| /* |
| * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved. |
| * Copyright 2008 Sascha Hauer, kernel@pengutronix.de |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version 2 |
| * of the License, or (at your option) any later version. |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, |
| * MA 02110-1301, USA. |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/nand.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/interrupt.h> |
| #include <linux/device.h> |
| #include <linux/platform_device.h> |
| #include <linux/clk.h> |
| #include <linux/err.h> |
| #include <linux/io.h> |
| |
| #include <asm/mach/flash.h> |
| #include <mach/mxc_nand.h> |
| #include <mach/hardware.h> |
| |
| #define DRIVER_NAME "mxc_nand" |
| |
| #define nfc_is_v21() (cpu_is_mx25() || cpu_is_mx35()) |
| #define nfc_is_v1() (cpu_is_mx31() || cpu_is_mx27()) |
| |
| /* Addresses for NFC registers */ |
| #define NFC_BUF_SIZE 0xE00 |
| #define NFC_BUF_ADDR 0xE04 |
| #define NFC_FLASH_ADDR 0xE06 |
| #define NFC_FLASH_CMD 0xE08 |
| #define NFC_CONFIG 0xE0A |
| #define NFC_ECC_STATUS_RESULT 0xE0C |
| #define NFC_RSLTMAIN_AREA 0xE0E |
| #define NFC_RSLTSPARE_AREA 0xE10 |
| #define NFC_WRPROT 0xE12 |
| #define NFC_V1_UNLOCKSTART_BLKADDR 0xe14 |
| #define NFC_V1_UNLOCKEND_BLKADDR 0xe16 |
| #define NFC_V21_UNLOCKSTART_BLKADDR 0xe20 |
| #define NFC_V21_UNLOCKEND_BLKADDR 0xe22 |
| #define NFC_NF_WRPRST 0xE18 |
| #define NFC_CONFIG1 0xE1A |
| #define NFC_CONFIG2 0xE1C |
| |
| /* Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register |
| * for Command operation */ |
| #define NFC_CMD 0x1 |
| |
| /* Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register |
| * for Address operation */ |
| #define NFC_ADDR 0x2 |
| |
| /* Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register |
| * for Input operation */ |
| #define NFC_INPUT 0x4 |
| |
| /* Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register |
| * for Data Output operation */ |
| #define NFC_OUTPUT 0x8 |
| |
| /* Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register |
| * for Read ID operation */ |
| #define NFC_ID 0x10 |
| |
| /* Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register |
| * for Read Status operation */ |
| #define NFC_STATUS 0x20 |
| |
| /* Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read |
| * Status operation */ |
| #define NFC_INT 0x8000 |
| |
| #define NFC_SP_EN (1 << 2) |
| #define NFC_ECC_EN (1 << 3) |
| #define NFC_INT_MSK (1 << 4) |
| #define NFC_BIG (1 << 5) |
| #define NFC_RST (1 << 6) |
| #define NFC_CE (1 << 7) |
| #define NFC_ONE_CYCLE (1 << 8) |
| |
| struct mxc_nand_host { |
| struct mtd_info mtd; |
| struct nand_chip nand; |
| struct mtd_partition *parts; |
| struct device *dev; |
| |
| void *spare0; |
| void *main_area0; |
| void *main_area1; |
| |
| void __iomem *base; |
| void __iomem *regs; |
| int status_request; |
| struct clk *clk; |
| int clk_act; |
| int irq; |
| |
| wait_queue_head_t irq_waitq; |
| |
| uint8_t *data_buf; |
| unsigned int buf_start; |
| int spare_len; |
| }; |
| |
| /* OOB placement block for use with hardware ecc generation */ |
| static struct nand_ecclayout nandv1_hw_eccoob_smallpage = { |
| .eccbytes = 5, |
