| /* |
| * linux/kernel/time/timekeeping.c |
| * |
| * Kernel timekeeping code and accessor functions |
| * |
| * This code was moved from linux/kernel/timer.c. |
| * Please see that file for copyright and history logs. |
| * |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/interrupt.h> |
| #include <linux/percpu.h> |
| #include <linux/init.h> |
| #include <linux/mm.h> |
| #include <linux/sched.h> |
| #include <linux/sysdev.h> |
| #include <linux/clocksource.h> |
| #include <linux/jiffies.h> |
| #include <linux/time.h> |
| #include <linux/tick.h> |
| #include <linux/stop_machine.h> |
| |
| /* Structure holding internal timekeeping values. */ |
| struct timekeeper { |
| /* Current clocksource used for timekeeping. */ |
| struct clocksource *clock; |
| /* The shift value of the current clocksource. */ |
| int shift; |
| |
| /* Number of clock cycles in one NTP interval. */ |
| cycle_t cycle_interval; |
| /* Number of clock shifted nano seconds in one NTP interval. */ |
| u64 xtime_interval; |
| /* shifted nano seconds left over when rounding cycle_interval */ |
| s64 xtime_remainder; |
| /* Raw nano seconds accumulated per NTP interval. */ |
| u32 raw_interval; |
| |
| /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */ |
| u64 xtime_nsec; |
| /* Difference between accumulated time and NTP time in ntp |
| * shifted nano seconds. */ |
| s64 ntp_error; |
| /* Shift conversion between clock shifted nano seconds and |
| * ntp shifted nano seconds. */ |
| int ntp_error_shift; |
| /* NTP adjusted clock multiplier */ |
| u32 mult; |
| }; |
| |
| static struct timekeeper timekeeper; |
| |
| /** |
| * timekeeper_setup_internals - Set up internals to use clocksource clock. |
| * |
| * @clock: Pointer to clocksource. |
| * |
| * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment |
| * pair and interval request. |
| * |
| * Unless you're the timekeeping code, you should not be using this! |
| */ |
| static void timekeeper_setup_internals(struct clocksource *clock) |
| { |
| cycle_t interval; |
| u64 tmp, ntpinterval; |
| |
| timekeeper.clock = clock; |
| clock->cycle_last = clock->read(clock); |
| |
| /* Do the ns -> cycle conversion first, using original mult */ |
| tmp = NTP_INTERVAL_LENGTH; |
| tmp <<= clock->shift; |
| ntpinterval = tmp; |
| tmp += clock->mult/2; |
| do_div(tmp, clock->mult); |
| if (tmp == 0) |
| tmp = 1; |
| |
| interval = (cycle_t) tmp; |
| timekeeper.cycle_interval = interval; |
| |
| /* Go back from cycles -> shifted ns */ |
| timekeeper.xtime_interval = (u64) interval * clock->mult; |
| timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval; |
| timekeeper.raw_interval = |
| ((u64) interval * clock->mult) >> clock->shift; |
| |
| timekeeper.xtime_nsec = 0; |
| timekeeper.shift = clock->shift; |
| |
| timekeeper.ntp_error = 0; |
| timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; |
| |
| /* |
| * The timekeeper keeps its own mult values for the currently |
| * active clocksource. These value will be adjusted via NTP |
| * to counteract clock drifting. |
| */ |
| timekeeper.mult = clock->mult; |
| } |
| |
| /* Timekeeper helper functions. */ |
| static inline s64 timekeeping_get_ns(void) |
| { |
| cycle_t cycle_now, cycle_delta; |
| struct clocksource *clock; |
| |
| /* read clocksource: */ |
| clock = timekeeper.clock; |
| cycle_now = clock->read(clock); |
| |
| /* calculate the delta since the last update_wall_time: */ |
| cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; |
| |
| /* return delta convert to nanoseconds using ntp adjusted mult. */ |
| return clocksource_cyc2ns(cycle_delta, timekeeper.mult, |
| timekeeper.shift); |
| } |
| |
| static inline s64 timekeeping_get_ns_raw(void) |
