| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (c) 2004-2005 Silicon Graphics, Inc. All Rights Reserved. |
| */ |
| |
| |
| /* |
| * Cross Partition Communication (XPC) partition support. |
| * |
| * This is the part of XPC that detects the presence/absence of |
| * other partitions. It provides a heartbeat and monitors the |
| * heartbeats of other partitions. |
| * |
| */ |
| |
| |
| #include <linux/kernel.h> |
| #include <linux/sysctl.h> |
| #include <linux/cache.h> |
| #include <linux/mmzone.h> |
| #include <linux/nodemask.h> |
| #include <asm/uncached.h> |
| #include <asm/sn/bte.h> |
| #include <asm/sn/intr.h> |
| #include <asm/sn/sn_sal.h> |
| #include <asm/sn/nodepda.h> |
| #include <asm/sn/addrs.h> |
| #include "xpc.h" |
| |
| |
| /* XPC is exiting flag */ |
| int xpc_exiting; |
| |
| |
| /* SH_IPI_ACCESS shub register value on startup */ |
| static u64 xpc_sh1_IPI_access; |
| static u64 xpc_sh2_IPI_access0; |
| static u64 xpc_sh2_IPI_access1; |
| static u64 xpc_sh2_IPI_access2; |
| static u64 xpc_sh2_IPI_access3; |
| |
| |
| /* original protection values for each node */ |
| u64 xpc_prot_vec[MAX_COMPACT_NODES]; |
| |
| |
| /* this partition's reserved page */ |
| struct xpc_rsvd_page *xpc_rsvd_page; |
| |
| /* this partition's XPC variables (within the reserved page) */ |
| struct xpc_vars *xpc_vars; |
| struct xpc_vars_part *xpc_vars_part; |
| |
| |
| /* |
| * For performance reasons, each entry of xpc_partitions[] is cacheline |
| * aligned. And xpc_partitions[] is padded with an additional entry at the |
| * end so that the last legitimate entry doesn't share its cacheline with |
| * another variable. |
| */ |
| struct xpc_partition xpc_partitions[XP_MAX_PARTITIONS + 1]; |
| |
| |
| /* |
| * Generic buffer used to store a local copy of the remote partitions |
| * reserved page or XPC variables. |
| * |
| * xpc_discovery runs only once and is a seperate thread that is |
| * very likely going to be processing in parallel with receiving |
| * interrupts. |
| */ |
| char ____cacheline_aligned |
| xpc_remote_copy_buffer[XPC_RSVD_PAGE_ALIGNED_SIZE]; |
| |
| |
| /* systune related variables */ |
| int xpc_hb_interval = XPC_HB_DEFAULT_INTERVAL; |
| int xpc_hb_check_interval = XPC_HB_CHECK_DEFAULT_TIMEOUT; |
| |
| |
| /* |
| * Given a nasid, get the physical address of the partition's reserved page |
| * for that nasid. This function returns 0 on any error. |
| */ |
| static u64 |
| xpc_get_rsvd_page_pa(int nasid, u64 buf, u64 buf_size) |
| { |
| bte_result_t bte_res; |
| s64 status; |
| u64 cookie = 0; |
| u64 rp_pa = nasid; /* seed with nasid */ |
| u64 len = 0; |
| |
| |
| while (1) { |
| |
| status = sn_partition_reserved_page_pa(buf, &cookie, &rp_pa, |
| &len); |
| |
| dev_dbg(xpc_part, "SAL returned with status=%li, cookie=" |
| "0x%016lx, address=0x%016lx, len=0x%016lx\n", |
| status, cookie, rp_pa, len); |
| |
| if (status != SALRET_MORE_PASSES) { |
| break; |
| } |
| |
| if (len > buf_size) { |
| dev_err(xpc_part, "len (=0x%016lx) > buf_size\n", len); |
| status = SALRET_ERROR; |
| break; |
| } |
| |
| bte_res = xp_bte_copy(rp_pa, ia64_tpa(buf), buf_size, |
| (BTE_NOTIFY | BTE_WACQUIRE), NULL); |
| if (bte_res != BTE_SUCCESS) { |
| dev_dbg(xpc_part, "xp_bte_copy failed %i\n", bte_res); |
| status = SALRET_ERROR; |
| break; |
| } |
| } |
| |
| if (status != SALRET_OK) { |
| rp_pa = 0; |
| } |
| dev_dbg(xpc_part, "reserved page at phys address 0x%016lx\n", rp_pa); |
