| #include <linux/config.h> |
| #include <linux/errno.h> |
| #include <linux/signal.h> |
| #include <linux/sched.h> |
| #include <linux/ioport.h> |
| #include <linux/interrupt.h> |
| #include <linux/slab.h> |
| #include <linux/random.h> |
| #include <linux/smp_lock.h> |
| #include <linux/init.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/sysdev.h> |
| #include <linux/bitops.h> |
| |
| #include <asm/8253pit.h> |
| #include <asm/atomic.h> |
| #include <asm/system.h> |
| #include <asm/io.h> |
| #include <asm/irq.h> |
| #include <asm/timer.h> |
| #include <asm/pgtable.h> |
| #include <asm/delay.h> |
| #include <asm/desc.h> |
| #include <asm/apic.h> |
| #include <asm/arch_hooks.h> |
| #include <asm/i8259.h> |
| |
| #include <linux/irq.h> |
| |
| #include <io_ports.h> |
| |
| /* |
| * This is the 'legacy' 8259A Programmable Interrupt Controller, |
| * present in the majority of PC/AT boxes. |
| * plus some generic x86 specific things if generic specifics makes |
| * any sense at all. |
| * this file should become arch/i386/kernel/irq.c when the old irq.c |
| * moves to arch independent land |
| */ |
| |
| DEFINE_SPINLOCK(i8259A_lock); |
| |
| static void end_8259A_irq (unsigned int irq) |
| { |
| if (!(irq_desc[irq].status & (IRQ_DISABLED|IRQ_INPROGRESS)) && |
| irq_desc[irq].action) |
| enable_8259A_irq(irq); |
| } |
| |
| #define shutdown_8259A_irq disable_8259A_irq |
| |
| static void mask_and_ack_8259A(unsigned int); |
| |
| unsigned int startup_8259A_irq(unsigned int irq) |
| { |
| enable_8259A_irq(irq); |
| return 0; /* never anything pending */ |
| } |
| |
| static struct hw_interrupt_type i8259A_irq_type = { |
| .typename = "XT-PIC", |
| .startup = startup_8259A_irq, |
| .shutdown = shutdown_8259A_irq, |
| .enable = enable_8259A_irq, |
| .disable = disable_8259A_irq, |
| .ack = mask_and_ack_8259A, |
| .end = end_8259A_irq, |
| }; |
| |
| /* |
| * 8259A PIC functions to handle ISA devices: |
| */ |
| |
| /* |
| * This contains the irq mask for both 8259A irq controllers, |
| */ |
| unsigned int cached_irq_mask = 0xffff; |
| |
| /* |
| * Not all IRQs can be routed through the IO-APIC, eg. on certain (older) |
| * boards the timer interrupt is not really connected to any IO-APIC pin, |
| * it's fed to the master 8259A's IR0 line only. |
| * |
| * Any '1' bit in this mask means the IRQ is routed through the IO-APIC. |
| * this 'mixed mode' IRQ handling costs nothing because it's only used |
| * at IRQ setup time. |
| */ |
| unsigned long io_apic_irqs; |
| |
| void disable_8259A_irq(unsigned int irq) |
| { |
| unsigned int mask = 1 << irq; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&i8259A_lock, flags); |
| cached_irq_mask |= mask; |
| if (irq & 8) |
| outb(cached_slave_mask, PIC_SLAVE_IMR); |
| else |
| outb(cached_master_mask, PIC_MASTER_IMR); |
| spin_unlock_irqrestore(&i8259A_lock, flags); |
| } |
| |
| void enable_8259A_irq(unsigned int irq) |
| { |
| unsigned int mask = ~(1 << irq); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&i8259A_lock, flags); |
| cached_irq_mask &= mask; |
