| /* |
| * Copyright (C) 2003 Christophe Saout <christophe@saout.de> |
| * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org> |
| * |
| * This file is released under the GPL. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/bio.h> |
| #include <linux/blkdev.h> |
| #include <linux/mempool.h> |
| #include <linux/slab.h> |
| #include <linux/crypto.h> |
| #include <linux/workqueue.h> |
| #include <asm/atomic.h> |
| #include <asm/scatterlist.h> |
| #include <asm/page.h> |
| |
| #include "dm.h" |
| |
| #define PFX "crypt: " |
| |
| /* |
| * per bio private data |
| */ |
| struct crypt_io { |
| struct dm_target *target; |
| struct bio *bio; |
| struct bio *first_clone; |
| struct work_struct work; |
| atomic_t pending; |
| int error; |
| }; |
| |
| /* |
| * context holding the current state of a multi-part conversion |
| */ |
| struct convert_context { |
| struct bio *bio_in; |
| struct bio *bio_out; |
| unsigned int offset_in; |
| unsigned int offset_out; |
| unsigned int idx_in; |
| unsigned int idx_out; |
| sector_t sector; |
| int write; |
| }; |
| |
| struct crypt_config; |
| |
| struct crypt_iv_operations { |
| int (*ctr)(struct crypt_config *cc, struct dm_target *ti, |
| const char *opts); |
| void (*dtr)(struct crypt_config *cc); |
| const char *(*status)(struct crypt_config *cc); |
| int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector); |
| }; |
| |
| /* |
| * Crypt: maps a linear range of a block device |
| * and encrypts / decrypts at the same time. |
| */ |
| struct crypt_config { |
| struct dm_dev *dev; |
| sector_t start; |
| |
| /* |
| * pool for per bio private data and |
| * for encryption buffer pages |
| */ |
| mempool_t *io_pool; |
| mempool_t *page_pool; |
| |
| /* |
| * crypto related data |
| */ |
| struct crypt_iv_operations *iv_gen_ops; |
| char *iv_mode; |
| void *iv_gen_private; |
| sector_t iv_offset; |
| unsigned int iv_size; |
| |
| struct crypto_tfm *tfm; |
| unsigned int key_size; |
| u8 key[0]; |
| }; |
| |
| #define MIN_IOS 256 |
| #define MIN_POOL_PAGES 32 |
| #define MIN_BIO_PAGES 8 |
| |
| static kmem_cache_t *_crypt_io_pool; |
| |
| /* |
| * Mempool alloc and free functions for the page |
| */ |
| static void *mempool_alloc_page(unsigned int __nocast gfp_mask, void *data) |
| { |
| return alloc_page(gfp_mask); |
| } |
| |
| static void mempool_free_page(void *page, void *data) |
| { |
| __free_page(page); |
| } |
| |
| |
| /* |
| * Different IV generation algorithms: |
| * |
| * plain: the initial vector is the 32-bit low-endian version of the sector |
| * number, padded with zeros if neccessary. |
| * |
| * ess_iv: "encrypted sector|salt initial vector", the sector number is |
| * encrypted with the bulk cipher using a salt as key. The salt |
| * should be derived from the bulk cipher's key via hashing. |
| * |
| * plumb: unimplemented, see: |
| * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454 |
| */ |
| |
| static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector) |
| { |
| memset(iv, 0, cc->iv_size); |
| *(u32 *)iv = cpu_to_le32(sector & 0xffffffff); |
| |
| return 0; |
| } |
| |
| static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti, |