| return rp_pa; |
| } |
| |
| |
| /* |
| * Fill the partition reserved page with the information needed by |
| * other partitions to discover we are alive and establish initial |
| * communications. |
| */ |
| struct xpc_rsvd_page * |
| xpc_rsvd_page_init(void) |
| { |
| struct xpc_rsvd_page *rp; |
| AMO_t *amos_page; |
| u64 rp_pa, next_cl, nasid_array = 0; |
| int i, ret; |
| |
| |
| /* get the local reserved page's address */ |
| |
| rp_pa = xpc_get_rsvd_page_pa(cnodeid_to_nasid(0), |
| (u64) xpc_remote_copy_buffer, |
| XPC_RSVD_PAGE_ALIGNED_SIZE); |
| if (rp_pa == 0) { |
| dev_err(xpc_part, "SAL failed to locate the reserved page\n"); |
| return NULL; |
| } |
| rp = (struct xpc_rsvd_page *) __va(rp_pa); |
| |
| if (rp->partid != sn_partition_id) { |
| dev_err(xpc_part, "the reserved page's partid of %d should be " |
| "%d\n", rp->partid, sn_partition_id); |
| return NULL; |
| } |
| |
| rp->version = XPC_RP_VERSION; |
| |
| /* |
| * Place the XPC variables on the cache line following the |
| * reserved page structure. |
| */ |
| next_cl = (u64) rp + XPC_RSVD_PAGE_ALIGNED_SIZE; |
| xpc_vars = (struct xpc_vars *) next_cl; |
| |
| /* |
| * Before clearing xpc_vars, see if a page of AMOs had been previously |
| * allocated. If not we'll need to allocate one and set permissions |
| * so that cross-partition AMOs are allowed. |
| * |
| * The allocated AMO page needs MCA reporting to remain disabled after |
| * XPC has unloaded. To make this work, we keep a copy of the pointer |
| * to this page (i.e., amos_page) in the struct xpc_vars structure, |
| * which is pointed to by the reserved page, and re-use that saved copy |
| * on subsequent loads of XPC. This AMO page is never freed, and its |
| * memory protections are never restricted. |
| */ |
| if ((amos_page = xpc_vars->amos_page) == NULL) { |
| amos_page = (AMO_t *) TO_AMO(uncached_alloc_page(0)); |
| if (amos_page == NULL) { |
| dev_err(xpc_part, "can't allocate page of AMOs\n"); |
| return NULL; |
| } |
| |
| /* |
| * Open up AMO-R/W to cpu. This is done for Shub 1.1 systems |
| * when xpc_allow_IPI_ops() is called via xpc_hb_init(). |
| */ |
| if (!enable_shub_wars_1_1()) { |
| ret = sn_change_memprotect(ia64_tpa((u64) amos_page), |
| PAGE_SIZE, SN_MEMPROT_ACCESS_CLASS_1, |
| &nasid_array); |
| if (ret != 0) { |
| dev_err(xpc_part, "can't change memory " |
| "protections\n"); |
| uncached_free_page(__IA64_UNCACHED_OFFSET | |
| TO_PHYS((u64) amos_page)); |
| return NULL; |
| } |
| } |
| } else if (!IS_AMO_ADDRESS((u64) amos_page)) { |
| /* |
| * EFI's XPBOOT can also set amos_page in the reserved page, |
| * but it happens to leave it as an uncached physical address |
| * and we need it to be an uncached virtual, so we'll have to |
| * convert it. |
| */ |
| if (!IS_AMO_PHYS_ADDRESS((u64) amos_page)) { |
| dev_err(xpc_part, "previously used amos_page address " |
| "is bad = 0x%p\n", (void *) amos_page); |
| return NULL; |
| } |
| amos_page = (AMO_t *) TO_AMO((u64) amos_page); |
| } |
| |
| memset(xpc_vars, 0, sizeof(struct xpc_vars)); |
| |
| /* |
| * Place the XPC per partition specific variables on the cache line |
| * following the XPC variables structure. |
| */ |
| next_cl += XPC_VARS_ALIGNED_SIZE; |
| memset((u64 *) next_cl, 0, sizeof(struct xpc_vars_part) * |
| XP_MAX_PARTITIONS); |
| xpc_vars_part = (struct xpc_vars_part *) next_cl; |
| xpc_vars->vars_part_pa = __pa(next_cl); |
| |