| .eccpos = {6, 7, 8, 9, 10}, |
| .oobfree = {{0, 5}, {12, 4}, } |
| }; |
| |
| static struct nand_ecclayout nandv1_hw_eccoob_largepage = { |
| .eccbytes = 20, |
| .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26, |
| 38, 39, 40, 41, 42, 54, 55, 56, 57, 58}, |
| .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, } |
| }; |
| |
| /* OOB description for 512 byte pages with 16 byte OOB */ |
| static struct nand_ecclayout nandv2_hw_eccoob_smallpage = { |
| .eccbytes = 1 * 9, |
| .eccpos = { |
| 7, 8, 9, 10, 11, 12, 13, 14, 15 |
| }, |
| .oobfree = { |
| {.offset = 0, .length = 5} |
| } |
| }; |
| |
| /* OOB description for 2048 byte pages with 64 byte OOB */ |
| static struct nand_ecclayout nandv2_hw_eccoob_largepage = { |
| .eccbytes = 4 * 9, |
| .eccpos = { |
| 7, 8, 9, 10, 11, 12, 13, 14, 15, |
| 23, 24, 25, 26, 27, 28, 29, 30, 31, |
| 39, 40, 41, 42, 43, 44, 45, 46, 47, |
| 55, 56, 57, 58, 59, 60, 61, 62, 63 |
| }, |
| .oobfree = { |
| {.offset = 2, .length = 4}, |
| {.offset = 16, .length = 7}, |
| {.offset = 32, .length = 7}, |
| {.offset = 48, .length = 7} |
| } |
| }; |
| |
| #ifdef CONFIG_MTD_PARTITIONS |
| static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL }; |
| #endif |
| |
| static irqreturn_t mxc_nfc_irq(int irq, void *dev_id) |
| { |
| struct mxc_nand_host *host = dev_id; |
| |
| uint16_t tmp; |
| |
| tmp = readw(host->regs + NFC_CONFIG1); |
| tmp |= NFC_INT_MSK; /* Disable interrupt */ |
| writew(tmp, host->regs + NFC_CONFIG1); |
| |
| wake_up(&host->irq_waitq); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* This function polls the NANDFC to wait for the basic operation to |
| * complete by checking the INT bit of config2 register. |
| */ |
| static void wait_op_done(struct mxc_nand_host *host, int useirq) |
| { |
| uint32_t tmp; |
| int max_retries = 2000; |
| |
| if (useirq) { |
| if ((readw(host->regs + NFC_CONFIG2) & NFC_INT) == 0) { |
| |
| tmp = readw(host->regs + NFC_CONFIG1); |
| tmp &= ~NFC_INT_MSK; /* Enable interrupt */ |
| writew(tmp, host->regs + NFC_CONFIG1); |
| |
| wait_event(host->irq_waitq, |
| readw(host->regs + NFC_CONFIG2) & NFC_INT); |
| |
| tmp = readw(host->regs + NFC_CONFIG2); |
| tmp &= ~NFC_INT; |
| writew(tmp, host->regs + NFC_CONFIG2); |
| } |
| } else { |
| while (max_retries-- > 0) { |
| if (readw(host->regs + NFC_CONFIG2) & NFC_INT) { |
| tmp = readw(host->regs + NFC_CONFIG2); |
| tmp &= ~NFC_INT; |
| writew(tmp, host->regs + NFC_CONFIG2); |
| break; |
| } |
| udelay(1); |
| } |
| if (max_retries < 0) |
| DEBUG(MTD_DEBUG_LEVEL0, "%s: INT not set\n", |
| __func__); |
| } |
| } |
| |
| /* This function issues the specified command to the NAND device and |
| * waits for completion. */ |
| static void send_cmd(struct mxc_nand_host *host, uint16_t cmd, int useirq) |
| { |
| DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x, %d)\n", cmd, useirq); |
| |
| writew(cmd, host->regs + NFC_FLASH_CMD); |
| writew(NFC_CMD, host->regs + NFC_CONFIG2); |
| |
| /* Wait for operation to complete */ |
| wait_op_done(host, useirq); |
| } |
| |
| /* This function sends an address (or partial address) to the |
| * NAND device. The address is used to select the source/destination for |
| * a NAND command. */ |
