| #ifndef _ASM_IA64_BITOPS_H |
| #define _ASM_IA64_BITOPS_H |
| |
| /* |
| * Copyright (C) 1998-2003 Hewlett-Packard Co |
| * David Mosberger-Tang <davidm@hpl.hp.com> |
| * |
| * 02/06/02 find_next_bit() and find_first_bit() added from Erich Focht's ia64 O(1) |
| * scheduler patch |
| */ |
| |
| #include <linux/compiler.h> |
| #include <linux/types.h> |
| #include <asm/bitops.h> |
| #include <asm/intrinsics.h> |
| |
| /** |
| * set_bit - Atomically set a bit in memory |
| * @nr: the bit to set |
| * @addr: the address to start counting from |
| * |
| * This function is atomic and may not be reordered. See __set_bit() |
| * if you do not require the atomic guarantees. |
| * Note that @nr may be almost arbitrarily large; this function is not |
| * restricted to acting on a single-word quantity. |
| * |
| * The address must be (at least) "long" aligned. |
| * Note that there are driver (e.g., eepro100) which use these operations to operate on |
| * hw-defined data-structures, so we can't easily change these operations to force a |
| * bigger alignment. |
| * |
| * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). |
| */ |
| static __inline__ void |
| set_bit (int nr, volatile void *addr) |
| { |
| __u32 bit, old, new; |
| volatile __u32 *m; |
| CMPXCHG_BUGCHECK_DECL |
| |
| m = (volatile __u32 *) addr + (nr >> 5); |
| bit = 1 << (nr & 31); |
| do { |
| CMPXCHG_BUGCHECK(m); |
| old = *m; |
| new = old | bit; |
| } while (cmpxchg_acq(m, old, new) != old); |
| } |
| |
| /** |
| * __set_bit - Set a bit in memory |
| * @nr: the bit to set |
| * @addr: the address to start counting from |
| * |
| * Unlike set_bit(), this function is non-atomic and may be reordered. |
| * If it's called on the same region of memory simultaneously, the effect |
| * may be that only one operation succeeds. |
| */ |
| static __inline__ void |
| __set_bit (int nr, volatile void *addr) |
| { |
| *((__u32 *) addr + (nr >> 5)) |= (1 << (nr & 31)); |
| } |
| |
| /* |
| * clear_bit() has "acquire" semantics. |
| */ |
| #define smp_mb__before_clear_bit() smp_mb() |
| #define smp_mb__after_clear_bit() do { /* skip */; } while (0) |
| |
| /** |
| * clear_bit - Clears a bit in memory |
| * @nr: Bit to clear |
| * @addr: Address to start counting from |
| * |
| * clear_bit() is atomic and may not be reordered. However, it does |
| * not contain a memory barrier, so if it is used for locking purposes, |
| * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() |
| * in order to ensure changes are visible on other processors. |
| */ |
| static __inline__ void |
| clear_bit (int nr, volatile void *addr) |
| { |
| __u32 mask, old, new; |
| volatile __u32 *m; |
| CMPXCHG_BUGCHECK_DECL |
| |
| m = (volatile __u32 *) addr + (nr >> 5); |
| mask = ~(1 << (nr & 31)); |
| do { |
| CMPXCHG_BUGCHECK(m); |
| old = *m; |
| new = old & mask; |
| } while (cmpxchg_acq(m, old, new) != old); |
| } |
| |
| /** |
| * __clear_bit - Clears a bit in memory (non-atomic version) |
| */ |
| static __inline__ void |
| __clear_bit (int nr, volatile void *addr) |
| { |
| volatile __u32 *p = (__u32 *) addr + (nr >> 5); |
| __u32 m = 1 << (nr & 31); |
| *p &= ~m; |
| } |
| |
| /** |
| * change_bit - Toggle a bit in memory |
| * @nr: Bit to clear |
| * @addr: Address to start counting from |
| * |
| * change_bit() is atomic and may not be reordered. |
| * Note that @nr may be almost arbitrarily large; this function is not |
| * restricted to acting on a single-word quantity. |
| */ |
| static __inline__ void |
| change_bit (int nr, volatile void *addr) |
| { |
| __u32 bit, old, new; |
| volatile __u32 *m; |
| CMPXCHG_BUGCHECK_DECL |
| |
| m = (volatile __u32 *) addr + (nr >> 5); |
| bit = (1 << (nr & 31)); |
| do { |
| CMPXCHG_BUGCHECK(m); |
| old = *m; |
| new = old ^ bit; |
| } while (cmpxchg_acq(m, old, new) != old); |
