| /* |
| * arch/ppc/kernel/process.c |
| * |
| * Derived from "arch/i386/kernel/process.c" |
| * Copyright (C) 1995 Linus Torvalds |
| * |
| * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and |
| * Paul Mackerras (paulus@cs.anu.edu.au) |
| * |
| * PowerPC version |
| * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/smp.h> |
| #include <linux/smp_lock.h> |
| #include <linux/stddef.h> |
| #include <linux/unistd.h> |
| #include <linux/ptrace.h> |
| #include <linux/slab.h> |
| #include <linux/user.h> |
| #include <linux/elf.h> |
| #include <linux/init.h> |
| #include <linux/prctl.h> |
| #include <linux/init_task.h> |
| #include <linux/module.h> |
| #include <linux/kallsyms.h> |
| #include <linux/mqueue.h> |
| #include <linux/hardirq.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/uaccess.h> |
| #include <asm/system.h> |
| #include <asm/io.h> |
| #include <asm/processor.h> |
| #include <asm/mmu.h> |
| #include <asm/prom.h> |
| |
| extern unsigned long _get_SP(void); |
| |
| struct task_struct *last_task_used_math = NULL; |
| struct task_struct *last_task_used_altivec = NULL; |
| struct task_struct *last_task_used_spe = NULL; |
| |
| static struct fs_struct init_fs = INIT_FS; |
| static struct files_struct init_files = INIT_FILES; |
| static struct signal_struct init_signals = INIT_SIGNALS(init_signals); |
| static struct sighand_struct init_sighand = INIT_SIGHAND(init_sighand); |
| struct mm_struct init_mm = INIT_MM(init_mm); |
| EXPORT_SYMBOL(init_mm); |
| |
| /* this is 8kB-aligned so we can get to the thread_info struct |
| at the base of it from the stack pointer with 1 integer instruction. */ |
| union thread_union init_thread_union |
| __attribute__((__section__(".data.init_task"))) = |
| { INIT_THREAD_INFO(init_task) }; |
| |
| /* initial task structure */ |
| struct task_struct init_task = INIT_TASK(init_task); |
| EXPORT_SYMBOL(init_task); |
| |
| /* only used to get secondary processor up */ |
| struct task_struct *current_set[NR_CPUS] = {&init_task, }; |
| |
| #undef SHOW_TASK_SWITCHES |
| #undef CHECK_STACK |
| |
| #if defined(CHECK_STACK) |
| unsigned long |
| kernel_stack_top(struct task_struct *tsk) |
| { |
| return ((unsigned long)tsk) + sizeof(union task_union); |
| } |
| |
| unsigned long |
| task_top(struct task_struct *tsk) |
| { |
| return ((unsigned long)tsk) + sizeof(struct thread_info); |
| } |
| |
| /* check to make sure the kernel stack is healthy */ |
| int check_stack(struct task_struct *tsk) |
| { |
| unsigned long stack_top = kernel_stack_top(tsk); |
| unsigned long tsk_top = task_top(tsk); |
| int ret = 0; |
| |
| #if 0 |
| /* check thread magic */ |
| if ( tsk->thread.magic != THREAD_MAGIC ) |
| { |
| ret |= 1; |
| printk("thread.magic bad: %08x\n", tsk->thread.magic); |
| } |
| #endif |
| |
| if ( !tsk ) |
| printk("check_stack(): tsk bad tsk %p\n",tsk); |
| |
| /* check if stored ksp is bad */ |
| if ( (tsk->thread.ksp > stack_top) || (tsk->thread.ksp < tsk_top) ) |
| { |
| printk("stack out of bounds: %s/%d\n" |
| " tsk_top %08lx ksp %08lx stack_top %08lx\n", |
| tsk->comm,tsk->pid, |
| tsk_top, tsk->thread.ksp, stack_top); |
| ret |= 2; |
| } |
| |
| /* check if stack ptr RIGHT NOW is bad */ |
| if ( (tsk == current) && ((_get_SP() > stack_top ) || (_get_SP() < tsk_top)) ) |