| static void send_addr(struct mxc_nand_host *host, uint16_t addr, int islast) |
| { |
| DEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x %d)\n", addr, islast); |
| |
| writew(addr, host->regs + NFC_FLASH_ADDR); |
| writew(NFC_ADDR, host->regs + NFC_CONFIG2); |
| |
| /* Wait for operation to complete */ |
| wait_op_done(host, islast); |
| } |
| |
| static void send_page(struct mtd_info *mtd, unsigned int ops) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct mxc_nand_host *host = nand_chip->priv; |
| int bufs, i; |
| |
| if (nfc_is_v1() && mtd->writesize > 512) |
| bufs = 4; |
| else |
| bufs = 1; |
| |
| for (i = 0; i < bufs; i++) { |
| |
| /* NANDFC buffer 0 is used for page read/write */ |
| writew(i, host->regs + NFC_BUF_ADDR); |
| |
| writew(ops, host->regs + NFC_CONFIG2); |
| |
| /* Wait for operation to complete */ |
| wait_op_done(host, true); |
| } |
| } |
| |
| /* Request the NANDFC to perform a read of the NAND device ID. */ |
| static void send_read_id(struct mxc_nand_host *host) |
| { |
| struct nand_chip *this = &host->nand; |
| |
| /* NANDFC buffer 0 is used for device ID output */ |
| writew(0x0, host->regs + NFC_BUF_ADDR); |
| |
| writew(NFC_ID, host->regs + NFC_CONFIG2); |
| |
| /* Wait for operation to complete */ |
| wait_op_done(host, true); |
| |
| if (this->options & NAND_BUSWIDTH_16) { |
| void __iomem *main_buf = host->main_area0; |
| /* compress the ID info */ |
| writeb(readb(main_buf + 2), main_buf + 1); |
| writeb(readb(main_buf + 4), main_buf + 2); |
| writeb(readb(main_buf + 6), main_buf + 3); |
| writeb(readb(main_buf + 8), main_buf + 4); |
| writeb(readb(main_buf + 10), main_buf + 5); |
| } |
| memcpy(host->data_buf, host->main_area0, 16); |
| } |
| |
| /* This function requests the NANDFC to perform a read of the |
| * NAND device status and returns the current status. */ |
| static uint16_t get_dev_status(struct mxc_nand_host *host) |
| { |
| void __iomem *main_buf = host->main_area1; |
| uint32_t store; |
| uint16_t ret; |
| /* Issue status request to NAND device */ |
| |
| /* store the main area1 first word, later do recovery */ |
| store = readl(main_buf); |
| /* NANDFC buffer 1 is used for device status to prevent |
| * corruption of read/write buffer on status requests. */ |
| writew(1, host->regs + NFC_BUF_ADDR); |
| |
| writew(NFC_STATUS, host->regs + NFC_CONFIG2); |
| |
| /* Wait for operation to complete */ |
| wait_op_done(host, true); |
| |
| /* Status is placed in first word of main buffer */ |
| /* get status, then recovery area 1 data */ |
| ret = readw(main_buf); |
| writel(store, main_buf); |
| |
| return ret; |
| } |
| |
| /* This functions is used by upper layer to checks if device is ready */ |
| static int mxc_nand_dev_ready(struct mtd_info *mtd) |
| { |
| /* |
| * NFC handles R/B internally. Therefore, this function |
| * always returns status as ready. |
| */ |
| return 1; |
| } |
| |
| static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode) |
| { |
| /* |
| * If HW ECC is enabled, we turn it on during init. There is |
| * no need to enable again here. |
| */ |
| } |
| |
| static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat, |