| { |
| cycle_t cycle_now, cycle_delta; |
| struct clocksource *clock; |
| |
| /* read clocksource: */ |
| clock = timekeeper.clock; |
| cycle_now = clock->read(clock); |
| |
| /* calculate the delta since the last update_wall_time: */ |
| cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; |
| |
| /* return delta convert to nanoseconds using ntp adjusted mult. */ |
| return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); |
| } |
| |
| /* |
| * This read-write spinlock protects us from races in SMP while |
| * playing with xtime. |
| */ |
| __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock); |
| |
| |
| /* |
| * The current time |
| * wall_to_monotonic is what we need to add to xtime (or xtime corrected |
| * for sub jiffie times) to get to monotonic time. Monotonic is pegged |
| * at zero at system boot time, so wall_to_monotonic will be negative, |
| * however, we will ALWAYS keep the tv_nsec part positive so we can use |
| * the usual normalization. |
| * |
| * wall_to_monotonic is moved after resume from suspend for the monotonic |
| * time not to jump. We need to add total_sleep_time to wall_to_monotonic |
| * to get the real boot based time offset. |
| * |
| * - wall_to_monotonic is no longer the boot time, getboottime must be |
| * used instead. |
| */ |
| static struct timespec xtime __attribute__ ((aligned (16))); |
| static struct timespec wall_to_monotonic __attribute__ ((aligned (16))); |
| static struct timespec total_sleep_time; |
| |
| /* |
| * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. |
| */ |
| static struct timespec raw_time; |
| |
| /* flag for if timekeeping is suspended */ |
| int __read_mostly timekeeping_suspended; |
| |
| /* must hold xtime_lock */ |
| void timekeeping_leap_insert(int leapsecond) |
| { |
| xtime.tv_sec += leapsecond; |
| wall_to_monotonic.tv_sec -= leapsecond; |
| update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock, |
| timekeeper.mult); |
| } |
| |
| /** |
| * timekeeping_forward_now - update clock to the current time |
| * |
| * Forward the current clock to update its state since the last call to |
| * update_wall_time(). This is useful before significant clock changes, |
| * as it avoids having to deal with this time offset explicitly. |
| */ |
| static void timekeeping_forward_now(void) |
| { |
| cycle_t cycle_now, cycle_delta; |
| struct clocksource *clock; |
| s64 nsec; |
| |
| clock = timekeeper.clock; |
| cycle_now = clock->read(clock); |
| cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; |
| clock->cycle_last = cycle_now; |
| |
| nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult, |
| timekeeper.shift); |
| |
| /* If arch requires, add in gettimeoffset() */ |
| nsec += arch_gettimeoffset(); |
| |
| timespec_add_ns(&xtime, nsec); |
| |
| nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift); |
| timespec_add_ns(&raw_time, nsec); |
| } |
| |
| /** |
| * getnstimeofday - Returns the time of day in a timespec |
| * @ts: pointer to the timespec to be set |
| * |
| * Returns the time of day in a timespec. |
| */ |
| void getnstimeofday(struct timespec *ts) |
| { |
| unsigned long seq; |
| s64 nsecs; |
| |
| WARN_ON(timekeeping_suspended); |
| |
| do { |
| seq = read_seqbegin(&xtime_lock); |
| |
| *ts = xtime; |
| nsecs = timekeeping_get_ns(); |
| |
| /* If arch requires, add in gettimeoffset() */ |
| nsecs += arch_gettimeoffset(); |
| |
| } while (read_seqretry(&xtime_lock, seq)); |
| |
| timespec_add_ns(ts, nsecs); |
| } |
| |
| EXPORT_SYMBOL(getnstimeofday); |
| |
| ktime_t ktime_get(void) |
| { |
| unsigned int seq; |
| s64 secs, nsecs; |
| |
| WARN_ON(timekeeping_suspended); |
| |
| do { |