| xpc_vars->version = XPC_V_VERSION; |
| xpc_vars->act_nasid = cpuid_to_nasid(0); |
| xpc_vars->act_phys_cpuid = cpu_physical_id(0); |
| xpc_vars->amos_page = amos_page; /* save for next load of XPC */ |
| |
| |
| /* |
| * Initialize the activation related AMO variables. |
| */ |
| xpc_vars->act_amos = xpc_IPI_init(XP_MAX_PARTITIONS); |
| for (i = 1; i < XP_NASID_MASK_WORDS; i++) { |
| xpc_IPI_init(i + XP_MAX_PARTITIONS); |
| } |
| /* export AMO page's physical address to other partitions */ |
| xpc_vars->amos_page_pa = ia64_tpa((u64) xpc_vars->amos_page); |
| |
| /* |
| * This signifies to the remote partition that our reserved |
| * page is initialized. |
| */ |
| rp->vars_pa = __pa(xpc_vars); |
| |
| return rp; |
| } |
| |
| |
| /* |
| * Change protections to allow IPI operations (and AMO operations on |
| * Shub 1.1 systems). |
| */ |
| void |
| xpc_allow_IPI_ops(void) |
| { |
| int node; |
| int nasid; |
| |
| |
| // >>> Change SH_IPI_ACCESS code to use SAL call once it is available. |
| |
| if (is_shub2()) { |
| xpc_sh2_IPI_access0 = |
| (u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH2_IPI_ACCESS0)); |
| xpc_sh2_IPI_access1 = |
| (u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH2_IPI_ACCESS1)); |
| xpc_sh2_IPI_access2 = |
| (u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH2_IPI_ACCESS2)); |
| xpc_sh2_IPI_access3 = |
| (u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH2_IPI_ACCESS3)); |
| |
| for_each_online_node(node) { |
| nasid = cnodeid_to_nasid(node); |
| HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0), |
| -1UL); |
| HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1), |
| -1UL); |
| HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2), |
| -1UL); |
| HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3), |
| -1UL); |
| } |
| |
| } else { |
| xpc_sh1_IPI_access = |
| (u64) HUB_L((u64 *) LOCAL_MMR_ADDR(SH1_IPI_ACCESS)); |
| |
| for_each_online_node(node) { |
| nasid = cnodeid_to_nasid(node); |
| HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS), |
| -1UL); |
| |
| /* |
| * Since the BIST collides with memory operations on |
| * SHUB 1.1 sn_change_memprotect() cannot be used. |
| */ |
| if (enable_shub_wars_1_1()) { |
| /* open up everything */ |
| xpc_prot_vec[node] = (u64) HUB_L((u64 *) |
| GLOBAL_MMR_ADDR(nasid, |
| SH1_MD_DQLP_MMR_DIR_PRIVEC0)); |
| HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, |
| SH1_MD_DQLP_MMR_DIR_PRIVEC0), |
| -1UL); |
| HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, |
| SH1_MD_DQRP_MMR_DIR_PRIVEC0), |
| -1UL); |
| } |
| } |
| } |
| } |
| |
| |
| /* |
| * Restrict protections to disallow IPI operations (and AMO operations on |
| * Shub 1.1 systems). |
| */ |
| void |
| xpc_restrict_IPI_ops(void) |
| { |
| int node; |
| int nasid; |
| |
| |
| // >>> Change SH_IPI_ACCESS code to use SAL call once it is available. |
| |
| if (is_shub2()) { |
| |
| for_each_online_node(node) { |
| nasid = cnodeid_to_nasid(node); |
| HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0), |
| xpc_sh2_IPI_access0); |
| HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1), |
| xpc_sh2_IPI_access1); |
| HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2), |
| xpc_sh2_IPI_access2); |
| HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3), |
| xpc_sh2_IPI_access3); |
| } |
| |
| } else { |
| |
| for_each_online_node(node) { |
| nasid = cnodeid_to_nasid(node); |
| HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS), |
| xpc_sh1_IPI_access); |
| |
| if (enable_shub_wars_1_1()) { |
| HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, |
| SH1_MD_DQLP_MMR_DIR_PRIVEC0), |
| xpc_prot_vec[node]); |
| HUB_S((u64 *) GLOBAL_MMR_ADDR(nasid, |
| SH1_MD_DQRP_MMR_DIR_PRIVEC0), |
| xpc_prot_vec[node]); |
| } |
| } |
| } |
| } |
| |
| |
| /* |
| * At periodic intervals, scan through all active partitions and ensure |
| * their heartbeat is still active. If not, the partition is deactivated. |
| */ |
| void |
| xpc_check_remote_hb(void) |
| { |
| struct xpc_vars *remote_vars; |
| struct xpc_partition *part; |
| partid_t partid; |
| bte_result_t bres; |
| |
| |
| remote_vars = (struct xpc_vars *) xpc_remote_copy_buffer; |
| |
| for (partid = 1; partid < XP_MAX_PARTITIONS; partid++) { |
| if (partid == sn_partition_id) { |
| continue; |
| } |
| |
| part = &xpc_partitions[partid]; |
| |
| if (part->act_state == XPC_P_INACTIVE || |
| part->act_state == XPC_P_DEACTIVATING) { |
| continue; |
| } |
| |
| /* pull the remote_hb cache line */ |
| bres = xp_bte_copy(part->remote_vars_pa, |
| ia64_tpa((u64) remote_vars), |
| XPC_VARS_ALIGNED_SIZE, |
| (BTE_NOTIFY | BTE_WACQUIRE), NULL); |
| if (bres != BTE_SUCCESS) { |
| XPC_DEACTIVATE_PARTITION(part, |
| xpc_map_bte_errors(bres)); |
| continue; |
| } |
| |
| dev_dbg(xpc_part, "partid = %d, heartbeat = %ld, last_heartbeat" |
| " = %ld, kdb_status = %ld, HB_mask = 0x%lx\n", partid, |
| remote_vars->heartbeat, part->last_heartbeat, |
| remote_vars->kdb_status, |
| remote_vars->heartbeating_to_mask); |
| |
| if (((remote_vars->heartbeat == part->last_heartbeat) && |
| (remote_vars->kdb_status == 0)) || |
| !XPC_HB_ALLOWED(sn_partition_id, remote_vars)) { |
| |
| XPC_DEACTIVATE_PARTITION(part, xpcNoHeartbeat); |
| continue; |
| } |
| |
| part->last_heartbeat = remote_vars->heartbeat; |
| } |
| } |
| |
| |
| /* |
| * Get a copy of the remote partition's rsvd page. |
| * |
| * remote_rp points to a buffer that is cacheline aligned for BTE copies and |
| * assumed to be of size XPC_RSVD_PAGE_ALIGNED_SIZE. |
| */ |
| static enum xpc_retval |
| xpc_get_remote_rp(int nasid, u64 *discovered_nasids, |
| struct xpc_rsvd_page *remote_rp, u64 *remote_rsvd_page_pa) |
| { |
| int bres, i; |
| |
| |
| /* get the reserved page's physical address */ |
| |
| *remote_rsvd_page_pa = xpc_get_rsvd_page_pa(nasid, (u64) remote_rp, |
| XPC_RSVD_PAGE_ALIGNED_SIZE); |
| if (*remote_rsvd_page_pa == 0) { |
| return xpcNoRsvdPageAddr; |
| } |
| |
| |
| /* pull over the reserved page structure */ |
| |
| bres = xp_bte_copy(*remote_rsvd_page_pa, ia64_tpa((u64) remote_rp), |
| XPC_RSVD_PAGE_ALIGNED_SIZE, |
| (BTE_NOTIFY | BTE_WACQUIRE), NULL); |
| if (bres != BTE_SUCCESS) { |
| return xpc_map_bte_errors(bres); |
| } |
| |
| |
| if (discovered_nasids != NULL) { |
| for (i = 0; i < XP_NASID_MASK_WORDS; i++) { |
| discovered_nasids[i] |= remote_rp->part_nasids[i]; |
| } |
| } |
| |
| |
| /* check that the partid is for another partition */ |
| |
| if (remote_rp->partid < 1 || |
| remote_rp->partid > (XP_MAX_PARTITIONS - 1)) { |
| return xpcInvalidPartid; |
| } |
| |
| if (remote_rp->partid == sn_partition_id) { |
| return xpcLocalPartid; |
| } |
| |
| |
| if (XPC_VERSION_MAJOR(remote_rp->version) != |
| XPC_VERSION_MAJOR(XPC_RP_VERSION)) { |
| return xpcBadVersion; |
| } |
| |
| return xpcSuccess; |
| } |
| |
| |
| /* |