| u_char *read_ecc, u_char *calc_ecc) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct mxc_nand_host *host = nand_chip->priv; |
| |
| /* |
| * 1-Bit errors are automatically corrected in HW. No need for |
| * additional correction. 2-Bit errors cannot be corrected by |
| * HW ECC, so we need to return failure |
| */ |
| uint16_t ecc_status = readw(host->regs + NFC_ECC_STATUS_RESULT); |
| |
| if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) { |
| DEBUG(MTD_DEBUG_LEVEL0, |
| "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, |
| u_char *ecc_code) |
| { |
| return 0; |
| } |
| |
| static u_char mxc_nand_read_byte(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct mxc_nand_host *host = nand_chip->priv; |
| uint8_t ret; |
| |
| /* Check for status request */ |
| if (host->status_request) |
| return get_dev_status(host) & 0xFF; |
| |
| ret = *(uint8_t *)(host->data_buf + host->buf_start); |
| host->buf_start++; |
| |
| return ret; |
| } |
| |
| static uint16_t mxc_nand_read_word(struct mtd_info *mtd) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct mxc_nand_host *host = nand_chip->priv; |
| uint16_t ret; |
| |
| ret = *(uint16_t *)(host->data_buf + host->buf_start); |
| host->buf_start += 2; |
| |
| return ret; |
| } |
| |
| /* Write data of length len to buffer buf. The data to be |
| * written on NAND Flash is first copied to RAMbuffer. After the Data Input |
| * Operation by the NFC, the data is written to NAND Flash */ |
| static void mxc_nand_write_buf(struct mtd_info *mtd, |
| const u_char *buf, int len) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct mxc_nand_host *host = nand_chip->priv; |
| u16 col = host->buf_start; |
| int n = mtd->oobsize + mtd->writesize - col; |
| |
| n = min(n, len); |
| |
| memcpy(host->data_buf + col, buf, n); |
| |
| host->buf_start += n; |
| } |
| |
| /* Read the data buffer from the NAND Flash. To read the data from NAND |
| * Flash first the data output cycle is initiated by the NFC, which copies |
| * the data to RAMbuffer. This data of length len is then copied to buffer buf. |
| */ |
| static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct mxc_nand_host *host = nand_chip->priv; |
| u16 col = host->buf_start; |
| int n = mtd->oobsize + mtd->writesize - col; |
| |
| n = min(n, len); |
| |
| memcpy(buf, host->data_buf + col, len); |
| |
| host->buf_start += len; |
| } |
| |
| /* Used by the upper layer to verify the data in NAND Flash |
| * with the data in the buf. */ |
| static int mxc_nand_verify_buf(struct mtd_info *mtd, |
| const u_char *buf, int len) |
| { |
| return -EFAULT; |
| } |
| |
| /* This function is used by upper layer for select and |
| * deselect of the NAND chip */ |
| static void mxc_nand_select_chip(struct mtd_info *mtd, int chip) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct mxc_nand_host *host = nand_chip->priv; |
| |
| switch (chip) { |
| case -1: |
| /* Disable the NFC clock */ |
| if (host->clk_act) { |
| clk_disable(host->clk); |
| host->clk_act = 0; |
| } |
| break; |
| case 0: |
| /* Enable the NFC clock */ |
| if (!host->clk_act) { |
| clk_enable(host->clk); |
| host->clk_act = 1; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| /* |
| * Function to transfer data to/from spare area. |