| const char *opts) |
| { |
| struct crypto_tfm *essiv_tfm; |
| struct crypto_tfm *hash_tfm; |
| struct scatterlist sg; |
| unsigned int saltsize; |
| u8 *salt; |
| |
| if (opts == NULL) { |
| ti->error = PFX "Digest algorithm missing for ESSIV mode"; |
| return -EINVAL; |
| } |
| |
| /* Hash the cipher key with the given hash algorithm */ |
| hash_tfm = crypto_alloc_tfm(opts, 0); |
| if (hash_tfm == NULL) { |
| ti->error = PFX "Error initializing ESSIV hash"; |
| return -EINVAL; |
| } |
| |
| if (crypto_tfm_alg_type(hash_tfm) != CRYPTO_ALG_TYPE_DIGEST) { |
| ti->error = PFX "Expected digest algorithm for ESSIV hash"; |
| crypto_free_tfm(hash_tfm); |
| return -EINVAL; |
| } |
| |
| saltsize = crypto_tfm_alg_digestsize(hash_tfm); |
| salt = kmalloc(saltsize, GFP_KERNEL); |
| if (salt == NULL) { |
| ti->error = PFX "Error kmallocing salt storage in ESSIV"; |
| crypto_free_tfm(hash_tfm); |
| return -ENOMEM; |
| } |
| |
| sg.page = virt_to_page(cc->key); |
| sg.offset = offset_in_page(cc->key); |
| sg.length = cc->key_size; |
| crypto_digest_digest(hash_tfm, &sg, 1, salt); |
| crypto_free_tfm(hash_tfm); |
| |
| /* Setup the essiv_tfm with the given salt */ |
| essiv_tfm = crypto_alloc_tfm(crypto_tfm_alg_name(cc->tfm), |
| CRYPTO_TFM_MODE_ECB); |
| if (essiv_tfm == NULL) { |
| ti->error = PFX "Error allocating crypto tfm for ESSIV"; |
| kfree(salt); |
| return -EINVAL; |
| } |
| if (crypto_tfm_alg_blocksize(essiv_tfm) |
| != crypto_tfm_alg_ivsize(cc->tfm)) { |
| ti->error = PFX "Block size of ESSIV cipher does " |
| "not match IV size of block cipher"; |
| crypto_free_tfm(essiv_tfm); |
| kfree(salt); |
| return -EINVAL; |
| } |
| if (crypto_cipher_setkey(essiv_tfm, salt, saltsize) < 0) { |
| ti->error = PFX "Failed to set key for ESSIV cipher"; |
| crypto_free_tfm(essiv_tfm); |
| kfree(salt); |
| return -EINVAL; |
| } |
| kfree(salt); |
| |
| cc->iv_gen_private = (void *)essiv_tfm; |
| return 0; |
| } |
| |
| static void crypt_iv_essiv_dtr(struct crypt_config *cc) |
| { |
| crypto_free_tfm((struct crypto_tfm *)cc->iv_gen_private); |
| cc->iv_gen_private = NULL; |
| } |
| |
| static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector) |
| { |
| struct scatterlist sg = { NULL, }; |
| |
| memset(iv, 0, cc->iv_size); |
| *(u64 *)iv = cpu_to_le64(sector); |
| |
| sg.page = virt_to_page(iv); |
| sg.offset = offset_in_page(iv); |
| sg.length = cc->iv_size; |
| crypto_cipher_encrypt((struct crypto_tfm *)cc->iv_gen_private, |
| &sg, &sg, cc->iv_size); |
| |
| return 0; |
| } |
| |
| static struct crypt_iv_operations crypt_iv_plain_ops = { |
| .generator = crypt_iv_plain_gen |
| }; |
| |
| static struct crypt_iv_operations crypt_iv_essiv_ops = { |
| .ctr = crypt_iv_essiv_ctr, |
| .dtr = crypt_iv_essiv_dtr, |
| .generator = crypt_iv_essiv_gen |
| }; |
| |
| |
| static inline int |
| crypt_convert_scatterlist(struct crypt_config *cc, struct scatterlist *out, |
| struct scatterlist *in, unsigned int length, |
| int write, sector_t sector) |
| { |
| u8 iv[cc->iv_size]; |
| int r; |
| |
| if (cc->iv_gen_ops) { |
| r = cc->iv_gen_ops->generator(cc, iv, sector); |
| if (r < 0) |