| { |
| printk("current stack ptr out of bounds: %s/%d\n" |
| " tsk_top %08lx sp %08lx stack_top %08lx\n", |
| current->comm,current->pid, |
| tsk_top, _get_SP(), stack_top); |
| ret |= 4; |
| } |
| |
| #if 0 |
| /* check amount of free stack */ |
| for ( i = (unsigned long *)task_top(tsk) ; i < kernel_stack_top(tsk) ; i++ ) |
| { |
| if ( !i ) |
| printk("check_stack(): i = %p\n", i); |
| if ( *i != 0 ) |
| { |
| /* only notify if it's less than 900 bytes */ |
| if ( (i - (unsigned long *)task_top(tsk)) < 900 ) |
| printk("%d bytes free on stack\n", |
| i - task_top(tsk)); |
| break; |
| } |
| } |
| #endif |
| |
| if (ret) |
| { |
| panic("bad kernel stack"); |
| } |
| return(ret); |
| } |
| #endif /* defined(CHECK_STACK) */ |
| |
| /* |
| * Make sure the floating-point register state in the |
| * the thread_struct is up to date for task tsk. |
| */ |
| void flush_fp_to_thread(struct task_struct *tsk) |
| { |
| if (tsk->thread.regs) { |
| /* |
| * We need to disable preemption here because if we didn't, |
| * another process could get scheduled after the regs->msr |
| * test but before we have finished saving the FP registers |
| * to the thread_struct. That process could take over the |
| * FPU, and then when we get scheduled again we would store |
| * bogus values for the remaining FP registers. |
| */ |
| preempt_disable(); |
| if (tsk->thread.regs->msr & MSR_FP) { |
| #ifdef CONFIG_SMP |
| /* |
| * This should only ever be called for current or |
| * for a stopped child process. Since we save away |
| * the FP register state on context switch on SMP, |
| * there is something wrong if a stopped child appears |
| * to still have its FP state in the CPU registers. |
| */ |
| BUG_ON(tsk != current); |
| #endif |
| giveup_fpu(current); |
| } |
| preempt_enable(); |
| } |
| } |
| |
| void enable_kernel_fp(void) |
| { |
| WARN_ON(preemptible()); |
| |
| #ifdef CONFIG_SMP |
| if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) |
| giveup_fpu(current); |
| else |
| giveup_fpu(NULL); /* just enables FP for kernel */ |
| #else |
| giveup_fpu(last_task_used_math); |
| #endif /* CONFIG_SMP */ |
| } |
| EXPORT_SYMBOL(enable_kernel_fp); |
| |
| int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs) |
| { |
| preempt_disable(); |
| if (tsk->thread.regs && (tsk->thread.regs->msr & MSR_FP)) |
| giveup_fpu(tsk); |
| preempt_enable(); |
| memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs)); |
| return 1; |
| } |
| |
| #ifdef CONFIG_ALTIVEC |
| void enable_kernel_altivec(void) |
| { |
| WARN_ON(preemptible()); |
| |
| #ifdef CONFIG_SMP |
| if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) |
| giveup_altivec(current); |
| else |
| giveup_altivec(NULL); /* just enable AltiVec for kernel - force */ |
| #else |
| giveup_altivec(last_task_used_altivec); |
| #endif /* __SMP __ */ |
| } |
| EXPORT_SYMBOL(enable_kernel_altivec); |
| |
| /* |
| * Make sure the VMX/Altivec register state in the |
| * the thread_struct is up to date for task tsk. |
| */ |
| void flush_altivec_to_thread(struct task_struct *tsk) |
| { |
| if (tsk->thread.regs) { |
| preempt_disable(); |
| if (tsk->thread.regs->msr & MSR_VEC) { |
| #ifdef CONFIG_SMP |
| BUG_ON(tsk != current); |
| #endif |
| giveup_altivec(current); |