| } |
| |
| /** |
| * __change_bit - Toggle a bit in memory |
| * @nr: the bit to set |
| * @addr: the address to start counting from |
| * |
| * Unlike change_bit(), this function is non-atomic and may be reordered. |
| * If it's called on the same region of memory simultaneously, the effect |
| * may be that only one operation succeeds. |
| */ |
| static __inline__ void |
| __change_bit (int nr, volatile void *addr) |
| { |
| *((__u32 *) addr + (nr >> 5)) ^= (1 << (nr & 31)); |
| } |
| |
| /** |
| * test_and_set_bit - Set a bit and return its old value |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation is atomic and cannot be reordered. |
| * It also implies a memory barrier. |
| */ |
| static __inline__ int |
| test_and_set_bit (int nr, volatile void *addr) |
| { |
| __u32 bit, old, new; |
| volatile __u32 *m; |
| CMPXCHG_BUGCHECK_DECL |
| |
| m = (volatile __u32 *) addr + (nr >> 5); |
| bit = 1 << (nr & 31); |
| do { |
| CMPXCHG_BUGCHECK(m); |
| old = *m; |
| new = old | bit; |
| } while (cmpxchg_acq(m, old, new) != old); |
| return (old & bit) != 0; |
| } |
| |
| /** |
| * __test_and_set_bit - Set a bit and return its old value |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation is non-atomic and can be reordered. |
| * If two examples of this operation race, one can appear to succeed |
| * but actually fail. You must protect multiple accesses with a lock. |
| */ |
| static __inline__ int |
| __test_and_set_bit (int nr, volatile void *addr) |
| { |
| __u32 *p = (__u32 *) addr + (nr >> 5); |
| __u32 m = 1 << (nr & 31); |
| int oldbitset = (*p & m) != 0; |
| |
| *p |= m; |
| return oldbitset; |
| } |
| |
| /** |
| * test_and_clear_bit - Clear a bit and return its old value |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation is atomic and cannot be reordered. |
| * It also implies a memory barrier. |
| */ |
| static __inline__ int |
| test_and_clear_bit (int nr, volatile void *addr) |
| { |
| __u32 mask, old, new; |
| volatile __u32 *m; |
| CMPXCHG_BUGCHECK_DECL |
| |
| m = (volatile __u32 *) addr + (nr >> 5); |
| mask = ~(1 << (nr & 31)); |
| do { |
| CMPXCHG_BUGCHECK(m); |
| old = *m; |
| new = old & mask; |
| } while (cmpxchg_acq(m, old, new) != old); |
| return (old & ~mask) != 0; |
| } |
| |
| /** |
| * __test_and_clear_bit - Clear a bit and return its old value |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation is non-atomic and can be reordered. |
| * If two examples of this operation race, one can appear to succeed |
| * but actually fail. You must protect multiple accesses with a lock. |
| */ |
| static __inline__ int |
| __test_and_clear_bit(int nr, volatile void * addr) |
| { |
| __u32 *p = (__u32 *) addr + (nr >> 5); |
| __u32 m = 1 << (nr & 31); |
| int oldbitset = *p & m; |
| |
| *p &= ~m; |
| return oldbitset; |
| } |
| |
| /** |
| * test_and_change_bit - Change a bit and return its old value |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation is atomic and cannot be reordered. |
| * It also implies a memory barrier. |
| */ |
| static __inline__ int |
| test_and_change_bit (int nr, volatile void *addr) |
| { |
| __u32 bit, old, new; |
| volatile __u32 *m; |
| CMPXCHG_BUGCHECK_DECL |
| |
| m = (volatile __u32 *) addr + (nr >> 5); |
| bit = (1 << (nr & 31)); |
| do { |
| CMPXCHG_BUGCHECK(m); |
| old = *m; |
| new = old ^ bit; |
| } while (cmpxchg_acq(m, old, new) != old); |
| return (old & bit) != 0; |
| } |
| |
| /* |
| * WARNING: non atomic version. |
| */ |
| static __inline__ int |
| __test_and_change_bit (int nr, void *addr) |
| { |
| __u32 old, bit = (1 << (nr & 31)); |
| __u32 *m = (__u32 *) addr + (nr >> 5); |
| |
| old = *m; |
| *m = old ^ bit; |
| return (old & bit) != 0; |
| } |
| |
| static __inline__ int |
| test_bit (int nr, const volatile void *addr) |
| { |
