
| #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000) |
| #define SLB_VSID_KS ASM_CONST(0x0000000000000800) |
| #define SLB_VSID_KP ASM_CONST(0x0000000000000400) |
| #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */ |
| #define SLB_VSID_L ASM_CONST(0x0000000000000100) |
| #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */ |
| #define SLB_VSID_LP ASM_CONST(0x0000000000000030) |
| #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000) |
| #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010) |
| #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020) |
| #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030) |
| #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP) |
| |
| #define SLB_VSID_KERNEL (SLB_VSID_KP) |
| #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C) |
| |
| #define SLBIE_C (0x08000000) |
| #define SLBIE_SSIZE_SHIFT 25 |
| |
| /* |
| * Hash table |
| */ |
| |
| #define HPTES_PER_GROUP 8 |
| |
| #define HPTE_V_SSIZE_SHIFT 62 |
| #define HPTE_V_AVPN_SHIFT 7 |
| #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80) |
| #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT) |
| #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL)) |
| #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010) |
| #define HPTE_V_LOCK ASM_CONST(0x0000000000000008) |
| #define HPTE_V_LARGE ASM_CONST(0x0000000000000004) |
| #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002) |
| #define HPTE_V_VALID ASM_CONST(0x0000000000000001) |
| |
| #define HPTE_R_PP0 ASM_CONST(0x8000000000000000) |
| #define HPTE_R_TS ASM_CONST(0x4000000000000000) |
| #define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000) |
| #define HPTE_R_RPN_SHIFT 12 |
| #define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000) |
| #define HPTE_R_PP ASM_CONST(0x0000000000000003) |
| #define HPTE_R_N ASM_CONST(0x0000000000000004) |
| #define HPTE_R_G ASM_CONST(0x0000000000000008) |
| #define HPTE_R_M ASM_CONST(0x0000000000000010) |
| #define HPTE_R_I ASM_CONST(0x0000000000000020) |
| #define HPTE_R_W ASM_CONST(0x0000000000000040) |
| #define HPTE_R_WIMG ASM_CONST(0x0000000000000078) |
| #define HPTE_R_C ASM_CONST(0x0000000000000080) |
| #define HPTE_R_R ASM_CONST(0x0000000000000100) |
| #define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00) |
| |
| #define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000) |
| #define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000) |
| |
| /* Values for PP (assumes Ks=0, Kp=1) */ |
| #define PP_RWXX 0 /* Supervisor read/write, User none */ |
| #define PP_RWRX 1 /* Supervisor read/write, User read */ |
| #define PP_RWRW 2 /* Supervisor read/write, User read/write */ |
| #define PP_RXRX 3 /* Supervisor read, User read */ |
| #define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */ |
| |
| #ifndef __ASSEMBLY__ |
| |
| struct hash_pte { |
| unsigned long v; |
| unsigned long r; |
| }; |
| |
| extern struct hash_pte *htab_address; |
| extern unsigned long htab_size_bytes; |
| extern unsigned long htab_hash_mask; |
| |
| /* |
| * Page size definition |
| * |
| * shift : is the "PAGE_SHIFT" value for that page size |
| * sllp : is a bit mask with the value of SLB L || LP to be or'ed |
| * directly to a slbmte "vsid" value |
| * penc : is the HPTE encoding mask for the "LP" field: |
| * |
| */ |
| struct mmu_psize_def |
| { |
| unsigned int shift; /* number of bits */ |
| unsigned int penc; /* HPTE encoding */ |
| unsigned int tlbiel; /* tlbiel supported for that page size */ |
| unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */ |
| unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */ |
| }; |
| |
