| /* |
| * arch/sh/kernel/time.c |
| * |
| * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka |
| * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org> |
| * Copyright (C) 2002, 2003, 2004 Paul Mundt |
| * Copyright (C) 2002 M. R. Brown <mrbrown@linux-sh.org> |
| * |
| * Some code taken from i386 version. |
| * Copyright (C) 1991, 1992, 1995 Linus Torvalds |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/errno.h> |
| #include <linux/module.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/param.h> |
| #include <linux/string.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/time.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/smp.h> |
| #include <linux/profile.h> |
| |
| #include <asm/processor.h> |
| #include <asm/uaccess.h> |
| #include <asm/io.h> |
| #include <asm/irq.h> |
| #include <asm/delay.h> |
| #include <asm/machvec.h> |
| #include <asm/rtc.h> |
| #include <asm/freq.h> |
| #include <asm/cpu/timer.h> |
| #ifdef CONFIG_SH_KGDB |
| #include <asm/kgdb.h> |
| #endif |
| |
| #include <linux/timex.h> |
| #include <linux/irq.h> |
| |
| #define TMU_TOCR_INIT 0x00 |
| #define TMU0_TCR_INIT 0x0020 |
| #define TMU_TSTR_INIT 1 |
| |
| #define TMU0_TCR_CALIB 0x0000 |
| |
| #ifdef CONFIG_CPU_SUBTYPE_ST40STB1 |
| #define CLOCKGEN_MEMCLKCR 0xbb040038 |
| #define MEMCLKCR_RATIO_MASK 0x7 |
| #endif /* CONFIG_CPU_SUBTYPE_ST40STB1 */ |
| |
| extern unsigned long wall_jiffies; |
| #define TICK_SIZE (tick_nsec / 1000) |
| DEFINE_SPINLOCK(tmu0_lock); |
| |
| u64 jiffies_64 = INITIAL_JIFFIES; |
| |
| EXPORT_SYMBOL(jiffies_64); |
| |
| /* XXX: Can we initialize this in a routine somewhere? Dreamcast doesn't want |
| * these routines anywhere... */ |
| #ifdef CONFIG_SH_RTC |
| void (*rtc_get_time)(struct timespec *) = sh_rtc_gettimeofday; |
| int (*rtc_set_time)(const time_t) = sh_rtc_settimeofday; |
| #else |
| void (*rtc_get_time)(struct timespec *); |
| int (*rtc_set_time)(const time_t); |
| #endif |
| |
| #if defined(CONFIG_CPU_SUBTYPE_SH7300) |
| static int md_table[] = { 1, 2, 3, 4, 6, 8, 12 }; |
| #endif |
| #if defined(CONFIG_CPU_SH3) |
| static int stc_multipliers[] = { 1, 2, 3, 4, 6, 1, 1, 1 }; |
| static int stc_values[] = { 0, 1, 4, 2, 5, 0, 0, 0 }; |
| #define bfc_divisors stc_multipliers |
| #define bfc_values stc_values |
| static int ifc_divisors[] = { 1, 2, 3, 4, 1, 1, 1, 1 }; |
| static int ifc_values[] = { 0, 1, 4, 2, 0, 0, 0, 0 }; |
| static int pfc_divisors[] = { 1, 2, 3, 4, 6, 1, 1, 1 }; |
| static int pfc_values[] = { 0, 1, 4, 2, 5, 0, 0, 0 }; |
| #elif defined(CONFIG_CPU_SH4) |
| #if defined(CONFIG_CPU_SUBTYPE_SH73180) |
| static int ifc_divisors[] = { 1, 2, 3, 4, 6, 8, 12, 16 }; |
| static int ifc_values[] = { 0, 1, 2, 3, 4, 5, 6, 7 }; |
| #define bfc_divisors ifc_divisors /* Same */ |
| #define bfc_values ifc_values |
| #define pfc_divisors ifc_divisors /* Same */ |
| #define pfc_values ifc_values |
| #else |
| static int ifc_divisors[] = { 1, 2, 3, 4, 6, 8, 1, 1 }; |
| static int ifc_values[] = { 0, 1, 2, 3, 0, 4, 0, 5 }; |
| #define bfc_divisors ifc_divisors /* Same */ |
| #define bfc_values ifc_values |
| static int pfc_divisors[] = { 2, 3, 4, 6, 8, 2, 2, 2 }; |
| static int pfc_values[] = { 0, 0, 1, 2, 0, 3, 0, 4 }; |
| #endif |
| #else |
| #error "Unknown ifc/bfc/pfc/stc values for this processor" |