| return 1 & (((const volatile __u32 *) addr)[nr >> 5] >> (nr & 31)); |
| } |
| |
| /** |
| * ffz - find the first zero bit in a long word |
| * @x: The long word to find the bit in |
| * |
| * Returns the bit-number (0..63) of the first (least significant) zero bit. Undefined if |
| * no zero exists, so code should check against ~0UL first... |
| */ |
| static inline unsigned long |
| ffz (unsigned long x) |
| { |
| unsigned long result; |
| |
| result = ia64_popcnt(x & (~x - 1)); |
| return result; |
| } |
| |
| /** |
| * __ffs - find first bit in word. |
| * @x: The word to search |
| * |
| * Undefined if no bit exists, so code should check against 0 first. |
| */ |
| static __inline__ unsigned long |
| __ffs (unsigned long x) |
| { |
| unsigned long result; |
| |
| result = ia64_popcnt((x-1) & ~x); |
| return result; |
| } |
| |
| #ifdef __KERNEL__ |
| |
| /* |
| * find_last_zero_bit - find the last zero bit in a 64 bit quantity |
| * @x: The value to search |
| */ |
| static inline unsigned long |
| ia64_fls (unsigned long x) |
| { |
| long double d = x; |
| long exp; |
| |
| exp = ia64_getf_exp(d); |
| return exp - 0xffff; |
| } |
| |
| static inline int |
| fls (int x) |
| { |
| return ia64_fls((unsigned int) x); |
| } |
| |
| /* |
| * ffs: find first bit set. This is defined the same way as the libc and compiler builtin |
| * ffs routines, therefore differs in spirit from the above ffz (man ffs): it operates on |
| * "int" values only and the result value is the bit number + 1. ffs(0) is defined to |
| * return zero. |
| */ |
| #define ffs(x) __builtin_ffs(x) |
| |
| /* |
| * hweightN: returns the hamming weight (i.e. the number |
| * of bits set) of a N-bit word |
| */ |
| static __inline__ unsigned long |
| hweight64 (unsigned long x) |
| { |
| unsigned long result; |
| result = ia64_popcnt(x); |
| return result; |
| } |
| |
| #define hweight32(x) (unsigned int) hweight64((x) & 0xfffffffful) |
| #define hweight16(x) (unsigned int) hweight64((x) & 0xfffful) |
| #define hweight8(x) (unsigned int) hweight64((x) & 0xfful) |
| |
| #endif /* __KERNEL__ */ |
| |
| extern int __find_next_zero_bit (const void *addr, unsigned long size, |
| unsigned long offset); |
| extern int __find_next_bit(const void *addr, unsigned long size, |
| unsigned long offset); |
| |
| #define find_next_zero_bit(addr, size, offset) \ |
| __find_next_zero_bit((addr), (size), (offset)) |
| #define find_next_bit(addr, size, offset) \ |
| __find_next_bit((addr), (size), (offset)) |
| |
| /* |
| * The optimizer actually does good code for this case.. |
| */ |
| #define find_first_zero_bit(addr, size) find_next_zero_bit((addr), (size), 0) |
| |
| #define find_first_bit(addr, size) find_next_bit((addr), (size), 0) |
| |
| #ifdef __KERNEL__ |
| |
| #define __clear_bit(nr, addr) clear_bit(nr, addr) |
| |
| #define ext2_set_bit test_and_set_bit |
| #define ext2_set_bit_atomic(l,n,a) test_and_set_bit(n,a) |
| #define ext2_clear_bit test_and_clear_bit |
| #define ext2_clear_bit_atomic(l,n,a) test_and_clear_bit(n,a) |
| #define ext2_test_bit test_bit |
| #define ext2_find_first_zero_bit find_first_zero_bit |
| #define ext2_find_next_zero_bit find_next_zero_bit |
| |
| /* Bitmap functions for the minix filesystem. */ |
| #define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr) |
| #define minix_set_bit(nr,addr) set_bit(nr,addr) |
| #define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr) |
| #define minix_test_bit(nr,addr) test_bit(nr,addr) |
| #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) |
| |
| static inline int |
| sched_find_first_bit (unsigned long *b) |
| { |
| if (unlikely(b[0])) |
| return __ffs(b[0]); |
| if (unlikely(b[1])) |
| return 64 + __ffs(b[1]); |
| return __ffs(b[2]) + 128; |
| } |
| |
| #endif /* __KERNEL__ */ |
| |
| #endif /* _ASM_IA64_BITOPS_H */ |