| */ |
| static void copy_spare(struct mtd_info *mtd, bool bfrom) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct mxc_nand_host *host = this->priv; |
| u16 i, j; |
| u16 n = mtd->writesize >> 9; |
| u8 *d = host->data_buf + mtd->writesize; |
| u8 *s = host->spare0; |
| u16 t = host->spare_len; |
| |
| j = (mtd->oobsize / n >> 1) << 1; |
| |
| if (bfrom) { |
| for (i = 0; i < n - 1; i++) |
| memcpy(d + i * j, s + i * t, j); |
| |
| /* the last section */ |
| memcpy(d + i * j, s + i * t, mtd->oobsize - i * j); |
| } else { |
| for (i = 0; i < n - 1; i++) |
| memcpy(&s[i * t], &d[i * j], j); |
| |
| /* the last section */ |
| memcpy(&s[i * t], &d[i * j], mtd->oobsize - i * j); |
| } |
| } |
| |
| static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct mxc_nand_host *host = nand_chip->priv; |
| |
| /* Write out column address, if necessary */ |
| if (column != -1) { |
| /* |
| * MXC NANDFC can only perform full page+spare or |
| * spare-only read/write. When the upper layers |
| * layers perform a read/write buf operation, |
| * we will used the saved column address to index into |
| * the full page. |
| */ |
| send_addr(host, 0, page_addr == -1); |
| if (mtd->writesize > 512) |
| /* another col addr cycle for 2k page */ |
| send_addr(host, 0, false); |
| } |
| |
| /* Write out page address, if necessary */ |
| if (page_addr != -1) { |
| /* paddr_0 - p_addr_7 */ |
| send_addr(host, (page_addr & 0xff), false); |
| |
| if (mtd->writesize > 512) { |
| if (mtd->size >= 0x10000000) { |
| /* paddr_8 - paddr_15 */ |
| send_addr(host, (page_addr >> 8) & 0xff, false); |
| send_addr(host, (page_addr >> 16) & 0xff, true); |
| } else |
| /* paddr_8 - paddr_15 */ |
| send_addr(host, (page_addr >> 8) & 0xff, true); |
| } else { |
| /* One more address cycle for higher density devices */ |
| if (mtd->size >= 0x4000000) { |
| /* paddr_8 - paddr_15 */ |
| send_addr(host, (page_addr >> 8) & 0xff, false); |
| send_addr(host, (page_addr >> 16) & 0xff, true); |
| } else |
| /* paddr_8 - paddr_15 */ |
| send_addr(host, (page_addr >> 8) & 0xff, true); |
| } |
| } |
| } |
| |
| /* Used by the upper layer to write command to NAND Flash for |
| * different operations to be carried out on NAND Flash */ |
| static void mxc_nand_command(struct mtd_info *mtd, unsigned command, |
| int column, int page_addr) |
| { |
| struct nand_chip *nand_chip = mtd->priv; |
| struct mxc_nand_host *host = nand_chip->priv; |
| |
| DEBUG(MTD_DEBUG_LEVEL3, |
| "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n", |
| command, column, page_addr); |
| |
| /* Reset command state information */ |
| host->status_request = false; |
| |
| /* Command pre-processing step */ |
| switch (command) { |
| |
| case NAND_CMD_STATUS: |
| host->buf_start = 0; |
| host->status_request = true; |
| |
| send_cmd(host, command, true); |
| mxc_do_addr_cycle(mtd, column, page_addr); |
| break; |
| |
| case NAND_CMD_READ0: |
| case NAND_CMD_READOOB: |
| if (command == NAND_CMD_READ0) |
| host->buf_start = column; |
| else |
| host->buf_start = column + mtd->writesize; |
| |
| if (mtd->writesize > 512) |
| command = NAND_CMD_READ0; /* only READ0 is valid */ |
| |
| send_cmd(host, command, false); |