| return r; |
| |
| if (write) |
| r = crypto_cipher_encrypt_iv(cc->tfm, out, in, length, iv); |
| else |
| r = crypto_cipher_decrypt_iv(cc->tfm, out, in, length, iv); |
| } else { |
| if (write) |
| r = crypto_cipher_encrypt(cc->tfm, out, in, length); |
| else |
| r = crypto_cipher_decrypt(cc->tfm, out, in, length); |
| } |
| |
| return r; |
| } |
| |
| static void |
| crypt_convert_init(struct crypt_config *cc, struct convert_context *ctx, |
| struct bio *bio_out, struct bio *bio_in, |
| sector_t sector, int write) |
| { |
| ctx->bio_in = bio_in; |
| ctx->bio_out = bio_out; |
| ctx->offset_in = 0; |
| ctx->offset_out = 0; |
| ctx->idx_in = bio_in ? bio_in->bi_idx : 0; |
| ctx->idx_out = bio_out ? bio_out->bi_idx : 0; |
| ctx->sector = sector + cc->iv_offset; |
| ctx->write = write; |
| } |
| |
| /* |
| * Encrypt / decrypt data from one bio to another one (can be the same one) |
| */ |
| static int crypt_convert(struct crypt_config *cc, |
| struct convert_context *ctx) |
| { |
| int r = 0; |
| |
| while(ctx->idx_in < ctx->bio_in->bi_vcnt && |
| ctx->idx_out < ctx->bio_out->bi_vcnt) { |
| struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in); |
| struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out); |
| struct scatterlist sg_in = { |
| .page = bv_in->bv_page, |
| .offset = bv_in->bv_offset + ctx->offset_in, |
| .length = 1 << SECTOR_SHIFT |
| }; |
| struct scatterlist sg_out = { |
| .page = bv_out->bv_page, |
| .offset = bv_out->bv_offset + ctx->offset_out, |
| .length = 1 << SECTOR_SHIFT |
| }; |
| |
| ctx->offset_in += sg_in.length; |
| if (ctx->offset_in >= bv_in->bv_len) { |
| ctx->offset_in = 0; |
| ctx->idx_in++; |
| } |
| |
| ctx->offset_out += sg_out.length; |
| if (ctx->offset_out >= bv_out->bv_len) { |
| ctx->offset_out = 0; |
| ctx->idx_out++; |
| } |
| |
| r = crypt_convert_scatterlist(cc, &sg_out, &sg_in, sg_in.length, |
| ctx->write, ctx->sector); |
| if (r < 0) |
| break; |
| |
| ctx->sector++; |
| } |
| |
| return r; |
| } |
| |
| /* |
| * Generate a new unfragmented bio with the given size |
| * This should never violate the device limitations |
| * May return a smaller bio when running out of pages |
| */ |
| static struct bio * |
| crypt_alloc_buffer(struct crypt_config *cc, unsigned int size, |
| struct bio *base_bio, unsigned int *bio_vec_idx) |
| { |
| struct bio *bio; |
| unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| int gfp_mask = GFP_NOIO | __GFP_HIGHMEM; |
| unsigned long flags = current->flags; |
| unsigned int i; |
| |
| /* |
| * Tell VM to act less aggressively and fail earlier. |
| * This is not necessary but increases throughput. |
| * FIXME: Is this really intelligent? |
| */ |
| current->flags &= ~PF_MEMALLOC; |
| |
| if (base_bio) |
| bio = bio_clone(base_bio, GFP_NOIO); |
| else |
| bio = bio_alloc(GFP_NOIO, nr_iovecs); |
| if (!bio) { |
| if (flags & PF_MEMALLOC) |
| current->flags |= PF_MEMALLOC; |
| return NULL; |
| } |
| |
| /* if the last bio was not complete, continue where that one ended */ |
| bio->bi_idx = *bio_vec_idx; |
| bio->bi_vcnt = *bio_vec_idx; |
| bio->bi_size = 0; |
| bio->bi_flags &= ~(1 << BIO_SEG_VALID); |