| * Get a copy of the remote partition's XPC variables. |
| * |
| * remote_vars points to a buffer that is cacheline aligned for BTE copies and |
| * assumed to be of size XPC_VARS_ALIGNED_SIZE. |
| */ |
| static enum xpc_retval |
| xpc_get_remote_vars(u64 remote_vars_pa, struct xpc_vars *remote_vars) |
| { |
| int bres; |
| |
| |
| if (remote_vars_pa == 0) { |
| return xpcVarsNotSet; |
| } |
| |
| |
| /* pull over the cross partition variables */ |
| |
| bres = xp_bte_copy(remote_vars_pa, ia64_tpa((u64) remote_vars), |
| XPC_VARS_ALIGNED_SIZE, |
| (BTE_NOTIFY | BTE_WACQUIRE), NULL); |
| if (bres != BTE_SUCCESS) { |
| return xpc_map_bte_errors(bres); |
| } |
| |
| if (XPC_VERSION_MAJOR(remote_vars->version) != |
| XPC_VERSION_MAJOR(XPC_V_VERSION)) { |
| return xpcBadVersion; |
| } |
| |
| return xpcSuccess; |
| } |
| |
| |
| /* |
| * Prior code has determine the nasid which generated an IPI. Inspect |
| * that nasid to determine if its partition needs to be activated or |
| * deactivated. |
| * |
| * A partition is consider "awaiting activation" if our partition |
| * flags indicate it is not active and it has a heartbeat. A |
| * partition is considered "awaiting deactivation" if our partition |
| * flags indicate it is active but it has no heartbeat or it is not |
| * sending its heartbeat to us. |
| * |
| * To determine the heartbeat, the remote nasid must have a properly |
| * initialized reserved page. |
| */ |
| static void |
| xpc_identify_act_IRQ_req(int nasid) |
| { |
| struct xpc_rsvd_page *remote_rp; |
| struct xpc_vars *remote_vars; |
| u64 remote_rsvd_page_pa; |
| u64 remote_vars_pa; |
| partid_t partid; |
| struct xpc_partition *part; |
| enum xpc_retval ret; |
| |
| |
| /* pull over the reserved page structure */ |
| |
| remote_rp = (struct xpc_rsvd_page *) xpc_remote_copy_buffer; |
| |
| ret = xpc_get_remote_rp(nasid, NULL, remote_rp, &remote_rsvd_page_pa); |
| if (ret != xpcSuccess) { |
| dev_warn(xpc_part, "unable to get reserved page from nasid %d, " |
| "which sent interrupt, reason=%d\n", nasid, ret); |
| return; |
| } |
| |
| remote_vars_pa = remote_rp->vars_pa; |
| partid = remote_rp->partid; |
| part = &xpc_partitions[partid]; |
| |
| |
| /* pull over the cross partition variables */ |
| |
| remote_vars = (struct xpc_vars *) xpc_remote_copy_buffer; |
| |
| ret = xpc_get_remote_vars(remote_vars_pa, remote_vars); |
| if (ret != xpcSuccess) { |
| |
| dev_warn(xpc_part, "unable to get XPC variables from nasid %d, " |
| "which sent interrupt, reason=%d\n", nasid, ret); |
| |
| XPC_DEACTIVATE_PARTITION(part, ret); |
| return; |
| } |
| |
| |
| part->act_IRQ_rcvd++; |
| |
| dev_dbg(xpc_part, "partid for nasid %d is %d; IRQs = %d; HB = " |
| "%ld:0x%lx\n", (int) nasid, (int) partid, part->act_IRQ_rcvd, |
| remote_vars->heartbeat, remote_vars->heartbeating_to_mask); |
| |
| |
| if (part->act_state == XPC_P_INACTIVE) { |
| |
| part->remote_rp_pa = remote_rsvd_page_pa; |
| dev_dbg(xpc_part, " remote_rp_pa = 0x%016lx\n", |
| part->remote_rp_pa); |
| |
| part->remote_vars_pa = remote_vars_pa; |
| dev_dbg(xpc_part, " remote_vars_pa = 0x%016lx\n", |
| part->remote_vars_pa); |
| |
| part->last_heartbeat = remote_vars->heartbeat; |
| dev_dbg(xpc_part, " last_heartbeat = 0x%016lx\n", |
| part->last_heartbeat); |
| |
| part->remote_vars_part_pa = remote_vars->vars_part_pa; |
| dev_dbg(xpc_part, " remote_vars_part_pa = 0x%016lx\n", |
| part->remote_vars_part_pa); |
| |
