| #ifndef _ASM_GENERIC_PGTABLE_H |
| #define _ASM_GENERIC_PGTABLE_H |
| |
| #ifndef __HAVE_ARCH_PTEP_ESTABLISH |
| /* |
| * Establish a new mapping: |
| * - flush the old one |
| * - update the page tables |
| * - inform the TLB about the new one |
| * |
| * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock. |
| * |
| * Note: the old pte is known to not be writable, so we don't need to |
| * worry about dirty bits etc getting lost. |
| */ |
| #ifndef __HAVE_ARCH_SET_PTE_ATOMIC |
| #define ptep_establish(__vma, __address, __ptep, __entry) \ |
| do { \ |
| set_pte_at((__vma)->vm_mm, (__address), __ptep, __entry); \ |
| flush_tlb_page(__vma, __address); \ |
| } while (0) |
| #else /* __HAVE_ARCH_SET_PTE_ATOMIC */ |
| #define ptep_establish(__vma, __address, __ptep, __entry) \ |
| do { \ |
| set_pte_atomic(__ptep, __entry); \ |
| flush_tlb_page(__vma, __address); \ |
| } while (0) |
| #endif /* __HAVE_ARCH_SET_PTE_ATOMIC */ |
| #endif |
| |
| #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS |
| /* |
| * Largely same as above, but only sets the access flags (dirty, |
| * accessed, and writable). Furthermore, we know it always gets set |
| * to a "more permissive" setting, which allows most architectures |
| * to optimize this. |
| */ |
| #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \ |
| do { \ |
| set_pte_at((__vma)->vm_mm, (__address), __ptep, __entry); \ |
| flush_tlb_page(__vma, __address); \ |
| } while (0) |
| #endif |
| |
| #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG |
| #define ptep_test_and_clear_young(__vma, __address, __ptep) \ |
| ({ \ |
| pte_t __pte = *(__ptep); \ |
| int r = 1; \ |
| if (!pte_young(__pte)) \ |
| r = 0; \ |
| else \ |
| set_pte_at((__vma)->vm_mm, (__address), \ |
| (__ptep), pte_mkold(__pte)); \ |
| r; \ |
| }) |
| #endif |
| |
| #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH |
| #define ptep_clear_flush_young(__vma, __address, __ptep) \ |
| ({ \ |
| int __young; \ |
| __young = ptep_test_and_clear_young(__vma, __address, __ptep); \ |
| if (__young) \ |
| flush_tlb_page(__vma, __address); \ |
| __young; \ |
| }) |
| #endif |
| |
| #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY |
| #define ptep_test_and_clear_dirty(__vma, __address, __ptep) \ |
| ({ \ |
| pte_t __pte = *__ptep; \ |
| int r = 1; \ |
| if (!pte_dirty(__pte)) \ |
| r = 0; \ |
| else \ |
| set_pte_at((__vma)->vm_mm, (__address), (__ptep), \ |
| pte_mkclean(__pte)); \ |
| r; \ |
| }) |
| #endif |
| |
| #ifndef __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH |
| #define ptep_clear_flush_dirty(__vma, __address, __ptep) \ |
| ({ \ |
| int __dirty; \ |
| __dirty = ptep_test_and_clear_dirty(__vma, __address, __ptep); \ |
| if (__dirty) \ |
| flush_tlb_page(__vma, __address); \ |
| __dirty; \ |
| }) |
| #endif |
| |
| #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR |
| #define ptep_get_and_clear(__mm, __address, __ptep) \ |
| ({ \ |
| pte_t __pte = *(__ptep); \ |
| pte_clear((__mm), (__address), (__ptep)); \ |
| __pte; \ |
| }) |
| #endif |
| |
| #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH |
| #define ptep_clear_flush(__vma, __address, __ptep) \ |
| ({ \ |
| pte_t __pte; \ |
| __pte = ptep_get_and_clear((__vma)->vm_mm, __address, __ptep); \ |
| flush_tlb_page(__vma, __address); \ |
| __pte; \ |
| }) |
| #endif |
| |
| #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT |
| static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) |
| { |
| pte_t old_pte = *ptep; |
| set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); |
| } |
| #endif |
| |
| #ifndef __HAVE_ARCH_PTE_SAME |
| #define pte_same(A,B) (pte_val(A) == pte_val(B)) |
| #endif |
| |
| #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY |
| #define page_test_and_clear_dirty(page) (0) |
| #endif |
| |
| #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG |
| #define page_test_and_clear_young(page) (0) |
| #endif |
| |
| #ifndef __HAVE_ARCH_PGD_OFFSET_GATE |
| #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) |
| #endif |
| |
| #ifndef __HAVE_ARCH_LAZY_MMU_PROT_UPDATE |
| #define lazy_mmu_prot_update(pte) do { } while (0) |
| #endif |
| |
| /* |
| * When walking page tables, get the address of the next boundary, or |
| * the end address of the range if that comes earlier. Although end might |
| * wrap to 0 only in clear_page_range, __boundary may wrap to 0 throughout. |
| */ |
| |
| #ifndef pgd_addr_end |
| #define pgd_addr_end(addr, end) \ |
| ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ |
| (__boundary - 1 < (end) - 1)? __boundary: (end); \ |
| }) |
| #endif |
| |
| #ifndef pud_addr_end |
| #define pud_addr_end(addr, end) \ |
| ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ |
| (__boundary - 1 < (end) - 1)? __boundary: (end); \ |
| }) |
| #endif |
| |
| #ifndef pmd_addr_end |
| #define pmd_addr_end(addr, end) \ |
| ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ |
| (__boundary - 1 < (end) - 1)? __boundary: (end); \ |
| }) |
| #endif |
| |
| #ifndef __ASSEMBLY__ |
| /* |
| * When walking page tables, we usually want to skip any p?d_none entries; |
| * and any p?d_bad entries - reporting the error before resetting to none. |
| * Do the tests inline, but report and clear the bad entry in mm/memory.c. |
| */ |
| void pgd_clear_bad(pgd_t *); |
| void pud_clear_bad(pud_t *); |
| void pmd_clear_bad(pmd_t *); |
| |
| static inline int pgd_none_or_clear_bad(pgd_t *pgd) |
| { |
| if (pgd_none(*pgd)) |
| return 1; |
| if (unlikely(pgd_bad(*pgd))) { |
| pgd_clear_bad(pgd); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static inline int pud_none_or_clear_bad(pud_t *pud) |
| { |
| if (pud_none(*pud)) |
| return 1; |
| if (unlikely(pud_bad(*pud))) { |
| pud_clear_bad(pud); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static inline int pmd_none_or_clear_bad(pmd_t *pmd) |
| { |
| if (pmd_none(*pmd)) |
| return 1; |
| if (unlikely(pmd_bad(*pmd))) { |
| pmd_clear_bad(pmd); |
| return 1; |
| } |
| return 0; |
| } |
| #endif /* !__ASSEMBLY__ */ |
| |
| #endif /* _ASM_GENERIC_PGTABLE_H */ |