| |
| /* bio->bi_idx pages have already been allocated */ |
| size -= bio->bi_idx * PAGE_SIZE; |
| |
| for(i = bio->bi_idx; i < nr_iovecs; i++) { |
| struct bio_vec *bv = bio_iovec_idx(bio, i); |
| |
| bv->bv_page = mempool_alloc(cc->page_pool, gfp_mask); |
| if (!bv->bv_page) |
| break; |
| |
| /* |
| * if additional pages cannot be allocated without waiting, |
| * return a partially allocated bio, the caller will then try |
| * to allocate additional bios while submitting this partial bio |
| */ |
| if ((i - bio->bi_idx) == (MIN_BIO_PAGES - 1)) |
| gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT; |
| |
| bv->bv_offset = 0; |
| if (size > PAGE_SIZE) |
| bv->bv_len = PAGE_SIZE; |
| else |
| bv->bv_len = size; |
| |
| bio->bi_size += bv->bv_len; |
| bio->bi_vcnt++; |
| size -= bv->bv_len; |
| } |
| |
| if (flags & PF_MEMALLOC) |
| current->flags |= PF_MEMALLOC; |
| |
| if (!bio->bi_size) { |
| bio_put(bio); |
| return NULL; |
| } |
| |
| /* |
| * Remember the last bio_vec allocated to be able |
| * to correctly continue after the splitting. |
| */ |
| *bio_vec_idx = bio->bi_vcnt; |
| |
| return bio; |
| } |
| |
| static void crypt_free_buffer_pages(struct crypt_config *cc, |
| struct bio *bio, unsigned int bytes) |
| { |
| unsigned int i, start, end; |
| struct bio_vec *bv; |
| |
| /* |
| * This is ugly, but Jens Axboe thinks that using bi_idx in the |
| * endio function is too dangerous at the moment, so I calculate the |
| * correct position using bi_vcnt and bi_size. |
| * The bv_offset and bv_len fields might already be modified but we |
| * know that we always allocated whole pages. |
| * A fix to the bi_idx issue in the kernel is in the works, so |
| * we will hopefully be able to revert to the cleaner solution soon. |
| */ |
| i = bio->bi_vcnt - 1; |
| bv = bio_iovec_idx(bio, i); |
| end = (i << PAGE_SHIFT) + (bv->bv_offset + bv->bv_len) - bio->bi_size; |
| start = end - bytes; |
| |
| start >>= PAGE_SHIFT; |
| if (!bio->bi_size) |
| end = bio->bi_vcnt; |
| else |
| end >>= PAGE_SHIFT; |
| |
| for(i = start; i < end; i++) { |
| bv = bio_iovec_idx(bio, i); |
| BUG_ON(!bv->bv_page); |
| mempool_free(bv->bv_page, cc->page_pool); |
| bv->bv_page = NULL; |
| } |
| } |
| |
| /* |
| * One of the bios was finished. Check for completion of |
| * the whole request and correctly clean up the buffer. |
| */ |
| static void dec_pending(struct crypt_io *io, int error) |
| { |
| struct crypt_config *cc = (struct crypt_config *) io->target->private; |
| |
| if (error < 0) |
| io->error = error; |
| |
| if (!atomic_dec_and_test(&io->pending)) |
| return; |
| |
| if (io->first_clone) |
| bio_put(io->first_clone); |
| |
| bio_endio(io->bio, io->bio->bi_size, io->error); |
| |
| mempool_free(io, cc->io_pool); |
| } |
| |
| /* |
| * kcryptd: |
| * |
| * Needed because it would be very unwise to do decryption in an |
| * interrupt context, so bios returning from read requests get |
| * queued here. |
| */ |
| static struct workqueue_struct *_kcryptd_workqueue; |
| |
| static void kcryptd_do_work(void *data) |
| { |
| struct crypt_io *io = (struct crypt_io *) data; |