| part->remote_act_nasid = remote_vars->act_nasid; |
| dev_dbg(xpc_part, " remote_act_nasid = 0x%x\n", |
| part->remote_act_nasid); |
| |
| part->remote_act_phys_cpuid = remote_vars->act_phys_cpuid; |
| dev_dbg(xpc_part, " remote_act_phys_cpuid = 0x%x\n", |
| part->remote_act_phys_cpuid); |
| |
| part->remote_amos_page_pa = remote_vars->amos_page_pa; |
| dev_dbg(xpc_part, " remote_amos_page_pa = 0x%lx\n", |
| part->remote_amos_page_pa); |
| |
| xpc_activate_partition(part); |
| |
| } else if (part->remote_amos_page_pa != remote_vars->amos_page_pa || |
| !XPC_HB_ALLOWED(sn_partition_id, remote_vars)) { |
| |
| part->reactivate_nasid = nasid; |
| XPC_DEACTIVATE_PARTITION(part, xpcReactivating); |
| } |
| } |
| |
| |
| /* |
| * Loop through the activation AMO variables and process any bits |
| * which are set. Each bit indicates a nasid sending a partition |
| * activation or deactivation request. |
| * |
| * Return #of IRQs detected. |
| */ |
| int |
| xpc_identify_act_IRQ_sender(void) |
| { |
| int word, bit; |
| u64 nasid_mask; |
| u64 nasid; /* remote nasid */ |
| int n_IRQs_detected = 0; |
| AMO_t *act_amos; |
| struct xpc_rsvd_page *rp = (struct xpc_rsvd_page *) xpc_rsvd_page; |
| |
| |
| act_amos = xpc_vars->act_amos; |
| |
| |
| /* scan through act AMO variable looking for non-zero entries */ |
| for (word = 0; word < XP_NASID_MASK_WORDS; word++) { |
| |
| nasid_mask = xpc_IPI_receive(&act_amos[word]); |
| if (nasid_mask == 0) { |
| /* no IRQs from nasids in this variable */ |
| continue; |
| } |
| |
| dev_dbg(xpc_part, "AMO[%d] gave back 0x%lx\n", word, |
| nasid_mask); |
| |
| |
| /* |
| * If this nasid has been added to the machine since |
| * our partition was reset, this will retain the |
| * remote nasid in our reserved pages machine mask. |
| * This is used in the event of module reload. |
| */ |
| rp->mach_nasids[word] |= nasid_mask; |
| |
| |
| /* locate the nasid(s) which sent interrupts */ |
| |
| for (bit = 0; bit < (8 * sizeof(u64)); bit++) { |
| if (nasid_mask & (1UL << bit)) { |
| n_IRQs_detected++; |
| nasid = XPC_NASID_FROM_W_B(word, bit); |
| dev_dbg(xpc_part, "interrupt from nasid %ld\n", |
| nasid); |
| xpc_identify_act_IRQ_req(nasid); |
| } |
| } |
| } |
| return n_IRQs_detected; |
| } |
| |
| |
| /* |
| * Mark specified partition as active. |
| */ |
| enum xpc_retval |
| xpc_mark_partition_active(struct xpc_partition *part) |
| { |
| unsigned long irq_flags; |
| enum xpc_retval ret; |
| |
| |
| dev_dbg(xpc_part, "setting partition %d to ACTIVE\n", XPC_PARTID(part)); |
| |
| spin_lock_irqsave(&part->act_lock, irq_flags); |
| if (part->act_state == XPC_P_ACTIVATING) { |
| part->act_state = XPC_P_ACTIVE; |
| ret = xpcSuccess; |
| } else { |
| DBUG_ON(part->reason == xpcSuccess); |
| ret = part->reason; |
| } |
| spin_unlock_irqrestore(&part->act_lock, irq_flags); |
| |
| return ret; |
| } |
| |
| |
| /* |
| * Notify XPC that the partition is down. |
| */ |
| void |
| xpc_deactivate_partition(const int line, struct xpc_partition *part, |
| enum xpc_retval reason) |
| { |
| unsigned long irq_flags; |
| partid_t partid = XPC_PARTID(part); |
| |
| |
| spin_lock_irqsave(&part->act_lock, irq_flags); |
| |
| if (part->act_state == XPC_P_INACTIVE) { |
| XPC_SET_REASON(part, reason, line); |
| spin_unlock_irqrestore(&part->act_lock, irq_flags); |
| if (reason == xpcReactivating) { |
| /* we interrupt ourselves to reactivate partition */ |
| xpc_IPI_send_reactivate(part); |