| } |
| preempt_enable(); |
| } |
| } |
| |
| int dump_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs) |
| { |
| if (regs->msr & MSR_VEC) |
| giveup_altivec(current); |
| memcpy(vrregs, ¤t->thread.vr[0], sizeof(*vrregs)); |
| return 1; |
| } |
| #endif /* CONFIG_ALTIVEC */ |
| |
| #ifdef CONFIG_SPE |
| void |
| enable_kernel_spe(void) |
| { |
| WARN_ON(preemptible()); |
| |
| #ifdef CONFIG_SMP |
| if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) |
| giveup_spe(current); |
| else |
| giveup_spe(NULL); /* just enable SPE for kernel - force */ |
| #else |
| giveup_spe(last_task_used_spe); |
| #endif /* __SMP __ */ |
| } |
| EXPORT_SYMBOL(enable_kernel_spe); |
| |
| void flush_spe_to_thread(struct task_struct *tsk) |
| { |
| if (tsk->thread.regs) { |
| preempt_disable(); |
| if (tsk->thread.regs->msr & MSR_SPE) { |
| #ifdef CONFIG_SMP |
| BUG_ON(tsk != current); |
| #endif |
| giveup_spe(current); |
| } |
| preempt_enable(); |
| } |
| } |
| |
| int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs) |
| { |
| if (regs->msr & MSR_SPE) |
| giveup_spe(current); |
| /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */ |
| memcpy(evrregs, ¤t->thread.evr[0], sizeof(u32) * 35); |
| return 1; |
| } |
| #endif /* CONFIG_SPE */ |
| |
| struct task_struct *__switch_to(struct task_struct *prev, |
| struct task_struct *new) |
| { |
| struct thread_struct *new_thread, *old_thread; |
| unsigned long s; |
| struct task_struct *last; |
| |
| local_irq_save(s); |
| #ifdef CHECK_STACK |
| check_stack(prev); |
| check_stack(new); |
| #endif |
| |
| #ifdef CONFIG_SMP |
| /* avoid complexity of lazy save/restore of fpu |
| * by just saving it every time we switch out if |
| * this task used the fpu during the last quantum. |
| * |
| * If it tries to use the fpu again, it'll trap and |
| * reload its fp regs. So we don't have to do a restore |
| * every switch, just a save. |
| * -- Cort |
| */ |
| if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP)) |
| giveup_fpu(prev); |
| #ifdef CONFIG_ALTIVEC |
| /* |
| * If the previous thread used altivec in the last quantum |
| * (thus changing altivec regs) then save them. |
| * We used to check the VRSAVE register but not all apps |
| * set it, so we don't rely on it now (and in fact we need |
| * to save & restore VSCR even if VRSAVE == 0). -- paulus |
| * |
| * On SMP we always save/restore altivec regs just to avoid the |
| * complexity of changing processors. |
| * -- Cort |
| */ |
| if ((prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))) |
| giveup_altivec(prev); |
| #endif /* CONFIG_ALTIVEC */ |
| #ifdef CONFIG_SPE |
| /* |
| * If the previous thread used spe in the last quantum |
| * (thus changing spe regs) then save them. |
| * |
| * On SMP we always save/restore spe regs just to avoid the |
| * complexity of changing processors. |
| */ |
| if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE))) |
| giveup_spe(prev); |
| #endif /* CONFIG_SPE */ |
| #endif /* CONFIG_SMP */ |
| |
| /* Avoid the trap. On smp this this never happens since |
| * we don't set last_task_used_altivec -- Cort |
| */ |
| if (new->thread.regs && last_task_used_altivec == new) |
| new->thread.regs->msr |= MSR_VEC; |
| #ifdef CONFIG_SPE |