| struct crypt_config *cc = (struct crypt_config *) io->target->private; |
| struct convert_context ctx; |
| int r; |
| |
| crypt_convert_init(cc, &ctx, io->bio, io->bio, |
| io->bio->bi_sector - io->target->begin, 0); |
| r = crypt_convert(cc, &ctx); |
| |
| dec_pending(io, r); |
| } |
| |
| static void kcryptd_queue_io(struct crypt_io *io) |
| { |
| INIT_WORK(&io->work, kcryptd_do_work, io); |
| queue_work(_kcryptd_workqueue, &io->work); |
| } |
| |
| /* |
| * Decode key from its hex representation |
| */ |
| static int crypt_decode_key(u8 *key, char *hex, unsigned int size) |
| { |
| char buffer[3]; |
| char *endp; |
| unsigned int i; |
| |
| buffer[2] = '\0'; |
| |
| for(i = 0; i < size; i++) { |
| buffer[0] = *hex++; |
| buffer[1] = *hex++; |
| |
| key[i] = (u8)simple_strtoul(buffer, &endp, 16); |
| |
| if (endp != &buffer[2]) |
| return -EINVAL; |
| } |
| |
| if (*hex != '\0') |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /* |
| * Encode key into its hex representation |
| */ |
| static void crypt_encode_key(char *hex, u8 *key, unsigned int size) |
| { |
| unsigned int i; |
| |
| for(i = 0; i < size; i++) { |
| sprintf(hex, "%02x", *key); |
| hex += 2; |
| key++; |
| } |
| } |
| |
| /* |
| * Construct an encryption mapping: |
| * <cipher> <key> <iv_offset> <dev_path> <start> |
| */ |
| static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv) |
| { |
| struct crypt_config *cc; |
| struct crypto_tfm *tfm; |
| char *tmp; |
| char *cipher; |
| char *chainmode; |
| char *ivmode; |
| char *ivopts; |
| unsigned int crypto_flags; |
| unsigned int key_size; |
| |
| if (argc != 5) { |
| ti->error = PFX "Not enough arguments"; |
| return -EINVAL; |
| } |
| |
| tmp = argv[0]; |
| cipher = strsep(&tmp, "-"); |
| chainmode = strsep(&tmp, "-"); |
| ivopts = strsep(&tmp, "-"); |
| ivmode = strsep(&ivopts, ":"); |
| |
| if (tmp) |
| DMWARN(PFX "Unexpected additional cipher options"); |
| |
| key_size = strlen(argv[1]) >> 1; |
| |
| cc = kmalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL); |
| if (cc == NULL) { |
| ti->error = |
| PFX "Cannot allocate transparent encryption context"; |
| return -ENOMEM; |
| } |
| |
| cc->key_size = key_size; |
| if ((!key_size && strcmp(argv[1], "-") != 0) || |
| (key_size && crypt_decode_key(cc->key, argv[1], key_size) < 0)) { |
| ti->error = PFX "Error decoding key"; |
| goto bad1; |
| } |
| |
| /* Compatiblity mode for old dm-crypt cipher strings */ |
| if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) { |
| chainmode = "cbc"; |
| ivmode = "plain"; |
| } |
| |
| /* Choose crypto_flags according to chainmode */ |
| if (strcmp(chainmode, "cbc") == 0) |
| crypto_flags = CRYPTO_TFM_MODE_CBC; |
| else if (strcmp(chainmode, "ecb") == 0) |
| crypto_flags = CRYPTO_TFM_MODE_ECB; |
| else { |
| ti->error = PFX "Unknown chaining mode"; |
| goto bad1; |
| } |
| |
| if (crypto_flags != CRYPTO_TFM_MODE_ECB && !ivmode) { |
| ti->error = PFX "This chaining mode requires an IV mechanism"; |
| goto bad1; |
| } |
| |
| tfm = crypto_alloc_tfm(cipher, crypto_flags); |
| if (!tfm) { |
| ti->error = PFX "Error allocating crypto tfm"; |
| goto bad1; |
| } |
| if (crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER) { |