| seq = read_seqbegin(&xtime_lock); |
| secs = xtime.tv_sec + wall_to_monotonic.tv_sec; |
| nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec; |
| nsecs += timekeeping_get_ns(); |
| |
| } while (read_seqretry(&xtime_lock, seq)); |
| /* |
| * Use ktime_set/ktime_add_ns to create a proper ktime on |
| * 32-bit architectures without CONFIG_KTIME_SCALAR. |
| */ |
| return ktime_add_ns(ktime_set(secs, 0), nsecs); |
| } |
| EXPORT_SYMBOL_GPL(ktime_get); |
| |
| /** |
| * ktime_get_ts - get the monotonic clock in timespec format |
| * @ts: pointer to timespec variable |
| * |
| * The function calculates the monotonic clock from the realtime |
| * clock and the wall_to_monotonic offset and stores the result |
| * in normalized timespec format in the variable pointed to by @ts. |
| */ |
| void ktime_get_ts(struct timespec *ts) |
| { |
| struct timespec tomono; |
| unsigned int seq; |
| s64 nsecs; |
| |
| WARN_ON(timekeeping_suspended); |
| |
| do { |
| seq = read_seqbegin(&xtime_lock); |
| *ts = xtime; |
| tomono = wall_to_monotonic; |
| nsecs = timekeeping_get_ns(); |
| |
| } while (read_seqretry(&xtime_lock, seq)); |
| |
| set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, |
| ts->tv_nsec + tomono.tv_nsec + nsecs); |
| } |
| EXPORT_SYMBOL_GPL(ktime_get_ts); |
| |
| #ifdef CONFIG_NTP_PPS |
| |
| /** |
| * getnstime_raw_and_real - get day and raw monotonic time in timespec format |
| * @ts_raw: pointer to the timespec to be set to raw monotonic time |
| * @ts_real: pointer to the timespec to be set to the time of day |
| * |
| * This function reads both the time of day and raw monotonic time at the |
| * same time atomically and stores the resulting timestamps in timespec |
| * format. |
| */ |
| void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real) |
| { |
| unsigned long seq; |
| s64 nsecs_raw, nsecs_real; |
| |
| WARN_ON_ONCE(timekeeping_suspended); |
| |
| do { |
| u32 arch_offset; |
| |
| seq = read_seqbegin(&xtime_lock); |
| |
| *ts_raw = raw_time; |
| *ts_real = xtime; |
| |
| nsecs_raw = timekeeping_get_ns_raw(); |
| nsecs_real = timekeeping_get_ns(); |
| |
| /* If arch requires, add in gettimeoffset() */ |
| arch_offset = arch_gettimeoffset(); |
| nsecs_raw += arch_offset; |
| nsecs_real += arch_offset; |
| |
| } while (read_seqretry(&xtime_lock, seq)); |
| |
| timespec_add_ns(ts_raw, nsecs_raw); |
| timespec_add_ns(ts_real, nsecs_real); |
| } |
| EXPORT_SYMBOL(getnstime_raw_and_real); |
| |
| #endif /* CONFIG_NTP_PPS */ |
| |
| /** |
| * do_gettimeofday - Returns the time of day in a timeval |
| * @tv: pointer to the timeval to be set |
| * |
| * NOTE: Users should be converted to using getnstimeofday() |
| */ |
| void do_gettimeofday(struct timeval *tv) |
| { |
| struct timespec now; |
| |
| getnstimeofday(&now); |
| tv->tv_sec = now.tv_sec; |
| tv->tv_usec = now.tv_nsec/1000; |
| } |
| |
| EXPORT_SYMBOL(do_gettimeofday); |
| /** |
| * do_settimeofday - Sets the time of day |
| * @tv: pointer to the timespec variable containing the new time |
| * |
| * Sets the time of day to the new time and update NTP and notify hrtimers |
| */ |
| int do_settimeofday(const struct timespec *tv) |
| { |
| struct timespec ts_delta; |
| unsigned long flags; |
| |
| if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) |
| return -EINVAL; |
| |
| write_seqlock_irqsave(&xtime_lock, flags); |
| |
| timekeeping_forward_now(); |
| |
| ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec; |
| ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec; |
| wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta); |
| |
| xtime = *tv; |
| |
| timekeeper.ntp_error = 0; |
| ntp_clear(); |
| |
| update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock, |