| #endif |
| |
| /* |
| * Scheduler clock - returns current time in nanosec units. |
| */ |
| unsigned long long sched_clock(void) |
| { |
| return (unsigned long long)jiffies * (1000000000 / HZ); |
| } |
| |
| static unsigned long do_gettimeoffset(void) |
| { |
| int count; |
| unsigned long flags; |
| |
| static int count_p = 0x7fffffff; /* for the first call after boot */ |
| static unsigned long jiffies_p = 0; |
| |
| /* |
| * cache volatile jiffies temporarily; we have IRQs turned off. |
| */ |
| unsigned long jiffies_t; |
| |
| spin_lock_irqsave(&tmu0_lock, flags); |
| /* timer count may underflow right here */ |
| count = ctrl_inl(TMU0_TCNT); /* read the latched count */ |
| |
| jiffies_t = jiffies; |
| |
| /* |
| * avoiding timer inconsistencies (they are rare, but they happen)... |
| * there is one kind of problem that must be avoided here: |
| * 1. the timer counter underflows |
| */ |
| |
| if( jiffies_t == jiffies_p ) { |
| if( count > count_p ) { |
| /* the nutcase */ |
| |
| if(ctrl_inw(TMU0_TCR) & 0x100) { /* Check UNF bit */ |
| /* |
| * We cannot detect lost timer interrupts ... |
| * well, that's why we call them lost, don't we? :) |
| * [hmm, on the Pentium and Alpha we can ... sort of] |
| */ |
| count -= LATCH; |
| } else { |
| printk("do_slow_gettimeoffset(): hardware timer problem?\n"); |
| } |
| } |
| } else |
| jiffies_p = jiffies_t; |
| |
| count_p = count; |
| spin_unlock_irqrestore(&tmu0_lock, flags); |
| |
| count = ((LATCH-1) - count) * TICK_SIZE; |
| count = (count + LATCH/2) / LATCH; |
| |
| return count; |
| } |
| |
| void do_gettimeofday(struct timeval *tv) |
| { |
| unsigned long seq; |
| unsigned long usec, sec; |
| unsigned long lost; |
| |
| do { |
| seq = read_seqbegin(&xtime_lock); |
| usec = do_gettimeoffset(); |
| |
| lost = jiffies - wall_jiffies; |
| if (lost) |
| usec += lost * (1000000 / HZ); |
| |
| sec = xtime.tv_sec; |
| usec += xtime.tv_nsec / 1000; |
| } while (read_seqretry(&xtime_lock, seq)); |
| |
| while (usec >= 1000000) { |
| usec -= 1000000; |
| sec++; |
| } |
| |
| tv->tv_sec = sec; |
| tv->tv_usec = usec; |
| } |
| |
| EXPORT_SYMBOL(do_gettimeofday); |
| |
| int do_settimeofday(struct timespec *tv) |
| { |
| time_t wtm_sec, sec = tv->tv_sec; |
| long wtm_nsec, nsec = tv->tv_nsec; |
| |
| if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) |
| return -EINVAL; |
| |
| write_seqlock_irq(&xtime_lock); |
| /* |
| * This is revolting. We need to set "xtime" correctly. However, the |
| * value in this location is the value at the most recent update of |
| * wall time. Discover what correction gettimeofday() would have |
| * made, and then undo it! |
| */ |
| nsec -= 1000 * (do_gettimeoffset() + |
| (jiffies - wall_jiffies) * (1000000 / HZ)); |
| |
| wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); |
| wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); |
| |
| set_normalized_timespec(&xtime, sec, nsec); |
| set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); |
| |
| time_adjust = 0; /* stop active adjtime() */ |
| time_status |= STA_UNSYNC; |
| time_maxerror = NTP_PHASE_LIMIT; |
| time_esterror = NTP_PHASE_LIMIT; |
| write_sequnlock_irq(&xtime_lock); |
| clock_was_set(); |
| |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(do_settimeofday); |
