| /* |
| * Common interrupt code for 32 and 64 bit |
| */ |
| #include <linux/cpu.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/of.h> |
| #include <linux/seq_file.h> |
| #include <linux/smp.h> |
| #include <linux/ftrace.h> |
| #include <linux/delay.h> |
| #include <linux/export.h> |
| |
| #include <asm/apic.h> |
| #include <asm/io_apic.h> |
| #include <asm/irq.h> |
| #include <asm/idle.h> |
| #include <asm/mce.h> |
| #include <asm/hw_irq.h> |
| |
| atomic_t irq_err_count; |
| |
| /* Function pointer for generic interrupt vector handling */ |
| void (*x86_platform_ipi_callback)(void) = NULL; |
| |
| /* |
| * 'what should we do if we get a hw irq event on an illegal vector'. |
| * each architecture has to answer this themselves. |
| */ |
| void ack_bad_irq(unsigned int irq) |
| { |
| if (printk_ratelimit()) |
| pr_err("unexpected IRQ trap at vector %02x\n", irq); |
| |
| /* |
| * Currently unexpected vectors happen only on SMP and APIC. |
| * We _must_ ack these because every local APIC has only N |
| * irq slots per priority level, and a 'hanging, unacked' IRQ |
| * holds up an irq slot - in excessive cases (when multiple |
| * unexpected vectors occur) that might lock up the APIC |
| * completely. |
| * But only ack when the APIC is enabled -AK |
| */ |
| ack_APIC_irq(); |
| } |
| |
| #define irq_stats(x) (&per_cpu(irq_stat, x)) |
| /* |
| * /proc/interrupts printing for arch specific interrupts |
| */ |
| int arch_show_interrupts(struct seq_file *p, int prec) |
| { |
| int j; |
| |
| seq_printf(p, "%*s: ", prec, "NMI"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->__nmi_count); |
| seq_printf(p, " Non-maskable interrupts\n"); |
| #ifdef CONFIG_X86_LOCAL_APIC |
| seq_printf(p, "%*s: ", prec, "LOC"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs); |
| seq_printf(p, " Local timer interrupts\n"); |
| |
| seq_printf(p, "%*s: ", prec, "SPU"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count); |
| seq_printf(p, " Spurious interrupts\n"); |
| seq_printf(p, "%*s: ", prec, "PMI"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs); |
| seq_printf(p, " Performance monitoring interrupts\n"); |
| seq_printf(p, "%*s: ", prec, "IWI"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs); |
| seq_printf(p, " IRQ work interrupts\n"); |
| seq_printf(p, "%*s: ", prec, "RTR"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count); |
| seq_printf(p, " APIC ICR read retries\n"); |
| #endif |
| if (x86_platform_ipi_callback) { |
| seq_printf(p, "%*s: ", prec, "PLT"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis); |
| seq_printf(p, " Platform interrupts\n"); |
| } |
| #ifdef CONFIG_SMP |
| seq_printf(p, "%*s: ", prec, "RES"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count); |
| seq_printf(p, " Rescheduling interrupts\n"); |
| seq_printf(p, "%*s: ", prec, "CAL"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->irq_call_count); |
| seq_printf(p, " Function call interrupts\n"); |
| seq_printf(p, "%*s: ", prec, "TLB"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count); |
| seq_printf(p, " TLB shootdowns\n"); |
| #endif |
| #ifdef CONFIG_X86_THERMAL_VECTOR |
| seq_printf(p, "%*s: ", prec, "TRM"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count); |
| seq_printf(p, " Thermal event interrupts\n"); |
| #endif |
| #ifdef CONFIG_X86_MCE_THRESHOLD |
| seq_printf(p, "%*s: ", prec, "THR"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count); |
| seq_printf(p, " Threshold APIC interrupts\n"); |
| #endif |
| #ifdef CONFIG_X86_MCE |
| seq_printf(p, "%*s: ", prec, "MCE"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", per_cpu(mce_exception_count, j)); |
| seq_printf(p, " Machine check exceptions\n"); |
| seq_printf(p, "%*s: ", prec, "MCP"); |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", per_cpu(mce_poll_count, j)); |
| seq_printf(p, " Machine check polls\n"); |
| #endif |
| seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count)); |
| #if defined(CONFIG_X86_IO_APIC) |
| seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count)); |
| #endif |
| return 0; |
| } |
| |
| /* |
| * /proc/stat helpers |
| */ |
| u64 arch_irq_stat_cpu(unsigned int cpu) |
| { |
| u64 sum = irq_stats(cpu)->__nmi_count; |
| |
| #ifdef CONFIG_X86_LOCAL_APIC |
| sum += irq_stats(cpu)->apic_timer_irqs; |
| sum += irq_stats(cpu)->irq_spurious_count; |
| sum += irq_stats(cpu)->apic_perf_irqs; |
| sum += irq_stats(cpu)->apic_irq_work_irqs; |
| sum += irq_stats(cpu)->icr_read_retry_count; |
| #endif |
| if (x86_platform_ipi_callback) |
| sum += irq_stats(cpu)->x86_platform_ipis; |
| #ifdef CONFIG_SMP |