| /* Avoid the trap. On smp this this never happens since |
| * we don't set last_task_used_spe |
| */ |
| if (new->thread.regs && last_task_used_spe == new) |
| new->thread.regs->msr |= MSR_SPE; |
| #endif /* CONFIG_SPE */ |
| new_thread = &new->thread; |
| old_thread = ¤t->thread; |
| last = _switch(old_thread, new_thread); |
| local_irq_restore(s); |
| return last; |
| } |
| |
| void show_regs(struct pt_regs * regs) |
| { |
| int i, trap; |
| |
| printk("NIP: %08lX LR: %08lX SP: %08lX REGS: %p TRAP: %04lx %s\n", |
| regs->nip, regs->link, regs->gpr[1], regs, regs->trap, |
| print_tainted()); |
| printk("MSR: %08lx EE: %01x PR: %01x FP: %01x ME: %01x IR/DR: %01x%01x\n", |
| regs->msr, regs->msr&MSR_EE ? 1 : 0, regs->msr&MSR_PR ? 1 : 0, |
| regs->msr & MSR_FP ? 1 : 0,regs->msr&MSR_ME ? 1 : 0, |
| regs->msr&MSR_IR ? 1 : 0, |
| regs->msr&MSR_DR ? 1 : 0); |
| trap = TRAP(regs); |
| if (trap == 0x300 || trap == 0x600) |
| printk("DAR: %08lX, DSISR: %08lX\n", regs->dar, regs->dsisr); |
| printk("TASK = %p[%d] '%s' THREAD: %p\n", |
| current, current->pid, current->comm, current->thread_info); |
| printk("Last syscall: %ld ", current->thread.last_syscall); |
| |
| #ifdef CONFIG_SMP |
| printk(" CPU: %d", smp_processor_id()); |
| #endif /* CONFIG_SMP */ |
| |
| for (i = 0; i < 32; i++) { |
| long r; |
| if ((i % 8) == 0) |
| printk("\n" KERN_INFO "GPR%02d: ", i); |
| if (__get_user(r, ®s->gpr[i])) |
| break; |
| printk("%08lX ", r); |
| if (i == 12 && !FULL_REGS(regs)) |
| break; |
| } |
| printk("\n"); |
| #ifdef CONFIG_KALLSYMS |
| /* |
| * Lookup NIP late so we have the best change of getting the |
| * above info out without failing |
| */ |
| printk("NIP [%08lx] ", regs->nip); |
| print_symbol("%s\n", regs->nip); |
| printk("LR [%08lx] ", regs->link); |
| print_symbol("%s\n", regs->link); |
| #endif |
| show_stack(current, (unsigned long *) regs->gpr[1]); |
| } |
| |
| void exit_thread(void) |
| { |
| if (last_task_used_math == current) |
| last_task_used_math = NULL; |
| if (last_task_used_altivec == current) |
| last_task_used_altivec = NULL; |
| #ifdef CONFIG_SPE |
| if (last_task_used_spe == current) |
| last_task_used_spe = NULL; |
| #endif |
| } |
| |
| void flush_thread(void) |
| { |
| if (last_task_used_math == current) |
| last_task_used_math = NULL; |
| if (last_task_used_altivec == current) |
| last_task_used_altivec = NULL; |
| #ifdef CONFIG_SPE |
| if (last_task_used_spe == current) |
| last_task_used_spe = NULL; |
| #endif |
| } |
| |
| void |
| release_thread(struct task_struct *t) |
| { |
| } |
| |
| /* |
| * This gets called before we allocate a new thread and copy |
| * the current task into it. |
| */ |
| void prepare_to_copy(struct task_struct *tsk) |
| { |
| struct pt_regs *regs = tsk->thread.regs; |
| |
| if (regs == NULL) |
| return; |
| preempt_disable(); |
| if (regs->msr & MSR_FP) |
| giveup_fpu(current); |
| #ifdef CONFIG_ALTIVEC |
| if (regs->msr & MSR_VEC) |
| giveup_altivec(current); |
| #endif /* CONFIG_ALTIVEC */ |
| #ifdef CONFIG_SPE |
| if (regs->msr & MSR_SPE) |
| giveup_spe(current); |
| #endif /* CONFIG_SPE */ |
| preempt_enable(); |
| } |
| |
| /* |
| * Copy a thread.. |
| */ |
| int |
| copy_thread(int nr, unsigned long clone_flags, unsigned long usp, |
| unsigned long unused, |