| |
| /* last time the RTC clock got updated */ |
| static long last_rtc_update; |
| |
| /* |
| * timer_interrupt() needs to keep up the real-time clock, |
| * as well as call the "do_timer()" routine every clocktick |
| */ |
| static inline void do_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| do_timer(regs); |
| #ifndef CONFIG_SMP |
| update_process_times(user_mode(regs)); |
| #endif |
| profile_tick(CPU_PROFILING, regs); |
| |
| #ifdef CONFIG_HEARTBEAT |
| if (sh_mv.mv_heartbeat != NULL) |
| sh_mv.mv_heartbeat(); |
| #endif |
| |
| /* |
| * If we have an externally synchronized Linux clock, then update |
| * RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be |
| * called as close as possible to 500 ms before the new second starts. |
| */ |
| if ((time_status & STA_UNSYNC) == 0 && |
| xtime.tv_sec > last_rtc_update + 660 && |
| (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 && |
| (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) { |
| if (rtc_set_time(xtime.tv_sec) == 0) |
| last_rtc_update = xtime.tv_sec; |
| else |
| last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */ |
| } |
| } |
| |
| /* |
| * This is the same as the above, except we _also_ save the current |
| * Time Stamp Counter value at the time of the timer interrupt, so that |
| * we later on can estimate the time of day more exactly. |
| */ |
| static irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| unsigned long timer_status; |
| |
| /* Clear UNF bit */ |
| timer_status = ctrl_inw(TMU0_TCR); |
| timer_status &= ~0x100; |
| ctrl_outw(timer_status, TMU0_TCR); |
| |
| /* |
| * Here we are in the timer irq handler. We just have irqs locally |
| * disabled but we don't know if the timer_bh is running on the other |
| * CPU. We need to avoid to SMP race with it. NOTE: we don' t need |
| * the irq version of write_lock because as just said we have irq |
| * locally disabled. -arca |
| */ |
| write_seqlock(&xtime_lock); |
| do_timer_interrupt(irq, NULL, regs); |
| write_sequnlock(&xtime_lock); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Hah! We'll see if this works (switching from usecs to nsecs). |
| */ |
| static unsigned int __init get_timer_frequency(void) |
| { |
| u32 freq; |
| struct timespec ts1, ts2; |
| unsigned long diff_nsec; |
| unsigned long factor; |
| |
| /* Setup the timer: We don't want to generate interrupts, just |
| * have it count down at its natural rate. |
| */ |
| ctrl_outb(0, TMU_TSTR); |
| #if !defined(CONFIG_CPU_SUBTYPE_SH7300) |
| ctrl_outb(TMU_TOCR_INIT, TMU_TOCR); |
| #endif |
| ctrl_outw(TMU0_TCR_CALIB, TMU0_TCR); |
| ctrl_outl(0xffffffff, TMU0_TCOR); |
| ctrl_outl(0xffffffff, TMU0_TCNT); |
| |
| rtc_get_time(&ts2); |
| |
| do { |
| rtc_get_time(&ts1); |
| } while (ts1.tv_nsec == ts2.tv_nsec && ts1.tv_sec == ts2.tv_sec); |
| |
| /* actually start the timer */ |
| ctrl_outb(TMU_TSTR_INIT, TMU_TSTR); |
| |
| do { |
| rtc_get_time(&ts2); |
| } while (ts1.tv_nsec == ts2.tv_nsec && ts1.tv_sec == ts2.tv_sec); |
| |
| freq = 0xffffffff - ctrl_inl(TMU0_TCNT); |
| if (ts2.tv_nsec < ts1.tv_nsec) { |
| ts2.tv_nsec += 1000000000; |
| ts2.tv_sec--; |
| } |
| |
| diff_nsec = (ts2.tv_sec - ts1.tv_sec) * 1000000000 + (ts2.tv_nsec - ts1.tv_nsec); |
| |