| #endif /* __ASSEMBLY__ */ |
| |
| /* |
| * Segment sizes. |
| * These are the values used by hardware in the B field of |
| * SLB entries and the first dword of MMU hashtable entries. |
| * The B field is 2 bits; the values 2 and 3 are unused and reserved. |
| */ |
| #define MMU_SEGSIZE_256M 0 |
| #define MMU_SEGSIZE_1T 1 |
| |
| /* |
| * encode page number shift. |
| * in order to fit the 78 bit va in a 64 bit variable we shift the va by |
| * 12 bits. This enable us to address upto 76 bit va. |
| * For hpt hash from a va we can ignore the page size bits of va and for |
| * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure |
| * we work in all cases including 4k page size. |
| */ |
| #define VPN_SHIFT 12 |
| |
| #ifndef __ASSEMBLY__ |
| |
| static inline int segment_shift(int ssize) |
| { |
| if (ssize == MMU_SEGSIZE_256M) |
| return SID_SHIFT; |
| return SID_SHIFT_1T; |
| } |
| |
| /* |
| * The current system page and segment sizes |
| */ |
| extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; |
| extern int mmu_linear_psize; |
| extern int mmu_virtual_psize; |
| extern int mmu_vmalloc_psize; |
| extern int mmu_vmemmap_psize; |
| extern int mmu_io_psize; |
| extern int mmu_kernel_ssize; |
| extern int mmu_highuser_ssize; |
| extern u16 mmu_slb_size; |
| extern unsigned long tce_alloc_start, tce_alloc_end; |
| |
| /* |
| * If the processor supports 64k normal pages but not 64k cache |
| * inhibited pages, we have to be prepared to switch processes |
| * to use 4k pages when they create cache-inhibited mappings. |
| * If this is the case, mmu_ci_restrictions will be set to 1. |
| */ |
| extern int mmu_ci_restrictions; |
| |
| /* |
| * This computes the AVPN and B fields of the first dword of a HPTE, |
| * for use when we want to match an existing PTE. The bottom 7 bits |
| * of the returned value are zero. |
| */ |
| static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize, |
| int ssize) |
| { |
| unsigned long v; |
| /* |
| * The AVA field omits the low-order 23 bits of the 78 bits VA. |
| * These bits are not needed in the PTE, because the |
| * low-order b of these bits are part of the byte offset |
| * into the virtual page and, if b < 23, the high-order |
| * 23-b of these bits are always used in selecting the |
| * PTEGs to be searched |
| */ |
| v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm); |
| v <<= HPTE_V_AVPN_SHIFT; |
| v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT; |
| return v; |
| } |
| |
| /* |
| * This function sets the AVPN and L fields of the HPTE appropriately |
| * for the page size |
| */ |
| static inline unsigned long hpte_encode_v(unsigned long vpn, |
| int psize, int ssize) |
| { |
| unsigned long v; |
| v = hpte_encode_avpn(vpn, psize, ssize); |
| if (psize != MMU_PAGE_4K) |
| v |= HPTE_V_LARGE; |
| return v; |
| } |
| |
| /* |
| * This function sets the ARPN, and LP fields of the HPTE appropriately |
| * for the page size. We assume the pa is already "clean" that is properly |
| * aligned for the requested page size |
| */ |
| static inline unsigned long hpte_encode_r(unsigned long pa, int psize) |
| { |
| unsigned long r; |
| |
| /* A 4K page needs no special encoding */ |
| if (psize == MMU_PAGE_4K) |
| return pa & HPTE_R_RPN; |
| else { |
| unsigned int penc = mmu_psize_defs[psize].penc; |
| unsigned int shift = mmu_psize_defs[psize].shift; |
| return (pa & ~((1ul << shift) - 1)) | (penc << 12); |
| } |
| return r; |
| } |
| |
| /* |
| * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size. |
| */ |
| static inline unsigned long hpt_vpn(unsigned long ea, |
| unsigned long vsid, int ssize) |
| { |
| unsigned long mask; |