| struct task_struct *p, struct pt_regs *regs) |
| { |
| struct pt_regs *childregs, *kregs; |
| extern void ret_from_fork(void); |
| unsigned long sp = (unsigned long)p->thread_info + THREAD_SIZE; |
| unsigned long childframe; |
| |
| CHECK_FULL_REGS(regs); |
| /* Copy registers */ |
| sp -= sizeof(struct pt_regs); |
| childregs = (struct pt_regs *) sp; |
| *childregs = *regs; |
| if ((childregs->msr & MSR_PR) == 0) { |
| /* for kernel thread, set `current' and stackptr in new task */ |
| childregs->gpr[1] = sp + sizeof(struct pt_regs); |
| childregs->gpr[2] = (unsigned long) p; |
| p->thread.regs = NULL; /* no user register state */ |
| } else { |
| childregs->gpr[1] = usp; |
| p->thread.regs = childregs; |
| if (clone_flags & CLONE_SETTLS) |
| childregs->gpr[2] = childregs->gpr[6]; |
| } |
| childregs->gpr[3] = 0; /* Result from fork() */ |
| sp -= STACK_FRAME_OVERHEAD; |
| childframe = sp; |
| |
| /* |
| * The way this works is that at some point in the future |
| * some task will call _switch to switch to the new task. |
| * That will pop off the stack frame created below and start |
| * the new task running at ret_from_fork. The new task will |
| * do some house keeping and then return from the fork or clone |
| * system call, using the stack frame created above. |
| */ |
| sp -= sizeof(struct pt_regs); |
| kregs = (struct pt_regs *) sp; |
| sp -= STACK_FRAME_OVERHEAD; |
| p->thread.ksp = sp; |
| kregs->nip = (unsigned long)ret_from_fork; |
| |
| p->thread.last_syscall = -1; |
| |
| return 0; |
| } |
| |
| /* |
| * Set up a thread for executing a new program |
| */ |
| void start_thread(struct pt_regs *regs, unsigned long nip, unsigned long sp) |
| { |
| set_fs(USER_DS); |
| memset(regs->gpr, 0, sizeof(regs->gpr)); |
| regs->ctr = 0; |
| regs->link = 0; |
| regs->xer = 0; |
| regs->ccr = 0; |
| regs->mq = 0; |
| regs->nip = nip; |
| regs->gpr[1] = sp; |
| regs->msr = MSR_USER; |
| if (last_task_used_math == current) |
| last_task_used_math = NULL; |
| if (last_task_used_altivec == current) |
| last_task_used_altivec = NULL; |
| #ifdef CONFIG_SPE |
| if (last_task_used_spe == current) |
| last_task_used_spe = NULL; |
| #endif |
| memset(current->thread.fpr, 0, sizeof(current->thread.fpr)); |
| current->thread.fpscr.val = 0; |
| #ifdef CONFIG_ALTIVEC |
| memset(current->thread.vr, 0, sizeof(current->thread.vr)); |
| memset(¤t->thread.vscr, 0, sizeof(current->thread.vscr)); |
| current->thread.vrsave = 0; |
| current->thread.used_vr = 0; |
| #endif /* CONFIG_ALTIVEC */ |
| #ifdef CONFIG_SPE |
| memset(current->thread.evr, 0, sizeof(current->thread.evr)); |
| current->thread.acc = 0; |
| current->thread.spefscr = 0; |
| current->thread.used_spe = 0; |
| #endif /* CONFIG_SPE */ |
| } |
| |
| #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ |
| | PR_FP_EXC_RES | PR_FP_EXC_INV) |
| |
| int set_fpexc_mode(struct task_struct *tsk, unsigned int val) |
| { |
| struct pt_regs *regs = tsk->thread.regs; |
| |
| /* This is a bit hairy. If we are an SPE enabled processor |
| * (have embedded fp) we store the IEEE exception enable flags in |
| * fpexc_mode. fpexc_mode is also used for setting FP exception |
| * mode (asyn, precise, disabled) for 'Classic' FP. */ |
| if (val & PR_FP_EXC_SW_ENABLE) { |
| #ifdef CONFIG_SPE |