| mxc_do_addr_cycle(mtd, column, page_addr); |
| |
| if (mtd->writesize > 512) |
| send_cmd(host, NAND_CMD_READSTART, true); |
| |
| send_page(mtd, NFC_OUTPUT); |
| |
| memcpy(host->data_buf, host->main_area0, mtd->writesize); |
| copy_spare(mtd, true); |
| break; |
| |
| case NAND_CMD_SEQIN: |
| if (column >= mtd->writesize) { |
| /* |
| * FIXME: before send SEQIN command for write OOB, |
| * We must read one page out. |
| * For K9F1GXX has no READ1 command to set current HW |
| * pointer to spare area, we must write the whole page |
| * including OOB together. |
| */ |
| if (mtd->writesize > 512) |
| /* call ourself to read a page */ |
| mxc_nand_command(mtd, NAND_CMD_READ0, 0, |
| page_addr); |
| |
| host->buf_start = column; |
| |
| /* Set program pointer to spare region */ |
| if (mtd->writesize == 512) |
| send_cmd(host, NAND_CMD_READOOB, false); |
| } else { |
| host->buf_start = column; |
| |
| /* Set program pointer to page start */ |
| if (mtd->writesize == 512) |
| send_cmd(host, NAND_CMD_READ0, false); |
| } |
| |
| send_cmd(host, command, false); |
| mxc_do_addr_cycle(mtd, column, page_addr); |
| break; |
| |
| case NAND_CMD_PAGEPROG: |
| memcpy(host->main_area0, host->data_buf, mtd->writesize); |
| copy_spare(mtd, false); |
| send_page(mtd, NFC_INPUT); |
| send_cmd(host, command, true); |
| mxc_do_addr_cycle(mtd, column, page_addr); |
| break; |
| |
| case NAND_CMD_READID: |
| send_cmd(host, command, true); |
| mxc_do_addr_cycle(mtd, column, page_addr); |
| send_read_id(host); |
| host->buf_start = column; |
| break; |
| |
| case NAND_CMD_ERASE1: |
| case NAND_CMD_ERASE2: |
| send_cmd(host, command, false); |
| mxc_do_addr_cycle(mtd, column, page_addr); |
| |
| break; |
| } |
| } |
| |
| /* |
| * The generic flash bbt decriptors overlap with our ecc |
| * hardware, so define some i.MX specific ones. |
| */ |
| static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' }; |
| static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' }; |
| |
| static struct nand_bbt_descr bbt_main_descr = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
| | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, |
| .offs = 0, |
| .len = 4, |
| .veroffs = 4, |
| .maxblocks = 4, |
| .pattern = bbt_pattern, |
| }; |
| |
| static struct nand_bbt_descr bbt_mirror_descr = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
| | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, |
| .offs = 0, |
| .len = 4, |
| .veroffs = 4, |
| .maxblocks = 4, |
| .pattern = mirror_pattern, |
| }; |
| |
| static int __init mxcnd_probe(struct platform_device *pdev) |
| { |
| struct nand_chip *this; |
| struct mtd_info *mtd; |
| struct mxc_nand_platform_data *pdata = pdev->dev.platform_data; |
| struct mxc_nand_host *host; |
| struct resource *res; |
| uint16_t tmp; |
| int err = 0, nr_parts = 0; |
| struct nand_ecclayout *oob_smallpage, *oob_largepage; |
| |
| /* Allocate memory for MTD device structure and private data */ |
| host = kzalloc(sizeof(struct mxc_nand_host) + NAND_MAX_PAGESIZE + |
| NAND_MAX_OOBSIZE, GFP_KERNEL); |
| if (!host) |
| return -ENOMEM; |
| |
| host->data_buf = (uint8_t *)(host + 1); |
| |
| host->dev = &pdev->dev; |
| /* structures must be linked */ |
| this = &host->nand; |
