| /* |
| * Copyright 2002 Andi Kleen, SuSE Labs. |
| * Thanks to Ben LaHaise for precious feedback. |
| */ |
| |
| #include <linux/config.h> |
| #include <linux/mm.h> |
| #include <linux/sched.h> |
| #include <linux/highmem.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <asm/uaccess.h> |
| #include <asm/processor.h> |
| #include <asm/tlbflush.h> |
| |
| static DEFINE_SPINLOCK(cpa_lock); |
| static struct list_head df_list = LIST_HEAD_INIT(df_list); |
| |
| |
| pte_t *lookup_address(unsigned long address) |
| { |
| pgd_t *pgd = pgd_offset_k(address); |
| pud_t *pud; |
| pmd_t *pmd; |
| if (pgd_none(*pgd)) |
| return NULL; |
| pud = pud_offset(pgd, address); |
| if (pud_none(*pud)) |
| return NULL; |
| pmd = pmd_offset(pud, address); |
| if (pmd_none(*pmd)) |
| return NULL; |
| if (pmd_large(*pmd)) |
| return (pte_t *)pmd; |
| return pte_offset_kernel(pmd, address); |
| } |
| |
| static struct page *split_large_page(unsigned long address, pgprot_t prot) |
| { |
| int i; |
| unsigned long addr; |
| struct page *base; |
| pte_t *pbase; |
| |
| spin_unlock_irq(&cpa_lock); |
| base = alloc_pages(GFP_KERNEL, 0); |
| spin_lock_irq(&cpa_lock); |
| if (!base) |
| return NULL; |
| |
| address = __pa(address); |
| addr = address & LARGE_PAGE_MASK; |
| pbase = (pte_t *)page_address(base); |
| for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) { |
| pbase[i] = pfn_pte(addr >> PAGE_SHIFT, |
| addr == address ? prot : PAGE_KERNEL); |
| } |
| return base; |
| } |
| |
| static void flush_kernel_map(void *dummy) |
| { |
| /* Could use CLFLUSH here if the CPU supports it (Hammer,P4) */ |
| if (boot_cpu_data.x86_model >= 4) |
| asm volatile("wbinvd":::"memory"); |
| /* Flush all to work around Errata in early athlons regarding |
| * large page flushing. |
| */ |
| __flush_tlb_all(); |
| } |
| |
| static void set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte) |
| { |
| struct page *page; |
| unsigned long flags; |
| |
| set_pte_atomic(kpte, pte); /* change init_mm */ |
| if (PTRS_PER_PMD > 1) |
| return; |
| |
| spin_lock_irqsave(&pgd_lock, flags); |
| for (page = pgd_list; page; page = (struct page *)page->index) { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| pgd = (pgd_t *)page_address(page) + pgd_index(address); |
| pud = pud_offset(pgd, address); |
| pmd = pmd_offset(pud, address); |
| set_pte_atomic((pte_t *)pmd, pte); |
| } |
| spin_unlock_irqrestore(&pgd_lock, flags); |
| } |
| |
| /* |
| * No more special protections in this 2/4MB area - revert to a |
| * large page again. |
| */ |
| static inline void revert_page(struct page *kpte_page, unsigned long address) |
| { |
| pte_t *linear = (pte_t *) |
| pmd_offset(pud_offset(pgd_offset_k(address), address), address); |
| set_pmd_pte(linear, address, |
| pfn_pte((__pa(address) & LARGE_PAGE_MASK) >> PAGE_SHIFT, |
| PAGE_KERNEL_LARGE)); |
| } |
| |
| static int |
| __change_page_attr(struct page *page, pgprot_t prot) |
| { |
| pte_t *kpte; |
| unsigned long address; |
| struct page *kpte_page; |
| |
| BUG_ON(PageHighMem(page)); |
| address = (unsigned long)page_address(page); |
| |
| kpte = lookup_address(address); |
| if (!kpte) |
| return -EINVAL; |
| kpte_page = virt_to_page(kpte); |
| if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL)) { |
| if ((pte_val(*kpte) & _PAGE_PSE) == 0) { |
| set_pte_atomic(kpte, mk_pte(page, prot)); |
| } else { |
| struct page *split = split_large_page(address, prot); |
| if (!split) |
| return -ENOMEM; |
| set_pmd_pte(kpte,address,mk_pte(split, PAGE_KERNEL)); |
| kpte_page = split; |
| } |
| get_page(kpte_page); |
| } else if ((pte_val(*kpte) & _PAGE_PSE) == 0) { |
| set_pte_atomic(kpte, mk_pte(page, PAGE_KERNEL)); |
| __put_page(kpte_page); |
| } else |
| BUG(); |
| |
| /* |
| * If the pte was reserved, it means it was created at boot |
| * time (not via split_large_page) and in turn we must not |
| * replace it with a largepage. |
| */ |
| if (!PageReserved(kpte_page)) { |
| /* memleak and potential failed 2M page regeneration */ |
| BUG_ON(!page_count(kpte_page)); |
| |
| if (cpu_has_pse && (page_count(kpte_page) == 1)) { |
| list_add(&kpte_page->lru, &df_list); |
| revert_page(kpte_page, address); |
| } |
| } |
| return 0; |
| } |
| |
| static inline void flush_map(void) |
| { |
| on_each_cpu(flush_kernel_map, NULL, 1, 1); |
| } |
| |
| /* |
| * Change the page attributes of an page in the linear mapping. |
| * |
| * This should be used when a page is mapped with a different caching policy |
| * than write-back somewhere - some CPUs do not like it when mappings with |
| * different caching policies exist. This changes the page attributes of the |
| * in kernel linear mapping too. |
| * |
| * The caller needs to ensure that there are no conflicting mappings elsewhere. |
| * This function only deals with the kernel linear map. |
| * |
| * Caller must call global_flush_tlb() after this. |
| */ |
| int change_page_attr(struct page *page, int numpages, pgprot_t prot) |
| { |
| int err = 0; |
| int i; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&cpa_lock, flags); |
| for (i = 0; i < numpages; i++, page++) { |
| err = __change_page_attr(page, prot); |
| if (err) |
| break; |
| } |
| spin_unlock_irqrestore(&cpa_lock, flags); |
| return err; |
| } |
| |
| void global_flush_tlb(void) |
| { |
| LIST_HEAD(l); |
| struct page *pg, *next; |
| |
| BUG_ON(irqs_disabled()); |
| |
| spin_lock_irq(&cpa_lock); |
| list_splice_init(&df_list, &l); |
| spin_unlock_irq(&cpa_lock); |
| flush_map(); |
| list_for_each_entry_safe(pg, next, &l, lru) |
| __free_page(pg); |
| } |
| |
| #ifdef CONFIG_DEBUG_PAGEALLOC |
| void kernel_map_pages(struct page *page, int numpages, int enable) |
| { |
| if (PageHighMem(page)) |
| return; |
| /* the return value is ignored - the calls cannot fail, |
| * large pages are disabled at boot time. |
| */ |
| change_page_attr(page, numpages, enable ? PAGE_KERNEL : __pgprot(0)); |
| /* we should perform an IPI and flush all tlbs, |
| * but that can deadlock->flush only current cpu. |
| */ |
| __flush_tlb_all(); |
| } |
| #endif |
| |
| EXPORT_SYMBOL(change_page_attr); |
| EXPORT_SYMBOL(global_flush_tlb); |