| /* this should work well if the RTC has a precision of n Hz, where |
| * n is an integer. I don't think we have to worry about the other |
| * cases. */ |
| factor = (1000000000 + diff_nsec/2) / diff_nsec; |
| |
| if (factor * diff_nsec > 1100000000 || |
| factor * diff_nsec < 900000000) |
| panic("weird RTC (diff_nsec %ld)", diff_nsec); |
| |
| return freq * factor; |
| } |
| |
| void (*board_time_init)(void); |
| void (*board_timer_setup)(struct irqaction *irq); |
| |
| static unsigned int sh_pclk_freq __initdata = CONFIG_SH_PCLK_FREQ; |
| |
| static int __init sh_pclk_setup(char *str) |
| { |
| unsigned int freq; |
| |
| if (get_option(&str, &freq)) |
| sh_pclk_freq = freq; |
| |
| return 1; |
| } |
| __setup("sh_pclk=", sh_pclk_setup); |
| |
| static struct irqaction irq0 = { timer_interrupt, SA_INTERRUPT, CPU_MASK_NONE, "timer", NULL, NULL}; |
| |
| void get_current_frequency_divisors(unsigned int *ifc, unsigned int *bfc, unsigned int *pfc) |
| { |
| unsigned int frqcr = ctrl_inw(FRQCR); |
| |
| #if defined(CONFIG_CPU_SH3) |
| #if defined(CONFIG_CPU_SUBTYPE_SH7300) |
| *ifc = md_table[((frqcr & 0x0070) >> 4)]; |
| *bfc = md_table[((frqcr & 0x0700) >> 8)]; |
| *pfc = md_table[frqcr & 0x0007]; |
| #elif defined(CONFIG_CPU_SUBTYPE_SH7705) |
| *bfc = stc_multipliers[(frqcr & 0x0300) >> 8]; |
| *ifc = ifc_divisors[(frqcr & 0x0030) >> 4]; |
| *pfc = pfc_divisors[frqcr & 0x0003]; |
| #else |
| unsigned int tmp; |
| |
| tmp = (frqcr & 0x8000) >> 13; |
| tmp |= (frqcr & 0x0030) >> 4; |
| *bfc = stc_multipliers[tmp]; |
| tmp = (frqcr & 0x4000) >> 12; |
| tmp |= (frqcr & 0x000c) >> 2; |
| *ifc = ifc_divisors[tmp]; |
| tmp = (frqcr & 0x2000) >> 11; |
| tmp |= frqcr & 0x0003; |
| *pfc = pfc_divisors[tmp]; |
| #endif |
| #elif defined(CONFIG_CPU_SH4) |
| #if defined(CONFIG_CPU_SUBTYPE_SH73180) |
| *ifc = ifc_divisors[(frqcr>> 20) & 0x0007]; |
| *bfc = bfc_divisors[(frqcr>> 12) & 0x0007]; |
| *pfc = pfc_divisors[frqcr & 0x0007]; |
| #else |
| *ifc = ifc_divisors[(frqcr >> 6) & 0x0007]; |
| *bfc = bfc_divisors[(frqcr >> 3) & 0x0007]; |
| *pfc = pfc_divisors[frqcr & 0x0007]; |
| #endif |
| #endif |
| } |
| |
| /* |
| * This bit of ugliness builds up accessor routines to get at both |
| * the divisors and the physical values. |
| */ |
| #define _FREQ_TABLE(x) \ |
| unsigned int get_##x##_divisor(unsigned int value) \ |
| { return x##_divisors[value]; } \ |
| \ |
| unsigned int get_##x##_value(unsigned int divisor) \ |
| { return x##_values[(divisor - 1)]; } |
| |
| _FREQ_TABLE(ifc); |
| _FREQ_TABLE(bfc); |
| _FREQ_TABLE(pfc); |
| |
| #ifdef CONFIG_CPU_SUBTYPE_ST40STB1 |
| |
| /* |
| * The ST40 divisors are totally different so we set the cpu data |
| * clocks using a different algorithm |
| * |
| * I've just plugged this from the 2.4 code |
| * - Alex Bennee <kernel-hacker@bennee.com> |
| */ |
| #define CCN_PVR_CHIP_SHIFT 24 |
| #define CCN_PVR_CHIP_MASK 0xff |
| #define CCN_PVR_CHIP_ST40STB1 0x4 |
| |
| |
| struct frqcr_data { |
| unsigned short frqcr; |
| |
| struct { |
| unsigned char multiplier; |
| unsigned char divisor; |
| } factor[3]; |
| }; |
| |
| static struct frqcr_data st40_frqcr_table[] = { |
| { 0x000, {{1,1}, {1,1}, {1,2}}}, |
| { 0x002, {{1,1}, {1,1}, {1,4}}}, |
| { 0x004, {{1,1}, {1,1}, {1,8}}}, |
| { 0x008, {{1,1}, {1,2}, {1,2}}}, |