| if (irq & 8) |
| outb(cached_slave_mask, PIC_SLAVE_IMR); |
| else |
| outb(cached_master_mask, PIC_MASTER_IMR); |
| spin_unlock_irqrestore(&i8259A_lock, flags); |
| } |
| |
| int i8259A_irq_pending(unsigned int irq) |
| { |
| unsigned int mask = 1<<irq; |
| unsigned long flags; |
| int ret; |
| |
| spin_lock_irqsave(&i8259A_lock, flags); |
| if (irq < 8) |
| ret = inb(PIC_MASTER_CMD) & mask; |
| else |
| ret = inb(PIC_SLAVE_CMD) & (mask >> 8); |
| spin_unlock_irqrestore(&i8259A_lock, flags); |
| |
| return ret; |
| } |
| |
| void make_8259A_irq(unsigned int irq) |
| { |
| disable_irq_nosync(irq); |
| io_apic_irqs &= ~(1<<irq); |
| irq_desc[irq].handler = &i8259A_irq_type; |
| enable_irq(irq); |
| } |
| |
| /* |
| * This function assumes to be called rarely. Switching between |
| * 8259A registers is slow. |
| * This has to be protected by the irq controller spinlock |
| * before being called. |
| */ |
| static inline int i8259A_irq_real(unsigned int irq) |
| { |
| int value; |
| int irqmask = 1<<irq; |
| |
| if (irq < 8) { |
| outb(0x0B,PIC_MASTER_CMD); /* ISR register */ |
| value = inb(PIC_MASTER_CMD) & irqmask; |
| outb(0x0A,PIC_MASTER_CMD); /* back to the IRR register */ |
| return value; |
| } |
| outb(0x0B,PIC_SLAVE_CMD); /* ISR register */ |
| value = inb(PIC_SLAVE_CMD) & (irqmask >> 8); |
| outb(0x0A,PIC_SLAVE_CMD); /* back to the IRR register */ |
| return value; |
| } |
| |
| /* |
| * Careful! The 8259A is a fragile beast, it pretty |
| * much _has_ to be done exactly like this (mask it |
| * first, _then_ send the EOI, and the order of EOI |
| * to the two 8259s is important! |
| */ |
| static void mask_and_ack_8259A(unsigned int irq) |
| { |
| unsigned int irqmask = 1 << irq; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&i8259A_lock, flags); |
| /* |
| * Lightweight spurious IRQ detection. We do not want |
| * to overdo spurious IRQ handling - it's usually a sign |
| * of hardware problems, so we only do the checks we can |
| * do without slowing down good hardware unnecesserily. |
| * |
| * Note that IRQ7 and IRQ15 (the two spurious IRQs |
| * usually resulting from the 8259A-1|2 PICs) occur |
| * even if the IRQ is masked in the 8259A. Thus we |
| * can check spurious 8259A IRQs without doing the |
| * quite slow i8259A_irq_real() call for every IRQ. |
| * This does not cover 100% of spurious interrupts, |
| * but should be enough to warn the user that there |
| * is something bad going on ... |
| */ |
| if (cached_irq_mask & irqmask) |
| goto spurious_8259A_irq; |
| cached_irq_mask |= irqmask; |
| |
| handle_real_irq: |
| if (irq & 8) { |
| inb(PIC_SLAVE_IMR); /* DUMMY - (do we need this?) */ |
| outb(cached_slave_mask, PIC_SLAVE_IMR); |
| outb(0x60+(irq&7),PIC_SLAVE_CMD);/* 'Specific EOI' to slave */ |
| outb(0x60+PIC_CASCADE_IR,PIC_MASTER_CMD); /* 'Specific EOI' to master-IRQ2 */ |
| } else { |
| inb(PIC_MASTER_IMR); /* DUMMY - (do we need this?) */ |
| outb(cached_master_mask, PIC_MASTER_IMR); |
| outb(0x60+irq,PIC_MASTER_CMD); /* 'Specific EOI to master */ |
| } |