| mtd = &host->mtd; |
| mtd->priv = this; |
| mtd->owner = THIS_MODULE; |
| mtd->dev.parent = &pdev->dev; |
| mtd->name = DRIVER_NAME; |
| |
| /* 50 us command delay time */ |
| this->chip_delay = 5; |
| |
| this->priv = host; |
| this->dev_ready = mxc_nand_dev_ready; |
| this->cmdfunc = mxc_nand_command; |
| this->select_chip = mxc_nand_select_chip; |
| this->read_byte = mxc_nand_read_byte; |
| this->read_word = mxc_nand_read_word; |
| this->write_buf = mxc_nand_write_buf; |
| this->read_buf = mxc_nand_read_buf; |
| this->verify_buf = mxc_nand_verify_buf; |
| |
| host->clk = clk_get(&pdev->dev, "nfc"); |
| if (IS_ERR(host->clk)) { |
| err = PTR_ERR(host->clk); |
| goto eclk; |
| } |
| |
| clk_enable(host->clk); |
| host->clk_act = 1; |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (!res) { |
| err = -ENODEV; |
| goto eres; |
| } |
| |
| host->base = ioremap(res->start, resource_size(res)); |
| if (!host->base) { |
| err = -ENOMEM; |
| goto eres; |
| } |
| |
| host->main_area0 = host->base; |
| host->main_area1 = host->base + 0x200; |
| |
| if (nfc_is_v21()) { |
| host->regs = host->base + 0x1000; |
| host->spare0 = host->base + 0x1000; |
| host->spare_len = 64; |
| oob_smallpage = &nandv2_hw_eccoob_smallpage; |
| oob_largepage = &nandv2_hw_eccoob_largepage; |
| } else if (nfc_is_v1()) { |
| host->regs = host->base; |
| host->spare0 = host->base + 0x800; |
| host->spare_len = 16; |
| oob_smallpage = &nandv1_hw_eccoob_smallpage; |
| oob_largepage = &nandv1_hw_eccoob_largepage; |
| } else |
| BUG(); |
| |
| /* disable interrupt and spare enable */ |
| tmp = readw(host->regs + NFC_CONFIG1); |
| tmp |= NFC_INT_MSK; |
| tmp &= ~NFC_SP_EN; |
| writew(tmp, host->regs + NFC_CONFIG1); |
| |
| init_waitqueue_head(&host->irq_waitq); |
| |
| host->irq = platform_get_irq(pdev, 0); |
| |
| err = request_irq(host->irq, mxc_nfc_irq, 0, DRIVER_NAME, host); |
| if (err) |
| goto eirq; |
| |
| /* Reset NAND */ |
| this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); |
| |
| /* preset operation */ |
| /* Unlock the internal RAM Buffer */ |
| writew(0x2, host->regs + NFC_CONFIG); |
| |
| /* Blocks to be unlocked */ |
| if (nfc_is_v21()) { |
| writew(0x0, host->regs + NFC_V21_UNLOCKSTART_BLKADDR); |
| writew(0xffff, host->regs + NFC_V21_UNLOCKEND_BLKADDR); |
| this->ecc.bytes = 9; |
| } else if (nfc_is_v1()) { |
| writew(0x0, host->regs + NFC_V1_UNLOCKSTART_BLKADDR); |
| writew(0x4000, host->regs + NFC_V1_UNLOCKEND_BLKADDR); |
| this->ecc.bytes = 3; |
| } else |
| BUG(); |
| |
| /* Unlock Block Command for given address range */ |
| writew(0x4, host->regs + NFC_WRPROT); |
| |
| this->ecc.size = 512; |
| this->ecc.layout = oob_smallpage; |
| |
| if (pdata->hw_ecc) { |
| this->ecc.calculate = mxc_nand_calculate_ecc; |
| this->ecc.hwctl = mxc_nand_enable_hwecc; |
| this->ecc.correct = mxc_nand_correct_data; |
| this->ecc.mode = NAND_ECC_HW; |
| tmp = readw(host->regs + NFC_CONFIG1); |
| tmp |= NFC_ECC_EN; |
| writew(tmp, host->regs + NFC_CONFIG1); |
| } else { |
| this->ecc.mode = NAND_ECC_SOFT; |
| tmp = readw(host->regs + NFC_CONFIG1); |
| tmp &= ~NFC_ECC_EN; |
| writew(tmp, host->regs + NFC_CONFIG1); |
| } |
| |
| /* NAND bus width determines access funtions used by upper layer */ |