| { 0x00A, {{1,1}, {1,2}, {1,4}}}, |
| { 0x00C, {{1,1}, {1,2}, {1,8}}}, |
| { 0x011, {{1,1}, {2,3}, {1,6}}}, |
| { 0x013, {{1,1}, {2,3}, {1,3}}}, |
| { 0x01A, {{1,1}, {1,2}, {1,4}}}, |
| { 0x01C, {{1,1}, {1,2}, {1,8}}}, |
| { 0x023, {{1,1}, {2,3}, {1,3}}}, |
| { 0x02C, {{1,1}, {1,2}, {1,8}}}, |
| { 0x048, {{1,2}, {1,2}, {1,4}}}, |
| { 0x04A, {{1,2}, {1,2}, {1,6}}}, |
| { 0x04C, {{1,2}, {1,2}, {1,8}}}, |
| { 0x05A, {{1,2}, {1,3}, {1,6}}}, |
| { 0x05C, {{1,2}, {1,3}, {1,6}}}, |
| { 0x063, {{1,2}, {1,4}, {1,4}}}, |
| { 0x06C, {{1,2}, {1,4}, {1,8}}}, |
| { 0x091, {{1,3}, {1,3}, {1,6}}}, |
| { 0x093, {{1,3}, {1,3}, {1,6}}}, |
| { 0x0A3, {{1,3}, {1,6}, {1,6}}}, |
| { 0x0DA, {{1,4}, {1,4}, {1,8}}}, |
| { 0x0DC, {{1,4}, {1,4}, {1,8}}}, |
| { 0x0EC, {{1,4}, {1,8}, {1,8}}}, |
| { 0x123, {{1,4}, {1,4}, {1,8}}}, |
| { 0x16C, {{1,4}, {1,8}, {1,8}}}, |
| }; |
| |
| struct memclk_data { |
| unsigned char multiplier; |
| unsigned char divisor; |
| }; |
| |
| static struct memclk_data st40_memclk_table[8] = { |
| {1,1}, // 000 |
| {1,2}, // 001 |
| {1,3}, // 010 |
| {2,3}, // 011 |
| {1,4}, // 100 |
| {1,6}, // 101 |
| {1,8}, // 110 |
| {1,8} // 111 |
| }; |
| |
| static void st40_specific_time_init(unsigned int module_clock, unsigned short frqcr) |
| { |
| unsigned int cpu_clock, master_clock, bus_clock, memory_clock; |
| struct frqcr_data *d; |
| int a; |
| unsigned long memclkcr; |
| struct memclk_data *e; |
| |
| for (a = 0; a < ARRAY_SIZE(st40_frqcr_table); a++) { |
| d = &st40_frqcr_table[a]; |
| |
| if (d->frqcr == (frqcr & 0x1ff)) |
| break; |
| } |
| |
| if (a == ARRAY_SIZE(st40_frqcr_table)) { |
| d = st40_frqcr_table; |
| |
| printk("ERROR: Unrecognised FRQCR value (0x%x), " |
| "using default multipliers\n", frqcr); |
| } |
| |
| memclkcr = ctrl_inl(CLOCKGEN_MEMCLKCR); |
| e = &st40_memclk_table[memclkcr & MEMCLKCR_RATIO_MASK]; |
| |
| printk(KERN_INFO "Clock multipliers: CPU: %d/%d Bus: %d/%d " |
| "Mem: %d/%d Periph: %d/%d\n", |
| d->factor[0].multiplier, d->factor[0].divisor, |
| d->factor[1].multiplier, d->factor[1].divisor, |
| e->multiplier, e->divisor, |
| d->factor[2].multiplier, d->factor[2].divisor); |
| |
| master_clock = module_clock * d->factor[2].divisor |
| / d->factor[2].multiplier; |
| bus_clock = master_clock * d->factor[1].multiplier |
| / d->factor[1].divisor; |
| memory_clock = master_clock * e->multiplier |
| / e->divisor; |
| cpu_clock = master_clock * d->factor[0].multiplier |
| / d->factor[0].divisor; |
| |
| current_cpu_data.cpu_clock = cpu_clock; |
| current_cpu_data.master_clock = master_clock; |
| current_cpu_data.bus_clock = bus_clock; |
| current_cpu_data.memory_clock = memory_clock; |
| current_cpu_data.module_clock = module_clock; |
| } |
| #endif |
| |
| void __init time_init(void) |
| { |
| unsigned int timer_freq = 0; |
| unsigned int ifc, pfc, bfc; |
| unsigned long interval; |
| #ifdef CONFIG_CPU_SUBTYPE_ST40STB1 |
| unsigned long pvr; |
| unsigned short frqcr; |
| #endif |
| |
| if (board_time_init) |
| board_time_init(); |
| |
| /* |
| * If we don't have an RTC (such as with the SH7300), don't attempt to |
| * probe the timer frequency. Rely on an either hardcoded peripheral |
| * clock value, or on the sh_pclk command line option. Note that we |
| * still need to have CONFIG_SH_PCLK_FREQ set in order for things like |