| sum += irq_stats(cpu)->irq_resched_count; |
| sum += irq_stats(cpu)->irq_call_count; |
| sum += irq_stats(cpu)->irq_tlb_count; |
| #endif |
| #ifdef CONFIG_X86_THERMAL_VECTOR |
| sum += irq_stats(cpu)->irq_thermal_count; |
| #endif |
| #ifdef CONFIG_X86_MCE_THRESHOLD |
| sum += irq_stats(cpu)->irq_threshold_count; |
| #endif |
| #ifdef CONFIG_X86_MCE |
| sum += per_cpu(mce_exception_count, cpu); |
| sum += per_cpu(mce_poll_count, cpu); |
| #endif |
| return sum; |
| } |
| |
| u64 arch_irq_stat(void) |
| { |
| u64 sum = atomic_read(&irq_err_count); |
| |
| #ifdef CONFIG_X86_IO_APIC |
| sum += atomic_read(&irq_mis_count); |
| #endif |
| return sum; |
| } |
| |
| |
| /* |
| * do_IRQ handles all normal device IRQ's (the special |
| * SMP cross-CPU interrupts have their own specific |
| * handlers). |
| */ |
| unsigned int __irq_entry do_IRQ(struct pt_regs *regs) |
| { |
| struct pt_regs *old_regs = set_irq_regs(regs); |
| |
| /* high bit used in ret_from_ code */ |
| unsigned vector = ~regs->orig_ax; |
| unsigned irq; |
| |
| irq_enter(); |
| exit_idle(); |
| |
| irq = __this_cpu_read(vector_irq[vector]); |
| |
| if (!handle_irq(irq, regs)) { |
| ack_APIC_irq(); |
| |
| if (printk_ratelimit()) |
| pr_emerg("%s: %d.%d No irq handler for vector (irq %d)\n", |
| __func__, smp_processor_id(), vector, irq); |
| } |
| |
| irq_exit(); |
| |
| set_irq_regs(old_regs); |
| return 1; |
| } |
| |
| /* |
| * Handler for X86_PLATFORM_IPI_VECTOR. |
| */ |
| void smp_x86_platform_ipi(struct pt_regs *regs) |
| { |
| struct pt_regs *old_regs = set_irq_regs(regs); |
| |
| ack_APIC_irq(); |
| |
| irq_enter(); |
| |
| exit_idle(); |
| |
| inc_irq_stat(x86_platform_ipis); |
| |
| if (x86_platform_ipi_callback) |
| x86_platform_ipi_callback(); |
| |
| irq_exit(); |
| |
| set_irq_regs(old_regs); |
| } |
| |
| EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq); |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| /* A cpu has been removed from cpu_online_mask. Reset irq affinities. */ |
| void fixup_irqs(void) |
| { |
| unsigned int irq, vector; |
| static int warned; |
| struct irq_desc *desc; |
| struct irq_data *data; |
| struct irq_chip *chip; |
| |
| for_each_irq_desc(irq, desc) { |
| int break_affinity = 0; |
| int set_affinity = 1; |
| const struct cpumask *affinity; |
| |
| if (!desc) |
| continue; |
| if (irq == 2) |
| continue; |
| |
| /* interrupt's are disabled at this point */ |
| raw_spin_lock(&desc->lock); |
| |
| data = irq_desc_get_irq_data(desc); |
| affinity = data->affinity; |
| if (!irq_has_action(irq) || irqd_is_per_cpu(data) || |
| cpumask_subset(affinity, cpu_online_mask)) { |
| raw_spin_unlock(&desc->lock); |
| continue; |
| } |
| |
| /* |
| * Complete the irq move. This cpu is going down and for |
| * non intr-remapping case, we can't wait till this interrupt |
| * arrives at this cpu before completing the irq move. |
| */ |
| irq_force_complete_move(irq); |
| |
| if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) { |
| break_affinity = 1; |
| affinity = cpu_all_mask; |
| } |
| |
| chip = irq_data_get_irq_chip(data); |
| if (!irqd_can_move_in_process_context(data) && chip->irq_mask) |
| chip->irq_mask(data); |
| |
| if (chip->irq_set_affinity) |
| chip->irq_set_affinity(data, affinity, true); |
| else if (!(warned++)) |
| set_affinity = 0; |
| |
| if (!irqd_can_move_in_process_context(data) && |
| !irqd_irq_disabled(data) && chip->irq_unmask) |
| chip->irq_unmask(data); |
| |
| raw_spin_unlock(&desc->lock); |
| |
| if (break_affinity && set_affinity) |
| printk("Broke affinity for irq %i\n", irq); |
| else if (!set_affinity) |
| printk("Cannot set affinity for irq %i\n", irq); |
| } |
| |
| /* |
| * We can remove mdelay() and then send spuriuous interrupts to |
| * new cpu targets for all the irqs that were handled previously by |
| * this cpu. While it works, I have seen spurious interrupt messages |
| * (nothing wrong but still...). |
| * |
| * So for now, retain mdelay(1) and check the IRR and then send those |
| * interrupts to new targets as this cpu is already offlined... |
| */ |
| mdelay(1); |
| |
| for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { |
| unsigned int irr; |
| |
| if (__this_cpu_read(vector_irq[vector]) < 0) |
| continue; |
| |
| irr = apic_read(APIC_IRR + (vector / 32 * 0x10)); |
| if (irr & (1 << (vector % 32))) { |
| irq = __this_cpu_read(vector_irq[vector]); |
| |
| desc = irq_to_desc(irq); |
| data = irq_desc_get_irq_data(desc); |
| chip = irq_data_get_irq_chip(data); |
| raw_spin_lock(&desc->lock); |
| if (chip->irq_retrigger) |
| chip->irq_retrigger(data); |
| raw_spin_unlock(&desc->lock); |
| } |
| } |
| } |
| #endif |