| int s_shift = segment_shift(ssize); |
| |
| mask = (1ul << (s_shift - VPN_SHIFT)) - 1; |
| return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask); |
| } |
| |
| /* |
| * This hashes a virtual address |
| */ |
| static inline unsigned long hpt_hash(unsigned long vpn, |
| unsigned int shift, int ssize) |
| { |
| int mask; |
| unsigned long hash, vsid; |
| |
| /* VPN_SHIFT can be atmost 12 */ |
| if (ssize == MMU_SEGSIZE_256M) { |
| mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1; |
| hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^ |
| ((vpn & mask) >> (shift - VPN_SHIFT)); |
| } else { |
| mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1; |
| vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT); |
| hash = vsid ^ (vsid << 25) ^ |
| ((vpn & mask) >> (shift - VPN_SHIFT)) ; |
| } |
| return hash & 0x7fffffffffUL; |
| } |
| |
| extern int __hash_page_4K(unsigned long ea, unsigned long access, |
| unsigned long vsid, pte_t *ptep, unsigned long trap, |
| unsigned int local, int ssize, int subpage_prot); |
| extern int __hash_page_64K(unsigned long ea, unsigned long access, |
| unsigned long vsid, pte_t *ptep, unsigned long trap, |
| unsigned int local, int ssize); |
| struct mm_struct; |
| unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap); |
| extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap); |
| int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid, |
| pte_t *ptep, unsigned long trap, int local, int ssize, |
| unsigned int shift, unsigned int mmu_psize); |
| extern void hash_failure_debug(unsigned long ea, unsigned long access, |
| unsigned long vsid, unsigned long trap, |
| int ssize, int psize, unsigned long pte); |
| extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend, |
| unsigned long pstart, unsigned long prot, |
| int psize, int ssize); |
| extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages); |
| extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr); |
| |
| extern void hpte_init_native(void); |
| extern void hpte_init_lpar(void); |
| extern void hpte_init_beat(void); |
| extern void hpte_init_beat_v3(void); |
| |
| extern void stabs_alloc(void); |
| extern void slb_initialize(void); |
| extern void slb_flush_and_rebolt(void); |
| extern void stab_initialize(unsigned long stab); |
| |
| extern void slb_vmalloc_update(void); |
| extern void slb_set_size(u16 size); |
| #endif /* __ASSEMBLY__ */ |
| |
| /* |
| * VSID allocation (256MB segment) |
| * |
| * We first generate a 38-bit "proto-VSID". For kernel addresses this |
| * is equal to the ESID | 1 << 37, for user addresses it is: |
| * (context << USER_ESID_BITS) | (esid & ((1U << USER_ESID_BITS) - 1) |
| * |
| * This splits the proto-VSID into the below range |
| * 0 - (2^(CONTEXT_BITS + USER_ESID_BITS) - 1) : User proto-VSID range |
| * 2^(CONTEXT_BITS + USER_ESID_BITS) - 2^(VSID_BITS) : Kernel proto-VSID range |
| * |
| * We also have CONTEXT_BITS + USER_ESID_BITS = VSID_BITS - 1 |
| * That is, we assign half of the space to user processes and half |
| * to the kernel. |
| * |
| * The proto-VSIDs are then scrambled into real VSIDs with the |
| * multiplicative hash: |
| * |
| * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS |
| * |
| * VSID_MULTIPLIER is prime, so in particular it is |
| * co-prime to VSID_MODULUS, making this a 1:1 scrambling function. |
| * Because the modulus is 2^n-1 we can compute it efficiently without |
| * a divide or extra multiply (see below). |
| * |
| * This scheme has several advantages over older methods: |
| * |
| * - We have VSIDs allocated for every kernel address |
| * (i.e. everything above 0xC000000000000000), except the very top |