| timekeeper.mult); |
| |
| write_sequnlock_irqrestore(&xtime_lock, flags); |
| |
| /* signal hrtimers about time change */ |
| clock_was_set(); |
| |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(do_settimeofday); |
| |
| |
| /** |
| * timekeeping_inject_offset - Adds or subtracts from the current time. |
| * @tv: pointer to the timespec variable containing the offset |
| * |
| * Adds or subtracts an offset value from the current time. |
| */ |
| int timekeeping_inject_offset(struct timespec *ts) |
| { |
| unsigned long flags; |
| |
| if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC) |
| return -EINVAL; |
| |
| write_seqlock_irqsave(&xtime_lock, flags); |
| |
| timekeeping_forward_now(); |
| |
| xtime = timespec_add(xtime, *ts); |
| wall_to_monotonic = timespec_sub(wall_to_monotonic, *ts); |
| |
| timekeeper.ntp_error = 0; |
| ntp_clear(); |
| |
| update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock, |
| timekeeper.mult); |
| |
| write_sequnlock_irqrestore(&xtime_lock, flags); |
| |
| /* signal hrtimers about time change */ |
| clock_was_set(); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(timekeeping_inject_offset); |
| |
| /** |
| * change_clocksource - Swaps clocksources if a new one is available |
| * |
| * Accumulates current time interval and initializes new clocksource |
| */ |
| static int change_clocksource(void *data) |
| { |
| struct clocksource *new, *old; |
| |
| new = (struct clocksource *) data; |
| |
| timekeeping_forward_now(); |
| if (!new->enable || new->enable(new) == 0) { |
| old = timekeeper.clock; |
| timekeeper_setup_internals(new); |
| if (old->disable) |
| old->disable(old); |
| } |
| return 0; |
| } |
| |
| /** |
| * timekeeping_notify - Install a new clock source |
| * @clock: pointer to the clock source |
| * |
| * This function is called from clocksource.c after a new, better clock |
| * source has been registered. The caller holds the clocksource_mutex. |
| */ |
| void timekeeping_notify(struct clocksource *clock) |
| { |
| if (timekeeper.clock == clock) |
| return; |
| stop_machine(change_clocksource, clock, NULL); |
| tick_clock_notify(); |
| } |
| |
| /** |
| * ktime_get_real - get the real (wall-) time in ktime_t format |
| * |
| * returns the time in ktime_t format |
| */ |
| ktime_t ktime_get_real(void) |
| { |
| struct timespec now; |
| |
| getnstimeofday(&now); |
| |
| return timespec_to_ktime(now); |
| } |
| EXPORT_SYMBOL_GPL(ktime_get_real); |
| |
| /** |
| * getrawmonotonic - Returns the raw monotonic time in a timespec |
| * @ts: pointer to the timespec to be set |
| * |
| * Returns the raw monotonic time (completely un-modified by ntp) |
| */ |
| void getrawmonotonic(struct timespec *ts) |
| { |
| unsigned long seq; |
| s64 nsecs; |
| |
| do { |
| seq = read_seqbegin(&xtime_lock); |
| nsecs = timekeeping_get_ns_raw(); |
| *ts = raw_time; |
| |
| } while (read_seqretry(&xtime_lock, seq)); |
| |
| timespec_add_ns(ts, nsecs); |
| } |
| EXPORT_SYMBOL(getrawmonotonic); |
| |
| |
| /** |
| * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres |
| */ |
| int timekeeping_valid_for_hres(void) |
| { |
| unsigned long seq; |
| int ret; |
| |
| do { |
| seq = read_seqbegin(&xtime_lock); |
| |
| ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; |
| |
| } while (read_seqretry(&xtime_lock, seq)); |
| |
| return ret; |
| } |
| |
| /** |
| * timekeeping_max_deferment - Returns max time the clocksource can be deferred |
| * |
| * Caller must observe xtime_lock via read_seqbegin/read_seqretry to |
| * ensure that the clocksource does not change! |
| */ |
| u64 timekeeping_max_deferment(void) |
| { |
| return timekeeper.clock->max_idle_ns; |