| * CLOCK_TICK_RATE to be sane. |
| */ |
| current_cpu_data.module_clock = sh_pclk_freq; |
| |
| #ifdef CONFIG_SH_PCLK_CALC |
| /* XXX: Switch this over to a more generic test. */ |
| { |
| unsigned int freq; |
| |
| /* |
| * If we've specified a peripheral clock frequency, and we have |
| * an RTC, compare it against the autodetected value. Complain |
| * if there's a mismatch. |
| */ |
| timer_freq = get_timer_frequency(); |
| freq = timer_freq * 4; |
| |
| if (sh_pclk_freq && (sh_pclk_freq/100*99 > freq || sh_pclk_freq/100*101 < freq)) { |
| printk(KERN_NOTICE "Calculated peripheral clock value " |
| "%d differs from sh_pclk value %d, fixing..\n", |
| freq, sh_pclk_freq); |
| current_cpu_data.module_clock = freq; |
| } |
| } |
| #endif |
| |
| #ifdef CONFIG_CPU_SUBTYPE_ST40STB1 |
| /* XXX: Update ST40 code to use board_time_init() */ |
| pvr = ctrl_inl(CCN_PVR); |
| frqcr = ctrl_inw(FRQCR); |
| printk("time.c ST40 Probe: PVR %08lx, FRQCR %04hx\n", pvr, frqcr); |
| |
| if (((pvr >> CCN_PVR_CHIP_SHIFT) & CCN_PVR_CHIP_MASK) == CCN_PVR_CHIP_ST40STB1) |
| st40_specific_time_init(current_cpu_data.module_clock, frqcr); |
| else |
| #endif |
| get_current_frequency_divisors(&ifc, &bfc, &pfc); |
| |
| if (rtc_get_time) { |
| rtc_get_time(&xtime); |
| } else { |
| xtime.tv_sec = mktime(2000, 1, 1, 0, 0, 0); |
| xtime.tv_nsec = 0; |
| } |
| |
| set_normalized_timespec(&wall_to_monotonic, |
| -xtime.tv_sec, -xtime.tv_nsec); |
| |
| if (board_timer_setup) { |
| board_timer_setup(&irq0); |
| } else { |
| setup_irq(TIMER_IRQ, &irq0); |
| } |
| |
| /* |
| * for ST40 chips the current_cpu_data should already be set |
| * so not having valid pfc/bfc/ifc shouldn't be a problem |
| */ |
| if (!current_cpu_data.master_clock) |
| current_cpu_data.master_clock = current_cpu_data.module_clock * pfc; |
| if (!current_cpu_data.bus_clock) |
| current_cpu_data.bus_clock = current_cpu_data.master_clock / bfc; |
| if (!current_cpu_data.cpu_clock) |
| current_cpu_data.cpu_clock = current_cpu_data.master_clock / ifc; |
| |
| printk("CPU clock: %d.%02dMHz\n", |
| (current_cpu_data.cpu_clock / 1000000), |
| (current_cpu_data.cpu_clock % 1000000)/10000); |
| printk("Bus clock: %d.%02dMHz\n", |
| (current_cpu_data.bus_clock / 1000000), |
| (current_cpu_data.bus_clock % 1000000)/10000); |
| #ifdef CONFIG_CPU_SUBTYPE_ST40STB1 |
| printk("Memory clock: %d.%02dMHz\n", |
| (current_cpu_data.memory_clock / 1000000), |
| (current_cpu_data.memory_clock % 1000000)/10000); |
| #endif |
| printk("Module clock: %d.%02dMHz\n", |
| (current_cpu_data.module_clock / 1000000), |
| (current_cpu_data.module_clock % 1000000)/10000); |
| |
| interval = (current_cpu_data.module_clock/4 + HZ/2) / HZ; |
| |
| printk("Interval = %ld\n", interval); |
| |
| /* Start TMU0 */ |
| ctrl_outb(0, TMU_TSTR); |
| #if !defined(CONFIG_CPU_SUBTYPE_SH7300) |
| ctrl_outb(TMU_TOCR_INIT, TMU_TOCR); |
| #endif |
| ctrl_outw(TMU0_TCR_INIT, TMU0_TCR); |
| ctrl_outl(interval, TMU0_TCOR); |
| ctrl_outl(interval, TMU0_TCNT); |
| ctrl_outb(TMU_TSTR_INIT, TMU_TSTR); |
| |
| #if defined(CONFIG_SH_KGDB) |
| /* |
| * Set up kgdb as requested. We do it here because the serial |
| * init uses the timer vars we just set up for figuring baud. |
| */ |
| kgdb_init(); |
| #endif |
| } |