| ti->error = PFX "Expected cipher algorithm"; |
| goto bad2; |
| } |
| |
| cc->tfm = tfm; |
| |
| /* |
| * Choose ivmode. Valid modes: "plain", "essiv:<esshash>". |
| * See comments at iv code |
| */ |
| |
| if (ivmode == NULL) |
| cc->iv_gen_ops = NULL; |
| else if (strcmp(ivmode, "plain") == 0) |
| cc->iv_gen_ops = &crypt_iv_plain_ops; |
| else if (strcmp(ivmode, "essiv") == 0) |
| cc->iv_gen_ops = &crypt_iv_essiv_ops; |
| else { |
| ti->error = PFX "Invalid IV mode"; |
| goto bad2; |
| } |
| |
| if (cc->iv_gen_ops && cc->iv_gen_ops->ctr && |
| cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0) |
| goto bad2; |
| |
| if (tfm->crt_cipher.cit_decrypt_iv && tfm->crt_cipher.cit_encrypt_iv) |
| /* at least a 64 bit sector number should fit in our buffer */ |
| cc->iv_size = max(crypto_tfm_alg_ivsize(tfm), |
| (unsigned int)(sizeof(u64) / sizeof(u8))); |
| else { |
| cc->iv_size = 0; |
| if (cc->iv_gen_ops) { |
| DMWARN(PFX "Selected cipher does not support IVs"); |
| if (cc->iv_gen_ops->dtr) |
| cc->iv_gen_ops->dtr(cc); |
| cc->iv_gen_ops = NULL; |
| } |
| } |
| |
| cc->io_pool = mempool_create(MIN_IOS, mempool_alloc_slab, |
| mempool_free_slab, _crypt_io_pool); |
| if (!cc->io_pool) { |
| ti->error = PFX "Cannot allocate crypt io mempool"; |
| goto bad3; |
| } |
| |
| cc->page_pool = mempool_create(MIN_POOL_PAGES, mempool_alloc_page, |
| mempool_free_page, NULL); |
| if (!cc->page_pool) { |
| ti->error = PFX "Cannot allocate page mempool"; |
| goto bad4; |
| } |
| |
| if (tfm->crt_cipher.cit_setkey(tfm, cc->key, key_size) < 0) { |
| ti->error = PFX "Error setting key"; |
| goto bad5; |
| } |
| |
| if (sscanf(argv[2], SECTOR_FORMAT, &cc->iv_offset) != 1) { |
| ti->error = PFX "Invalid iv_offset sector"; |
| goto bad5; |
| } |
| |
| if (sscanf(argv[4], SECTOR_FORMAT, &cc->start) != 1) { |
| ti->error = PFX "Invalid device sector"; |
| goto bad5; |
| } |
| |
| if (dm_get_device(ti, argv[3], cc->start, ti->len, |
| dm_table_get_mode(ti->table), &cc->dev)) { |
| ti->error = PFX "Device lookup failed"; |
| goto bad5; |
| } |
| |
| if (ivmode && cc->iv_gen_ops) { |
| if (ivopts) |
| *(ivopts - 1) = ':'; |
| cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL); |
| if (!cc->iv_mode) { |
| ti->error = PFX "Error kmallocing iv_mode string"; |
| goto bad5; |
| } |
| strcpy(cc->iv_mode, ivmode); |
| } else |
| cc->iv_mode = NULL; |
| |
| ti->private = cc; |
| return 0; |
| |
| bad5: |
| mempool_destroy(cc->page_pool); |
| bad4: |
| mempool_destroy(cc->io_pool); |
| bad3: |
| if (cc->iv_gen_ops && cc->iv_gen_ops->dtr) |
| cc->iv_gen_ops->dtr(cc); |
| bad2: |
| crypto_free_tfm(tfm); |
| bad1: |
| kfree(cc); |
| return -EINVAL; |
| } |
| |
| static void crypt_dtr(struct dm_target *ti) |
| { |
| struct crypt_config *cc = (struct crypt_config *) ti->private; |
| |
| mempool_destroy(cc->page_pool); |
| mempool_destroy(cc->io_pool); |
| |
| if (cc->iv_mode) |
| kfree(cc->iv_mode); |
| if (cc->iv_gen_ops && cc->iv_gen_ops->dtr) |
| cc->iv_gen_ops->dtr(cc); |
| crypto_free_tfm(cc->tfm); |
| dm_put_device(ti, cc->dev); |
| kfree(cc); |
| } |
| |