| } |
| return; |
| } |
| if (part->act_state == XPC_P_DEACTIVATING) { |
| if ((part->reason == xpcUnloading && reason != xpcUnloading) || |
| reason == xpcReactivating) { |
| XPC_SET_REASON(part, reason, line); |
| } |
| spin_unlock_irqrestore(&part->act_lock, irq_flags); |
| return; |
| } |
| |
| part->act_state = XPC_P_DEACTIVATING; |
| XPC_SET_REASON(part, reason, line); |
| |
| spin_unlock_irqrestore(&part->act_lock, irq_flags); |
| |
| XPC_DISALLOW_HB(partid, xpc_vars); |
| |
| dev_dbg(xpc_part, "bringing partition %d down, reason = %d\n", partid, |
| reason); |
| |
| xpc_partition_down(part, reason); |
| } |
| |
| |
| /* |
| * Mark specified partition as active. |
| */ |
| void |
| xpc_mark_partition_inactive(struct xpc_partition *part) |
| { |
| unsigned long irq_flags; |
| |
| |
| dev_dbg(xpc_part, "setting partition %d to INACTIVE\n", |
| XPC_PARTID(part)); |
| |
| spin_lock_irqsave(&part->act_lock, irq_flags); |
| part->act_state = XPC_P_INACTIVE; |
| spin_unlock_irqrestore(&part->act_lock, irq_flags); |
| part->remote_rp_pa = 0; |
| } |
| |
| |
| /* |
| * SAL has provided a partition and machine mask. The partition mask |
| * contains a bit for each even nasid in our partition. The machine |
| * mask contains a bit for each even nasid in the entire machine. |
| * |
| * Using those two bit arrays, we can determine which nasids are |
| * known in the machine. Each should also have a reserved page |
| * initialized if they are available for partitioning. |
| */ |
| void |
| xpc_discovery(void) |
| { |
| void *remote_rp_base; |
| struct xpc_rsvd_page *remote_rp; |
| struct xpc_vars *remote_vars; |
| u64 remote_rsvd_page_pa; |
| u64 remote_vars_pa; |
| int region; |
| int max_regions; |
| int nasid; |
| struct xpc_rsvd_page *rp; |
| partid_t partid; |
| struct xpc_partition *part; |
| u64 *discovered_nasids; |
| enum xpc_retval ret; |
| |
| |
| remote_rp = xpc_kmalloc_cacheline_aligned(XPC_RSVD_PAGE_ALIGNED_SIZE, |
| GFP_KERNEL, &remote_rp_base); |
| if (remote_rp == NULL) { |
| return; |
| } |
| remote_vars = (struct xpc_vars *) remote_rp; |
| |
| |
| discovered_nasids = kmalloc(sizeof(u64) * XP_NASID_MASK_WORDS, |
| GFP_KERNEL); |
| if (discovered_nasids == NULL) { |
| kfree(remote_rp_base); |
| return; |
| } |
| memset(discovered_nasids, 0, sizeof(u64) * XP_NASID_MASK_WORDS); |
| |
| rp = (struct xpc_rsvd_page *) xpc_rsvd_page; |
| |
| /* |
| * The term 'region' in this context refers to the minimum number of |
| * nodes that can comprise an access protection grouping. The access |
| * protection is in regards to memory, IOI and IPI. |
| */ |
| //>>> move the next two #defines into either include/asm-ia64/sn/arch.h or |
| //>>> include/asm-ia64/sn/addrs.h |
| #define SH1_MAX_REGIONS 64 |
| #define SH2_MAX_REGIONS 256 |
| max_regions = is_shub2() ? SH2_MAX_REGIONS : SH1_MAX_REGIONS; |
| |
| for (region = 0; region < max_regions; region++) { |
| |
| if ((volatile int) xpc_exiting) { |
| break; |
| } |
| |
| dev_dbg(xpc_part, "searching region %d\n", region); |
| |
| for (nasid = (region * sn_region_size * 2); |
| nasid < ((region + 1) * sn_region_size * 2); |
| nasid += 2) { |
| |
| if ((volatile int) xpc_exiting) { |
| break; |
| } |
| |
| dev_dbg(xpc_part, "checking nasid %d\n", nasid); |
| |
| |
| if (XPC_NASID_IN_ARRAY(nasid, rp->part_nasids)) { |
| dev_dbg(xpc_part, "PROM indicates Nasid %d is " |
| "part of the local partition; skipping " |