| * segment, which simplifies several things. |
| * |
| * - We allow for USER_ESID_BITS significant bits of ESID and |
| * CONTEXT_BITS bits of context for user addresses. |
| * i.e. 64T (46 bits) of address space for up to half a million contexts. |
| * |
| * - The scramble function gives robust scattering in the hash |
| * table (at least based on some initial results). The previous |
| * method was more susceptible to pathological cases giving excessive |
| * hash collisions. |
| */ |
| |
| /* |
| * This should be computed such that protovosid * vsid_mulitplier |
| * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus |
| */ |
| #define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */ |
| #define VSID_BITS_256M 38 |
| #define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1) |
| |
| #define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */ |
| #define VSID_BITS_1T 26 |
| #define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1) |
| |
| #define CONTEXT_BITS 19 |
| #define USER_ESID_BITS 18 |
| #define USER_ESID_BITS_1T 6 |
| |
| #define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT)) |
| |
| /* |
| * This macro generates asm code to compute the VSID scramble |
| * function. Used in slb_allocate() and do_stab_bolted. The function |
| * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS |
| * |
| * rt = register continaing the proto-VSID and into which the |
| * VSID will be stored |
| * rx = scratch register (clobbered) |
| * |
| * - rt and rx must be different registers |
| * - The answer will end up in the low VSID_BITS bits of rt. The higher |
| * bits may contain other garbage, so you may need to mask the |
| * result. |
| */ |
| #define ASM_VSID_SCRAMBLE(rt, rx, size) \ |
| lis rx,VSID_MULTIPLIER_##size@h; \ |
| ori rx,rx,VSID_MULTIPLIER_##size@l; \ |
| mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \ |
| \ |
| srdi rx,rt,VSID_BITS_##size; \ |
| clrldi rt,rt,(64-VSID_BITS_##size); \ |
| add rt,rt,rx; /* add high and low bits */ \ |
| /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \ |
| * 2^36-1+2^28-1. That in particular means that if r3 >= \ |
| * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \ |
| * the bit clear, r3 already has the answer we want, if it \ |
| * doesn't, the answer is the low 36 bits of r3+1. So in all \ |
| * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\ |
| addi rx,rt,1; \ |
| srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \ |
| add rt,rt,rx |
| |
| /* 4 bits per slice and we have one slice per 1TB */ |
| #define SLICE_ARRAY_SIZE (PGTABLE_RANGE >> 41) |
| |
| #ifndef __ASSEMBLY__ |
| |
| #ifdef CONFIG_PPC_SUBPAGE_PROT |
| /* |
| * For the sub-page protection option, we extend the PGD with one of |
| * these. Basically we have a 3-level tree, with the top level being |
| * the protptrs array. To optimize speed and memory consumption when |
| * only addresses < 4GB are being protected, pointers to the first |
| * four pages of sub-page protection words are stored in the low_prot |
| * array. |
| * Each page of sub-page protection words protects 1GB (4 bytes |
| * protects 64k). For the 3-level tree, each page of pointers then |
| * protects 8TB. |
| */ |
| struct subpage_prot_table { |
| unsigned long maxaddr; /* only addresses < this are protected */ |
| unsigned int **protptrs[2]; |
| unsigned int *low_prot[4]; |
| }; |
| |
| #define SBP_L1_BITS (PAGE_SHIFT - 2) |
| #define SBP_L2_BITS (PAGE_SHIFT - 3) |
| #define SBP_L1_COUNT (1 << SBP_L1_BITS) |
| #define SBP_L2_COUNT (1 << SBP_L2_BITS) |
| #define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS) |