| static int crypt_endio(struct bio *bio, unsigned int done, int error) |
| { |
| struct crypt_io *io = (struct crypt_io *) bio->bi_private; |
| struct crypt_config *cc = (struct crypt_config *) io->target->private; |
| |
| if (bio_data_dir(bio) == WRITE) { |
| /* |
| * free the processed pages, even if |
| * it's only a partially completed write |
| */ |
| crypt_free_buffer_pages(cc, bio, done); |
| } |
| |
| if (bio->bi_size) |
| return 1; |
| |
| bio_put(bio); |
| |
| /* |
| * successful reads are decrypted by the worker thread |
| */ |
| if ((bio_data_dir(bio) == READ) |
| && bio_flagged(bio, BIO_UPTODATE)) { |
| kcryptd_queue_io(io); |
| return 0; |
| } |
| |
| dec_pending(io, error); |
| return error; |
| } |
| |
| static inline struct bio * |
| crypt_clone(struct crypt_config *cc, struct crypt_io *io, struct bio *bio, |
| sector_t sector, unsigned int *bvec_idx, |
| struct convert_context *ctx) |
| { |
| struct bio *clone; |
| |
| if (bio_data_dir(bio) == WRITE) { |
| clone = crypt_alloc_buffer(cc, bio->bi_size, |
| io->first_clone, bvec_idx); |
| if (clone) { |
| ctx->bio_out = clone; |
| if (crypt_convert(cc, ctx) < 0) { |
| crypt_free_buffer_pages(cc, clone, |
| clone->bi_size); |
| bio_put(clone); |
| return NULL; |
| } |
| } |
| } else { |
| /* |
| * The block layer might modify the bvec array, so always |
| * copy the required bvecs because we need the original |
| * one in order to decrypt the whole bio data *afterwards*. |
| */ |
| clone = bio_alloc(GFP_NOIO, bio_segments(bio)); |
| if (clone) { |
| clone->bi_idx = 0; |
| clone->bi_vcnt = bio_segments(bio); |
| clone->bi_size = bio->bi_size; |
| memcpy(clone->bi_io_vec, bio_iovec(bio), |
| sizeof(struct bio_vec) * clone->bi_vcnt); |
| } |
| } |
| |
| if (!clone) |
| return NULL; |
| |
| clone->bi_private = io; |
| clone->bi_end_io = crypt_endio; |
| clone->bi_bdev = cc->dev->bdev; |
| clone->bi_sector = cc->start + sector; |
| clone->bi_rw = bio->bi_rw; |
| |
| return clone; |
| } |
| |
| static int crypt_map(struct dm_target *ti, struct bio *bio, |
| union map_info *map_context) |
| { |
| struct crypt_config *cc = (struct crypt_config *) ti->private; |
| struct crypt_io *io = mempool_alloc(cc->io_pool, GFP_NOIO); |
| struct convert_context ctx; |
| struct bio *clone; |
| unsigned int remaining = bio->bi_size; |
| sector_t sector = bio->bi_sector - ti->begin; |
| unsigned int bvec_idx = 0; |
| |
| io->target = ti; |
| io->bio = bio; |
| io->first_clone = NULL; |
| io->error = 0; |
| atomic_set(&io->pending, 1); /* hold a reference */ |
| |
| if (bio_data_dir(bio) == WRITE) |
| crypt_convert_init(cc, &ctx, NULL, bio, sector, 1); |
| |
| /* |
| * The allocated buffers can be smaller than the whole bio, |
| * so repeat the whole process until all the data can be handled. |
| */ |
| while (remaining) { |
| clone = crypt_clone(cc, io, bio, sector, &bvec_idx, &ctx); |
| if (!clone) |
| goto cleanup; |
| |
| if (!io->first_clone) { |
| /* |
| * hold a reference to the first clone, because it |
| * holds the bio_vec array and that can't be freed |
| * before all other clones are released |
| */ |
| bio_get(clone); |
| io->first_clone = clone; |
| } |