| } |
| |
| /** |
| * read_persistent_clock - Return time from the persistent clock. |
| * |
| * Weak dummy function for arches that do not yet support it. |
| * Reads the time from the battery backed persistent clock. |
| * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. |
| * |
| * XXX - Do be sure to remove it once all arches implement it. |
| */ |
| void __attribute__((weak)) read_persistent_clock(struct timespec *ts) |
| { |
| ts->tv_sec = 0; |
| ts->tv_nsec = 0; |
| } |
| |
| /** |
| * read_boot_clock - Return time of the system start. |
| * |
| * Weak dummy function for arches that do not yet support it. |
| * Function to read the exact time the system has been started. |
| * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. |
| * |
| * XXX - Do be sure to remove it once all arches implement it. |
| */ |
| void __attribute__((weak)) read_boot_clock(struct timespec *ts) |
| { |
| ts->tv_sec = 0; |
| ts->tv_nsec = 0; |
| } |
| |
| /* |
| * timekeeping_init - Initializes the clocksource and common timekeeping values |
| */ |
| void __init timekeeping_init(void) |
| { |
| struct clocksource *clock; |
| unsigned long flags; |
| struct timespec now, boot; |
| |
| read_persistent_clock(&now); |
| read_boot_clock(&boot); |
| |
| write_seqlock_irqsave(&xtime_lock, flags); |
| |
| ntp_init(); |
| |
| clock = clocksource_default_clock(); |
| if (clock->enable) |
| clock->enable(clock); |
| timekeeper_setup_internals(clock); |
| |
| xtime.tv_sec = now.tv_sec; |
| xtime.tv_nsec = now.tv_nsec; |
| raw_time.tv_sec = 0; |
| raw_time.tv_nsec = 0; |
| if (boot.tv_sec == 0 && boot.tv_nsec == 0) { |
| boot.tv_sec = xtime.tv_sec; |
| boot.tv_nsec = xtime.tv_nsec; |
| } |
| set_normalized_timespec(&wall_to_monotonic, |
| -boot.tv_sec, -boot.tv_nsec); |
| total_sleep_time.tv_sec = 0; |
| total_sleep_time.tv_nsec = 0; |
| write_sequnlock_irqrestore(&xtime_lock, flags); |
| } |
| |
| /* time in seconds when suspend began */ |
| static struct timespec timekeeping_suspend_time; |
| |
| /** |
| * timekeeping_resume - Resumes the generic timekeeping subsystem. |
| * @dev: unused |
| * |
| * This is for the generic clocksource timekeeping. |
| * xtime/wall_to_monotonic/jiffies/etc are |
| * still managed by arch specific suspend/resume code. |
| */ |
| static int timekeeping_resume(struct sys_device *dev) |
| { |
| unsigned long flags; |
| struct timespec ts; |
| |
| read_persistent_clock(&ts); |
| |
| clocksource_resume(); |
| |
| write_seqlock_irqsave(&xtime_lock, flags); |
| |
| if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) { |
| ts = timespec_sub(ts, timekeeping_suspend_time); |
| xtime = timespec_add(xtime, ts); |
| wall_to_monotonic = timespec_sub(wall_to_monotonic, ts); |
| total_sleep_time = timespec_add(total_sleep_time, ts); |
| } |
| /* re-base the last cycle value */ |
| timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock); |
| timekeeper.ntp_error = 0; |
| timekeeping_suspended = 0; |
| write_sequnlock_irqrestore(&xtime_lock, flags); |
| |
| touch_softlockup_watchdog(); |
| |
| clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL); |
| |
| /* Resume hrtimers */ |
| hres_timers_resume(); |
| |
| return 0; |
| } |
| |
| static int timekeeping_suspend(struct sys_device *dev, pm_message_t state) |
| { |
| unsigned long flags; |
| |
| read_persistent_clock(&timekeeping_suspend_time); |
| |
| write_seqlock_irqsave(&xtime_lock, flags); |
| timekeeping_forward_now(); |
| timekeeping_suspended = 1; |
| write_sequnlock_irqrestore(&xtime_lock, flags); |
| |
| clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL); |
| clocksource_suspend(); |
| |
| return 0; |
| } |
| |