| "region\n", nasid); |
| break; |
| } |
| |
| if (!(XPC_NASID_IN_ARRAY(nasid, rp->mach_nasids))) { |
| dev_dbg(xpc_part, "PROM indicates Nasid %d was " |
| "not on Numa-Link network at reset\n", |
| nasid); |
| continue; |
| } |
| |
| if (XPC_NASID_IN_ARRAY(nasid, discovered_nasids)) { |
| dev_dbg(xpc_part, "Nasid %d is part of a " |
| "partition which was previously " |
| "discovered\n", nasid); |
| continue; |
| } |
| |
| |
| /* pull over the reserved page structure */ |
| |
| ret = xpc_get_remote_rp(nasid, discovered_nasids, |
| remote_rp, &remote_rsvd_page_pa); |
| if (ret != xpcSuccess) { |
| dev_dbg(xpc_part, "unable to get reserved page " |
| "from nasid %d, reason=%d\n", nasid, |
| ret); |
| |
| if (ret == xpcLocalPartid) { |
| break; |
| } |
| continue; |
| } |
| |
| remote_vars_pa = remote_rp->vars_pa; |
| |
| partid = remote_rp->partid; |
| part = &xpc_partitions[partid]; |
| |
| |
| /* pull over the cross partition variables */ |
| |
| ret = xpc_get_remote_vars(remote_vars_pa, remote_vars); |
| if (ret != xpcSuccess) { |
| dev_dbg(xpc_part, "unable to get XPC variables " |
| "from nasid %d, reason=%d\n", nasid, |
| ret); |
| |
| XPC_DEACTIVATE_PARTITION(part, ret); |
| continue; |
| } |
| |
| if (part->act_state != XPC_P_INACTIVE) { |
| dev_dbg(xpc_part, "partition %d on nasid %d is " |
| "already activating\n", partid, nasid); |
| break; |
| } |
| |
| /* |
| * Register the remote partition's AMOs with SAL so it |
| * can handle and cleanup errors within that address |
| * range should the remote partition go down. We don't |
| * unregister this range because it is difficult to |
| * tell when outstanding writes to the remote partition |
| * are finished and thus when it is thus safe to |
| * unregister. This should not result in wasted space |
| * in the SAL xp_addr_region table because we should |
| * get the same page for remote_act_amos_pa after |
| * module reloads and system reboots. |
| */ |
| if (sn_register_xp_addr_region( |
| remote_vars->amos_page_pa, |
| PAGE_SIZE, 1) < 0) { |
| dev_dbg(xpc_part, "partition %d failed to " |
| "register xp_addr region 0x%016lx\n", |
| partid, remote_vars->amos_page_pa); |
| |
| XPC_SET_REASON(part, xpcPhysAddrRegFailed, |
| __LINE__); |
| break; |
| } |
| |
| /* |
| * The remote nasid is valid and available. |
| * Send an interrupt to that nasid to notify |
| * it that we are ready to begin activation. |
| */ |
| dev_dbg(xpc_part, "sending an interrupt to AMO 0x%lx, " |
| "nasid %d, phys_cpuid 0x%x\n", |
| remote_vars->amos_page_pa, |
| remote_vars->act_nasid, |
| remote_vars->act_phys_cpuid); |
| |
| xpc_IPI_send_activate(remote_vars); |
| } |
| } |
| |
| kfree(discovered_nasids); |
| kfree(remote_rp_base); |
| } |
| |
| |
| /* |
| * Given a partid, get the nasids owned by that partition from the |
| * remote partition's reserved page. |
| */ |
| enum xpc_retval |
| xpc_initiate_partid_to_nasids(partid_t partid, void *nasid_mask) |
| { |
| struct xpc_partition *part; |
| u64 part_nasid_pa; |
| int bte_res; |
| |
| |
| part = &xpc_partitions[partid]; |
| if (part->remote_rp_pa == 0) { |
| return xpcPartitionDown; |
| } |
| |
| part_nasid_pa = part->remote_rp_pa + |
| (u64) &((struct xpc_rsvd_page *) 0)->part_nasids; |
| |
| bte_res = xp_bte_copy(part_nasid_pa, ia64_tpa((u64) nasid_mask), |
| L1_CACHE_ALIGN(XP_NASID_MASK_BYTES), |
| (BTE_NOTIFY | BTE_WACQUIRE), NULL); |
| |
| return xpc_map_bte_errors(bte_res); |
| } |
| |