| atomic_inc(&io->pending); |
| |
| remaining -= clone->bi_size; |
| sector += bio_sectors(clone); |
| |
| generic_make_request(clone); |
| |
| /* out of memory -> run queues */ |
| if (remaining) |
| blk_congestion_wait(bio_data_dir(clone), HZ/100); |
| } |
| |
| /* drop reference, clones could have returned before we reach this */ |
| dec_pending(io, 0); |
| return 0; |
| |
| cleanup: |
| if (io->first_clone) { |
| dec_pending(io, -ENOMEM); |
| return 0; |
| } |
| |
| /* if no bio has been dispatched yet, we can directly return the error */ |
| mempool_free(io, cc->io_pool); |
| return -ENOMEM; |
| } |
| |
| static int crypt_status(struct dm_target *ti, status_type_t type, |
| char *result, unsigned int maxlen) |
| { |
| struct crypt_config *cc = (struct crypt_config *) ti->private; |
| const char *cipher; |
| const char *chainmode = NULL; |
| unsigned int sz = 0; |
| |
| switch (type) { |
| case STATUSTYPE_INFO: |
| result[0] = '\0'; |
| break; |
| |
| case STATUSTYPE_TABLE: |
| cipher = crypto_tfm_alg_name(cc->tfm); |
| |
| switch(cc->tfm->crt_cipher.cit_mode) { |
| case CRYPTO_TFM_MODE_CBC: |
| chainmode = "cbc"; |
| break; |
| case CRYPTO_TFM_MODE_ECB: |
| chainmode = "ecb"; |
| break; |
| default: |
| BUG(); |
| } |
| |
| if (cc->iv_mode) |
| DMEMIT("%s-%s-%s ", cipher, chainmode, cc->iv_mode); |
| else |
| DMEMIT("%s-%s ", cipher, chainmode); |
| |
| if (cc->key_size > 0) { |
| if ((maxlen - sz) < ((cc->key_size << 1) + 1)) |
| return -ENOMEM; |
| |
| crypt_encode_key(result + sz, cc->key, cc->key_size); |
| sz += cc->key_size << 1; |
| } else { |
| if (sz >= maxlen) |
| return -ENOMEM; |
| result[sz++] = '-'; |
| } |
| |
| DMEMIT(" " SECTOR_FORMAT " %s " SECTOR_FORMAT, |
| cc->iv_offset, cc->dev->name, cc->start); |
| break; |
| } |
| return 0; |
| } |
| |
| static struct target_type crypt_target = { |
| .name = "crypt", |
| .version= {1, 1, 0}, |
| .module = THIS_MODULE, |
| .ctr = crypt_ctr, |
| .dtr = crypt_dtr, |
| .map = crypt_map, |
| .status = crypt_status, |
| }; |
| |
| static int __init dm_crypt_init(void) |
| { |
| int r; |
| |
| _crypt_io_pool = kmem_cache_create("dm-crypt_io", |
| sizeof(struct crypt_io), |
| 0, 0, NULL, NULL); |
| if (!_crypt_io_pool) |
| return -ENOMEM; |
| |
| _kcryptd_workqueue = create_workqueue("kcryptd"); |
| if (!_kcryptd_workqueue) { |
| r = -ENOMEM; |
| DMERR(PFX "couldn't create kcryptd"); |
| goto bad1; |
| } |
| |
| r = dm_register_target(&crypt_target); |
| if (r < 0) { |
| DMERR(PFX "register failed %d", r); |
| goto bad2; |
| } |
| |
| return 0; |
| |
| bad2: |
| destroy_workqueue(_kcryptd_workqueue); |
| bad1: |
| kmem_cache_destroy(_crypt_io_pool); |
| return r; |
| } |
| |
| static void __exit dm_crypt_exit(void) |
| { |
| int r = dm_unregister_target(&crypt_target); |
| |
| if (r < 0) |
| DMERR(PFX "unregister failed %d", r); |
| |
| destroy_workqueue(_kcryptd_workqueue); |
| kmem_cache_destroy(_crypt_io_pool); |
| } |
| |
| module_init(dm_crypt_init); |
| module_exit(dm_crypt_exit); |
| |
| MODULE_AUTHOR("Christophe Saout <christophe@saout.de>"); |
| MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption"); |
| MODULE_LICENSE("GPL"); |