| /* sysfs resume/suspend bits for timekeeping */ |
| static struct sysdev_class timekeeping_sysclass = { |
| .name = "timekeeping", |
| .resume = timekeeping_resume, |
| .suspend = timekeeping_suspend, |
| }; |
| |
| static struct sys_device device_timer = { |
| .id = 0, |
| .cls = &timekeeping_sysclass, |
| }; |
| |
| static int __init timekeeping_init_device(void) |
| { |
| int error = sysdev_class_register(&timekeeping_sysclass); |
| if (!error) |
| error = sysdev_register(&device_timer); |
| return error; |
| } |
| |
| device_initcall(timekeeping_init_device); |
| |
| /* |
| * If the error is already larger, we look ahead even further |
| * to compensate for late or lost adjustments. |
| */ |
| static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval, |
| s64 *offset) |
| { |
| s64 tick_error, i; |
| u32 look_ahead, adj; |
| s32 error2, mult; |
| |
| /* |
| * Use the current error value to determine how much to look ahead. |
| * The larger the error the slower we adjust for it to avoid problems |
| * with losing too many ticks, otherwise we would overadjust and |
| * produce an even larger error. The smaller the adjustment the |
| * faster we try to adjust for it, as lost ticks can do less harm |
| * here. This is tuned so that an error of about 1 msec is adjusted |
| * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). |
| */ |
| error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ); |
| error2 = abs(error2); |
| for (look_ahead = 0; error2 > 0; look_ahead++) |
| error2 >>= 2; |
| |
| /* |
| * Now calculate the error in (1 << look_ahead) ticks, but first |
| * remove the single look ahead already included in the error. |
| */ |
| tick_error = tick_length >> (timekeeper.ntp_error_shift + 1); |
| tick_error -= timekeeper.xtime_interval >> 1; |
| error = ((error - tick_error) >> look_ahead) + tick_error; |
| |
| /* Finally calculate the adjustment shift value. */ |
| i = *interval; |
| mult = 1; |
| if (error < 0) { |
| error = -error; |
| *interval = -*interval; |
| *offset = -*offset; |
| mult = -1; |
| } |
| for (adj = 0; error > i; adj++) |
| error >>= 1; |
| |
| *interval <<= adj; |
| *offset <<= adj; |
| return mult << adj; |
| } |
| |
| /* |
| * Adjust the multiplier to reduce the error value, |
| * this is optimized for the most common adjustments of -1,0,1, |
| * for other values we can do a bit more work. |
| */ |
| static void timekeeping_adjust(s64 offset) |
| { |
| s64 error, interval = timekeeper.cycle_interval; |
| int adj; |
| |
| error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1); |
| if (error > interval) { |
| error >>= 2; |
| if (likely(error <= interval)) |
| adj = 1; |
| else |
| adj = timekeeping_bigadjust(error, &interval, &offset); |
| } else if (error < -interval) { |
| error >>= 2; |
| if (likely(error >= -interval)) { |
| adj = -1; |
| interval = -interval; |
| offset = -offset; |
| } else |
| adj = timekeeping_bigadjust(error, &interval, &offset); |
| } else |
| return; |
| |
| timekeeper.mult += adj; |
| timekeeper.xtime_interval += interval; |
| timekeeper.xtime_nsec -= offset; |
| timekeeper.ntp_error -= (interval - offset) << |
| timekeeper.ntp_error_shift; |
| } |
| |
| |
| /** |
| * logarithmic_accumulation - shifted accumulation of cycles |
| * |
| * This functions accumulates a shifted interval of cycles into |
| * into a shifted interval nanoseconds. Allows for O(log) accumulation |
| * loop. |
| * |
| * Returns the unconsumed cycles. |
| */ |
| static cycle_t logarithmic_accumulation(cycle_t offset, int shift) |
| { |
| u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift; |
| u64 raw_nsecs; |
| |
| /* If the offset is smaller then a shifted interval, do nothing */ |