| #define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS) |
| |
| extern void subpage_prot_free(struct mm_struct *mm); |
| extern void subpage_prot_init_new_context(struct mm_struct *mm); |
| #else |
| static inline void subpage_prot_free(struct mm_struct *mm) {} |
| static inline void subpage_prot_init_new_context(struct mm_struct *mm) { } |
| #endif /* CONFIG_PPC_SUBPAGE_PROT */ |
| |
| typedef unsigned long mm_context_id_t; |
| struct spinlock; |
| |
| typedef struct { |
| mm_context_id_t id; |
| u16 user_psize; /* page size index */ |
| |
| #ifdef CONFIG_PPC_MM_SLICES |
| u64 low_slices_psize; /* SLB page size encodings */ |
| unsigned char high_slices_psize[SLICE_ARRAY_SIZE]; |
| #else |
| u16 sllp; /* SLB page size encoding */ |
| #endif |
| unsigned long vdso_base; |
| #ifdef CONFIG_PPC_SUBPAGE_PROT |
| struct subpage_prot_table spt; |
| #endif /* CONFIG_PPC_SUBPAGE_PROT */ |
| #ifdef CONFIG_PPC_ICSWX |
| struct spinlock *cop_lockp; /* guard acop and cop_pid */ |
| unsigned long acop; /* mask of enabled coprocessor types */ |
| unsigned int cop_pid; /* pid value used with coprocessors */ |
| #endif /* CONFIG_PPC_ICSWX */ |
| } mm_context_t; |
| |
| |
| #if 0 |
| /* |
| * The code below is equivalent to this function for arguments |
| * < 2^VSID_BITS, which is all this should ever be called |
| * with. However gcc is not clever enough to compute the |
| * modulus (2^n-1) without a second multiply. |
| */ |
| #define vsid_scramble(protovsid, size) \ |
| ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size)) |
| |
| #else /* 1 */ |
| #define vsid_scramble(protovsid, size) \ |
| ({ \ |
| unsigned long x; \ |
| x = (protovsid) * VSID_MULTIPLIER_##size; \ |
| x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \ |
| (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \ |
| }) |
| #endif /* 1 */ |
| |
| /* |
| * This is only valid for addresses >= PAGE_OFFSET |
| * The proto-VSID space is divided into two class |
| * User: 0 to 2^(CONTEXT_BITS + USER_ESID_BITS) -1 |
| * kernel: 2^(CONTEXT_BITS + USER_ESID_BITS) to 2^(VSID_BITS) - 1 |
| * |
| * With KERNEL_START at 0xc000000000000000, the proto vsid for |
| * the kernel ends up with 0xc00000000 (36 bits). With 64TB |
| * support we need to have kernel proto-VSID in the |
| * [2^37 to 2^38 - 1] range due to the increased USER_ESID_BITS. |
| */ |
| static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize) |
| { |
| unsigned long proto_vsid; |
| /* |
| * We need to make sure proto_vsid for the kernel is |
| * >= 2^(CONTEXT_BITS + USER_ESID_BITS[_1T]) |
| */ |
| if (ssize == MMU_SEGSIZE_256M) { |
| proto_vsid = ea >> SID_SHIFT; |
| proto_vsid |= (1UL << (CONTEXT_BITS + USER_ESID_BITS)); |
| return vsid_scramble(proto_vsid, 256M); |
| } |
| proto_vsid = ea >> SID_SHIFT_1T; |
| proto_vsid |= (1UL << (CONTEXT_BITS + USER_ESID_BITS_1T)); |
| return vsid_scramble(proto_vsid, 1T); |
| } |
| |
| /* Returns the segment size indicator for a user address */ |
| static inline int user_segment_size(unsigned long addr) |
| { |
| /* Use 1T segments if possible for addresses >= 1T */ |
| if (addr >= (1UL << SID_SHIFT_1T)) |
| return mmu_highuser_ssize; |
| return MMU_SEGSIZE_256M; |
| } |
| |
| /* This is only valid for user addresses (which are below 2^44) */ |
| static inline unsigned long get_vsid(unsigned long context, unsigned long ea, |
| int ssize) |
| { |
| if (ssize == MMU_SEGSIZE_256M) |
| return vsid_scramble((context << USER_ESID_BITS) |
| | (ea >> SID_SHIFT), 256M); |
| return vsid_scramble((context << USER_ESID_BITS_1T) |
| | (ea >> SID_SHIFT_1T), 1T); |
| } |
| |
| #endif /* __ASSEMBLY__ */ |
| |
| #endif /* _ASM_POWERPC_MMU_HASH64_H_ */ |