| spin_unlock_irqrestore(&i8259A_lock, flags); |
| return; |
| |
| spurious_8259A_irq: |
| /* |
| * this is the slow path - should happen rarely. |
| */ |
| if (i8259A_irq_real(irq)) |
| /* |
| * oops, the IRQ _is_ in service according to the |
| * 8259A - not spurious, go handle it. |
| */ |
| goto handle_real_irq; |
| |
| { |
| static int spurious_irq_mask; |
| /* |
| * At this point we can be sure the IRQ is spurious, |
| * lets ACK and report it. [once per IRQ] |
| */ |
| if (!(spurious_irq_mask & irqmask)) { |
| printk(KERN_DEBUG "spurious 8259A interrupt: IRQ%d.\n", irq); |
| spurious_irq_mask |= irqmask; |
| } |
| atomic_inc(&irq_err_count); |
| /* |
| * Theoretically we do not have to handle this IRQ, |
| * but in Linux this does not cause problems and is |
| * simpler for us. |
| */ |
| goto handle_real_irq; |
| } |
| } |
| |
| static char irq_trigger[2]; |
| /** |
| * ELCR registers (0x4d0, 0x4d1) control edge/level of IRQ |
| */ |
| static void restore_ELCR(char *trigger) |
| { |
| outb(trigger[0], 0x4d0); |
| outb(trigger[1], 0x4d1); |
| } |
| |
| static void save_ELCR(char *trigger) |
| { |
| /* IRQ 0,1,2,8,13 are marked as reserved */ |
| trigger[0] = inb(0x4d0) & 0xF8; |
| trigger[1] = inb(0x4d1) & 0xDE; |
| } |
| |
| static int i8259A_resume(struct sys_device *dev) |
| { |
| init_8259A(0); |
| restore_ELCR(irq_trigger); |
| return 0; |
| } |
| |
| static int i8259A_suspend(struct sys_device *dev, u32 state) |
| { |
| save_ELCR(irq_trigger); |
| return 0; |
| } |
| |
| static struct sysdev_class i8259_sysdev_class = { |
| set_kset_name("i8259"), |
| .suspend = i8259A_suspend, |
| .resume = i8259A_resume, |
| }; |
| |
| static struct sys_device device_i8259A = { |
| .id = 0, |
| .cls = &i8259_sysdev_class, |
| }; |
| |
| static int __init i8259A_init_sysfs(void) |
| { |
| int error = sysdev_class_register(&i8259_sysdev_class); |
| if (!error) |
| error = sysdev_register(&device_i8259A); |
| return error; |
| } |
| |
| device_initcall(i8259A_init_sysfs); |
| |
| void init_8259A(int auto_eoi) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&i8259A_lock, flags); |
| |
| outb(0xff, PIC_MASTER_IMR); /* mask all of 8259A-1 */ |
| outb(0xff, PIC_SLAVE_IMR); /* mask all of 8259A-2 */ |
| |
| /* |
| * outb_p - this has to work on a wide range of PC hardware. |
| */ |
| outb_p(0x11, PIC_MASTER_CMD); /* ICW1: select 8259A-1 init */ |
| outb_p(0x20 + 0, PIC_MASTER_IMR); /* ICW2: 8259A-1 IR0-7 mapped to 0x20-0x27 */ |
| outb_p(1U << PIC_CASCADE_IR, PIC_MASTER_IMR); /* 8259A-1 (the master) has a slave on IR2 */ |
| if (auto_eoi) /* master does Auto EOI */ |
| outb_p(MASTER_ICW4_DEFAULT | PIC_ICW4_AEOI, PIC_MASTER_IMR); |
| else /* master expects normal EOI */ |
| outb_p(MASTER_ICW4_DEFAULT, PIC_MASTER_IMR); |
| |
| outb_p(0x11, PIC_SLAVE_CMD); /* ICW1: select 8259A-2 init */ |
| outb_p(0x20 + 8, PIC_SLAVE_IMR); /* ICW2: 8259A-2 IR0-7 mapped to 0x28-0x2f */ |
| outb_p(PIC_CASCADE_IR, PIC_SLAVE_IMR); /* 8259A-2 is a slave on master's IR2 */ |
| outb_p(SLAVE_ICW4_DEFAULT, PIC_SLAVE_IMR); /* (slave's support for AEOI in flat mode is to be investigated) */ |