| if (pdata->width == 2) |
| this->options |= NAND_BUSWIDTH_16; |
| |
| if (pdata->flash_bbt) { |
| this->bbt_td = &bbt_main_descr; |
| this->bbt_md = &bbt_mirror_descr; |
| /* update flash based bbt */ |
| this->options |= NAND_USE_FLASH_BBT; |
| } |
| |
| /* first scan to find the device and get the page size */ |
| if (nand_scan_ident(mtd, 1)) { |
| err = -ENXIO; |
| goto escan; |
| } |
| |
| if (mtd->writesize == 2048) |
| this->ecc.layout = oob_largepage; |
| |
| /* second phase scan */ |
| if (nand_scan_tail(mtd)) { |
| err = -ENXIO; |
| goto escan; |
| } |
| |
| /* Register the partitions */ |
| #ifdef CONFIG_MTD_PARTITIONS |
| nr_parts = |
| parse_mtd_partitions(mtd, part_probes, &host->parts, 0); |
| if (nr_parts > 0) |
| add_mtd_partitions(mtd, host->parts, nr_parts); |
| else |
| #endif |
| { |
| pr_info("Registering %s as whole device\n", mtd->name); |
| add_mtd_device(mtd); |
| } |
| |
| platform_set_drvdata(pdev, host); |
| |
| return 0; |
| |
| escan: |
| free_irq(host->irq, host); |
| eirq: |
| iounmap(host->base); |
| eres: |
| clk_put(host->clk); |
| eclk: |
| kfree(host); |
| |
| return err; |
| } |
| |
| static int __devexit mxcnd_remove(struct platform_device *pdev) |
| { |
| struct mxc_nand_host *host = platform_get_drvdata(pdev); |
| |
| clk_put(host->clk); |
| |
| platform_set_drvdata(pdev, NULL); |
| |
| nand_release(&host->mtd); |
| free_irq(host->irq, host); |
| iounmap(host->base); |
| kfree(host); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM |
| static int mxcnd_suspend(struct platform_device *pdev, pm_message_t state) |
| { |
| struct mtd_info *mtd = platform_get_drvdata(pdev); |
| struct nand_chip *nand_chip = mtd->priv; |
| struct mxc_nand_host *host = nand_chip->priv; |
| int ret = 0; |
| |
| DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND suspend\n"); |
| if (mtd) { |
| ret = mtd->suspend(mtd); |
| /* Disable the NFC clock */ |
| clk_disable(host->clk); |
| } |
| |
| return ret; |
| } |
| |
| static int mxcnd_resume(struct platform_device *pdev) |
| { |
| struct mtd_info *mtd = platform_get_drvdata(pdev); |
| struct nand_chip *nand_chip = mtd->priv; |
| struct mxc_nand_host *host = nand_chip->priv; |
| int ret = 0; |
| |
| DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND resume\n"); |
| |
| if (mtd) { |
| /* Enable the NFC clock */ |
| clk_enable(host->clk); |
| mtd->resume(mtd); |
| } |
| |
| return ret; |
| } |
| |
| #else |
| # define mxcnd_suspend NULL |
| # define mxcnd_resume NULL |
| #endif /* CONFIG_PM */ |
| |
| static struct platform_driver mxcnd_driver = { |
| .driver = { |
| .name = DRIVER_NAME, |
| }, |
| .remove = __devexit_p(mxcnd_remove), |
| .suspend = mxcnd_suspend, |
| .resume = mxcnd_resume, |
| }; |
| |
| static int __init mxc_nd_init(void) |
| { |
| return platform_driver_probe(&mxcnd_driver, mxcnd_probe); |
| } |
| |
| static void __exit mxc_nd_cleanup(void) |
| { |
| /* Unregister the device structure */ |
| platform_driver_unregister(&mxcnd_driver); |
| } |
| |
| module_init(mxc_nd_init); |
| module_exit(mxc_nd_cleanup); |
| |
| MODULE_AUTHOR("Freescale Semiconductor, Inc."); |
| MODULE_DESCRIPTION("MXC NAND MTD driver"); |
| MODULE_LICENSE("GPL"); |