| if (offset < timekeeper.cycle_interval<<shift) |
| return offset; |
| |
| /* Accumulate one shifted interval */ |
| offset -= timekeeper.cycle_interval << shift; |
| timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift; |
| |
| timekeeper.xtime_nsec += timekeeper.xtime_interval << shift; |
| while (timekeeper.xtime_nsec >= nsecps) { |
| timekeeper.xtime_nsec -= nsecps; |
| xtime.tv_sec++; |
| second_overflow(); |
| } |
| |
| /* Accumulate raw time */ |
| raw_nsecs = timekeeper.raw_interval << shift; |
| raw_nsecs += raw_time.tv_nsec; |
| if (raw_nsecs >= NSEC_PER_SEC) { |
| u64 raw_secs = raw_nsecs; |
| raw_nsecs = do_div(raw_secs, NSEC_PER_SEC); |
| raw_time.tv_sec += raw_secs; |
| } |
| raw_time.tv_nsec = raw_nsecs; |
| |
| /* Accumulate error between NTP and clock interval */ |
| timekeeper.ntp_error += tick_length << shift; |
| timekeeper.ntp_error -= |
| (timekeeper.xtime_interval + timekeeper.xtime_remainder) << |
| (timekeeper.ntp_error_shift + shift); |
| |
| return offset; |
| } |
| |
| |
| /** |
| * update_wall_time - Uses the current clocksource to increment the wall time |
| * |
| * Called from the timer interrupt, must hold a write on xtime_lock. |
| */ |
| static void update_wall_time(void) |
| { |
| struct clocksource *clock; |
| cycle_t offset; |
| int shift = 0, maxshift; |
| |
| /* Make sure we're fully resumed: */ |
| if (unlikely(timekeeping_suspended)) |
| return; |
| |
| clock = timekeeper.clock; |
| |
| #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET |
| offset = timekeeper.cycle_interval; |
| #else |
| offset = (clock->read(clock) - clock->cycle_last) & clock->mask; |
| #endif |
| timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift; |
| |
| /* |
| * With NO_HZ we may have to accumulate many cycle_intervals |
| * (think "ticks") worth of time at once. To do this efficiently, |
| * we calculate the largest doubling multiple of cycle_intervals |
| * that is smaller then the offset. We then accumulate that |
| * chunk in one go, and then try to consume the next smaller |
| * doubled multiple. |
| */ |
| shift = ilog2(offset) - ilog2(timekeeper.cycle_interval); |
| shift = max(0, shift); |
| /* Bound shift to one less then what overflows tick_length */ |
| maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1; |
| shift = min(shift, maxshift); |
| while (offset >= timekeeper.cycle_interval) { |
| offset = logarithmic_accumulation(offset, shift); |
| if(offset < timekeeper.cycle_interval<<shift) |
| shift--; |
| } |
| |
| /* correct the clock when NTP error is too big */ |
| timekeeping_adjust(offset); |
| |
| /* |
| * Since in the loop above, we accumulate any amount of time |
| * in xtime_nsec over a second into xtime.tv_sec, its possible for |
| * xtime_nsec to be fairly small after the loop. Further, if we're |
| * slightly speeding the clocksource up in timekeeping_adjust(), |
| * its possible the required corrective factor to xtime_nsec could |
| * cause it to underflow. |
| * |
| * Now, we cannot simply roll the accumulated second back, since |
| * the NTP subsystem has been notified via second_overflow. So |
| * instead we push xtime_nsec forward by the amount we underflowed, |
| * and add that amount into the error. |
| * |
| * We'll correct this error next time through this function, when |
| * xtime_nsec is not as small. |
| */ |
| if (unlikely((s64)timekeeper.xtime_nsec < 0)) { |
| s64 neg = -(s64)timekeeper.xtime_nsec; |
| timekeeper.xtime_nsec = 0; |
| timekeeper.ntp_error += neg << timekeeper.ntp_error_shift; |
| } |
| |
| |
| /* |
| * Store full nanoseconds into xtime after rounding it up and |
| * add the remainder to the error difference. |
| */ |
| xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1; |
| timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift; |
| timekeeper.ntp_error += timekeeper.xtime_nsec << |
| timekeeper.ntp_error_shift; |
| |
| /* |
| * Finally, make sure that after the rounding |
| * xtime.tv_nsec isn't larger then NSEC_PER_SEC |
| */ |
| if (unlikely(xtime.tv_nsec >= NSEC_PER_SEC)) { |
| xtime.tv_nsec -= NSEC_PER_SEC; |
| xtime.tv_sec++; |
| second_overflow(); |
| } |
| |
| /* check to see if there is a new clocksource to use */ |
| update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock, |
| timekeeper.mult); |
| } |
| |
| /** |
| * getboottime - Return the real time of system boot. |
| * @ts: pointer to the timespec to be set |
| * |
| * Returns the time of day in a timespec. |
| * |
| * This is based on the wall_to_monotonic offset and the total suspend |
| * time. Calls to settimeofday will affect the value returned (which |
| * basically means that however wrong your real time clock is at boot time, |
| * you get the right time here). |
| */ |
| void getboottime(struct timespec *ts) |
| { |
| struct timespec boottime = { |
| .tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec, |
| .tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec |
| }; |
| |
| set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec); |
| } |
| EXPORT_SYMBOL_GPL(getboottime); |
| |
| /** |
| * monotonic_to_bootbased - Convert the monotonic time to boot based. |
| * @ts: pointer to the timespec to be converted |
| */ |
| void monotonic_to_bootbased(struct timespec *ts) |
| { |
| *ts = timespec_add(*ts, total_sleep_time); |
| } |
| EXPORT_SYMBOL_GPL(monotonic_to_bootbased); |
| |
| unsigned long get_seconds(void) |
| { |
| return xtime.tv_sec; |
| } |
| EXPORT_SYMBOL(get_seconds); |
| |
| struct timespec __current_kernel_time(void) |
| { |
| return xtime; |
| } |
| |
| struct timespec current_kernel_time(void) |
| { |
| struct timespec now; |
| unsigned long seq; |
| |
| do { |
| seq = read_seqbegin(&xtime_lock); |
| |
| now = xtime; |
| } while (read_seqretry(&xtime_lock, seq)); |
| |
| return now; |
| } |
| EXPORT_SYMBOL(current_kernel_time); |
| |
| struct timespec get_monotonic_coarse(void) |
| { |
| struct timespec now, mono; |
| unsigned long seq; |
| |
| do { |
| seq = read_seqbegin(&xtime_lock); |
| |
| now = xtime; |
| mono = wall_to_monotonic; |
| } while (read_seqretry(&xtime_lock, seq)); |
| |
| set_normalized_timespec(&now, now.tv_sec + mono.tv_sec, |
| now.tv_nsec + mono.tv_nsec); |
| return now; |
| } |
| |
| /* |
| * The 64-bit jiffies value is not atomic - you MUST NOT read it |
| * without sampling the sequence number in xtime_lock. |
| * jiffies is defined in the linker script... |
| */ |
| void do_timer(unsigned long ticks) |
| { |
| jiffies_64 += ticks; |
| update_wall_time(); |
| calc_global_load(ticks); |
| } |
| |
| /** |
| * get_xtime_and_monotonic_offset() - get xtime and wall_to_monotonic |
| * @xtim: pointer to timespec to be set with xtime |
| * @wtom: pointer to timespec to be set with wall_to_monotonic |
| */ |
| void get_xtime_and_monotonic_offset(struct timespec *xtim, struct timespec *wtom) |
| { |
| unsigned long seq; |
| |
| do { |
| seq = read_seqbegin(&xtime_lock); |
| *xtim = xtime; |
| *wtom = wall_to_monotonic; |
| } while (read_seqretry(&xtime_lock, seq)); |
| } |
| |
| /** |
| * xtime_update() - advances the timekeeping infrastructure |
| * @ticks: number of ticks, that have elapsed since the last call. |
| * |
| * Must be called with interrupts disabled. |
| */ |
| void xtime_update(unsigned long ticks) |
| { |
| write_seqlock(&xtime_lock); |
| do_timer(ticks); |
| write_sequnlock(&xtime_lock); |
| } |