| tsk->thread.fpexc_mode = val & |
| (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); |
| #else |
| return -EINVAL; |
| #endif |
| } else { |
| /* on a CONFIG_SPE this does not hurt us. The bits that |
| * __pack_fe01 use do not overlap with bits used for |
| * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits |
| * on CONFIG_SPE implementations are reserved so writing to |
| * them does not change anything */ |
| if (val > PR_FP_EXC_PRECISE) |
| return -EINVAL; |
| tsk->thread.fpexc_mode = __pack_fe01(val); |
| if (regs != NULL && (regs->msr & MSR_FP) != 0) |
| regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) |
| | tsk->thread.fpexc_mode; |
| } |
| return 0; |
| } |
| |
| int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) |
| { |
| unsigned int val; |
| |
| if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) |
| #ifdef CONFIG_SPE |
| val = tsk->thread.fpexc_mode; |
| #else |
| return -EINVAL; |
| #endif |
| else |
| val = __unpack_fe01(tsk->thread.fpexc_mode); |
| return put_user(val, (unsigned int __user *) adr); |
| } |
| |
| int sys_clone(unsigned long clone_flags, unsigned long usp, |
| int __user *parent_tidp, void __user *child_threadptr, |
| int __user *child_tidp, int p6, |
| struct pt_regs *regs) |
| { |
| CHECK_FULL_REGS(regs); |
| if (usp == 0) |
| usp = regs->gpr[1]; /* stack pointer for child */ |
| return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp); |
| } |
| |
| int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3, |
| unsigned long p4, unsigned long p5, unsigned long p6, |
| struct pt_regs *regs) |
| { |
| CHECK_FULL_REGS(regs); |
| return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL); |
| } |
| |
| int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3, |
| unsigned long p4, unsigned long p5, unsigned long p6, |
| struct pt_regs *regs) |
| { |
| CHECK_FULL_REGS(regs); |
| return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1], |
| regs, 0, NULL, NULL); |
| } |
| |
| int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2, |
| unsigned long a3, unsigned long a4, unsigned long a5, |
| struct pt_regs *regs) |
| { |
| int error; |
| char * filename; |
| |
| filename = getname((char __user *) a0); |
| error = PTR_ERR(filename); |
| if (IS_ERR(filename)) |
| goto out; |
| preempt_disable(); |
| if (regs->msr & MSR_FP) |
| giveup_fpu(current); |
| #ifdef CONFIG_ALTIVEC |
| if (regs->msr & MSR_VEC) |
| giveup_altivec(current); |
| #endif /* CONFIG_ALTIVEC */ |
| #ifdef CONFIG_SPE |
| if (regs->msr & MSR_SPE) |
| giveup_spe(current); |
| #endif /* CONFIG_SPE */ |
| preempt_enable(); |
| error = do_execve(filename, (char __user *__user *) a1, |
| (char __user *__user *) a2, regs); |
| if (error == 0) { |
| task_lock(current); |
| current->ptrace &= ~PT_DTRACE; |
| task_unlock(current); |
| } |
| putname(filename); |
| out: |
| return error; |
| } |
| |
| void dump_stack(void) |
| { |
| show_stack(current, NULL); |
| } |
| |
| EXPORT_SYMBOL(dump_stack); |
| |
| void show_stack(struct task_struct *tsk, unsigned long *stack) |
| { |
| unsigned long sp, stack_top, prev_sp, ret; |
| int count = 0; |
| unsigned long next_exc = 0; |
| struct pt_regs *regs; |
| extern char ret_from_except, ret_from_except_full, ret_from_syscall; |