| if (auto_eoi) |
| /* |
| * in AEOI mode we just have to mask the interrupt |
| * when acking. |
| */ |
| i8259A_irq_type.ack = disable_8259A_irq; |
| else |
| i8259A_irq_type.ack = mask_and_ack_8259A; |
| |
| udelay(100); /* wait for 8259A to initialize */ |
| |
| outb(cached_master_mask, PIC_MASTER_IMR); /* restore master IRQ mask */ |
| outb(cached_slave_mask, PIC_SLAVE_IMR); /* restore slave IRQ mask */ |
| |
| spin_unlock_irqrestore(&i8259A_lock, flags); |
| } |
| |
| /* |
| * Note that on a 486, we don't want to do a SIGFPE on an irq13 |
| * as the irq is unreliable, and exception 16 works correctly |
| * (ie as explained in the intel literature). On a 386, you |
| * can't use exception 16 due to bad IBM design, so we have to |
| * rely on the less exact irq13. |
| * |
| * Careful.. Not only is IRQ13 unreliable, but it is also |
| * leads to races. IBM designers who came up with it should |
| * be shot. |
| */ |
| |
| |
| static irqreturn_t math_error_irq(int cpl, void *dev_id, struct pt_regs *regs) |
| { |
| extern void math_error(void __user *); |
| outb(0,0xF0); |
| if (ignore_fpu_irq || !boot_cpu_data.hard_math) |
| return IRQ_NONE; |
| math_error((void __user *)regs->eip); |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * New motherboards sometimes make IRQ 13 be a PCI interrupt, |
| * so allow interrupt sharing. |
| */ |
| static struct irqaction fpu_irq = { math_error_irq, 0, CPU_MASK_NONE, "fpu", NULL, NULL }; |
| |
| void __init init_ISA_irqs (void) |
| { |
| int i; |
| |
| #ifdef CONFIG_X86_LOCAL_APIC |
| init_bsp_APIC(); |
| #endif |
| init_8259A(0); |
| |
| for (i = 0; i < NR_IRQS; i++) { |
| irq_desc[i].status = IRQ_DISABLED; |
| irq_desc[i].action = NULL; |
| irq_desc[i].depth = 1; |
| |
| if (i < 16) { |
| /* |
| * 16 old-style INTA-cycle interrupts: |
| */ |
| irq_desc[i].handler = &i8259A_irq_type; |
| } else { |
| /* |
| * 'high' PCI IRQs filled in on demand |
| */ |
| irq_desc[i].handler = &no_irq_type; |
| } |
| } |
| } |
| |
| void __init init_IRQ(void) |
| { |
| int i; |
| |
| /* all the set up before the call gates are initialised */ |
| pre_intr_init_hook(); |
| |
| /* |
| * Cover the whole vector space, no vector can escape |
| * us. (some of these will be overridden and become |
| * 'special' SMP interrupts) |
| */ |
| for (i = 0; i < (NR_VECTORS - FIRST_EXTERNAL_VECTOR); i++) { |
| int vector = FIRST_EXTERNAL_VECTOR + i; |
| if (i >= NR_IRQS) |
| break; |
| if (vector != SYSCALL_VECTOR) |
| set_intr_gate(vector, interrupt[i]); |
| } |
| |
| /* setup after call gates are initialised (usually add in |
| * the architecture specific gates) |
| */ |
| intr_init_hook(); |
| |
| /* |
| * Set the clock to HZ Hz, we already have a valid |
| * vector now: |
| */ |
| setup_pit_timer(); |
| |
| /* |
| * External FPU? Set up irq13 if so, for |
| * original braindamaged IBM FERR coupling. |
| */ |
| if (boot_cpu_data.hard_math && !cpu_has_fpu) |
| setup_irq(FPU_IRQ, &fpu_irq); |
| |
| irq_ctx_init(smp_processor_id()); |
| } |