| |
| sp = (unsigned long) stack; |
| if (tsk == NULL) |
| tsk = current; |
| if (sp == 0) { |
| if (tsk == current) |
| asm("mr %0,1" : "=r" (sp)); |
| else |
| sp = tsk->thread.ksp; |
| } |
| |
| prev_sp = (unsigned long) (tsk->thread_info + 1); |
| stack_top = (unsigned long) tsk->thread_info + THREAD_SIZE; |
| while (count < 16 && sp > prev_sp && sp < stack_top && (sp & 3) == 0) { |
| if (count == 0) { |
| printk("Call trace:"); |
| #ifdef CONFIG_KALLSYMS |
| printk("\n"); |
| #endif |
| } else { |
| if (next_exc) { |
| ret = next_exc; |
| next_exc = 0; |
| } else |
| ret = *(unsigned long *)(sp + 4); |
| printk(" [%08lx] ", ret); |
| #ifdef CONFIG_KALLSYMS |
| print_symbol("%s", ret); |
| printk("\n"); |
| #endif |
| if (ret == (unsigned long) &ret_from_except |
| || ret == (unsigned long) &ret_from_except_full |
| || ret == (unsigned long) &ret_from_syscall) { |
| /* sp + 16 points to an exception frame */ |
| regs = (struct pt_regs *) (sp + 16); |
| if (sp + 16 + sizeof(*regs) <= stack_top) |
| next_exc = regs->nip; |
| } |
| } |
| ++count; |
| sp = *(unsigned long *)sp; |
| } |
| #ifndef CONFIG_KALLSYMS |
| if (count > 0) |
| printk("\n"); |
| #endif |
| } |
| |
| #if 0 |
| /* |
| * Low level print for debugging - Cort |
| */ |
| int __init ll_printk(const char *fmt, ...) |
| { |
| va_list args; |
| char buf[256]; |
| int i; |
| |
| va_start(args, fmt); |
| i=vsprintf(buf,fmt,args); |
| ll_puts(buf); |
| va_end(args); |
| return i; |
| } |
| |
| int lines = 24, cols = 80; |
| int orig_x = 0, orig_y = 0; |
| |
| void puthex(unsigned long val) |
| { |
| unsigned char buf[10]; |
| int i; |
| for (i = 7; i >= 0; i--) |
| { |
| buf[i] = "0123456789ABCDEF"[val & 0x0F]; |
| val >>= 4; |
| } |
| buf[8] = '\0'; |
| prom_print(buf); |
| } |
| |
| void __init ll_puts(const char *s) |
| { |
| int x,y; |
| char *vidmem = (char *)/*(_ISA_MEM_BASE + 0xB8000) */0xD00B8000; |
| char c; |
| extern int mem_init_done; |
| |
| if ( mem_init_done ) /* assume this means we can printk */ |
| { |
| printk(s); |
| return; |
| } |
| |
| #if 0 |
| if ( have_of ) |
| { |
| prom_print(s); |
| return; |
| } |
| #endif |
| |
| /* |
| * can't ll_puts on chrp without openfirmware yet. |
| * vidmem just needs to be setup for it. |
| * -- Cort |
| */ |
| if ( _machine != _MACH_prep ) |
| return; |
| x = orig_x; |
| y = orig_y; |
| |
| while ( ( c = *s++ ) != '\0' ) { |
| if ( c == '\n' ) { |
| x = 0; |
| if ( ++y >= lines ) { |
| /*scroll();*/ |
| /*y--;*/ |
| y = 0; |
| } |
| } else { |
| vidmem [ ( x + cols * y ) * 2 ] = c; |
| if ( ++x >= cols ) { |
| x = 0; |
| if ( ++y >= lines ) { |
| /*scroll();*/ |
| /*y--;*/ |
| y = 0; |
| } |
| } |
| } |
| } |
| |
| orig_x = x; |
| orig_y = y; |
| } |
| #endif |
| |
| unsigned long get_wchan(struct task_struct *p) |
| { |
| unsigned long ip, sp; |
| unsigned long stack_page = (unsigned long) p->thread_info; |
| int count = 0; |
| if (!p || p == current || p->state == TASK_RUNNING) |
| return 0; |
| sp = p->thread.ksp; |
| do { |
| sp = *(unsigned long *)sp; |
| if (sp < stack_page || sp >= stack_page + 8188) |
| return 0; |
| if (count > 0) { |
| ip = *(unsigned long *)(sp + 4); |
| if (!in_sched_functions(ip)) |
| return ip; |
| } |
| } while (count++ < 16); |
| return 0; |
| } |